
Institut Français de Recherche Scientifique pour le Développement en Coopération ORSTOM Centre de Nouméa

Mise en place d'une chaîne de traitement des données altimétriques du satellite GEOSAT

Jean-Pierre PORTE

Elève Ingénieur de l'Ecole Nationale de l'Aviation Civile promotion IENAC E 89

Rapport de stage d'approfondissement effectué de janvier à mai 1992

Institut Français de Recherche Scientifique pour le Développement en Coopération ORSTOM Centre de Nouméa

Mise en place d'une chaîne de traitement des données altimétriques du satellite GEOSAT

Jean-Pierre PORTE

Elève Ingénieur de l'Ecole Nationale de l'Aviation Civile promotion IENAC E 89

Rapport de stage d'approfondissement effectué de janvier à mai 1992

sous la direction de Joël PICAUT

RESUME

Dans le cadre du projet franco-américain TOPEX-POSEIDON, la NOAA (National Oceanic and Atmospheric Administration) a fourni début 1992 au Groupe SURTROPAC (SURveillance TROpical PACifique) du Centre ORSTOM (Institut Français de Recherche Scientifique pour le Développement en Coopération) de Nouméa, un jeu de trois ans (novembre 1986 à octobre 1989) de données altimétriques brutes de la mission ERM (Exact Repeat Mission) du satellite GEOSAT. Afin que les scientifiques du groupe puissent les analyser, les données reçues sous la forme de six CDROMs ont du subir un pré-traitement adapté aux besoins des chercheurs du groupe.

Ce rapport détaille la conception et la réalisation de ce pré-traitement qui consiste en différentes opérations. Les données GEOSAT ont tout d'abord été lues, triées en cycles puis en traces, et testées statistiquement. Après l'analyse des résultats des tris, un cycle de positions moyennes a été construit. Pour cette opération, deux traces moyennes types, une montante et une descendante, ont tout d'abord été calculées. Toutes les traces du cycle moyen de la zone d'étude (35°N-35°S; 105°E-290°E) ont été ensuite obtenues par translation des deux traces moyennes types. L'opération finale a consisté à la mise de tous les cycles de données au format du cycle de positions moyennes. Les données de chaque trace ont été ainsi "ramenées" sur la trace correspondante du cycle moyen. Le logiciel a été conçu et réalisé pour être directement exploitable par les scientifiques du Groupe SURTROPAC.

REMERCIEMENTS

Je tiens à remercier Joël Picaut, qui, en tant que responsable de stage a toujours répondu présent à mes demandes tout en ayant un emploi du temps trés chargé. Je le remercie, ainsi que tout le Groupe SURTROPAC qu'il dirige, de m'avoir accueilli dans une ambiance de travail très agréable.

Je remercie également Marie-José Langlade et François Masia, informaticiens du groupe, pour l'aide précieuse qu'ils m'ont apportée au cours du stage. Merci aussi, à Christian Hénin de m'avoir laissé user et abuser de son Macintosh pour rédiger mon rapport.

Je remercie Hervé Oiry, spécialiste du langage C et du traitement d'image pour ses conseils trés utiles et lui suis très reconnaissant de m'avoir permis d'utiliser le logiciel graphique qu'il a développé à l'ORSTOM.

Je remercie aussi Robert Cheney de la NOAA pour avoir fourni au Groupe SURIROPAC les données GEOSAT (dans le cadre du projet TOPEX-POSEIDON) et pour les réponses rapides qu'il a toujours su donner à mes questions par courrier électronique.

Enfin, je dis un grand merci à Véronique, Christophe et Jean-Philippe pour leur aide et leur présence quotidienne et surtout pour les bons moments passés ensembles.

SOMMAIRE

1) INTRODUCTION	.01
2) PRESENTATION DU SUJET	02
-, 	02
2.1) Cadre du stage	02
2.2) Aspect scientifique 2.3) Phénomène "El Nino"	02 03
2.3) Fhenomene El Amo	0.5
3) DONNEES SATELLITAIRES	04
3.1) Mesure altimétrique	04
3.1.1) Principe de la mesure altimétrique	04
3.1.2) Corrections du signal	06
a) Corrections de bruits instrumentaux	06
b) Corrections ionospheriques	06
c) Corrections troposphèriques	06
d) Biais électromagnétique e) Corrections des marées	07
3.1.3) Orbite	07 07
3.2) Le satellite GEOSAT	08
3.2.1) description générale	08
3.2.2) Données reçues	09
3.2.3) Format informatique	10
3.2.4) Précisions complémentaires	11
3.2.5) Commentaires 3.2.6) caractéristiques techniques de GEOSAT	11 13
4) CAHIER DES CHARGES	14
5) SPECIFICATIONS	15
5.1) Objectifs du logiciel	15
5.2) Analyse de l'existant 5.3) Contraintes	15 1 5
5.4) Spécifications	16
5.4.1) Liste des données	16
5.4.2) Liste des activités	16
6) CONCEPTION PRELIMINAIRE	18
6.1) Solution choisie	18
6.2) Module 1: "TRIER LES DONNEES EN CYCLES"	. 19
6.2.1) But	19
6.2.1) Principe du tri en cycle	19
6.2.3) Fonctions 6.2.4) Données	20
6.2.4) Dollines 6.2.5) Vérifications et calcula	21 21

6.3) Module 2:"DEFINIR UN CYCLE STANDARD"	22						
6.3.1) But 6.3.2) Principe général 6.3.3) Fonctions							
						6.3.4) Données du module	22 23
						6.3.5) Vérifications	23
6.4) Module 3: "TRIER LES DONNEES EN TRACES"	23						
6.4.1) But	23						
6.4.2) Principe	24						
6.4.3) Données	24						
6.5) Module 4: "MISE AU FORMAT COMMUN DU CYCLE							
STANDARD FINAL"	24						
6.5.1) But							
6.5.2) Principe et fonctions	24 25						
a) Mise au format	25						
b) Interpolation	26						
6.5.3) Données	26						
C.C.O, DOILLOSS	20						
7) CONCEPTION DETAILLEE	07						
7) CONCEPTION DETAILLEE	27						
7.1) Structure informatique des données du logiciel	27						
7.1.1) Format des fichiers de données	27						
7.1.2) Données de traitement	29						
7.1.3) Données statiques	30						
7.2) Gestion des erreurs	31						
7.3) Affichage des résultats	31						
7.4) Module 1 "TRIER LES DONNEES EN CYCLES"	31						
7.4.1) Données internes	31						
7.4.2) Algorithme général	31						
7.4.3) Traitement d'un fichier	32						
7.4.4) Calcul de la hauteur altimétrique h	33						
7.4.5) Tests	34						
7.5) Module 2: "DEFINIR UN CYCLE STANDARD"	34						
7.5.1) Etape 1 : détermination de deux traces les plus							
représentatives.	34						
7.5.2) Etape 2 : détermination de deux traces moyennes types							
montante et descendante et création du fichier correspondant.	35						
a) Principe	35						
b) Données	36						
c) Données particulières	36						
d) Vérifications:	36						
7.5.3) Etape 3: création du fichier de positions moyennes							
des passages à l'équateur appelé fichier "passage equateur"	37						
a) Principe	37						
b) Données	38						
c) Algorithme	38						
d) Vérifications.	39						
7.5.4) Etape 4: construction du cycle standard final	39						
a) Principe	39						
b) Données	41						
c) Algorithme	41						
d) Vérifications	41						
7.6) Module 3 "TRIER LES DONNEES PAR TRACE"	42						
7.6.1) Algorithme	42						
7.6.2) Tests	42						
7.7) Module 4: mise au format commun des cycles de données	43						
7.7.1) Algorithme	43						
7.7.1) Algorithme 7.7.2) Interpolation	44						
7.7.2) Met polation 7.7.3) Tests	44						
1.1.0) 1000							

9) CODAGE	46
10) TESTS UNITAIRES ET RESULTATS	48
10.1) Module 1	48
9.1.1) Tests	48
9.1.2) Résultats	48
10.2) Création du fichier "passage équateur moyen" (module 2)	48
10.3) Création du cycle standard primaire (module 2)	49
10.4) Tri par trace (module 3)	49
10.5) Détermination de deux traces moyennes (module 2)	49
10.6) Création du cycle standard final (module 2)	49
10.7) Mise au format et interpolation (module 4)	49
10.7.1) Améliorations	49
10.7.2) Commentaires	50
	. •
11) CONCLUSION	51
BIBLIOGRAPHIE	52
ANNEXE 1 Diagrammes SADT	A1
ANNEXE 2 Extraits de programmes source	A2
ANNEXE 3 Extraits des fichiers ASCII de tests et de résultats	A 3

1) INTRODUCTION

Les satellites ont pris désormais une part prépondérante dans la recherche scientifique. Ils vont devenir les plus gros fournisseurs de données des futurs grands programmes de recherche internationaux sur les changements climatiques globaux de notre planète.

Dès à présent, de nombreuses données satellitaires sont traitées et exploitées, notamment celles du satellite américain GEOSAT. Ce satellite est le premier satellite à avoir fourni des données altimétriques pour l'ensemble du globe sur une durée de 4,5 ans permettant l'étude des variabilités à l'échelle interannuelle. Les données GEOSAT recueillies donnent des informations sur l'état de la mer, la vitesse du vent et surtout sur la topographie de la surface marine. Ce dernier paramètre permet d'appréhender les variations du contenu thermique océanique, les courants de surface et ainsi les transports de masse et de chaleur qui sont à l'origine des fluctuations climatiques de notre globe aux échelles de quelques mois à quelques années.

Cependant, les données altimétriques sont systématiquement entachées d'erreurs d'origines diverses. De gros efforts sur la modélisation des erreurs et la détermination des corrections à appliquer sont réalisés par des équipes spécialisées. Ces améliorations apportées aux corrections des données altimétriques ont abouti à un produit exploitable par de nombreuses équipes de recherche. Avant d'être utilisées scientifiquement, les données doivent donc être corrigées, traitées, grillées et comparées avec des mesures in situ. Le traitement est approprié à l'exploitation scientifique de chaque équipe.

Le Groupe SURTROPAC du Centre ORSTOM de Nouméa m'a confié la tâche de concevoir et de réaliser un traitement des données GEOSAT de novembre 1986 à octobre 1989 adapté à leurs besoins scientifiques (35°N-35°S; 105°E-290°E).

2) PRESENTATION DU SUJET

2.1) Cadre du stage

Le Centre ORSTOM (Institut Français de Recherche Scientifique pour le Développement en Coopération) de Nouméa dont l'effectif est de plus de 200 personnes, se divise en plusieurs services dont les principaux sont : océanographie, géophysique, géologie, botanique et sciences humaines

Le Groupe (SURTROPAC SURveillance TROpical PACifique) au sein duquel j' ai effectué mon stage, dépend du Département "Terre Océan Atmosphère" de l'ORSTOM. Le groupe est composée de six chercheurs, deux ingénieurs d'études, deux analystes programmeurs, un électronicien, deux techniciens, une secrétaire et deux à quatre étudiants de thèse ou stagiaires.

2.2) Aspect scientifique

Les principales fonctions du Groupe SURTROPAC sont d'observer, étudier et comprendre le comportement dynamique des eaux de l'océan Pacifique Tropical, afin de pouvoir appréhender certains phénomènes physiques qui s'y produisent, en particulier le phénomène "El Nino" (cf. paragraphe suivant). Dans ce but, le Groupe SURTROPAC est associé à deux grands programmes internationaux .

Le premier est le programme TOGA (Tropical Oceans and Global Atmosphere) de l'Organisation Mondiale de la Météorologie qui a été lancé en 1985 et finira en 1994. Les objectifs du programme TOGA sont les suivants :

- déterminer le niveau de prédictabilité du système océan tropicaux-atmosphère globale, c'est-à-dire dans quelle mesure la connaissance des variations des océans tropicaux permet la prédiction des évolutions climatiques de la planète, aux échelles de temps de quelques mois à quelques années.

- étudier la possibilité de modéliser le système couplé océan-atmosphère, pour

prédire ses varitions sur les échelles de temps précitées.

- fournir les connaissances scientifiques permettant d'améliorer les réseaux de collecte et transmission des données en vue de l'utilisation opérationnelle des modèles pour la prédiction effective du climat.

Le deuxième programme est le programme COARE (Coupled Ocean Atmosphere Response Experiment). C'est en fait un sous programme de TOGA qui a été lancé en 1991 et finira en 1993. Les objectifs du programme COARE sont sensiblement identiques à ceux du programme TOGA. Par contre les zones géographiques des deux programmes différent. Le programme TOGA couvre toutes les eaux tropicales alors que le programme COARE couvre seulement la zone ouest du Pacifique. Cette dernière zone, appelée réservoir d'eaux chaudes (warm-pool), est au centre du programme COARE car elle serait à l'origine d' El Nino et de changements climatiques importants de notre planéte.

Dans le cadre de ces deux programmes, de nombreuses mesures sont réalisées, rassemblées et traitées par le Groupe SURTROPAC. Les provenances des données sont diverses. Des campagnes hydrologiques et courantométriques d'un mois sont réalisées deux fois par an à partir de navires océanographiques, le long des méridiens 165°E et 156°E. Des réseaux de mesures de surface et subsurface par navires de commerce, de mouillages de chaînes à thermistances (ATLAS) et courantométriques, et de bouées dérivantes, couvrent une grande partie de l'océan Pacifique Tropical. Des modèles analytiques et numériques décrivent le comportement de l'océan Pacifique Tropical. Enfin, le Groupe SURTROPAC utilise des données altimétriques (GEOSAT et bientôt TOPEX-POSEIDON) qui assurent une couverture globale, synoptique et répétée de l'océan Pacifique. Les paramétres physiques les plus mesurés sont la salinité, la

température de l'eau, la hauteur du niveau de la mer, les courants (mesurés et calculés) et les vents de surface.

2.3) Phénomène "El Nino"

Ce phénomène est connu depuis plus d'un siècle par les pêcheurs de l'Amérique du Sud qui l'ont baptisé "El Nino" (ou l'enfant Jésus) car il apparaît à l'époque de Noël. Le terme "El Nino" désigne à présent à lui seul un événement catastroshique pour la vie marine et la population. Il s'agit initialement d'un courant qui transporte les eaux chaudes tropicales vers le Sud, et qui repousse les eaux de surface froides qui caractérisent en temps normal les côtes du Pérou et du Chili. Ce phénomène, par des conséquences dramatiques sur les pêcheries et le climat des côtes de l'Amérique, en fait concerne l'ensemble du Pacifique Tropical.

Les spécialistes analysent le phénomène de la façon suivante. En situation normale, le régime dominant des Alizés induit une accumulation des eaux chaudes vers le Pacifique ouest (warm-pool) (Wyrtki, 1979). Le niveau de la mer s'éléve alors de quelques dizaines de cm sur le Pacifique ouest alors qu'il s'abaisse à l'est. Ensuite, un affaiblissement des alizés et parfois même une inversion de la direction des vents vers l'ouest est observé. Ce changement des régimes des vents se traduit par un déplacement des eaux chaudes du réservoir d'eaux chaudes vers l'est du Pacifique. C'est une sorte de rééquilibrage de l'océan Pacifique après une trop forte accumulation des eaux chaudes vers l'ouest. Un des paramétres les plus important pour appréhender les courants et ondes océaniques importantes associées à de tels déplacements d'eaux est la hauteur de la surface de l'eau.

Les conséquences d' El Nino sont nombreuses. Tout d'abord on observe un réchauffement des eaux du Pacifique sur la côte ouest de l'Amérique. On observe une sécheresse sur l'est de l'Australie, le Pacifique Sud-Ouest (en particulier la Nouvelle-Calédonie), la Nouvelle-Zélande et l'Indonésie puis une déviation des trajectoires des dépressions tropicales plus au nord (Alaska, Canada) et aussi sur le Mexique. Par contre de fortes précipitations équatoriales se produisent sur l' ouest Pacifique et sur les côtes d'Amérique. Enfin, une influence sur le climat du globe entier, plusieurs mois après le déclenchement du phénomène est souvent notée.

Ce phénomène apparaît en moyenne tous les 3 à 5 ans avec une intensité variable. Le dernier El Nino de grande importance fut celui de 1982-83; celui de 1986-87 fut d'intensité normale. L'année 1992 est une année à El Nino car depuis Noël 1991 des anomalies positives de températures de surface ont été observées sur tout le Pacifique Est.

3) DONNEES SATELLITAIRES

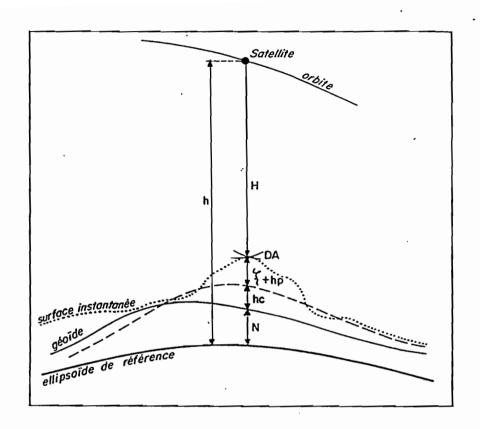
Des données altimétriques satellitaires de bonne qualité sont actuellement disponibles : ce sont celles du satellite GEOSAT de l'U.S. Navy placé sur une orbite répétitive à 17 jours de novembre 1986 à octobre 1989. Elles sont fournies par la NOAA (National Oceanic and Atmospheric Administration). D'autres données seront disponibles dans quelques mois, celles du satellite franco-américain TOPEX-POSEIDON de la NASA (National Aeronautic and Space Agency) et du CNES (Centre National d'Etude Spatiale) et avec une précision meilleure que celles de GEOSAT.

3.1) Mesure altimétrique

La mesure altimétrique de la topographie dynamique se décompose en trois mesures (Fig. 1) :

- la mesure de distance entre le satellite et la surface de la mer.
- la position du satellite sur son orbite par rapport au centre de masse de la Terre.
- la hauteur du géoïde par rapport à un ellipsoïde de référence, lui-même rapporté au centre de masse de la Terre.

Pour chacune des trois mesures, les objectifs de précision à atteindre sont déterminants.


3.1.1) Principe de la mesure altimétrique

L'altimétre est un radar dont la fréquence de travail est de quelques GHz, ce qui correspond à des ondes centimétriques. L'antenne émettrice et réceptrice est orientée vers le nadir (verticale), l'ouverture du faisceau est de 2 degrés dans le cas du satellite GEOSAT. Des impulsions électromagnétiques rectangulaires de très courte durée (quelques nano secondes) sont émises à la cadence d'environ 1000 Hz c'est à dire une impulsion tous les millièmes de seconde.

L'impulsion retour est reçue dans une fenêtre d'écoute prépositionnée par une boucle de poursuite, grâce aux mesures antérieures. Comme chaque impulsion retour est trop bruitée du fait de la nature aléatoire de la surface du globe, on n'analyse que la moyenne de 100 impulsions c'est à dire toutes les 0,1 secondes.

Les impulsions sont analysées de façon à déterminer la position en temps du milieu du front de montée de l'impulsion (qui fournit la distance à la surface de la mer), sa largeur (qui est une mesure de la hauteur significative des vagues) et l'intensité du signal (qui est une mesure de la diffusion du signal par les vagues et par conséquent qui permet d'estimer le module du vent). Enfin, la pente du sommet de l'impulsion retour est en principe une mesure de l'angle de visée du satellite. Cependant, les impulsions sont en général trop bruitées pour que l'extraction de ce paramètre soit fiable. On utilise alors la mesure de l'angle d'attitude faite à bord du satellite. La hauteur altimétrique est déduite du temps mis par l'impulsion émise pour revenir à l'antenne receptrice.

En ce qui concerne le satellite GEOSAT le bruit de mesure est de l'ordre de ${\bf 2}$ à ${\bf 4}$ cm.

h : hauteur du satellite par rapport à l'ellipsoïde de référence.

H : distance du satellite à la surface instantanée de l'océan.

DA: correction d'altitude.

N : hauteur du géoïde par rapport à l'ellipsoïde de référence.

hc : hauteur dynamique de la circulation générale.

hp : variation du niveau de l'océan due à la pression atmosphérique.

: variation du niveau de l'océan due aux phénomènes océanographiques,

(marées, tourbillons,...)

Fig. 1 Eléments de base de la mesure altimétrique. (d'après Minster, Etude de la topographie dynamique des océans par altimétrie satellitaire)

3.1.2) Corrections du signal

La hauteur altimétrique ainsi obtenue doit être corrigée d'erreurs dues aux biais instrumentaux, à la propagation de l'onde électromagnétique dans l'ionosphère et la troposphère, aux signaux de marées océanique et terrestre et aux biais induits par l'état de la mer ou les effets météorologiques.

a) Corrections de bruits instrumentaux

Trois types de corrections de bruits instrumentaux sont appliquées aux mesures :

- correction due au délai de traitement des instruments. Il s'agit d'une correction effectuée sur le temps aller retour du signal.
- correction liée à la géométrie du satellite qui prend en compte la distance entre le centre de gravité du satellite et l'appareillage électronique.
- correction dite "d'attitude" due au dépistage du radar; le satellite n'est pas toujours exactement orientée selon la verticale (nadir).

Un autre type d'erreur instrumentale, appelée "erreur de tracking", est causée par une variation rapide de l'intensité de l'écho retour (lors d'un passage sur la glace par exemple). Cette variation induit en erreur le circuit de prépositionnement sur le front de montée. Cette erreur peut être aussi provoquée par une variation rapide de la hauteur altimétrique, ce qui explique le "décrochage" systématique de l'altimétre lorsqu'il atteint une zone de terre émergée, et ses difficultées à "raccrocher" lorsqu'il quitte une zone de terre dont le dénivellé côtier est important.

b) Corrections ionosphèriques

L'ionosphère retarde le signal proportionnellement à son contenu intégré en électrons. Ce contenu en électrons est estimé à partir de modèles semi-empiriques de l'ionosphère représentant les variations géographiques et diurnes du contenu en électrons. Ces modèles sont ajustés par des mesures au sol dans les deux hémisphères et par comparaison entre d'autres modèles. Le modèle utilisé pour les données GEOSAT est le modèle ionosphèrique semi-empirique de Klobucher (Musman et al.,1990) appelé GPS model (Global Positionning System climatic ionospheric model).

Le satellite GEOSAT est sensible aux corrections ionosphèriques car il posséde un altimétre monofréquence. Ces corrections peuvent atteindre plusieurs décimétres surtout en période d'extrême activité solaire. De plus les variations de ce phénomène sont annuelles et inter-annuelles sur de grandes distances latitudinales. Pendant la période de janvier à mars 1987 l'activité solaire a été réduite, ce qui a eu pour effet de réduire des corrections à 1 à 2 cm seulement. Ensuite, une augmentation constante de cette activité jusqu'à la fin de la période de mesures, a entraîné une augmentation sensible des corrections de 5 à 7 cm.

A l'avenir l'utilisation de l'altimétre bifréquence de TOPEX/POSEIDON améliorera sensiblement la précision de ces corrections. En effet, l'altimétre bifréquence effectue deux mesures, chacune des deux mesures à une fréquence différente. L'analyse et la comparaison des deux signaux reçus déterminent directement le contenu en électrons de la ionosphère.

c) Corrections troposphèriques

La troposphère retarde le signal; deux corrections existent :

- troposphère séche pour prendre en compte le retard causé par les molécules d'air contenues dans la troposphère.
- troposphère humide pour prendre en compte le retard causé par la vapeur d'eau contenue dans la troposphère.

La correction d'atmosphère séche peut être évaluée avec suffisamment de précision à l'aide de modèles météorologiques. En revanche la correction de vapeur d'eau est faite, avec une certaine imprécision, soit à l'aide de modèles météorologiques soit à l'aide de mesures par radiométre micro-onde. Ces dernières permettent une détermination du contenu intégré en vapeur d'eau à une précision comparable à celle des radio-sondages.

Pour les données GEOSAT, le premier modèle météorologique utilisé a été élaboré par l' U.S. Navy Fleet Numerical Oceanographic Center (FNOC). Un autre modèle climatologique basé sur trois années d'observations radiométriques du SMMR (Scanning Multichannel Microwave Radiometer) du satellite NIMBUS-7, est aussi utilisé. La précision de ces modèles est difficile à quantifier d'une manière simple, tout de même des comparaisons entre les deux modèles montrent que le modèle FNOC sous-estime régulièrement la correction de vapeur d'eau surtout dans les zones équatoriales de convergence.

Un troisième modèle appelé modèle SSMI (Special Sensor Microwave Imager) est considéré comme une amélioration notable du modèle FNOC. Le SSMI est un radiométre micro-onde. Il a été embarqué sur un satellite météorologique de la défense américaine et a pu effectuer des mesures de vapeur d'eau de juillet à décembre 1987. Le modèle se base sur ces mesures, de plus son échelle spatiale est de 25 km au lieu de 250 km pour le modèle FNOC. Cela permet d'appréhender des phénomènes à échelle réduite, essentiellement dans les régions à forte humidité (zone de convergence intertropicale).

d) Biais électromagnétique

La hauteur altimétrique est biaisée par l'état de la mer. Un premier biais provient des imperfections des algorithmes de poursuite. Effectivement les vagues influent sur la forme de l'impulsion retour et notamment par la diminution de la pente du front de montée, l'onde incidente rencontre d'abord la crête des vagues puis les creux. Le temps de montée du signal sera donc d'autant plus long que la hauteur des vagues sera importante.

Un deuxième effet provient d'un processus physique réel appelé biais électromagnétique, la forme de la surface de la mer n'est pas symétrique, si bien que l'écho radar est dominé par celui du creux (réflexion convergente) des vagues au détriment de celui des crêtes (réflexion divergente).

e) Corrections des marées

Le signal de marée doit être préalablement soustrait à la hauteur h. On soustrait les marées solides et les marées océaniques par le modèle de Schwiderski. Ces dernières sont jugées précises à 10 cm près mais en certaines zones et, en particulier le long des marges continentales où il y a peu de données, leurs erreurs peuvent être nettement supérieures. Cependant, comme le signal de marées lui-même, le signal d'erreur des marées est en général de grande longueur d'onde, et il est absorbé par les corrections d'erreur d'orbite (cf. paragraphe suivant).

3.1.3) Orbite

L'étude de l'orbite est un domaine très vaste et très technique. Il faut tout de même en retenir quelques aspects.

Tout d'abord le calcul de l'orbite se fait à partir d'un modèle dynamique du mouvement du satellite; ce modèle tient compte d'un champs de force le plus complet possible, c'est à dire incluant un champs de potentiel de la Terre le plus précis possible, les effets de la Lune et du Soleil, les effets des marées, et les forces entraînant des dérives infimes du satellite comme la pression de radiation. En général, l'orbite est calculée, à partir de conditions initiales sur des arcs de quelques jours, puis cet arc

est ajusté par moindres carrés aux observations, ces dernières sont soit des positions (mesures laser) soit des vitesses (mesures Doppler). Ces arcs d'orbite sont en général indépendants et disjoints, si bien que des "sauts" importants d'orbite peuvent être trouvés aux points de changement d'arc.

L'erreur d'une orbite est difficile à estimer. Les facteurs principaux qui sont source d'erreurs d'orbite sont d'une part l'incertitude sur le champ de potentiel de la Terre et d'autre part la densité et la précision des observations.

Pour le satellite GEOSAT la hauteur d'orbite du satellite est mesurée ou calculée par rapport à l'ellipsoïde de référence. Plusieurs modèles ont été mis au point, chacun de ces modèles s'ajustant sur des hauteurs mesurées par des stations au sol.

Pour le premier jeu partiel de données GEOSAT, reçu en 1988 par le Groupe SURTROPAC, l'orbite du satellite a été calculée par le Navy Astronautics Group (NAG) avec utilisation de radars Doppler (4 stations aux U.S.A. dont 1 à Hawaï) pour les mesures, et du GEM-10 model (Goddard Earth Model) pour le modèle de champ de gravité terrestre. Les éphémérides ont été fournies par le "WGS 72 coordinate system". La longueur de chaque arc est de 2 jours avec 12 heures de chevauchement entre deux arcs consécutifs; les points de discontinuité sont placés au maximum de latitude c'est à dire 72°N (inclinaison du satellite GEOSAT).

Pour le deuxième jeu de données final et complet, reçu début 1992, l'orbite a été calculée par le Goddard Space Flight Center (GSFC) de la NASA qui a élaboré le modèle GEM-T2. Ce modèle est une combinaison du modèle gravitationnel GEM-T2 et du réseau de mesures au sol (radars Doppler) de la DMAs (Defense Mapping Agency's) avec 48 stations au sol. Cette fois la longueur de chaque arc est de 5 jours avec un jour de chevauchement.

Pour le nouveau satellite TOPEX/POSEIDON un système d'orbitographie appelée DORIS sera mis en place; avec un tel réseau de stations au sol, le satellite sera suivi sur une durée supérieure à celle de GEOSAT.

3.2) Le satellite GEOSAT

3.2.1) description générale

Le satellite GEOSAT de l'U.S. Navy (Fig. 2) a été conçu et réalisé par le laboratoire des sciences physiques appliquées de l'Université Johns Hopkins à Laurel dans l'Etat du Maryland. Ce satellite est équipé d'un radar altimétrique qui fournit des profils de niveau de la mer le long de traces au sol. L'expèrience des satellites GEOS-3 et SEASAT dans les années 1970 a démontré le potentiel énorme de l'altimétrie mais aucune mission n'avait encore fourni un jeu de données sur une telle période (4,5 ans) et pour une couverture du globe entier.

GEOSAT est un satellite à défilement. Il a été lancé le 12 mars 1985 depuis la base aérienne de Vandenberg (U.S.A). Deux missions concernaient GEOSAT. La première mission appelée GM (Geodetic Mission) se déroula du 30 mars 1985 au 30 septembre 1986. Le but de cette mission cofidentielle était de compléter une mission antérieure conflée à un autre satellite, à savoir obtenir une description du géoïde marin avec une haute résolution. La deuxième mission, appelée ERM (Exact Repeat Mission) se déroula du 8 novembre 1986 à octobre 1989. Le but de cette deuxième mission était de produire des profils périodiques de niveau de la mer le long de traces répétitives du satellite.

Entre le 30 septembre 1986 et le 8 novembre 1986 plusieurs manoeuvres furent réalisées pour mettre le satellite dans une orbite répétitive exacte de période 17 jours. De fréquentes manoeuvres par la suite furent réalisées pour maintenir les traces au

sol périodiques du satellite dans un intervalle de 1 km. GEOSAT était suivi par plusieurs réseaux de surveillance au sol. La NOAA a reçu et traité ces données satellitaires altimétriques. Le traitement initial est fastidieux car, comme nous venons de le voir, beaucoup de corrections doivent être appliquées aux données brutes.



Fig. 2 Le satellite GEOSAT. (Frain et al., 1987.).

3.2.2) Données reçues

Les données reçues appelées GDR's (Geophysical Data Records) ont été produites après combinaison de plusieurs ensembles de données (Fig. 3). Les données de base SDR's (Sensor Data Records) ont, tout d'abord été rassemblées et stockées à l'Université Johns Hopkins puis, transmises à la NOAA à Rockville dans le Maryland où elles ont été incorporées avec les éphémérides fournies par le NAG. Les corrections ont ensuite été ajoutées pour prendre en compte les marées solide et océanique, et les effets de la ionosphère et de la troposphère (séche et humide). Ensuite ces données et leurs corrections associées ont été envoyées au NODC (National Oceanic Data Center) à Washington. Les GDR's ont été alors regroupées en fichier de données, chacun couvrant une période voisine de 24 heures c'est à dire 14 à 15 révolutions complètes.

Le format des GDR's de GEOSAT ressemble beaucoup à celui des données issues des satellites prédédents SEASAT et GEOS-3. La différence essentielle est l'inclusion dans chaque donnée des dix mesures réalisées chaque dixième de seconde. La valeur moyennée sur une seconde est également présente. La raison de ce choix est essentiellement liée au fait de pouvoir maintenir une sorte de continuité des mesures pour permettre une interpolation des données dans la comparaison de traces colinéaires et sécantes.

La grande faiblesse des données altimétriques GEOSAT réside dans l'absence de radiomètre embarqué pour mesurer le contenu en vapeur d'eau de l'atmosphère, nécessaire à la correction des mesures altimétriques. Néanmoins, l'utilisation du dernier modèle SSMI décrit au paragraphe précédent, réduit considérablement ce handicap.

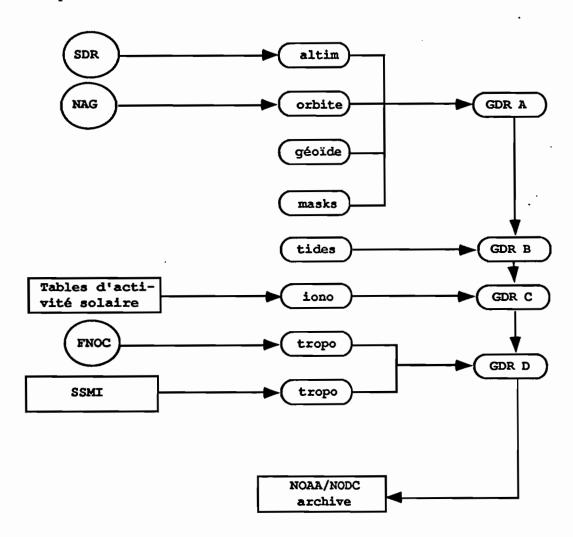


Fig. 3 : Différentes phases de production et de correction des données GEOSAT

3.2.3) Format informatique:

Chaque donnée est un enregistrement de 34 champs de 78 octets (Fig. 4). Les cinq premiers champs sont des entiers codés sur 4 octets alors que les autres sont des entiers courts codés sur 2 octets seulement. Les données couvrent une période de trois ans environ (novembre 1986 à octobre 1989) et sont regroupées par fichier journalier. Le support des données est le CDROM: 6 CDROMs constituent l'ensemble du jeu. Dans chaque CDROM sont stockés environ 150 fichiers journaliers; la taille d'un fichier journalier varie de 3 à 4 Mo: la capacité de chaque CDROM est donc de 500 Mo environ. Les 6 CDROMs constitue donc un ensemble de données de 3000 Mo. La documentation fournie avec les CDROMs se compose de quatre fascicules (Cheney et al., 1987, 1988; Doyle et al., 1989, 1990). Le premier fascicule est le manuel GEOSAT, les trois autres comportent des renseignements sur les mesures satellitaires tout au long de la mission, soit un fascicule par année de mission.

3.2.4) Précisions complémentaires

Voici des informations supplémentaires sur les champs les plus importants d'un GDR.

Champ UTC : temps en seconde, la référence est prise au 1er janvier 1985 à 00 h 00 mn 00s.

Champ UTC(cont): précision du temps en micro-secondes.

Champ LATITUDE : latitude de la mesure en micro-degrés. Les latitudes Nord sont comptées positivement.

Champ LONGITUDE: longitude de la mesure en micro-degrés. Les longitudes sont considérées comme des longitudes Est relative au méridien de Greenwich (0 à 360°).

Champ ORBIT : hauteur du satellite en mm par rapport à l'ellipsoïde de référence.

Champ H: moyenne sur une seconde de la hauteur de la surface de la mer en cm par rapport à l'ellipsoïde de référence. Lorsque la hauteur n'est pas disponible elle est codée à 32767 (valeur maximum de la variable car elle est codée sur 2 octets). La hauteur est considérée invalide si plus de 3 hauteurs tous les dixièmes de seconde manquent. Cette hauteur n'est pas corrigée des effets extèrieurs : marées, ionosphère et troposphère. On obtient la hauteur corrigée par la formule :

H(Corr) = H - SOLID TIDE/10

- OCEAN TIDE/10
- WET(SMMI)/10
- DRY(FNOC)/10
- IONOSPHERE/10.

Champ SIGMA_H: écart-type des hauteurs H(1/10s).

Champ GEOID: hauteur du géoide en cm par rapport à l'ellipsoide de référence.

Champs H(i): hauteurs échantillonnées tous les dixièmes de seconde.

Champ SWH: valeur représentant la hauteur de vague moyennée sur une seconde (Significant Height Wave), information utile pour corriger le biais électromagnétique.

Champ SIGMA_SWH: écart-type de SWH.

Champ FLAGS: champs de 16 bits, chaque bit est porteur d'une information particulière. Seul le bit de droite nous intéresse car il indique la nature de la donnée: 0 si la donnée est terrestre, 1 si la donnée est marine.

Champ H OFFSET: (utile uniquement pour une donnée terrestre).

Champ SOLID TIDE : correction de la marée solide en mm.

Champ OCEAN TIDE : correction de la marée océanique en mm.

Champ WET(FNOC) : correction de la vapeur d'eau en mm (non utilisé pour cette étude).

Champ WET(SMMR) : correction de la vapeur d'eau en mm (non utilisé pour cet étude).

Champ DRY(FNOC): correction de l'air sec en mm.

Champ IONO(GPS): correction ionosphèrique en mm.

Champ WET(SSMI): correction de la vapeur d'eau en mm.

Champ DRY(ECMWF) : correction de l'air sec en mm (non utilisé pour cette étude).

Champ ATTITUDE : angle d'attitude du satellite en centième de degrés.

3.2.5) Commentaires

La documentation GEOSAT donne quelques renseignements sur les données GEOSAT. Une donnée GEOSAT se compose de plusieurs informations. Chaque fichier de données couvre une période de 24 heures environ, deux données consécutives sont espacées en moyenne de 0,98 seconde, ce qui donne un peu plus de 88000 données par jour. En réalité, seulement 53000 données en moyenne sont présentes et donc 35000 données sont rejetées. Ceci peut paraître elevé mais en fait beaucoup de rejets concernent les zones terrestres. Néanmoins, les zones locales maritimes peuvent manquer chroniquement de données. C'est essentiellement du à la difficulté de

NOAA/Geosat T2 GDR Format

Item	Parameter	Units	Range	Bytes
		-		
1	UTC	sec	0 to 2E31	4
2	UTC (continued)	micro sec	0 to 1E6	4
3	LATITUDE	micro deg	+/- 7.21E7	4
4	LONGITUDE	micro deg	0 to 3.60E8	4
5	ORBIT (GEM-T2)	mm	7E8 to 9E8	· 4
6	H (1-s avg)	cm	+/- 32766	2
7	SIGMA_H	cm	0 to 32766	2
8	GEOID (Rapp 90)	cm	+/- 1.5E5	2 2 2 2
9	H (1) 0.1-s avg	cm	+/- 32766	2
10	н (2)	CW	+/- 32766	2
11	н (3)	cm	+/- 32766	
12	H (4)	cm	+/- 32766	2
13	н (5)	cm	+/- 32766	2
14	н (6)	CW	+/- 32766	2
15	н (7)	cm	+/- 32766	2
16	н (8)	cm	+/- 32766	2
17	н (9)	cm	+/- 32766	2
18	н (10)	cm	+/- 32766	2 2 2 2 2 2 2 2
19	SWH	cm	0 to 2E3	2
20	SIGMA_SWH	cm	0 to 2E3	2
21	SIGMA_NAUGHT	0.01 db	0 to 6.4E3	2
22	AGC	0.01 db	0 to 6.4E3	2
23	SIGMA_AGC	0.01 db	0 to 6.4E3	2 2 2 2
24	FLAGS			2
25	H OFFSET	m	0 to 5.0E4	2
26	SOLID TIDE	mm	+/- 1000	2
27	OCEAN TIDE	mm	+/- 1000	2
28	WET (FNOC)	mm	0 to -1000	2
29	WET (SMMR)	mm	0 to -1000	2
30	DRY (FNOC)	mmi	-2000 to -3000	2
31	IONO	mm	0 to -500	2
32	WET (TOVS/SSMI)	mm	0 to -1000	2
33	DRY (ECMWF)	mm	-2000 to -3000	2
34	ATTITUDE	0.01 deg	0 to 200	2

TOTAL NUMBER OF BYTES78

UTC refers to the 1-sec avg H, and the mid-point between H(5) and H(6).

Values unavailable for any reason are set to: 2147483646 for 4-byte fields 32767 for 2-byte fields

Fig. 4 : Table des champs d'une donnée GDR fournie avec les données GEOSAT sur CDROMs

l'altimétre pour effectuer des mesures lorsque le satellite passe d'un survol terrestre à un survol maritime.

Une certaine irrégularité du nombre d'enregistrements par jour est constaté. Les pertes de données sont dues à deux phénomènes principaux. Des excursions excessives de l'angle d'attitude du satellite de part et d'autre de la verticale et les variations séculaires de la distribution de la glace dans les eaux très froides constituent ces deux phénomènes..

Il va de soi que toutes ces informations contenues dans le manuel GEOSAT, devront être vérifiées sur les données brutes reçues lors de leur traitement.

3.2.6) caractéristiques techniques de GEOSAT

- inclinaison : 107.9°

- révolution : 6035,6s (1,68 heures)

- cycle : 17,0505 jours

=> 244 révolutions/cycle.

- vitesse moyenne : 6,8 km/s.

- orbite moyenne : 800 km/ellipsoïde de référence

- distance à l'équateur entre 2 traces parallèles consécutives : 164 km

4) CAHIER DES CHARGES

Ce stage fait partie des études pré-lancement du satellite TOPEX-POSEIDON qui sera lancé en mi-92. Il fait aussi partie du projet de recherche franco-américain sélectionné par le CNES et sous la direction de J. Picaut. L'altimétre à bord du satellite mesure la topographie de la surface de la mer et par géostrophie les courants de surface. Une série de techniques informatiques de filtrage de données à partir d'un premier jeu d'un an de mesure de l'altimétre du satellite GEOSAT a été déjà mise au point au sein du Groupe SURTROPAC. Il faudra, à partir des trois années complètes GEOSAT et au vu de l'expérience informatique et scientifique du groupe de recherche en la matière, mettre au point une chaîne de traitement compléte opérationnelle qui devrait permettre de construire des champs grillés du niveau de la mer et des courants de surface dans tout le Pacifique tropical.

Pour réaliser ce logiciel, il faudra tout d'abord sélectionner et trier les données sur la zone Pacifique tropical (35°N-35°S; 105°E-290°E ou 70°W) (Fig. 5), puis concevoir une méthode de traitement adaptée pour aboutir à un fichier complet et facilement exploitable scientifiquement. Connaissant le format (informatique et géographique) des futures données du satellite franco-américain TOPEX-POSEIDON lancé à la mi-92, cette chaîne complète de traitement pourra être adaptée pour être opérationnelle dès l'arrivée des premières données TOPEX-POSEIDON.

Ce travail actuel sera réalisé sur stations de travail SUN SPARC et le langage de programmation sera le langage C principalement.

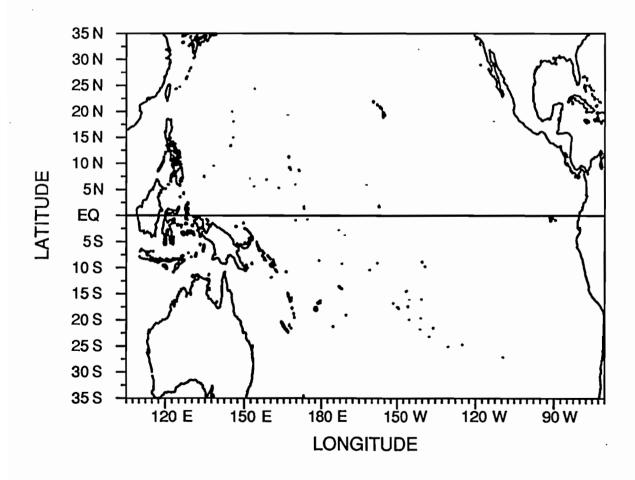


Fig. 5: Zone géographique d'étude

5) SPECIFICATIONS

5.1) Objectifs du logiciel

L'objectif de ce logiciel est donc de mettre au point une chaîne de traitement automatique de données altimétriques satellitaires provenant du satellite GEOSAT. Ce traitement veut rendre les données altimétriques GEOSAT utilisables et facilement exploitables scientifiquement.

5.2) Analyse de l'existant

Un produit "recherche" a été mis au point en 1988-89 à partir de 13 mois de données de l'altimétre du satellite GEOSAT (novembre 1986 - novembre 1987) et a permis de publier deux articles scientifiques dans des revues internationales (Picaut et al., 1990; Delcroix et al., 1991). Il a tout d'abord consisté en un tri des données expédiées par le GSFC de la NASA (4 bandes 6250 bpi) pour restreindre les données satellitaires à la zone d'étude du Pacifique tropical. Ensuite une technique particulière a permis d'estimer le meilleur regroupement des données satellitaires et le meilleur filtrage spatio-temporel pour calculer les courants géostrophiques à l'équateur, par comparaison avec des données de mouillages courantométriques à 165°E, 140°W et 110°W. Cette technique de regroupement et de filtrage a été appliquée à l'ensemble du Pacifique tropical pour avoir un champ grillé complet de données du niveau de la mer et des courants géostrophiques de surface. Ces champs ont été ensuite analysés d'un point de vue scientifique. Il est à noter que le format des données expédiées en 1988 par la NASA était très différent du format actuel car ces données avaient été préalablement traitées, rassemblées et même "calibrées" par une équipe scientifique sous la direction de C. Koblinsky : un cycle standard, constitué de traces standard, avait été défini par cette équipe. Chaque trace standard possédait les caractéristiques suivantes :

- le nombre de mesures associé à la trace.
- le nombre de cycles qui possédent des données sur cette trace.
- le numéro de révolution et le numéro du cycle (un cycle dure 17 jours environ d'où 23 cycles sur les 13 mois de mesures et pour chaque cycle le satellite effectue 244 révolutions). La zone couverte par les données va de 60°N à 60°S sur tout le globe.
 - toutes les données de mesure du niveau de la mer classées par cycle croissant.

Ces fichiers de données ont été lus et réduits à la zone du Pacifique Tropical(30°N - 30°S; 120°E - 290°E); seules les traces coupant cette zone ont été conservées. Tous les programmes réalisés au Centre ORSTOM de Nouméa ont été écrits en FORTRAN.

5.3) Contraintes

Le nouveau jeu de données se veut exploitable par de nombreux utilisateurs travaillant dans des domaines très différents. C'est pour cette raison que les données brutes contiennent autant d'informations car chaque utilisateur réalise le traitement spécifique qui lui convient. Par exemple le spécialiste en géophysique ne voudra conserver que l'information "géoïde" alors que pour l'océanographe cette même information est considérée comme du bruit à éliminer. Le premier jeu de données proposait des données traitées pour une exploitation océanographique immédiate. Le travail à réaliser se situe donc en amont de ce qui a été déjà réalisé. Il consiste à fournir un ou plusieurs fichiers dans un format semblable à celui reçu lors de la première phase.

Une caractéristique première de ce projet concerne la quantité de données à traiter. Nous avons vu précédemment que les données constituent un ensemble de

3000 Mo environ. L'espace disque n'étant pas une ressource illimitée (450 Mo disponible pour ce travail), c'est une contrainte qu'il a fallu prendre en compte.

Une deuxième contrainte est apparue: les 6 disques CDROMs nous sont parvenus régulièrement tout au long du premier trimestre 1992. Le dernier disque est arrivé début avril 1992, c'est à dire bien après la conception de la chaîne de traitement. Le logiciel devait donc permettre facilement l'ajoût de données dans la chaîne de traitement et l'intégration de celles-ci aux données déjà traitées. De plus, le choix et la détermination des corrections à appliquer à la hauteur altimétrique n'étant ni immédiats et surtout ni définitifs dans le temps, le caractère évolutif de cette chaîne de traitement a été jugé important.

Programmation:

La partie du projet a été programmée en C avec, si nécessaire, une interface en FORTRAN.

5.4) Spécifications

Les spécifications du cahier des charges ont été schématisées par la méthode SADT (Specification And Design Technics). Cette méthode est une aide à la clarification du cahier des charges et à l'élaboration des spécifications. Après avoir listé puis regroupé les données et les activités, il s'agit ensuite de réaliser des diagrammes afin de synthétiser les différentes phases du logiciel. Le but est de mettre au point une chaîne de traitement automatique de données et le point de vue est celui de l'exploitant scientifique.

5.4.1) Liste des données

L'énoncé du problème permet de définir un certain nombre de données en entrée.

- Données brutes :
- fichiers de données contenant la mesure physique de la hauteur de la surface de l'océan sur CDROM .
- fichier des passages du satellite à l'équateur. Chaque passage se caractérise par un temps et une longitude. Ce fichier est appelé fichier "passage équateur".
 - Données liées à l'utilisation du logiciel :
 - zone géographique de l'étude.
 - les besoins scientifiques.
 - un temps référence de départ indiquant le début du traitement

global.

- Données liées à GEOSAT :
 - caractéristiques du satellite décrites plus haut.

Les données en sortie seront des fichiers de données traitées dont le format sera choisi pour permettre une exploitation scientifique facile et rapide de ces données. Le format des fichiers finaux sera d'ailleurs très proche de celui des fichiers constituant le premier jeu de données envoyé par la NASA en 1988, ceci dans le but d'utiliser certains programmes d'interpolation et de filtrage précedemment développés.

5.4.2) Liste des activités

- TRIER LES DONNEES BRUTES PAR CYCLE.
 - réduire l'ensemble des données à la zone géographique de l'étude.
 - conserver pour chaque donnée l'information utile.

- vérisier la bonne cohérence et stabilité des données.
- DEFINIR UN CYCLE STANDARD
- vérifier la non dérive de la trajectoire du satellite.
 déterminer deux traces standard moyennes types du satellite : une montante et une autre descendante.
- ordonner chronologiquement les traces du cycle.
 construire un fichier de position décrivant la trajectoire moyenne du satellite sur un cycle entier.
 - TRIER LES CYCLES DE DONNEES EN TRACE
- isoler chaque trace de mesures grâce aux deux critères de temps et de position.
 - numéroter et identifier chaque trace repérée.
 - vérisier la non perte d'information.
 - METTRE LES DONNEES AU FORMAT STANDARD
- comparer chaque trace de données à la trace du cycle standard correspondante.
 - mettre au format standard la trace réelle de données.
 - interpoler les données.
 - évaluer la méthode.

Remarque:

Trois diagrammes ont été réalisés (Annexe 1) :

- niveau A-0.
- niveau A0.
- niveau A1.

Il a semblé utile de descendre d'un niveau supplémentaire dans le module "DEFINIR UN CYCLE STANDARD" qui prend une part importante de l'ensemble du logiciel.

6) CONCEPTION PRELIMINAIRE

Après la phase de spécification qui nous a permis d'approfondir et de définir les besoins de l'utilisateur, nous effectuons une analyse globale du problème; pour cela nous allons tout d'abord énoncer une solution, la commenter puis en déduire une conception adaptée. Dans ce chapitre, le principe général et les fonctions de chaque module seront abordés, les données échangées entre modules seront décrites et les moyens de vérification étudiés. Dans la partie conception détaillée (cf. chapitre 7) une étude plus précise et informatique des modules et sous-modules sera réalisée.

6.1) Solution choisie

Nous rappelons que l'organisation des données GEOSAT est une suite de données rangées chronologiquement. Cette suite comporte des "trous" de données plus ou moins importants. Les positions des données représentent la trace au sol du satellite. Malgré son orbite répétitive, le satellite ne repasse jamais exactement par la trace du cycle précédent. D'après le manuel GEOSAT, l'écart maximum en longitude entre deux passages successifs du satellite est inférieur à un km. Cet écart est très faible comparé à la distance entre deux traces colinéaires à savoir 164 km à l'équateur (Fig. 6).

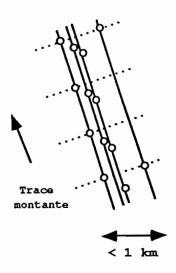


Fig. 6 : Représentation des positions des données le long d'une même trace montante de quatre cycles différents.

Sur la figure 6, il apparaît que les organisations des données le long de traces colinéaires et périodiques, ne sont jamais identiques. Elles sont plus ou moins décalées entre elles et quelquefois absentes. Les données doivent être recalées sur une même trace moyenne pour les besoins de notre étude. Cela revient à constituer des cycles de données superposables en position (Fig. 7). Pour cela, la détermination d'une trajectoire moyenne du satellite sur un cycle entier est nécessaire. Cette trajectoire représente un cycle moyen appelé cycle standard. Ensuite, chaque cycle de données est mis au format du cycle standard créé.

Nous avons vu, lors de l'analyse de l'existant, que des programmes d'interpolation, de filtrage et de grillage de données avaient été développés pour le premier jeu de données GEOSAT reçu en 1988. Le but est donc de se ramener à un format similaire à celui des fichiers du premier jeu de données pour ensuite utiliser directement ces programmes. L'utilisation des programmes déjà existants doit

pouvoir, à partir du produit fourni par le logiciel, filtrer puis griller les données sur la zone géographique.

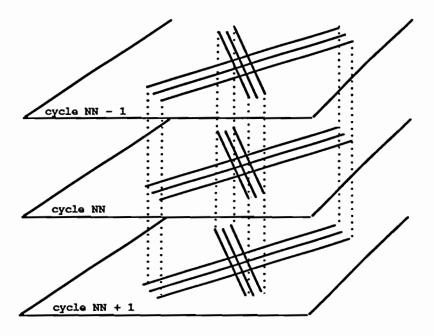


Fig. 7: Mise des cycles NN-1, NN, et NN+1 au format du cycle moyen déterminé.

La chaîne de traitement est considérée comme une succession d'étapes. Chaque étape ou module a d'ailleurs été mis en évidence dans la partie spécifications.

Chaque module effectue un traitement particulier. Le format des données se modifie à chaque étape de traitement de la chaîne. Les quatre modules retenus sont :

- Module 1: "TRIER LES DONNEES EN CYCLES".
- Module 2: "DEFINIR UN CYCLE STANDARD".
- Module 3: "TRIER LES DONNEES EN TRACES".
- Module 4: "MISE AU FORMAT COMMUN DU CYCLE STANDARD".

6.2) Module 1: "TRIER LES DONNEES EN CYCLES"

6.2.1) But

Le but de ce module 1 est de diminuer sensiblement la taille de l'ensemble des données, c'est une exigence dictée par la contrainte "espace disque". Il faut aussi regrouper des données en cycles sur la zone géographique considérée et recueillir un certain nombre d'informations utiles pour la poursuite et la validation de la méthode.

6.2.1) Principe du tri en cycle

Le tri des données en cycles s'effectue à partir d'un temps référence saisie au clavier. Ce temps représente le début du premier cycle. Il faut séparer la dernière donnée du cycle NN de la première donnée du cycle NN+1. Cette séparation se réalise en deux temps. Dans un premier temps, on opére à la localisation grossière de la

frontière entre les deux cycles. En ajoutant au temps T_1 de la première mesure du cycle NN, la durée théorique D d'un cycle (1473163,2s), on obtient un temps T de fin théorique et approximatif du cycle NN: $T = T_1 + D$. Par création d'une fenêtre temporelle de centre T et de demi-longueur une constante C de quelques dizaines de secondes, on englobe le temps T_f de fin réelle du cycle NN:

$$T-C < T_f < T+C$$
.

Puis, on compare les positions des mesures de la fenêtre. La dernière donnée du cycle NN et la première donnée du cycle NN+1 n'appartiennent pas à la même trace au sol (Fig. 8).

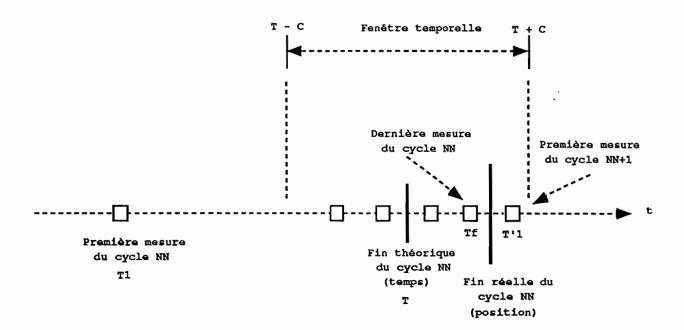


Fig. 8 : Schéma de principe du tri des données en cycles sur la zone d'étude.

Remarques:

Le traitement de ce module s'effectue disque par disque. Les fichiers journaliers de la fin d'un disque ne formeront qu'un cycle partiel. Une gestion de fichier temporaire est donc nécessaire.

Un temps référence est demandé à la saisie. Les toutes premières mesures GEOSAT pouvant ne pas présenter toutes les garanties de fiabilité, le module de traitement initial doit donc être fonction d'un temps utilisateur. Ce temps saisi matérialise le temps à partir duquel les données sont considérées exploitables scientifiquement. La mesure dont le temps devient supérieur au temps utilisateur est considérée comme la première mesure du premier cycle. Son temps devient alors le temps référence de traitement.

6.2.3) Fonctions

Les différentes fonctions à réaliser sont :

- réduction des données à la zone géographique choisie.
- conservation de l'information utile. Seuls les champs de la donnée qui nous intéressent seront conservés.

- regroupement des données par cycle.

- recueil d'informations multiples sur les données lues et écrites. Des calculs sont également à effectuer (cf. suite du texte).

6.2.4) Données:

en entrée :

- fichiers journaliers binaires de données brutes.
- temps utilisateur

en sortie:

- fichier binaire de données triées en cycles noté cycleNN.DAT.
- fichier ASCII d'information noté cycleNN.COM.

6.2.5) Vérifications et calculs

Une des caractéristiques de ce logiciel est la grosse quantité de données traitées. C'est pourquoi une vérification des résultats obtenus après chaque phase est très importante. Pour ce module, il convient tout d'abord :

- a) de se renseigner quant à la nature des données: hauteur et corrections.
 - b) de vérifier le bon déroulement du tri en cycles des données.
- c) d'effectuer une série de calculs afin de déterminer des écarts en temps et position entre deux mesures consécutives pour mieux appréhender la trajectoire du satellite.

Les parties a) et b) sont développées dans la phase de conception détaillée car elles portent sur les tests modulaires. Nous allons développer dans ce paragraphe la partie calcul c).

Un temps moyen entre deux mesures consécutives est à déterminer. Il faut en premier lieu définir deux mesures consécutives. Pour cela, un programme spécifique à cette définition est développé. Il compte le nombre de mesures consécutives dont la différence de temps est inférieure à l'écart de temps choisi. Plusieurs écarts de temps (1, 2, 3, 4, 5, 10s, 20s) sont pris, pour chacun d'eux un rapport appelé "proportion de représentativité" est calculé: rapport du nombre de mesures consécutives comptées sur le nombre total de mesures lues. Les résultats de ces calculs définissent le critère temps séparant deux mesures consécutives. Il s'agit surtout de confirmer l'écart de temps de moins d'une seconde donné dans le manuel GEOSAT.

Ce critère ainsi défini, des écarts mini, maxi et moyen en vitesse méridienne et zonale (degré et km) entre deux mesures consécutives sont calculés. Ces calculs veulent montrer l'importance des variations temporelles de la latitude et longitude le long d'une trace au sol du satellite, ceci afin d'appréhender au mieux la trajectoire réelle du satellite (module 2)

Enfin, pour vérisier la bonne précision de l'inclinaison du satellite, la latitude maximale des positions des mesures est affichée.

6.3) Module 2:"DEFINIR UN CYCLE STANDARD"

6.3.1) But

Le but de ce module est de créer un cycle moyen appelé cycle standard, qui simule au mieux la trajectoire moyenne du satellite sur un cycle. Le cycle standard est un fichier de positions moyennes qui servira de référence pour l'ensemble des cycles de données. Chaque cycle de données pourra ensuite être mis au format de ce cycle standard.

6.3.2) Principe général

La solution retenue pour l'élaboration de ce cycle standard est la suivante. La trajectoire du satellite se matérialisant par des traces au sol, modéliser la trajectoire de ce dernier revient à modéliser les traces au sol. Cette modélisation se décompose en deux parties. Tout d'abord, une modélisation spatiale par la détermination d'une trace moyenne appelée trace standard par calcul de positions moyennes (L_m, l_m) , puis une modélisation temporelle en ordonnant chronologiquement les traces d'un cycle du satellite.

Cette distinction dans le concept de modélisation se retrouve dans le principe général de ce module. En effet, on détermine dans un premier temps deux traces moyennes types, une montante notée $T_{S_{\hat{i}}}$ et une descendante notée $T_{S_{\hat{j}}}$, à partir des deux traces réelles $T_{\Gamma_{\hat{i}}}$ et $T_{\Gamma_{\hat{j}}}$ de tous les cycles de données. Dans un second temps on détermine les positions moyennes des passages périodiques à l'équateur du satellite et on crée un fichier de positions moyennes appelé "passage équateur moyen". A une série n de passages périodiques correspond une position moyenne (00,ll $_{m_{\hat{i}}}$). Enfin, le calage de deux traces moyennes montante et descendante sur chaque position moyenne à l'équateur est réalisé.

6.3.3) Fonctions:

Cette réalisation se décompose en plusieurs étapes ou sous-modules :

- Etape 1 : détermination des traces de données les plus représentatives. Le critère de représentativité pour une trace est son nombre moyen de mesures.
- Etape 2 : détermination de deux traces moyennes types, montante et descendante, et création du fichier correspondant. Une trace moyenne type ou standard $T_{S_{1}}$ est définie par une succession de positions moyennes $(L_{m_{1}},l_{m_{1}})$ calculées à partir des positions des mesures des traces réelles d'indice i notées $T_{r_{1}}$. Le fichier final est constitué de positions moyennes $(L_{m_{1}},l_{m_{1}})$ symétriques par rapport à l'équateur.
- Etape 3 : Création du fichier de positions moyennes des passages à l'équateur appelé fichier "passage équateur". Cette étape permet aussi de vérifier la non dérive du satellite à l'équateur; il s'agit de confirmer l'information contenue dans le manuel GEOSAT à savoir le maintien des positions des passages périodiques du satellite à l'intérieur d'un domaine de moins d'un km en longitude.
- Etape 4: en fonction du fichier "passage équateur moyen" et du fichier des positions moyennes des deux traces types choisies (étape 2), on construit le cycle standard final sur notre zone d'étude et on crée le fichier de positions correspondantes. Une des deux traces standard est calée sur et superposée à chaque position moyenne à l'équateur $(00,ll_{m_{\Pi}})$.

Remarque:

La détermination des deux traces les plus représentatives des cycles de données (étape 1) ne peut s'effectuer qu'à partir de données triées en traces (module 3). Les deux modules 2 et 3 sont donc dépendants dans le temps Pour faciliter le tri des données en traces du module 3, il faut se définir un cycle standard simplifié appelé cycle standard primaire. L'élaboration de ce cycle est similaire à celle du cycle standard final.

6.3.4) Données du module

En entrée:

- fichier ASCII "passage équateur".

- fichier binaire de données triées en cycles noté cycleNN.DAT

- temps utilisateur qui marque le premier passage à l'équateur du satellite dans la zone géographique choisie.

En sortie:

- un fichier binaire standard primaire.

- un fichier binaire standard final.

- les fichiers ASCII associés à chaque étape de ce module.

6.3.5) Vérifications

Ce module est le module critique du logiciel car il conditionne la réussite ou non du dernier module. Les vérifications et tests doivent donc être particulièrement pointus.

Chaque test afférent à un module est détaillé dans la partie suivante. Cependant, les différents paramètres déterminants pour la construction des deux traces standard moyennes sont décrits ici.

Une position moyenne (L_{m_i} , l_{m_i}) se calcule à partir de positions. Le nombre de positions varie d'un calcul à l'autre à cause de trous de données. Ainsi, la convergence de la moyenne peut parfois ne pas être atteinte si le nombre de positions n'est pas suffisant. Un seuil ou nombre minimal de positions doit être déterminé pour la validation de la moyenne obtenue.

La trace au sol moyenne obtenue peut être lissée par des filtres à moyenne mobile de longueur à déterminer. Le seul critère de représentativité d'une trace moyenne (nombre moyen de mesures) n'est pas forcément suffisant.

Toutes ces questions et suggestions doivent être approfondies pour valider la chaîne de traitement.

6.4) Module 3: "TRIER LES DONNEES EN TRACES"

6.4.1) But

Le but de ce module est de séparer entre elles les traces d'un cycle. Dans ce module, seul un changement de format est effectué, aucun calcul ou transformation de données ne sont réalisés. Toutefois, le fichier binaire obtenu à la sortie de ce module est un fichier de traces de données. La notion de "donnée" est remplacé par celle de "trace". A chaque trace, sont associés un numéro de trace, un numéro de révolution RRRCCC, et un nombre de mesures présentes dans la trace.

Où RRR: numéro de révolution RRR = 1...244 (244 révolutions par cycle). CCC: numéro de cycle. CCC = 1...62 (Nbre de cycles disponibles).

6.4.2) Principe

On veut repèrer, isoler et stocker toutes les traces d'un cycle. Deux traces de même nature (deux traces montantes ou descendantes) sont espacées d'environ 6035 s (durée d'une révolution) et deux traces de nature différente le sont de 3018 s. La durée d'une trace complète sur notre zone d'étude (35°N à 35°S) est d'environ 1236 s. Ces ordres de grandeur permettent de définir une méthode de tri basée uniquement sur le critère "temps".

Le principe en est le suivant. Les fichiers du cycle de données et du cycle standard primaire élaborés lors du module 2, sont ouverts. Un temps courant T sert de repère. La valeur du temps courant T marque le début approximatif de la trace réelle i notée T_{r_1} à repérer. Si le début de la trace T_{r_1} est repéré alors le temps courant T se recale sur le temps de début de trace. La fin de la trace T_{r_1} est repérée à l'aide du cycle standard primaire. Le nombre de mesures de chaque trace standard du cycle standard primaire est connu; l'approximation d'une seconde entre deux mesures consécutives donne directement la durée de chaque trace standard associée à la trace réelle T_{r_1} rencontrée. Une fois la trace T_{r_1} stockée, le temps courant T est incrémenté d'un temps fonction de la nature de la trace réelle suivante $T_{r_{1+1}}$ (3018 secondes si T_{r_1} et $T_{r_{1+1}}$ sont de même nature ou 6036 secondes dans le cas contraire). Le temps courant T marque alors le début approximatif de la trace réelle suivante $T_{r_{1+1}}$ à repérer.

La connaissance de la nature de la trace suivante est donc nécessaire. Cette information est délivrée par le cycle standard primaire. Effectivement, malgré une modélisation grossière de la trajectoire du satellite, ce cycle primaire simule avec suffisamment de précision, compte tenu des temps inter-traces, l'évolution du satellite GEOSAT.

6.4.3) Données

en entrée:

- fichiers binaires de données triées en cycles notés cycleNN.DAT
- temps référence de la première mesure de la première trace.
- fichier standard primaire.

en sortie:

- fichiers binaires de données triés en traces notés cycleNN.DA
- fichier ASCII de vérification cycleNN.CO, associé à chaque cycle.
- fichier ASCII de vérification sur l'ensemble de l'opération réalisée.
- temps de référence (utile pour le cycle suivant)

Les deux fichiers ASCII sont des fichiers de tests et vérifications.

6.5) Module 4: "MISE AU FORMAT COMMUN DU CYCLE STANDARD FINAL"

6.5.1) But

Le but de ce module est en fait le but du logiciel car il constitue la phase terminale de celui-ci. Tous les cycles obtenus en sortie ont le même format. Le module de décompose en deux parties, la première partie consiste à mettre chaque cycle de données au format du cycle standard et la deuxième partie consiste à interpoler chaque positon standard entre deux mesures réelles.

6.5.2) Principe et fonctions

a) Mise au format

Les deux fichiers, fichier de données triées en traces et le fichier du cycle standard final, sont ouverts. Ils possèdent le même format. Voici les différentes étapes de l'algorithme:

- lecture de la trace réelle i notée Tr_i.
- recherche et lecture de la trace standard i associée notée T_{Si}.
- lecture d'une mesure k' de temps t' de la trace réelle i Tri.
- recherche de la position standard P_{Sk} : on associe à chaque position standard P_{Sk} une surface élémentaire S_k de centre P_{Sk} . La largeur de cette surface est $(\text{Lat}(P_{Sk}) + \text{Lat}(P_{Sk+1}))/2 + (\text{Lat}(P_{Sk}) + \text{Lat}(P_{Sk-1}))/2$. La valeur de la longueur de la surface S_k doit tenir compte des écarts de trajectoire du satellite. On recherche donc la position standard P_{Sk} telle que la position de la mesure k' appartienne à S_k .
- Si la position P_{Sk} est trouvée, alors on essaie d'affecter la mesure réelle k' à la surface S_k . Si la surface S_k contient déjà une mesure réelle k alors une stratégie d'affectation est appliquée (cf. suite du texte) sinon la mesure k' est affectée à S_k .

Stratégie d'affectation : Le but de la stratégie d'affectation est de solutionner le problème d'appartenance de deux mesures k et k' à une même surface S_k . Les surfaces élémentaires S_k sont définies par des écarts moyens de latitude et de longitude. Il peut arriver par exemple, qu'une mesure k se trouve à la limite inférieure de S_k et la mesure suivante k' à la limite supérieure de S_k suite à des variations de vitesse du satellite. Dans ce cas, l'écart de latitude des deux mesures k et k' est légéremment inférieur à la largeur de la surface S_k . Les deux mesures k et k' se situent donc à chaque extrêmité de S_k . Leur appartenance à la surface voisine S_{k-1} ou S_{k+1} ne tient qu'à quelques micro degrés ou quelques décimètres. Pour ne pas perdre les informations d'une mesure qui seront utiles pour l'interpolation, on essaie de décaler une des deux mesures k ou k' dans une des deux surfaces S_{k-1} ou S_{k+1} contigües de S_k .

Dans le cas où les deux surfaces contigües S_{k-1} et S_{k+1} sont occupées, le même principe de décalage est appliqué mais cette fois aux surfaces élémentaires S_{k-2} , S_{k-1} , S_{k+1} et S_{k+2} . Si ces quatre surfaces sont occupées, alors la "moyenne" des deux mesures k et k est réalisée. Le champ l de la mesure k est moyennée au champ l de la mesure k.

Il faut préciser que la mesure affectée à une surface voisine conserve sa position géographique. La notion d'affectation est une notion informatique et ne modifie en rien la position des mesures pour le calcul d'interpolation qui suit. Enfin, le cas évoqué dans ce paragraphe reste très marginal. Il se présente en moyenne une fois toutes les 200 ou 300 mesures affectées et ne porte que sur des décalages de quelques décimètres par rapport à une largeur moyenne de surface de 6,8 km.

Remarque:

Le traitement se déroule en deux phases: la première phase consiste à affecter directement les mesures lues du fichier cycleNN.DA aux surfaces élémentaires correspondantes c'est à dire affecter une mesure k à une surface S_k vide. Toutes les mesures qui ne peuvent pas être affectées directement sont stockées temporairement pour la deuxième phase. Lors de cette deuxième phase la stratégie d'affectation est appliquée à chaque mesure encore présente.

b) Interpolation

La position d'une mesure m_k affectée à une surface S_k est quelconque à l'intérieur de S_k . La latitude de m_k est comprise entre les latitudes inférieure et supèrieure de S_k (largeur moyenne 6,8km). La mesure m_k se trouve donc à 3,4km au plus du centre P_k de la surface S_k . Le gradient du géoïde atteint parfois 30cm par km. Sur plus de trois kilométres, le différentiel de hauteur lié au gradient du géoïde n'est pas acceptable comparé à l'amplitude de quelques centimétres du signal à étudier. L'interpolation est donc nécessaire. Une interpolation linéaire est choisie. Soient les mesures m_1 et m_2 situéées de part et d'autre de la position standard P_1 . Chacune de ces deux mesures appartient à deux surfaces différentes S_1 et S_2 . La mesure m_1 est à une distance dl_1 de P_1 et la mesure m_2 à une distance dl_2 . La position P_1 est affectée des champs temps, orbite, hauteur, corrections marée et vapeur d'eau. Chacun de ces champs C est le résultat de l'interpolation entre les champs C_1 de m_1 et C_2 de m_2 correspondants. On a : $C = (dl_1 *C_2 + dl_2 *C_1)/(dl_1 + dl_2)$.

6.5.3) Données

En entrée:

- fichier binaire de données triées en traces noté cycleNN.DA.
- fichier standard final.

En sortie:

- fichier binaire mis au format commun noté cycleNN.D
- fichier ASCII de vérifications associés à chaque cycle noté cycleNN.C
- fichier ASCII de vérification générale de l'ensemble de l'opération.

7) CONCEPTION DETAILLEE

Par convention, toute référence à un nom de fonction ou de variable du fichier source est représentée en caractères gras.

7.1) Structure informatique des données du logiciel

Ces données ont été classées en trois catégories. La première catégorie représente les données des fichiers binaires générés par les différents modules. Elles contiennent l'information physique du signal à étudier. La deuxième catégorie représente les données créées pour un traitement informatique particulier, comme par exemple, la construction de listes chaînées afin d'optimiser la gestion dynamique de la mémoire. Enfin, des données constantes (ou statiques) dans le déroulement du programme, comme les caractéristiques GEOSAT, constituent la dernière catégorie.

7.1.1) Format des fichiers de données

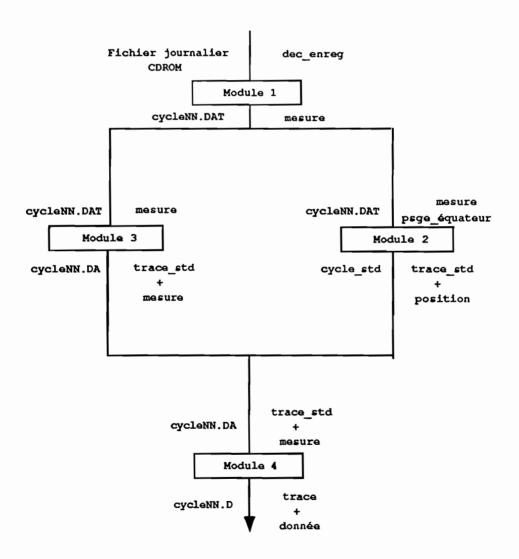


Fig 9 : Fichiers et données d'entrée et de sortie des modules du logiciel.

Pour chaque module de la chaîne de traitement, nous allons décrire le format du fichier binaire de sortie. Chaque fichier est constitué d'éléments appelés

enregistrements. Un enregistrement est un objet; il possède un nom et plusieurs caractéristiques ou attributs appelés champs (Fig. 9).

```
Un fichier journalier stocké sur CDROM est de type dec_enreg:
```

```
typedef struct {
      int
                               utc:
      int
                               utc_micro;
      int
                               lat;
      int
                               lon;
      int
                               orbit;
      short int
                               h:
      short int
                               sigma;
      short int
                               geoid;
      short int
                               ħl:
      short int
                               h2;
      short int
                               h3;
      short int
                               h4:
      short int
                               h5;
      short int
                               h6;
      short int
                               h7;
      short int
                               h8:
      short int
                               h9;
      short int
                               h10;
      short int
                               swh;
      short int
                               sigswh;
      short int
                               signau;
      short int
                               agc;
      short int
                               sigagc;
                               flags;
      short int
      short int
                               hoff;
      short int
                               solid_tide;
      short int
                               ocean tide:
      short int
                               wet_fnoc;
      short int
                               wet smmr;
      short int
                               dry_fnoc;
      short int
                               ionosphere;
      short int
                               wetto:
      short int
                               dryec;
      short int
                               att;
) dec_enreg;
```

A la sortie du module 1, le fichier cycleNN.DAT est de type mesure :

```
typedef struct (
      int
                               utc;
      int
                               utc_micro;
      int
                               lat:
      int
                               lon;
      int
                               orbite;
      short int
                               h:
      short int
                               ocean_tide;
      short int
                               wetto;
)mesure;
```

Pour le module 2 voir remarque.

```
A la sortie du module 3, une nouvelle structure apparaît: trace_std. Le fichier cycleNN.DA est de type trace_std + mesure:
```

```
L'organisation du fichier cycleNN.DA est la suivante:
       trace i : trace i - révolution i - tab long i - nbre mesure i.
               mesure 1 .....mesure i .....mesure nbre mesure i.
       trace i+1: trace i+1 - ... - nbre_mesure i+1.
               mesure 1 .....mesure i .....mesure nbre mesure i+1.
       Enfin, à la sortie du module 4, le fichier final cycleNN.D issu de ce module est
de type trace + donnée:
                        typedef struct TRACE {
                              short int
                                                     trace:
                                                     revolution:
                              int
                              short int
                                                     nbre_mesure;
                        } trace:
                        typedef struct POSITION {
                              int
                                      lat:
                              int
                                      lon:
                        } position;
                        typedef struct DONNEE {
                              int
                                                     utc:
                              int
                                                     orbite:
                              position
                                                     pos;
                              short int
                                                     ħ:
                              short int
                                                     ocean tide;
                              short int
                                                     wetto:
```

La structure donnée comporte trois champs de moins que la structure mesure: lat, long et utc_micro. En effet, les deux champs lat et long deviennent inutiles après la mise de chacun des cycles au format du cycle standard final et le champ utc_micro n'est plus indispensable car l'échelle d'une seconde est largement suffisante pour le repèrage de chaque donnée.

Pour le module 2, le fichier ASCII "passage équateur" est transformé en fichier binaire. Chaque élément est alors de type passage_équateur:

```
typedef struct PASSAGE_EQUATEUR {
    double temps;
    double lon;
    passage_equateur;
```

Le format du fichier cycle standard final ou primaire est le suivant: **trace_std + position**. L'organisation est identique à celle du fichier cycleNN.DA. D'autres données sont créées, mais restent internes à chacun des modules, elles sont commentées dans leur module respectif.

7.1.2) Données de traitement

donnee;

Le nombre de données à stocker en mémoire centrale varie durant le traitement de certains modules. Des structures de données à taille variable sont donc utilisées. La structure choisie est la structure de liste chaînée. Un module utilise les listes chaînées avec ses propres donnée. Une structure générale de liste chaînée utilisable avec tout type de données doit donc être créée. Elle est constituée par une tête de liste notée liste chaînée et de plusieurs maillons notés maillon.

```
typedef struct LISTE_CHAINEE(
int nbre;
struct MAILLON *premier;
```

Chaque maillon de la liste est relié au maillon qui le précède par le pointeur **prec** et au maillon qui le suit par le pointeur **suiv**. Pour assurer le caractère générique de la structure, le maillon ne contient pas directement la donnée mais un pointeur sur cette donnée **ptr_donnee** (Fig. 10).

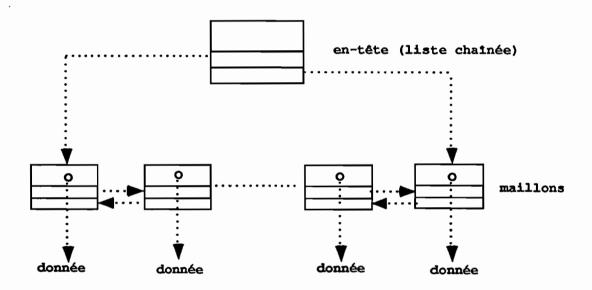


Fig 10: Représentation d'une liste doublement chaînée.

7.1.3) Données statiques

Ces données sont représentées informatiquement en langage C par la directive #define donnée valeur. Cette directive est destinée au préprocesseur du compilateur C qui remplace par simple traitement de texte le nom de la donnée par sa valeur. Il n'y a pas de représentation mémoire de la donnée en mémoire centrale. Voici les trois classes de données statiques:

1) caractéristiques GEOSAT:

#define	inclinaison	72.1
#define	duree_cycle	1473163.2
#define	duree_revolution	6035.6
#define	nbre_revolution	244

2) zone géographique d'étude :

#define	lat_inf	-35000000
#define	lat_sup	35000000
#define	long_inf	105000000
#define	long_sup	290000000

3) D'autres données d'intérêt moindre sont commentées dans le source du programme (annexe 2).

7.2) Gestion des erreurs

Le logiciel se présente sous la forme de menus. Dans chaque menu, un choix est proposé à l'utilisateur. Lorsqu'une erreur survient, elle est traitée dans la fonction où elle se produit. Un message approprié est alors affiché à l'écran. Le retour vers le menu courant s'effectue après la frappe d'une touche quekonque afin d'attirer l'attention de l'utilisateur sur le message affiché. Les messages d'erreurs affichés sont simples. Leur gestion n'a pas fait l'objet d'une stratégie particulière car cela ne correspond pas à l'objectif du logiciel.

7.3) Affichage des résultats

Il est généralement réalisé par des fonctions spécifiques d'argument un pointeur sur un flux de données. A l'appel d'une telle fonction, l'argument passé est le flux de sortie désiré : écran et/ou fichier ASCII préalablement créé.

7.4) Module 1 "TRIER LES DONNEES EN CYCLES"

7.4.1) Données internes

Des renseignements sont à recueillir pour le traitement de chaque fichier journalier de nom DAY_JJJ.AA où JJJ est le jour Julien de l'année AA. Ils doivent être regroupés et synthétisés pour chaque cycle. Une structure particulière état est utilisée afin de faciliter la manipulation de ces informations (cf. Annexe 2, fichier declare_cycle.h).

7.4.2) Algorithme général

- Saisie des paramètres.
 Si premier cycle (premier disque)
 - Alors
 - nom du premier fichier du disque : DAY_JdJdJd.AdAd
 - nom du dernier fichier du disque : DAY_JfJfJf.AfAf
 - temps utilisateur : tu

Sinon

- * nom du fichier du cycle partiel généré par le traitement du disque précédent appelé fichier intermédiaire : JdJdJd-JfJfJ.DAT.
 - nom du dernier fichier du disque DAY_JfJfJf.AfAf
 - Temps référence : tref .
 - * numéro du cycle en cours : NN.
 - Extraction des paramètres utiles :
 - jour_debut <-- JdJdJd;
 - * jour_fin <-- JfJfJf;

- * our_courant <-- JcJcJc (= JdJdJd initialement);
- * annee_debut <-- AdAd;
- * annee fin <-- AfAf;
- * annee_courant <-- A_CA_C (= A_dA_d initialement);
- TANT QUE jour_courant < jour_fin FAIRE
- * ouverture des deux sichiers intermédiaires : J_CJ_C-J_fJ_fJ_f.DAT pour le binaire et J_CJ_C-J_fJ_fJ_f.COM pour le texte.
 - * traitement du fichier courant : DAY_JcJcJc.AcAc

traitement_fic.

Si (la fin de cycle est trouvée)

Alors

- affichage d'informations sur le cycle;
- * fermeture des deux fichiers intermédiaires;
- * changement de nom des fichiers intermédiaires: JcJcJc-JfJfJf.DAT en cycleNN.DAT et JcJcJc-JfJfJf.COM en cycleNN.COM.
 - ouverture de deux nouveaux fichiers intermédiaires.
- * traitement du fichier temporaire fic_tempo créé lors du traitement du fichier courant (traitement_fic).
 - * suppression de fic_tempo.

Sinon

- fermeture des deux fichiers intermédiaires.
- * affichage des informations sur le cycle partiel créé.

Fin si:

- incrémentation de J_CJ_CJ_C de 1;
- FIN TQT.

Le nom des fichiers cycleNN.DAT est prédéfini pour ne saisir par la suite que les numéros des cycles.

7.4.3) Traitement d'un fichier

Ce traitement est réalisé par la fonction traitement_fic.

algorithme:

- ouverture du fichier passé en argument noté fic.
- TQT (non fin de fichier) FAIRE
- * lecture d'un élément du fichier fic. Cet élément est de type dec_enreg et noté enr.
- * Si $t_{enr} \in [t_{fin} th marge, t_{fin} th + marge] : fenêtre temporelle de détection de fin de cycle.$

Alors

- * création d'un fichier temporaire fic_tempo.
- * création d'une liste chaînée L de type dec_enreg.
- * insertion de toutes les données enr appartenant à la fenêtre temporelle dans la liste L.
- * recherche, par comparaison des positions des données de la liste L, de la fin réelle du cycle (recherche_limite_cycle).
- * stockage dans le sichier intermédiaire J_CJ_C-J_fJ_fJ_f.DAT des données enr précédant la sin du cycle après calcul de la hauteur altimétrique h (ecrire_mes). Les données *enr* sont désormais de type mesure.
- * stockage dans le fichier **fic_tempo** des données *enr* suivant la fin du cycle. Aucune transformation de format n'est effectuée, c'est un simple transfert de données.
 - * sortie de la boucle.

Sinon

* stockage dans le fichier intermédiaire $J_CJ_CJ_C-J_fJ_fJ_f.DAT$ de la donnée enr (ecrire_mes).

Fin si

- tenue à jour des informations du cycle en cours;
- * fermeture du fichier fic.
- FIN TANT QUE.

7.4.4) Calcul de la hauteur altimétrique h

Notations: les abréviations des corrections énoncées dans ce paragraphe sont celles de la table GDR (Fig. 4).

La hauteur altimétrique H (champ 6, Fig. 4) est une hauteur moyennée sur une seconde de la surface de la mer en cm par rapport à l'ellipsoïde de référence:

 $H=[H_0(t)+H_1(t+1/10)+...+H_9(t+9/10)]/10$ où les $H_1(t)$ sont les hauteurs échantillonnées tous les 1/10 s (champs 9 à 18).

L'écart type SIGMA_H (champ 7) est l'écart type des 10 hauteurs $H_i(t)$. La hauteur H n'est pas corrigée. Il faut lui appliquer les différentes corrections énoncées en début de rapport à savoir :

- correction ionosphérique : IONO (en mm).
- correction air sec : DRY (en mm).
- correction vapeur d'eau : WET (en mm).
- correction marée solide : SOLID TIDE (en mm)
- correction marée océanique : OCEAN TIDE (en mm)

La correction du biais électromagnétique doit être prise en compte. Elle fait intervenir deux paramétre, la hauteur des vagues SWH et l'angle d'attitude ATTITUDE. La détermination de cette correction est laissée à l'initiative de chacun. Toutefois, une norme a été définie par le Groupe de Recherche Géodésique Spatiale du CNES à Toulouse. Cette norme est utilisée dans la plupart des traitements des données altimétriques satellitaires. Elle considère la correction du biais électromagnétique proportionnelle à la hauteur des vagues SWH avec un coefficient de proportionnalité de 0,02. La mesure des hauteurs de vagues est très sensible aux excursions excessives de l'attitude du satellite (l'antenne s'écarte de la verticale). Il a été prouvé que les valeurs SWH devenaient incohérentes pour des excursions de l'attitude de plus de 1,2°.

Deux autres conditions doivent être remplies pour pouvoir calculer la hauteur altimétrique corrigée H_{COTT} :

- l'écart type SIGMA_H des H_I (1/10s) doit être inférieur à 30 cm.
- la valeur de SWH ne doit pas dépasser 10m.

Le calcul s'effectue de la sorte:

Si (SWH>10m ou SIGMA_H>30cm ou ATTITUDE>1,2° ou une des corrections est invalide)

alors h est considérée comme invalide (h<--32767)

sinon $h = H_{COTT} = 10^{\circ}H - IONO - DRY - WET - SOLID_TIDE - OCEAN_TIDE + 0,02°SWH*10.$

La hauteur h obtenue est ensuite arrondie au cm supérieur ou inférieur le plus proche.

Il a été décidé de conserver deux corrections de la donnée brute. Il s'agit de la correction de marée océanique OCEAN_TIDE et de celle de vapeur d'eau WET. Ces deux corrections sont issues de modèles. Or, d'autres modèles sont à l'étude pour fournir d'autres jeux de corrections mieux adaptées. Ainsi, ces nouveaux jeux pourront être rapidement insérés dans la chaîne de traitement.

Lorsqu'une des deux corrections est invalide, la valeur de H est quand même corrigée de toutes les autres corrections. Elle pourra être éventuellement utilisée lorsqu'un nouveau jeu de corrections sera disponible. Cette considération demande une précaution supplémentaire quant à la manipulation des données. Il ne suffit plus que la hauteur altimétrique h soit différente de 32767 pour que la donnée soit valide. Effectivement, un nouveau type de données apparaît, celui des données qui posséde une hauteur altimétrique h valide et une au moins des deux corrections invalides. Les données de ce type ne sont pas exploitables à présent mais le seront peut_être plus tard. On les nomme les données "futures". Les données utilisables dès à présent sont nommées données "exploitables". On rappelle qu'une donnée invalide est une donnée de hauteur altimétrique h invalide (= 32767) mais qui posséde une position et un temps corects.

La valeur de l'orbite du satellite (ORBIT) est une information également conservée car pour les mêmes raisons que précédemment.

Dans ce module 1 beaucoup d'opérations sur les fichiers sont réalisées (création, changement de nom, suppression). Toutes les fonctions correspondantes à ces opérations sont regroupées dans une librairie "utilitaire". Les fonctions sur les listes chaînées y figurent aussi.

7.4.5) Tests

La première vérification est celle de la bonne lecture du disque CDROM. Le nombre de données lues et le nombre de données retenues et donc écrites dans le fichier cycleNN.DAT sont affichées. Le nombre de données écrites permet de calculer la taille du fichier cycleNN.DAT. Cette valeur est à comparer à la taille réelle du fichier par connaissance de la taille d'une variable de type mesure.

Un comptage des cas où les corrections ou hauteurs ne sont pas disponibles est systématiquement réalisé afin de mettre en évidence d'éventuelles séries de données ou de corrections invalides.

Enfin, un graphe est édité par le module graphique (cf. chapitre 9) pour chaque fichier cycleNN.DAT créé. Dans ce graphe, sont pointées les positions des mesures valides du cycle. Les trajectoires du cycle sont ainsi visualisées. Les graphes serviront ensuite de référence lors de comparaisons avec d'autres graphes issus des modules 3 et 4.

La deuxième vérification concerne l'opération de tri par cycle. Un suivi du tri est réalisé par un affichage des champs temps, position et hauteur de la première et de la dernière donnée du cycle NN et de la première donnée du cycle NN+1.

7.5) Module 2: "DETERMINER UN CYCLE STANDARD"

Ce module se décompose en quatre étape. Chaque étape correspond à une fonction particulière lancée d'un sous menu spécifique au module. Nous considérons que les données sont triées en traces (module 3 déjà effectué) et que nous voulons construire un cycle standard final.

7.5.1) Etape 1: détermination de deux traces les plus représentatives.

Ce traitement est réalisé par la fonction **détermination_meilleure_trace**. Chaque cycle NN de données (NN=1...62) est constitué de traces réelles T_{r_i} (i=1...488 pour l'ensemble du globe). Un comptage des données présentes dans les traces T_{r_i} des

cycles est effectué. Ce calcul est réalisé seulement pour les traces non tronquées du cycle (35°N,35°S).

Données en entrée:

- Numéros du premier et deuxième cycles.

Donnée en sortie:

- Fichier ASCII du tableau final résultat.

7.5.2) Etape 2: détermination de deux traces moyennes types montante et descendante et création du fichier correspondant.

Cette étape est réalisée par la fonction détermination_traces_noyennes.

a) Principe:

Une analyse du tableau résultat fourni par l'étape 1 donne les numéros des deux traces les plus représentatives, i pour la trace montante et j pour la trace descendante. On veut déterminer une trace standard montante i notée $T_{S_{\underline{i}}}$ et une trace standard descendante j notée $T_{S_{\underline{j}}}$. Supposons que le cycle traité soit le cycle NN du fichier cycleNN.DAT.

Il faut, en premier lieu, repérer les deux traces réelles du cycle NN de même numéro i et j à savoir les traces T_{r_i} et T_{r_j} . Les traces T_{r_i} et T_{r_j} subissent le même traitement, désormais seule la trace montante T_{r_i} est considérée. La trace T_{r_i} est ensuite échantillonnée selon un pas de latitude constant calculé lors du module 1 (pas_lat_moyen). L'échantillonnage de la trace T_{r_i} consiste à découper cette trace en segments s_k de longueur constante en latitude. L'origine est prise à l'équateur (Fig 11). Chaque extrémité du segment s_k est considérée comme le milieu d'un intervalle I_k de même longueur. Les intervalles I_k sont symétriques par rapport à l'équateur. L'intervalle centré sur l'équateur est l'intervalle I_0 .

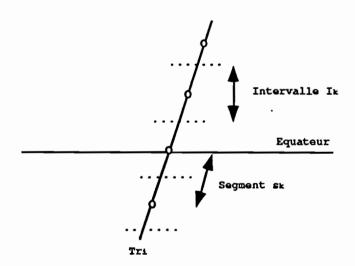


Fig 11: Echantillonnage d'une trace réelle

Chaque mesure m_k de la trace T_{r_i} qui appartient à un intervalle I_k c'est à dire $Lat_{m_k} \in [s_k-pas_lat_moyen/2, s_k+pas_lat_moyen/2]$, est affecté à cet intervalle. Un intervalle I_k ne peut recevoir qu'une seule mesure m_k de la même trace T_{r_i} . Si deux

mesures m_k et $m_{k'}$ appartiennent à I_k , la même stratégie d'affectation que celle développée au module 4 (conception préliminaire) est appliquée.

Durant le traitement, chaque intervalle I_k reçoit un certain nombre de mesures, ce nombre est au plus égal au nombre de cycles traités. Pour chaque intervalle I_k , la position moyenne (L_k, I_k) des positions des mesures de l'intervalle est calculée. La suite des positions géographiques moyennes (L_k, I_k) calculées définit la trace standard T_{Si} et elle seule.

La trace T_{S_i} est désormais moyenne mais ne représente pas une trace "type" pour l'ensemble des traces de la zone car elle est caractérisée par ses propres positions géographiques moyennes. Pour la rendre type, seuls les écarts méridiens (L_k-L_{k-1}) et zonaux (l_k-l_{k-1}) d'une position moyenne (L_{k-1},l_{k-1}) à l'autre (L_k,l_k) sont conservés et il suffit de les recaler à partir de chaque position moyenne à l'équateur (étape 3) $(00,ll_{m_n})$ et de générer la trace standard T_{S_n} qui passe par la position $(00,ll_{m_n})$.

Remarques:

Le principe ci-dessus est relativement proche de celui du module 4. Toutefois ici, la notion d'intervalle remplace celle de surface élémentaire. Cependant, il suffit de considérer chaque intervalle I_k comme une surface s_k de longueur infinie (longitude) et les deux principes se rejoignent.

Pour échantillonner une trace réelle T_{r_i} , le cycle standard primaire est utilisé. Le cycle standard primaire est construit avec des pas de latitude et longitude constants (cf étape 4). Le pas de latitude de construction étant égal à **pas_lat_moyen**, l'utilisation de ce cycle primaire standard permet de disposer directement des segments s_k d'échantillonnage.

b) Données

En entrée:

- Numéros de la trace montante et descendante.
- Numéros du premier cycle et du dernier cycle
- Fichier standard primaire.

En sortie:

- Fichiers ASCII et binaire traces moyennes
- Fichier ASCII résultat de l'échantillonnage de la trace.

c) Données particulières

La structure trajectoire représente un intervalle Ik.

Cette structure est utilisée pour le calcul de la position moyenne de l'intervalle. Ce calcul est effectué à chaque affectation d'une nouvelle mesure grâce au champ nbre_mesure, nombre courant de mesures présentes dans l'intervalle. Ceci évite de stocker temporairement toutes ces données en mémoire centrale. La structure état_calibration est une structure d'information; elle décrit l'échantillonnage d'une trace (cf. Annexe 2, fichier declare_format.h).

d) Vérifications:

Fichier ASCII associé à la détermination des positions moyennes : pour chaque échantillon ou intervalle I_k , la latitude du milieu de l'intervalle I_k et celle de la

position moyenne (L_k , l_k) calculée sont utilisées pour le calcul de deux écarts de latitude δ_{l_k} et δ_{2_k} (en degrés et km).

Le premier écart δl_k est un écart des latitudes des positions extrêmes de l_k . On doit vérifier que δl_k ne dépasse pas la longueur en latitude de l'intervalle l_k .

L'écart δ_{2k} est un écart de latitudes entre la latitude de la position moyenne (L_k, l_k) calculée et la latitude du milieu géographique de l_k . L'écart δ_{2k} situe la position moyenne (L_k, l_k) dans l'intervalle l_k . Des valeurs faibles de l'écart δ_{2k} assurent de la bonne convergence de la moyenne (répartition équilibrée des mesures m_k de part et d'autre de la latitude d'échantillonnage).

Fichier ASCII associé à la détermination des positions moyennes: Affichage de tous les écarts méridiens et zonaux pour les deux traces $T_{S_{\dot{1}}}$ et $T_{S_{\dot{1}}}$. Ces écarts sont exprimés en micro-degrés et sont regroupés en demi-traces appelées arcs: 4 arcs forment donc le fichier ASCII. Ce fichier de taille importante permet sur écran de contrôler et repérer d'éventuels écarts anormaux.

7.5.3) Etape 3: création du fichier de positions moyennes des passages à l'équateur appelé fichier "passage equateur".

Cette étape est réalisée par la fonction **création_fichier_longitude_moyenne** et est indépendante des autres étapes de ce module.

a) Principe:

Chaque CDROM comporte un fichier "passage équateur" correspondant à la période couverte par le CD. Ce fichier est un fichier ASCII transformé en binaire par la fonction **création_fichier_longitude_binaire** et constitué de données codées en double précision, temps et longitude. Ces données de type **passage_équateur** forment une suite chronologique. Cette suite comporte quelquefois des "trous" de données.

A partir des données, il faut déterminer, pour tous les passages périodiques du satellite à l'équateur, la longitude moyenne correspondant à ces passages. La méthode consiste à combler les "trous" de la suite de données, trier les données en cycles et calculer les longitudes moyennes à l'équateur. Le nombre de longitudes moyennes calculées est égal au nombre total de traces d'un cycle complet (globe entier) soit 488.

Pour faciliter le calcul des valeurs moyennes, une donnée particulière est créée dans cette étape 3: **pas_équ** dont la structure ressemble à celle de la donnée **trajectoire** de l'étape 2.

Dans cette structure sont stockées les longitudes des passages i à l'équateur de chaque cycle. A chaque longitude stockée, un tableau **tab_long** à 3 éléments de type double précision est mis à jour : longitude minimale, maximale et moyenne (calculée grâce à **nbr_donnée**). L'écart entre les longitudes minimum et maximum pour chaque trace matérialise les écarts en longitude de trajectoire du satellite à l'équateur.

b) Données

En entrée :

- Fichier binaire "passage équateur".
- Temps de référence du premier passage du satellite à l'équateur dans la zone géographique d'étude.

En sortie:

- Fichier binaire des positions moyennes à l'équateur (488 positions) : fichier "passage équateur moyen" appelé equateurXX.DAT où XX est le nombre de CDROMs pris en compte.
- Fichier ASCII de vérifications noté équateurXX.COM où XX est le nombre de CDROMs pris en compte.

c) Algorithme:

- Saisie des paramètres.
 - * Nom du fichier binaire "passage équateur".
 - * Nom du fichier de sortie.
- * Temps référence : temps exact du passage du satellite à l'équateur (consulter le fichier ASCII "passage équateur").
 - Création d'une liste chaînée de travail Lt de type pas_equ.
- Construction de la liste Lt par lecture du fichier "passage équateur" : tous les éléments du fichier sont chaînés entre eux.

Soit X le nombre de maillons de la liste:

- Recherche du temps référence de saisie au clavier : les n éléments de temps inférieur au temps de référence sont supprimés de la liste (vérification_point).
 Nombre de maillons de la liste X-n
- Combler les trous de données par des éléments fictifs auxquels on attribue une longitude de -180°. Les m trous sont facilement repérables car deux éléments successifs sont espacés de 3018 secondes environ (durée_révolution/2) (vérification_point).

Nombre de maillons de la liste: Y=X-n+m avec Y=nombre de cycles*488.

- Trier et numéroter les éléments de la liste en cycles. Le tri est effectué uniquement en considérant la durée théorique d'un cycle (caractéristique GEOSAT); nous savons que cette durée suit à quelques secondes près la durée réelle. Cette imprécision est négligeable devant les 3018 secondes qui séparent deux passages à l'équateur du satellite. La numérotation s'effectue avec le numéro de trace et le numéro de révolution

Nombre de maillons de la liste Y.

- Formation de la liste complète de positions moyennes; seuls les 488 premiers maillons du premier cycle sont conservés.

Exemple: soit le maillon de numéro de trace i et de révolution jij001. Les maillons pris en compte pour la détermination des trois longitudes du tableau tab_long sont les maillons de numéro de trace i et de révolution jij0NN (NN est le numéro de cycle).

Nombre de maillons de la liste : 488.

- Réduction de la liste Lt au domaine d'études car les 488 traces du cycle couvrent le globe entier. Toutesois, une extension de la zone géographique d'étude est nécessaire pour représenter les traces tronquées sur cette zone (Fig. 12). Une trace complète de 35°N à 35°S occupe 31° environ en longitude de par son inclinaison. Il faut donc élargir la zone originale d'étude de 31° en longitude de part et d'autre. Les dimensions de cette nouvelle zone sont : 35°N-35°S, 89°E-306°E. Toutes les positions moyennes à l'extérieur de cette zone élargie sont rejetées et le maillon correspondant supprimé.

Nombre de maillons de la liste : 293.

- Stockage de la liste Lt dans le fichier "équateurXX.DAT": utilisation de la fonction générique **écriture_fichier** contenue dans la librairie des fonctions sur les listes chaînées.

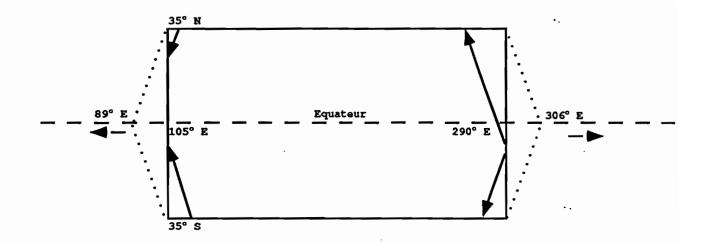


Fig 12 : Extension de la zone géographique d'étude pour représenter les traces tronquées

d) Vérifications.

Fichier ASCII équateurXX.COM: Chaque maillon de la liste chaînée de type pas_equ contient l'information utile à la vérification du bon déroulement du traitement: les trois longitudes du tableau tab_long: minimum, maximum et moyenne. Le nbre_donnée indique le nombre courant de positions à prendre en compte pour le calcul de la position moyenne. Enfin, l'écart en degrés et km entre les longitudes minimum et maximum permet d'apprécier la dérive longitudinale du satellite au fil du temps.

7.5.4) Etape 4: construction du cycle standard final.

Cette étape 4 est réalisée par la fonction création_cycle_standard. Cette fonction permet de construire le cycle standard final et le cycle standard primaire.

a) Principe

L'étape 2 génère un fichier de deux traces moyennes et l'étape 3 le fichier des longitudes moyennes à l'équateur. Le cycle standard à construire est un cycle de positions moyennes. Il est bâti à partir des deux fichiers de positions moyennes générées par les étapes 2 et 3.

Le principe est de superposer l'une des deux traces moyennes type (montante T_{S_i} ou descendante T_{S_i}) de l'étape 2 sur chaque longitude moyenne (0, ll_{m_n}) de l'étape 3. On crée ainsi une trace standard T_{S_n} et l'ensemble des traces standard T_{S_k} (k = 1...293) créées constitue le cycle standard recherché.

Elaboration d'une trace standard : La longitude moyenne $(0, ll_{m_n})$ est l'origine de l'élaboration de chaque trace standard T_{S_n} . Les positions sont générées en ajoutant ou

retranchant, à la longitude moyenne de l'étape 3, les écarts méridiens et zonaux issus de l'étape 2.

Seules les positions géographiques comprises dans la zone d'étude sont stockées dans le fichier binaire final. Chaque trace standard est constituée de deux arcs 1 et 2 et d'une position à l'équateur:

Trace montante: M₁ + point à l'équateur + M₂
 Trace descendante: D₁ + point à l'équateur + D₂

L'élaboration d'une trace standard s'effectue en deux temps. Chaque arc $(M_1,M_2,D_1 \text{ ou } D_2)$ est construit à partir de la position $(0, ll_{m_n})$. L'ordre de construction est le suivant:

- M2 + point à l'équateur + M1 (sens inverse d'évolution de la trace) pour la trace montante.
- * D₂ + point à l'équateur + D₁ (sens inverse d'évolution de la trace) pour la trace descendante.

La trace standard T_{Sn} est obtenue en rétablissant l'ordre des positions des arcs M1 et D1 (Fig. 13).

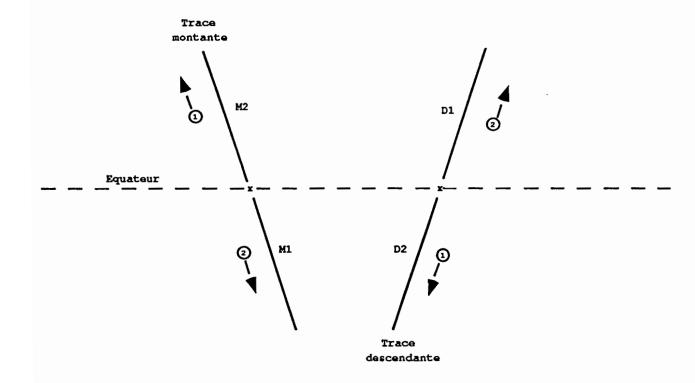


Fig. 13 : Schéma de principe de construction d'une trace standard

Remarque:

A chaque position moyenne à l'équateur $(0, ll_{m_n})$, on associe la trace standard T_{s_i} ou la trace standard T_{s_i} . Le choix entre ces deux traces standard dépend de la nature de la trace à créer T_{s_n} qui passe par la position $(0, ll_{m_n})$. Chaque position $(0, ll_{m_n})$ est numérotée comme une trace, par un numéro de trace et de révolution. La nature de la trace T_{s_n} à créer sur la position $(0, ll_{m_n})$ est donc connue. La numérotation de traces est réalisée de telle façon que la nature d'une trace corresponde à la parité du numéro. La correspondance s'effectue en fonction de la

nature de la première trace; si la première trace de numéro 1 est descendante alors toutes les traces de numéros impairs le sont aussi.

Exemple:

Soit ll_{m_1} la longitude moyenne à l'équateur. Supposons que la trace standard à générer soit montante. Soient M_k écart_long_i et M_k écart_lat_i les écarts méridien et zonal entre les positions i et i-1 de l'arc M_k (k = 1...2).

La 1ère position P₁ de l'arc M₁ est (M₁écart_lat₁, ll_{mn} -M₁écart_long₁)

La ième position P_i de l'arc M_1 est (Lat(P_{i-1}) + M_1 écart_lat_i, lon(P_{i-1})- M_1 écart_long_i)

La position moyenne à l'équateur est $(0,ll_{m_n})$

La 1^{ère} position P'1 de l'arc M2 est (M2écart_lat1, ll_{m_n} + M2écart_long1)

La ième position P'i de l'arc M2 est (Lat(P'i-1) - M2écart_lati, long(P'i-1) + M2écart_longi)

La construction du cycle standard primaire est identique, avec cependant, pour $i = 1...nbre_mesure_max_tr_std$ et k = 1...2: M_k écart_lat_i = constante et M_k écart_long_i = constante.

b) Données

En entrée:

- nom du fichier "passage équateur moyen" (étape 3)
- nom du fichier traces moyennes (étape 2)
- nature de la première trace du cycle standard primaire saisie des pas de latitude et de longitude moyens.

En sortie:

- fichier binaire cycle standard
- fichier ASCII associé

c) Algorithme

- saisie des paramètres
- lecture du fichier des traces moyennes; chaque arc (M1, M2, D1 et D2) est stocké dans un tableau.
- création d'une liste chaînée de travail Lt pour stocker les positions générées par l'élaboration de la trace standard.
- construction de la liste Lt:par la fonction calcul_de_trace_final si le cycle standard est final, et par calcul_de_trace-primaire si le cycle standard est primaire.
 - stockage de la liste Lt dans le fichier binaire cycle standard.
 - en-tête de la trace trace-std
 - positions de la trace position

1,24

d) Vérifications

Fichier ASCII de sortie : Pour chaque trace standard créée, son en-tête (structure trace_std) est affiché et stocké dans le fichier.

7.6) Module 3 "TRIER LES DONNEES PAR TRACE"

Ce module est réalisé par la fonction tri_par_trace.

7.6.1) Algorithme

- Saisie des paramètres
 - numéros des premier et dernier cycles: cycleNN.DAT.
 - temps référence pris comme temps courant t.
 - nom du fichier standard primaire.
- Création de trois listes chaînées :
- ullet liste T_{r_i} : va contenir des mesures du fichier cycleNN.DAT. Ces mesures définiront la trace réelle d'indice i notée T_{r_i} .
- liste T_{Si} : est constituée des positions de la trace standard d'indice i notée Tsi
- d'indice i notée Tsi. • liste T_{Si+1} : est constituée des positions de la trace standard d'indice i notée T_{Si+1} .
- construction des listes T_{Si} et T_{Si+1} par lecture du fichier standard primaire.
 - Lecture d'une mesure mi de temps tmi du fichier cycleNN.DAT.
 - Recalage du temps courant t sur tmj (détermination_temps_ref).

Si $tm \in [t-inc,t+inc]$ alors $t < --tm_1$

finsi

(les valeurs de inc et intervalle sont déterminées après essais. Ordres de grandeur de centaines de secondes pour intervalle et dizaines de secondes pour inc.)

- Détermination approximative (à quelques secondes près) du temps $t_{\rm f}$ de fin de la trace $T_{\rm fi}$.
 - $t_f = t + (nbre_de_positions de T_{S_i} * 1s);$
- Lecture des mesures mk et insertion des mesures mk dans la liste T_{r_i} tant que $tm_k < t_f + intervalle$
- Stockage de la liste T_{r_i} dans le fichier binaire cycleNN.DA. L'en-tête de T_{r_i} a pour numéro de trace le numéro de trace T_{s_i} et pour numéro de révolution le numéro de révolution de T_{s_i} plus le numéro du cycle courant NN 1.

Exemple : soient la trace réelle T_{r_i} du cycle 35 (fichier cycle35.DA) et la trace standard T_{S_i} de numéro de révolution 242001. Le numéro de la trace T_{r_i} est égal à 242035. L' incrémentation du temps courant t s'effectue de la façon suivante :

si T_{Si+1} et T_{Si} sont de même nature (toutes deux ascendantes ou descendantes), alors

t <-- t + 3018s sinon t <-- t + 6036s finsi

7.6.2) Tests

Fichier ASCII général: pour chaque cycle traité, on affiche le nombre d'enregistrements écrits. La comparaison de ce nombre avec celui déterminé dans le module 1 nous renseigne quant à la perte ou non d'information. Ces deux nombres doivent donc être rigoureusement identiques pour valider le traitemant du module.

Le nombre de traces manquantes est également affiché. Selon l'occupation mémoire de la structure trace et celle de la donnée, il est facile de calculer la taille du fichier cycleNN.DA et de la comparer à la taille réelle du fichier.

Enfin, le temps référence utile pour le cycle suivant est nécessaire pour un tri en plusieurs parties en cas d'espace disque non suffisant..

Fichier ASCII cycleNN.CO associé à chaque cycle : pour chaque trace est affichée et stockée dans le fichier l'en-tête **trace_std** qui est comparée à celle de la trace standard correspondante.

Visualisation graphique : un graphe est édité pour chaque fichier cycleNN.DA. La comparaison avec le graphe du cycleNN.DAT permet de vérifier également qu'aucune perte d'information n'a eu lieu.

7.7) Module 4: mise au format commun des cycles de données

Ce traitement est réalisé par la fonction mise_format

7.7.1) Algorithme

- Saisie des données
 - *Numéros des premier et dernier cycles cycleNN.DA.
 - *Numéro du fichier standard final.
- Création de trois listes chaînées
 - Liste T_{ri}: contient les mesures de la trace réelle d'indice i notée

 T_{r_i} .

notée Tsi.

- Liste T_{Si}: contient les positions de la trace standard d'indice i
- * Liste T_{f_1} : liste résultat qui contiendra les données générées par la mise de la trace T_{r_1} au format de la trace T_{S_1} .
- Construction des listes Tr_{i} et T_{Si} par lecture des fichiers cycleNN.DA et cycle standard final.
 - Construction de la liste Tf; (cf. principe conception préliminaire)
- * Essai d'affectation directe de chaque mesure m_k de T_{r_i} à une surface élémentaire S_k de centre la position P_k de la trace T_{S_i} .
 - S_i affectation de la mesure m_k à la surface S_k, alors
 - construction d'un maillon de la liste T_{fi} contenant la

mesure mk.

* suppression du maillon de la liste T_{r_i} qui contient la

mesure mk affectée.

sinon
• passage à la mesure m_{K+1} de T_{ri}

Finsi

Si la liste Tri est non vide

alors

* statégie d'affectation appliquée à toutes les mesures m_k encore présentes dans la liste T_{r_i} (décalage ou moyenne)

Finsi

- interpolation des données de la liste Tfi
- Stockage de la liste Tfi ainsi construite dans le fichier cycleNN.D

7.7.2) Interpolation

Le pas d'interpolation pas_interpolation (cf. Annexe 2, declare_format.h) est pris égal à deux mais peut être modifié facilement. Un pas d'interpolation de deux correspond ici à une distance de $17 \, \mathrm{km}$ de part et d'autre de la position standard à interpoler. Lorsque l'interpolation est impossible, la mesure m_k associée à la position standard P_k de la surface S_k est supprimée.

7.7.3) Tests

Fichier cycleNN.C : la mise au format de chaque trace réelle fait l'objet d'un bilan précis. Les renseignements fournis sont :

- le nombre de mesures m_k affectées à une surface élémentaire S_k lors de la première phase.
- le nombre de moyennes effectuées entre deux mesures m_k et $m_{k'}$ appartenant à la même surface S_k lors de la deuxième phase. Le nombre de moyennes réalisées doit être suffisamment faible pour valider définitivement la méthode de mise au format ou en exiger son amélioration.
- le nombre de post ou pré-assectations (algorithme d'assectation) lors de la deuxième phase.
 - le nombre de données non affectées à l'issue des deux phases.
- le nombre de "saut" : deux données consécutives appartenant à deux surfaces élémentaires non consécutives.

Fichier ASCII général: l'utilité de ce fichier est de dresser pour chaque cycle cycleNN.D un bilan très précis des deux phases de mise au format et d'interpolation. Un comptage des quatre types de données futures, exploitables, invalides ou manquantes (cf. module1) est systématiquement réalisé avant et après chaque phase. Des renseignements sur le déroulement de ces deux phases sont également stockés dans le fichier. La vérification du calcul d'interpolation s'effectue de manière aléatoire. Les calculs des situations d'interpolation retenues sont vérifiées.

Visualisation graphique: de la même façon que pour les modules 1 et 3, un graphe est édité pour chaque fichier cycleNN.D; précisons que dans un premier temps, les positions des mesures sont conservées pour justement permettre la visualisation des fichiers finaux. Après vérification, les champs latitude et longitude seront biensûr effacés de chaque mesure.

8) MODULE GRAPHIQUE

Ce module utilise un logiciel développé par Hervé Oiry, ingénieur contractuel à l'ORSTOM. Ce logiciel crée un environnement graphique sous Sunview complet, convivial et très utile pour le développement. Il a été conçu pour afficher, visualiser et traiter des images graphiques générées par des fichiers de données. Le source du programme principal et les exécutables des librairies attenantes m'ont été gracieusement fournis.

Il a fallu tout de même adapter le logiciel aux besoins de l'étude. Pour cela, des fonctions d'affichage de grille (zone géographique d'étude) et de points ont été créées. Chaque point affiché (pixel noirci) représente la position d'une mesure satellitaire.

Une autre fonction plus spécifique à l'environnement graphique a été également créée. Le logiciel n'offrait pas la possibilité de stocker en mémoire centrale, une image graphique directement affichée à l'écran. Il a donc fallu créer une fonction **memo_image** qui stocke en mémoire centrale une image affichée. Cette fonction utilise des opérateurs de bits.

Une image graphique est constituée de pixels. Chaque pixel est lié à un bit (0 ou 1) dont la valeur détermine le grisé du pixel. Une ligne à l'écran de n pixels est représentée par un mot de n bits. Dans l'environnement sunview, les mots de n bits sont découpés en octets. Ainsi, chaque bit d'un octet de la mémoire écran représente un pixel. Dans le but de produire plusieurs niveaux de grille, chaque bit d'un octet est associé dans le logiciel à un entier court (2 octets) en mémoire centrale. La valeur de cet entier court donne l'intensité du signal physique à visualiser. Deux seuils minimum et maximum sont définis et modifiables à l'écran. Seules les valeurs de l'entier court comprises entre les seuils minimum et maximum sont affichées. De cette façon, un filtre dynamique est créée.

La fonction **memo_image** attribue une valeur constante à chaque pixel de l'image. Cette valeur est comprise entre les seuils minimum et maximum pris par défaut.

Un exécutable de ce logiciel adapté est créé: visu_GEOSAT. Il n'est pas incorporé au logiciel de traitement GEOSAT. Le menu du programme principal du traitement GEOSAT lance visu_GEOSAT par un appel système.

9) CODAGE

Chaque module de traitement constitue une librairie. Le programme principal trait_GEOSAT gère les menus et appelle, selon le choix de l'utilisateur, la fonction correspondante. Une librairie utilitaire "utillib" est créée, elle contient les fonctions de base d'opérations sur listes chaînées (liste.c) et sur les fichiers (fichier.c). La création de plusieurs librairies a l'avantage de minimiser le nombre de compilations de fichiers source après une modification quelconque d'une fonction (Fig. 14).

Liste des librairies:

- traitlib1: contient le fichier tri_par_cycle.c
- traitlib2: contient les fichiers det_best_tr.c, cr_cycle_std.c, cr_fic_lo_moy.c et det_tr_moy.c.
 - traitlib3: contient le fichier tri_par_trace.c
 - traitlib4: contient le fichier mise format.c
 - utillib: contient les fichiers liste.c et fichier.c

Le module graphique est un programme indépendant **visu_GEOSAT.c** dont l'éxécutable est lancé du menu par un appel système.

Les déclarations de type de variables et les directives de compilation (#desine) ont été séparées des programmes source et regroupées dans plusieurs fichiers "include.h". Ce regroupement s'est réalisé par module et par affinité. Les sichiers sont les suivants:

- declare_cycle.h contient les déclarations des types dec_enreg, mesure et état.
- declare_std.h contient les déclarations des types: passage_équateur, pas_equ, position et trace_std.
- declare_format.h contient les déclarations des types trajectoire, trace, donnee, résultat_interpolation et etat_trace.
- declare_liste.h contient les déclarations des types liste chaînée et maillon.

Les fichiers carac_GEOSAT.h, zone_geo.h, et divers.h ne contiennent que des directives de compilations. Ce sont essentiellement des constantes définies pour l'ensemble du logiciel. Enfin le fichier includ.h contient d'autres fichiers "include.h" nécessaires à la bonne marche du programme (entrées-sorties, fonctions mathématiques...).

Des extraits de certains programmes sont en Annexe 2. Voici quelques renseignements sur la taille du logiciel. Les éxécutables **trait_GEOSAT** et **visu_GEOSAT** ont une taille respective de 155 et 262 Ko. Le logiciel représente environ 5000 lignes de code en langage C.

Fig. 14: Architecture du logiciel

10) TESTS UNITAIRES, RESULTATS ET VALIDATION

Les tests, décrits lors de la conception détaillée, ont été réalisés et expliqués dans ce chapitre. Pour rendre cette partie plus claire, un cycle sur les 62 est choisi au hasard, le cycle n° 2. Les tests réalisés dans chaque module sont détaillés pour le cycle n° 2. Les noms de fichiers cités sont ceux utilisés lors du traitement des données qui a conduit aux résultats décrits en Annexe 3.

10.1) Module 1

10.1.1) Tests

Les renseignements contenus dans les fichiers ASCII cycleNN.COM suffisent pour valider le traitement du module. Par vérification de la cohérence des positions et des temps de fin et de début de cycle, on s'assure du tri correct réalisé.

Une visualisation de la trajectoire au sol de chaque cycle est effectuée. Seules les positions des mesures valides (h différent de 32767) sont pointées.

10.1.2) Résultats

L'analyse de l'ensemble des fichiers ASCII cycleNN.COM permet de faire quelques remarques. Tout d'abord, la proportion des mesures invalides est relativement stable (environ 10%) jusqu'au cycle n°55 (Annexe 3), c'est à dire fin mai 1989. Au delà de cette date, la proportion des mesures invalides augmente à 20% (Annexe 3). Cette augmentation est essentiellement due aux excursions plus nombreuse de l'attitude du satellite (12% au lieu de 6 à 7%). A partir de cette date, le nombre moyen des données satellitaires diminue de 40%. La diminution très importante du nombre de données et l'augmentation des données invalides, rendent l'exploitation scientifique des données GEOSAT délicate au delà du printemps 1989. Une des raisons principales de la baisse de performance du satellite est l'activité solaire. Effectivement, celle-ci très faible en 1986, date de début de la mission, augmente progressivement en intensité.

Deux "trous" de données d'une période de sept jours ont été découverts; le premier concerne le cycle n°23 (novembre 1987) et le second concerne le cycle n°51 (mars 1989) (Annexe 3). Pendant ces deux périodes d'une semaine, des opérations importantes de remise sur son orbite répétitive du satellite, furent entreprises.

Les fichiers cycleNN.DAT issus de ce module ont une taille moyenne de 7 Mo.

10.2) Création du fichier "passage équateur moyen" (module 2)

Le fichier "passage équateur moyen" noté equateur 01.DAT, est créé avec le fichier binaire des passages à l'équateur equateur 01.BIN du premier CDROM. Les résultats de l'opération sont stockés dans le fichier ASCII equateur 01.COM.

A chaque insertion d'un nouveau CDROM X, le fichier des passages à l'équateur du CDROM X est concaténé au fichier équateur(X-1).BIN pour donner le fichier equateurX.BIN. Ce fichier permet de créer deux nouveaux fichiers equateurX.DAT et equateurX.COM. Les deux fichiers ASCII equateur01.COM et equateur06.COM sont présents dans le rapport afin d'apprécier la dérive du satellite au fil du temps (Annexe 3). Elle est d'un km environ pour le premier disque (5 premiers mois) et de plus de 2 km pour l'ensemble des 6 CDROMs. Cette dérive est progressive au fil du temps.

10.3) Création du cycle standard primaire (module 2)

Pour chaque fichier cycleNN.DAT un écart moyen de latitude et un écart moyen de longitude sont calculés et stockés dans le fichier ASCII cycleNN.COM. Ces deux écarts sont utilisés pour construire le cycle standard primaire cyc_std_prim et le fichier ASCII associé cyc_std_prim.COM. Le cycle standard primaire comporte 293 traces (Annexe 3).

10.4) Tri par trace (module 3)

Chaque fichier cycleNN.DAT est trié en traces. Les fichiers de sortie binaire cycleNN.DA et ASCII cycleNN.CO sont créés pour chaque cycle traité. Le fichier ASCII tri_par_trace.COM contient les informations essentielles sur l'ensemble du traitement. La visualisation de chaque fichier cycleNN.DA obtenu montre bien q'aucune donnée n'a été perdue (Annexe 3).

10.5) Détermination de deux traces moyennes (module 2)

Après le détermination des deux traces les plus représentatives, trace montante n° 414 et trace descendante n° 459, le fichier binaire des écarts moyens méridiens et zonaux 414-459.DAT et les deux fichiers ASCII associés 414-459.TRA et 414-459.COM sont créés. Le fichier 414-459.TRA est constitué des écarts moyens méridiens et zonaux calculés. Un parcours rapide de ce fichier permet de repérer d'éventuelles valeurs aberrantes. Le fichier 414-459.COM décrit le calcul de chaque position moyenne (Annexe 3).

Pour le calcul des positions moyennes, seuls les 50 premiers cycles ont été pris en compte.

10.6) Création du cycle standard final (module 2)

A partir du fichier 414-459.DAT (écarts moyens méridiens et zonaux), et du fichier equateur05.DAT (longitudes moyennes des passages du satellite à l'équateur)pour les cinq premiers CDROMs), le cycle standard final est construit. Les positions générées sont stockées dans le fichier 414-459.D. Le fichier ASCII associé est le fichier 414-459.C. Le cycle standard final est déterminé avec les traces 414 et 459 et compte 293 traces et 316603 positions. Il est visualisé pour s'assurer de la couverture compléte du cycle de la zone géographique (Annexe 3).

10.7) Mise au format et interpolation

Chaque trace du cycleNN.DA est mise au format de la trace standard final puis une interpolation des données de la trace est réalisée. Les données du fichier binaire de sortie cycleNN.D conservent dans un premier temps leur position pour permettre la visualisation du cycle NN traité. Si l'on compare les images des cycleO2.DA et du cycleO2.D, on remarque que certaines mesures isolées, souvent sur les terres, ont disparues par suite d'interpolation(Annexe 3).

10.7.1) Améliorations

L'utilisation dans ce module de plusieurs listes chaînées et d'opérations multiples d'allocation et de désallocation mémoire par les fonctions calloc() et cfree(), rendaient le temps d'éxécution de traitement d'un cycle trop élevé, à savoir plus d'une heure par cycle sur station SUN SPARC IPX (16 Mo de mémoire centrale et 28 Mips). L'enchaînement d'allocations et de déallocations mémoir de structures de tailles

différentes conduisait à une gruyérisation de la mémoire qui ralentissait et arrêtait parfois même le déroulement du programme. Les structures de données de ce programme ont été changées, les listes chaînées ont été remplacées par des tableaux surdimensionnés au nombre maximum de positions d'une trace standard nbre_max_mesure_trace_std (1263). Ce changement de structure ajoutée à une optimisation du sens de parcours des tableaux a diminué de moitié le temps de traitement d'un cycle à savoir une demi-heure par cycle.

Cette amélioration était nécessaire car de nombreux lancements de la fonction de ce module **mise_au_format()** ont du être réalisés pour déterminer et valider la meilleure méthode d'élaboration de deux traces standard du module 2 (étape 2). Tout d'abord, plusieurs traces réelles ascendantes et descendantes bien fournies en mesures ont été testées (n° 444, 414, 386 pour les montantes et n° 431, 459 pour les descendantes). Les deux traces qui ont donné le meilleur résusltat sont les traces n° 414 et n° 459. Plusieurs essais ont ensuite été effectués avec les deux traces, dans un premier temps avec et sans lissage des écarts moyens méridiens et zonaux (filtre moyenne mobile), puis en faisant varier la longueur de ce filtre. La configuration retenue a été celle qui minimisait le nombre de moyennes réalisées dans la phase d'affectation du traitement (une moyenne est une information perdue).

Finalement, le fichier d'écarts moyens méridiens et zonaux est obtenu avec les traces n° 414 pour la montante et n° 459 pour la descendante. Un lissage des écarts moyens obtenus est réalisé par un filtre moyenne mobile de demi-longueur 6 écarts.

10.7.2) Commentaires:

Les renseignements contenus dans un fichier ASCII cycleNN.C (Annexe 3) associé au fichier cycleNN.D décrivent la mise au format de chaque trace rélle du fichier cycleNN.DA.

Le deuxième fichier ASCII mise_au_format.COM (Annexe 3) contient les résultats des phases d'affectation et d'interpolation pour chaque cycle traité. Ces résultats montrent que le traitement du module 4 modifie très peu le nombre et la nature des données. Le pourcentage du nombre des données exploitables par rapport à celui des positions du cycle standard final (316603 pour le cycle standard final 414-459.D) passe de 78,68 à 78,10 % pour le deuxième cycle. La moitié de la perte provient du nombre de moyennes effectuées dans la phase d'affectation (3 moyennes pour 1000 mesures en moyenne). L'autre moitié provient de la phase d'interpolation. Ce résultat, qui se retrouve pour tous les cycles, est jugé très positif au vu des nombreuses manipulations subies par les données.

Nous avons vu précedemment qu'à l'origine de la deuxième mission (ERM), la dérive du satellite était d'un km puis atteignait 2 à 3 km en moyenne en fin de mission. Par sécurité, la largeur de la zone (ecart_lon_format dans carac_GEOSAT.h) définie par une trace standard (longueur de chaque surface élémentaire) a été prise à un dixième de degré (11 km). Avec cette valeur, moins d'une vingtaine de données sur un total de 20 millions environ se trouvent en dehors de la zone définie par chaque trace standard ("nbre de données ignorées" dans le fichier mise_au_format.COM).

11) CONCLUSION

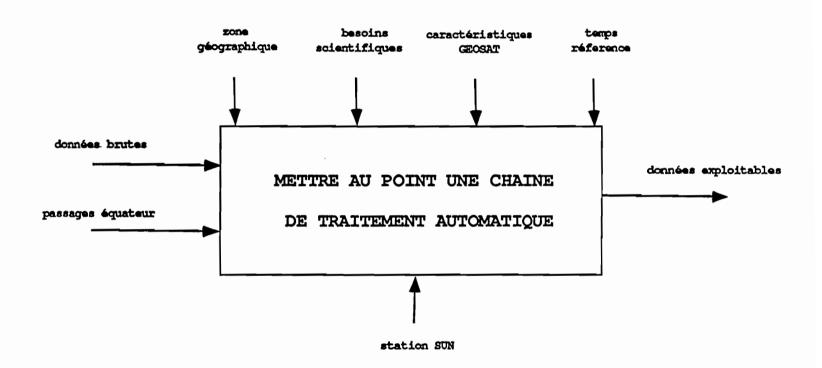
Une équipe scientifique de la NASA sous la direction de C. Koblinski a fourni en 1988 au Groupe SURTROPAC les 13 premiers mois des données altimétriques ERM (Exact Repeat Mission) du satellite GEOSAT. Ces données pré-traitées ont permis au groupe d'aboutir très rapidement à des résultats scientifiques intéressant la communauté océanographique internationale.

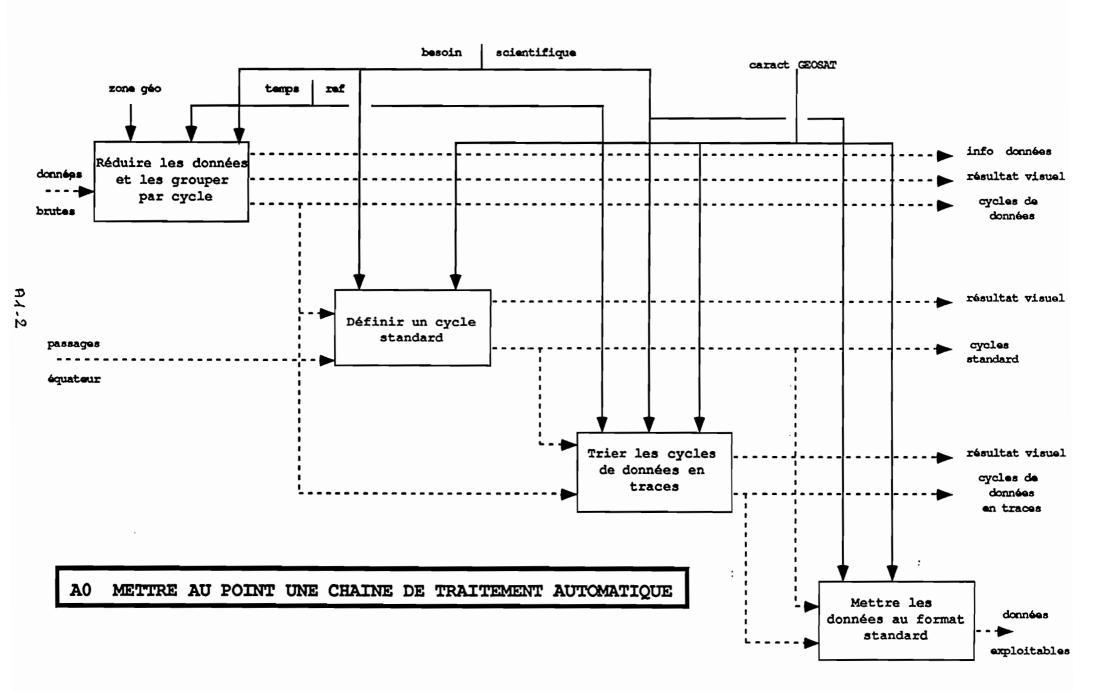
Dans le cadre du projet franco-américain TOPEX-POSEIDON, l'ensemble des trois années des données brutes du satellite GEOSAT a été fourni tout récemment au Groupe SURTROPAC sous la forme de six CDROMs. Le but de ce stage a été de concevoir et de réaliser le traitement des **20 millions de données** correspondantes pour aboutir à un produit pré-traité. Ce produit, similaire à celui reçu en 1988, servira à analyser d'un point de vue scientifique les données complètes de GEOSAT.

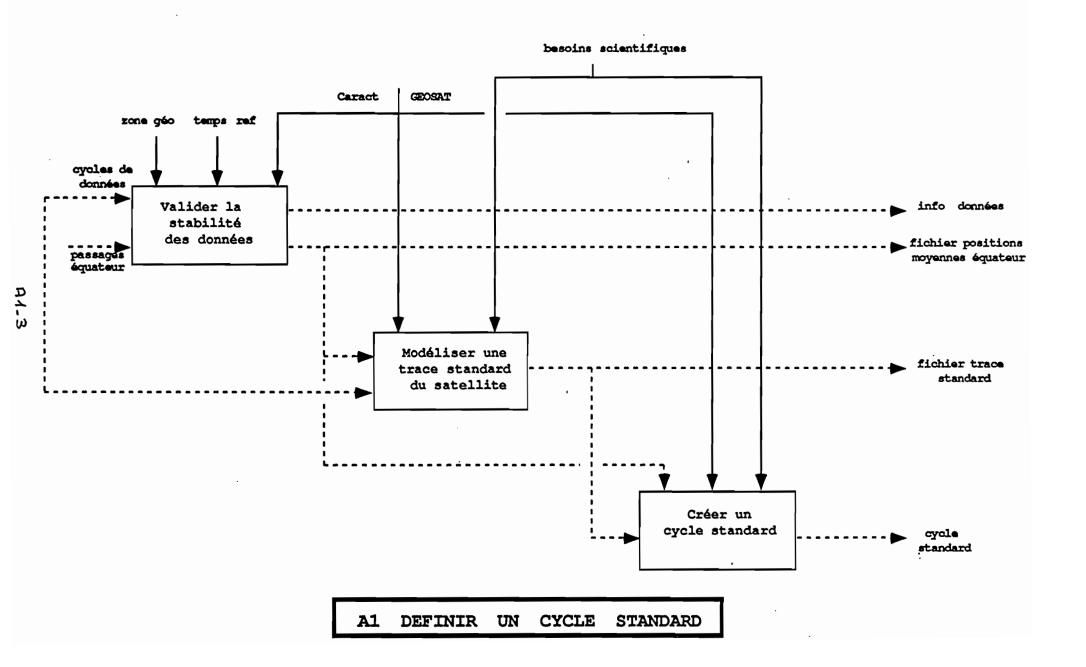
Le traitement a consisté en différentes opérations. Les données GEOSAT ont tout d'abord été lues, triées en cycles puis en traces, et testées statistiquement. Après l'analyse des résultats des tris, un cycle de positions moyennes a été construit. Pour cette opération, deux traces moyennes types, une montante et une descendante, ont tout d'abord été calculées. Toutes les traces du cycle moyen de la zone d'étude (35°N-35°S; 105°E-290°E) ont été ensuite obtenues par translation des deux traces moyennes types. L'opération finale a consisté à la mise de tous les cycles de données au format du cycle de positions moyennes. Les données de chaque trace sont ainsi "ramenées" sur la trace correspondante du cycle moyen.

Le logiciel a été conçu et réalisé pour être compatible avec les programmes antérieurs développés au sein du Groupe SURTROPAC à partir du jeu initial des 13 premiers mois de données fourni par la NASA. Ces programmes aboutissent à un fichier grillé par maille de 0,5° de latitude et de 10° de longitude, directement exploitable scientifiquement. Une dernière étape est encore nécessaire pour assurer la compatibilité du logiciel avec les programmes antérieurs. Il s'agit de réduire les erreurs d'orbitographie, la méthode n'a pas été encore définitivement choisie par les chercheurs du groupe.

Au cours du mois d'aôut 1992, va être lancé le satellite franco-américain TOPEX-POSEIDON. Grâce à l'amélioration des capteurs, du suivi au sol (en particulier par le système français DORIS) et à l'adjonction d'un radiomètre, la précision des données de ce satellite devrait être nettement supérieure à celle de GEOSAT. Les données brutes TOPEX-POSEIDON, beaucoup plus nombreuses que les données GEOSAT, seront probablement fournies dans un format CDROM similaire. Après modification, le logiciel développé aidera les scientifiques du Groupe SURTROPAC à traiter les données de cette nouvelle génération de satellite.


BIBLIOGRAPHIE


- Bourne S., Le système UNIX, InterEditions Paris, 380 pp., 1985.
- Cheney R.E., B.C. Douglas, R.W. Agreen, L. Miller, D.L. Porter et N.S. Doyle, GEOSAT altimeter geophysical data record user Handbook, NOAA Technical Memorandum NOS NGS-46, Rockville, MD, 29 pp., 1987.
- Cheney R.E., B.C. Douglas, R.W. Agreen, L. Miller, D.L. Porter et N.S. Doyle, The NOAA GEOSAT geophysical data records summary of the first year of the Exact Repeat Mission, NOAA Technical Memorandum NOS NGS-48, Rockville, MD, 20 pp., 1988
- Delcroix T., J. Picaut et G. Eldin, Equatorial Kelvin and Rossby waves evidenced in the Pacific Ocean through GEOSAT sea level and surface current anomalies, J. Geophys. Res., 96, 3249-3262, 1991.
- Doyle N.S, R.E Cheney, B.C. Douglas, R.W. Agreen, L. Miller et E.L. Timmerman, The NOAA GEOSAT geophysical data records: summary of the second year of the Exact Repeat Mission, NOAA Technical Memorandum NOS NGS-49, Rockville, MD, 20 pp., 1989.
- Doyle N.S, R.E Cheney, B.C. Douglas, R.W. Agreen, L. Miller et E.L. Timmerman, The NOAA GEOSAT geophysical data records: summary of the third year of the Exact Repeat Mission, NOAA Technical Memorandum NOS NGS-49, Rockville, MD, 19 pp., 1990.
- Drix P., Langage C norme ANSI vers une approche orientée objet, édition Masson, 358 pp., 1990.
- Frain W.E., M.H. Barbagallo et R.J. Harvey, The design and operation of GEOSAT, Johns Hopkins APL Technical Digest, 8, 184-189, 1987.
- Hayne G.S. et D.W. Hancock III, Corrections for the effects of significant wave height and attitude on GEOSAT radar altimeter measurements, *J. Phys. Res.*, 95, n° C3, 2837-2842, 1990.
- Houry S., Restitution de la surface moyenne océanique par utilisation de mesures altimétriques et de marégraphes rattachés par tecniques spatiales, thèse de doctorat de l'université P. Sabatier, Toulouse, 270 pp., 1989.
- Minster J.F., Etude de la topographie dynamique des océans par altimétrie satellitaire.
- Picaut J., A.J. Busalacchi, M.J. McPhaden et B. Camusat, Validation of the geostrophic method for estimating zonal currents at the equateur from GEOSAT altimeter data, J. Geophys. Res., 95, n° C3, 3015-3024, 1990.
- Pond S. et G.L. Pickard, Introductory dynamic oceanography, 241 pp., Institute of oceanography, *University of British Columbia*, 1978.
- Porte V., Relations entre précipitations et salinité de surface au sein du Pacifique Tropical, aux échelles saisonnières et interannuelles, mémoire de stage de la mer, ORSTOM Nouméa, 170 pp., 1992.
- Wyrtki K., Some thoughts about the western Pacific warm-pool, Proceedings of the western Pacific international meeting and workshop on TOGA COARE, Picaut, Lukas et Delcroix éditeurs, ORSTOM Nouméa, 1989.


ANNEXE 1

DIAGRAMMES S.A.D.T

Diagramme A-0: premier niveau general.	A1-1
Diagramme A0 : deuxième niveau général.	A1-2
Diagramme A1: troisième niveau	A1-3

ANNEXE 2

EXTRAITS DE PROGRAMMES SOURCE

Fichier FICHIERS.h (tous les fichiers *.h)	A2-1
Fichier tri_par_cycle.c (extrait)	A2-4
Fichier tri_par_trace.c (extrait)	A2-7
Fichier mise_format.c (extrait)	A2-10
Fichier trait GEOSAT (programme principal)	A2-14

```
CATAC GEOSAT.h
#define pas latitude moven
                         55420
                                      /* en micro-drgs entre deux mesures consecutives*/
                         24634
#define pas longitude moyen
#define ecart lon format
                         100000
                                     /*longueur en micro-degres de la surface Sk
#define ecart_lon_determination 10000000
                                      /*longueur en micro-degres de l intervalle Ik
*define temps_moy
                         0.979922
                                      /*temps moven entre deux mesures consecutives
*define inclinaison
                         72.1
                                      /* inclinaison du satellite en degres
#define duree cycle
                         1473163.2
                                      /* duree theorique d un cycle en secondes
*define duree revolution
                         6035.6
                                      /* duree theorique d une revolution de cycle en s*/
#define nbre_revolution
                         244
                                      /* nbre de revolutions par cycle
                                     /* nbre de pos d une trace standard complete
#define nbre_max_mesure_trace_std
                               1263
#define nbre max mesure demi trace std 631
                                     /* nbre de pos d un arc d une trace standard complete*/
#define premier passage equateur 58410712.447468 /*temps en sec de la premiere pos a 1 equateur */
#define temps premiere mesure 58410094
                                     /*temps en sec de la premiere mesure de la zone */
*define nr premier cycle
                                      /* numero du premier cycle de données
#define nr_dernier_cycle
                         62
                                     /* numero du dernier cycle de donnees
                                                                           */
#define nr premier trace
                                     /* numero de la premiere trace d un cycle
                                                                           ./
                          1
#define nr dernier trace
                         488
                                     /* numero de la premiere trace d un cycle
zone_geo.h
#define lat_inf
                         -35000000
                                      /* Dimensions de la zone d etudes ; les latitudes*/
#define lat sup
                          35000000
                                      /* et longitudes sont exprimees en micro-degres */
#define long_inf
                         105000000
#define long_sup
                         290000000
#define long_sup_extension
                         306.0000000
                                      /* Longitudes en degres des extremites de la zone*/
*define long inf extension
                         89.0000000
                                             etendue
divers.h
#define pi
#define strid(s1,s2) (!strcmp((s1),(s2)))
                                     /*macro qui compare deux chaines de caracteres*/
#define max(a,b) ( (a) > (b) ? (a):(b) )
#define min(a,b) ( (a) < (b) ? (a):(b) )
#define Calloc(type) ( type* ) calloc(sizeof(type),1)/*simplication d ecriture pour une allocation*/
                                                        memoire
declare_cycle.h
#define marge cycle
                          100.0 /* demi longueur de la fenetre temporelle 100 sec
#define repertoire_sauvegarde
                          "SAUVE"/* sous-repertoire du repertoire courant pour sauvegarde */
                               /* des fichiers intermediaires
                          "/usrlf/GEOSAT/CDROM/"
*define repertoire CDROM
                                                 /* chemin du lecteur CDROM */
#define coef swh
                               /* coefficient utilisee pour la correction des hauteurs */
                               /* de vaque
typedef struct {
      int
                   utc:
      int
                   utc micro;
      int
                   lat;
      int
                   lon;
      int
                   orbit;
      short int
                  h z
      short int
                   sigma;
```

```
short int
                        geoid;
        short int
                        hl:
        short int
                        h2:
        short int
                        h3;
        short int
                        h4;
        short int
                        h5;
        short int
                        h6:
       short int
                        h7,
        short int
                        h8:
       short int
                        h9;
        short int
                        h10:
       short int
                        auhi
        short int
                        sigswh;
        short int
                        signau;
        short int
                        agc;
        short int
                        sigage:
        short int
                        flags;
       short int
                        hoff;
        short int
                        solid tide;
       short int
                        ocean tide;
        short int
                        wet fnoc;
       short int
                        wet smmr;
        short int
                        dry fnoc;
        short int
                        ionosphere;
        short int
                        wetto:
        short int
                        dryec;
        short int
                        att:
} dec enreg;
#define SIZE DEC ENREG sizeof(dec enreg)
typedef struct {
       int
                        utc:
       int
                        utc_micro;
       int
                        lat;
       int
                        long
       int
                        orbite:
        short int
                        h;
                        ocean_tide;
        short int
        short int
                        wetto;
}mesure;
#define SIZE MESURE sizeof (mesure)
typedef struct
       int
                nbre enregistrement lu:
       int
                nbre_enregistrement_ecrit;
       int
                nbre donnee invalide[7];
                nbre donnee sur terre;
       int
                h max:
       int
                h_min;
       int
                nbre mesure consecutive;
       double
               temps debut;
       double temps fin;
       double val temps(3);
       double val long[3];
       double val lat[3];
       double dist lat[3];
       double dist long[3]:
       double dist d1[3];
       double lat_max;
} etat;
```

D

J

FICHIERS.h

```
#define SIZE_ETAT sizeof(etat)
declare std.h
typedef struct PASSSAGE_EQUATEUR (
     double temps;
     double lon;
     ) passage equateur;
#define SIZE_PASSSAGE_EQUATEUR sizeof(passage_equateur)
typedef struct PAS EQU {
                revolution:
     int
     short int
                trace;
     double
                temps;
     double
                tab long[3];
     short int
                nbre_donnee;
) pas equ;
#define SIZE_PAS EQU sizeof(pas equ)
typedef struct POSITION (
     int
          lat;
     int
          long
) position;
#define SIZE_POSITION sizeof(position)
typedef struct TRACE_STD {
     short int
                trace;
     int
                revolution;
     position
                tab_long[3];
     short int
                nbre_mesure;
} trace_std;
declare_formst.h
#define SIZE_TRACE_STD sizeof(trace_std)
#define nbre_pos_cycle_std_final
                           316603
#define pas_interpolation
typedef struct DONNEE (
     int
     int
                orbite;
     position
                pos;
     short int
                hı
     short int
                ocean_tide;
     short int
                wetto;
}donnee;
#define SIZE DONNEE sizeof(donnee)
typedef struct TRACE (
```

```
short int
                        revolution;
        int
        short int
                        nbre mesure;
1 traces
#define SIZE TRACE sizeof(trace)
typedef struct (
               nr_trace;
        int
               revolution;
        int
                nbre mesure eff;
        int
               nbre_mesure_std;
               nbre_moyenne;
        int
               nbre_pre_aff;
       int
                nbre post aff;
                nbre_donnee_manquante;
        int
                nbre mes non exp perdu;
        int
       int
                nbre_boite_sautee;
                nbre_mesure_premier_jet;
        int
        int
                nbre_mesure_consecutive;
       position
                       premiere mesure_donnee;
        position
                        derniere mesure donnee;
                        premiere_mesure_std;
       position
        position
                        derniere_mesure_std;
} etat calibration;
#define SIZE_ETAT_CALIBRATION sizeof(etat_calibration)
typedef struct TRAJECTOIRE {
       double tab long(3);
       double tab lat(3);
       int
               nbre_mesure;
) trajectoire:
#define SIZE_TRAJECTOIRE sizeof(trajectoire)
typedef struct INTERPOLATION_RESULTAT {
               nbre donnee interpolee;
       int
               nbre_donnee_perdu_limite_zone;
        int
               nbre_donnee_perdu_future;
       int
                nbre_donnee_perdu_exploit;
        int
        int
               nbre_donnee_perdu_invalide;
               nbre_donnee_cree;
       int
                nbre_donnee_dans_boite;
       int
               inter_1;
       int
               inter 2;
) interpolation resultat;
typedef struct ETAT_TRACE {
               nbre_donnee_invalide;
        int
                nbre_donnee_future;
       int
               nbre_donnee_exploitable;
       int
               nbre donnee lue;
) etat_trace;
typedef struct MAILLON (
       int no;
       void *ptr_donnee;
       struct MAILLON *prec;
```

```
struct MAILLON *suiv;
) maillon;
typedef struct MAILLON *ptr_maillon;
#define SIZE_MAILLON sizeof(maillon)
typedef struct LISTE_CHAINEE( nbre;
     struct MAILLON *premier;
     struct MAILLON *courant;
     struct MAILLON *dernier;
} liste_chainee;
typedef struct LISTE_CHAINEE*ptr_liste_chainee;
#define SIZE_LISTE_CHAINEE sizeof(liste_chainee)
* includ.h *
#include <string.h>
#include <stdio.h>
#include <fcntl.h>
#include <math.h>
finclude <sys/file.h>
#include <sys/types.h>
```

A2-3

```
A2-4
```

```
short int calcul_de_h(val)/* calcule H en fonction des corrections de la donnee */
        dec_enreg val;
        float inter;
        short int res:
       inter - (float) val.h;
       inter = (10 * inter - (float) val. solid tide - (float) val. ocean_tide - (float) val. wetto - (float)
val.dry_fnoc - (float)val.ionosphere + calcul_swh(val));
       if (val.h > 0) res = (int) (inter/10 + 0.5);
        else res = (int) (inter/10 - 0.49);
       return(res);
);
int
donnee_sur_terre(val) /* retourne 1 si la donnee est terrestre */
       dec_enreg val ;
       return (val.flags & 2 -- 0);
1:
int
donnee ds la zone (val, borne inf lat, borne sup lat, borne inf lon, borne sup lon) /* retourne 1 si la do
nnee est dans la zone */
        dec enreg val;
       int borne_inf_lat, borne_sup_lat,borne_inf_lon, borne_sup_lon;
       return ((val.lat >= borne_inf_lat) 44 (val.lat <= borne_sup_lat) 44 (val.lon >= borne_inf_lon)
44 (val.lon <- borne_sup_lon));
1:
donnee invalide(val,tab) /* retourne 0 si la donnee est valide */
        dec enreg val;
        int tabil:
       if (val.h -- 32767) (
               tab[1]++;
               return(1);
       if (val.solid tide-- 32767)
               tab[2]++;
                return(1);
       if (val.dry_fnoc -- 32767)
               tab[4]++;
                return(1);
        if (val.ionosphere == 32767 ) {
               tab(5]++;
               return(1);
        if (val.sigma > 30 ) {
               tab[7]++;
               return(1);
       if (val.att > 120 )
               tab[8]++;
                return(1);
       if (val.swh > 1000 )
```

```
tab[9]++;
                return(1);
        if ((val.wetto -- 32767 ) 66 (val.ocean_tide -- 32767)) {
                tab[3]++;
                return(2);
                if ((val.wetto !- 32767 ) 44 (val.ocean tide -- 32767)) (
                        tab[3]++;
                        return (3);
                else ( if ((val.wetto -- 32767 ) 66 (val.ocean tide (- 32767)) (
                        tab[6]++;
                        return (4);
                        1
        return(0);
int recherche limite cycle(ptr liste) /* retourne 0 si toutes les mesures de la fenetre se trouvent apr
es la fin du cycle,
                                                  -1 si toutes les mesures de la fenetre se trouvent ava
nt la fin du cycle,
                                                  le rang de la premiere mesure du cycle suivant */
        ptr_liste_chainee ptr_liste;
        ptr_maillon ptr_don;
        dec_enreg *ptr_enreg1, *ptr_enreg2;
        for(ptr_don = ptr_liste->premier:ptr_don ->suiv (= NULL:ptr_don - ptr_don->suiv) (
                ptr enregl - ptr don->ptr donnee,
                ptr_enreg2 - (ptr_don->sulv)->ptr_donnee;
                if ( passage limite(*ptr_enreg1, *ptr_enreg2) ) return(ptr_don->no);
        ptr_enreg1 = (ptr_liste->premier)->ptr_donnee;
        if (trace montante(ptr liste)) {
                if (ptr enregl->lat > lat inf) return(0);
                else return(-1);
        else {
                if (ptr_enreg1->lat > lat_sup) return(-1);
                else return(0);
1:
int traitement_fic(fic) /* retourne 1 si le fichier journalier n existe pas
                                     2 si la fin de cycle a ete trouvee
                                     3 si deroulement normal */
        char *fic:
        FILE
                *flux entree ;
                i, premier enreg - 1,
                limite_cycle ;
        dec_enreg
                        enreg, enreg_inter, enreg_debut,
```

*ptr_enreg:

```
A2-5
```

```
ptr liste chainee
                               ptr_liste;
       ptr_maillon
                                ptr_don;
       etat
                       jour :
       initialisation_etat(&jour);
       if (strid(fic, "fichier tempo")) (
                nouveau cycle - 1;
                sprintf(stri, "4s", fic);
       else sprintf(stri, "%s%s", repertoire_CDROM, fic);
       flux entree - fopen(stri, "r");
       if (flux entree -- NULL) (
               printf("\n\nFichier %s introuvable. Abandon\n\n", fic);
                return(1);
       printf("\n\nFichier %s ouvert\n",fic);
       printf(".....Traitement du fichier %s en cours ....\n", fic);
       while ((nb oct - fread(&enreg, 78, 1, flux_entree)) > 0) {
                if (++jour.nbre_enregistrement_lu == 1) jour.temps_debut = (double)enreg.utc + (double)
(enreg.utc_micro)/1000000;
               if ( fin_cycle_sup(temps_ref - marge_cycle,enreg) && legale_zero(temps_ref) ) (
                        fin cycle trouve -1;
                        flux_tempo = fopen("fichier_tempo", "a");
                       if (flux tempo -- NULL) {
                                printf("Erreur ouverture du Fichier %s . Abandon\n", "fichier_tempo");
                                return(0);
                       printf("\n\nFichier %s ouvert\n", "fichier_tempo");
                       if ( fin_cycle_inf(temps_ref + marge_cycle,enreg) ) {
                                if ( (ptr_liste - Calloc(liste_chainee)) -- NULL) (
                                        printf("probleme allocation memoire liste chainee. abandon\n");
                                        return(0);
                                ptr liste->nbre -0;
                                ptr_liste->premier = NULL:
                                ptr_liste->dernier = NULL:
                                        if (fin_cycle_sup(temps_ref + marge_cycle,enreg)) break;
                                        if ( (ptr_don - Calloc(maillon)) -- NULL) (
                                                printf("probleme allocation memoire record_enreg. aband
t ("n/no
                                                return(0);
                                             (ptr enreg - Calloc(dec_enreg)) -- NULL) (
                                                printf("probleme allocation memoire dec_enreg. abandon\
n");
                                                return(0);
                                        *ptr_enreg = enreg;
                                        ptr_don->ptr_donnee = ptr_enreg;
                                        ajout liste(ptr liste,ptr don);
                                    while ( ((nb_oct = fread(&enreg, 78, 1, flux_entree)) > 0) && (++
jour.nbre_enregistrement_lu) ) :
                                limite_cycle = recherche_limite_cycle(ptr_liste);
                                switch(limite_cycle) {
                                        case 0 :
                                                ptr_enreg = (ptr_liste->premier)->ptr_donnee;
                                                affectation_enreg_ds_mes(&prem_mes_cycle_suiv,ptr_enreg
```

```
for(ptr_don = ptr_liste->premier;ptr_don != NULL;ptr_don
 - ptr_don->suiv) (
                                                        ptr_enreg = ptr_don->ptr_donnee;
                                                       nb oct - fwrite(ptr enreg, 78, 1, flux tempo);
                                                       jour.nbre enregistrement lu -- 1;
                                               break;
                                       case -1
                                                for(ptr_don - ptr_liste->premier;ptr_don->no <- limite_c
ycle;ptr don ~ ptr don->suiv) (
                                                ptr_enreg = ptr_don->ptr_donnee;
                                                ecrire_mes(&jour,&cycle,(*ptr_enreg));
                                                affectation_enreg_ds_mes(&prem_mes_cycle_suiv,&enreg);
                                       default :
                                                for(ptr don - ptr liste->premier;ptr don->no <- limite_c
ycle:ptr_don - ptr_don->suiv) {
                                                ptr_enreg = ptr_don->ptr_donnee;
                                                ecrire_mes(&jour,&cycle,(*ptr_enreg));
                                               ptr_enreg = ptr_don->ptr_donnee;
                                               affectation_enreg_ds_mes(&prem_mes_cycle_suiv,ptr_enreg)
                                                for(i =0;ptr_don |= NULL;ptr_don = ptr_don->suiv) {
                                                        ptr_enreg - ptr_don->ptr_donnee;
                                                        nb_oct - fwrite(ptr_enreg, 78, 1, flux_tempo);
                                                        jour.nbre_enregistrement_lu -= 1;
                                               break:
                       )
                        else affectation enreg ds mes(sprem mes cycle suiv, senreg);
                        der mes cycle - mes cou;
                        jour.temps fin - mes cou.utc;
                        nb_oct - fwrite(senreg, 78, 1, flux_tempo);
                        jour.nbre enregistrement_lu -- 1;
                        while ( (nb_oct = fread(&enreg, 78, 1, flux_entree)) > 0 ) (
                                enreg_inter - enreg:
                               nb oct - fwrite(senreg inter, 78, 1, flux tempo);
                        fclose(flux tempo);
                        printf("Fichier %s ferme \n", "fichier tempo");
                        break;
                        if (cherche_debut_cycle) {
                                if (premier_enreg) (
                                        enreg_debut - enreg;
                                        premier_enreg - 0;
                                else {
                                        if ( (enreg.lat - enreg_debut.lat > 0) && (enreg_debut.lat
 < lat inf) && (enreg.lat > lat inf) && donnee_ds_la_zone(enreg,lat_inf,lat_sup,long_inf,long_sup) ) ||
 ( (enreg.lat - enreg_debut.lat <0) && (enreg_debut.lat > lat_sup) && (enreg.lat < lat_sup) && donnee_d
s_la_zone(enreg,lat_inf,lat_sup,long_inf,long_sup) ) (
                                                cherche debut cycle = 0;
                                                ecrire_mes(&jour, &cycle, enreg);
                                        enreg debut - enreg;
```

```
mes_fin_fichier = mes_cou;
    cycle.temps_fin = (double)mes_cou.utc + (double) (mes_cou.utc_micro)/1000000;
    if (fin_cycle_trouve i= 1) jour.temps_fin = (double)enreg.utc + (double) (enreg.utc_micro)/10000

or (i = 0 ; i < 7; i++) cycle.nbre_donnee_invalide[i] += jour.nbre_donnee_invalide[i];
    cycle.nbre_donnee_sur_terre += jour.nbre_enregistrement_lu;
    cycle.nbre_enregistrement_lu += jour.nbre_enregistrement_lu;
    cycle.nbre_mesure_consecutive += jour.nbre_enregistrement_ecrit;
    cycle.nbre_mesure_consecutive += jour.nbre_mesure_consecutive;
    /*information(4jour,flux_sortie_com_0,*FICHIER*,fic);
    information(4jour,flux_sortie_com_0,*FICHIER*,fic);
    information(4jour,stdout,0,*FICHIER*,fic);

fclose(flux_entree);
    printf("Fichier %s ferme \n*,fic);
    if (fin_cycle_trouve -= 1) return(2);
    else return(3);

};</pre>
```

A2-6

mesure mes;

/***** TRI PAR TRACES *****/

#define nbre_max_mesure_trace_std 1263

#define inc 500 /* marge de 500 secondes pour reperer la fin de la trace*/

/* a partir de la trace i-1*/

int intervalle - 500000; /* marge de 500000 secondes pour reperer le debut d une trace i */

```
int determination_trace_montante(indication_montante, nr_trace)
        int indication_montante;
        int nr_trace;
        if (indication_montante) return(nr_trace %2 - 1);
        else return (nr_trace $2 -- 0);
);
int ajout_liste_donnee(ptr_liste,mes)
       ptr liste chainee ptr liste;
        mesure mes;
        ptr_maillon ptr_courant;
        mesure *ptr mes;
        if ( (ptr_courant = Calloc(maillon)) -- NULL) {
               printf("probleme allocation memoire maillon . abandon\n");
                return(0);
        if ( ( ptr mes - Calloc(mesure) ) -- NULL) (
                printf("probleme allocation memoire mesure . abandon\n");
                return(0);
        *ptr_mes = mes;
        ptr courant->ptr donnee - ptr mes;
        ajout_liste(ptr_liste,ptr_courant);
        return(1);
};
meaure *formation liste donnee(ptr liste donnee, temps, flux)
        ptr_liste_chainee ptr_liste_donnee;
        int temps;
        FILE *flux;
               nb_oct;
        int
        static mesure mesu;
        while ( (nb_oct = fread(&mesu, SIZE_MESURE, 1, flux)) > 0) {
```

if (mesu.utc > temps) break;

if (nb oct -- 1) return(&mesu);

else return (NULL);

٠.

];

int

ajout_liste_donnee(ptr_liste_donnee, mesu);

determination_temps_ref(mes,t_ref) /* recale le temps courant T sur le temps d une mesure */

/*de debut de trace et retourne le temps recale ou non */

```
int t_ref;
        int tt;
        if ( (mes.lat > lat_sup - intervalle) || (mes.lat < lat_inf + intervalle) || (mes.lon < 1
ong inf + intervalle) | | (mes.lon > long sup - intervalle) | 66 ( (mes.utc > t ref - inc) 66 (mes.utc <
t ref + inc) ) ) tt = mes.utc;
        else tt - t_ref;
        return(tt);
11
        tri_par_trace() /* effectue le tri des donnees par trace */
int
                        /* retourne 0 si erreur declenchee */
                                     1 si deroulement normal*/
        FILE *flux_entree_donnee, *flux_entree_std, *flux_sortie, *flux_sortie_com, *flux_sortie_com_bis;
        char fic_entree_std(20), fic_sortie(20), fic_sortie_com(20), vide, fic_courant(20), fic_sortie_com_bi
        int nb_oct, indication montante, i =1, j, pas, temps_ref , correctif, debut, courant, fin, compteur mesure
- 0, nbre_trace_manquante - 0;
        ptr_liste_chainee ptr_liste_donnee,ptr_liste_std_suiv,ptr_liste_std_cou;
ptr_maillon ptr_courant_std,ptr_courant_finale,ptr_courant_donnee,ptr_inter;
        trace std tr std, tr std cou, tr std sulv;
        position pos, *ptr_position, *ptr_position1, *ptr_position2;
        mesure mes, *ptr_mes_reste, *ptr_mes;
              arret - 0:
        int
        do {
                printf("\nPremier cycle
                                              1 (* 1
                 scanf ("%d", &debut);
                vide - getchar():
        ) while ((debut < nr_premier_cycle) || (debut > nr_dernier_cycle) );
                printf("\nDernier cycle
                 scanf("%d", &fin);
                 vide - getchar();
        } while ((debut < nr_premier_cycle) || (debut > nr_dernier_cycle) );
        printf("Nom du fichier commentaire ASCII associe au tri global : ");
        scanf("%s", fic_sortie_com_bis);
        vide - getchar();
        flux sortie com bis - fopen(fic sortie com bis, "a");
        if (flux_sortie_com_bis -- NULL)
                printf("Ouverture du fichier %s impossible. Abandon\n", fic sortie com bis);
                 return(0);
        printf("Temps reference (0 pour premiere valeur) : ");
        scanf ("%d", (temps_ref);
        vide - getchar();
        printf("Nom du fichier stantard primaire : ");
        scanf("%s", fic_entree_std);
        vide = getchar();
        courant - debut;
```

D

 ∞

```
if ( (ptr liste donnee - Calloc(liste chainee)) -- NULL) (
               printf("probleme allocation memoire liste_donnee . abandon\n");
               return(0);
       ptr_liste_donnee->nbre = 0;
       ptr liste donnee->premier = NULL;
       ptr_liste_donnee->dernier = NULL;
       if ( ( ptr_liste_std_cou = Calloc(liste_chainee)) -- NULL)
               printf("probleme allocation memoire liste std . abandon\n");
               return(0):
       ptr_liste_std_cou->nbre = 0:
       ptr liste std cou->premier - NULL:
       ptr_liste_std_cou->dernier = NULL;
       if ( (ptr_liste_std_suiv = Calloc(liste_chainee)) -- NULL)
               printf("probleme allocation memoire liste_std . abandon\n");
               return(0);
       ptr_liste_std_sulv->nbre = 0;
       ptr_liste_std_suiv->premier = NULL;
       ptr_liste_std_suiv->dernier = NULL;
       printf("Fichier %s ouvert\n", fic_sortie_com_bis);
       printf("\n\n... Traitement en cours ...\n\n");
       while (courant <- fin) {
               if (courant < 10) sprintf(fic courant, "%s%d%s", "cycle0", courant, "DAT");
               else sprintf(fic courant, "%s%d%s", "cycle", courant, "DAT");
               fprintf(flux_sortie_com_bis, "\n\n\n ************************ FICHIER %s
                                                                                            *********
*******\n\n\n", fic_courant);
               flux_entree_std - fopen(fic_entree_std, "r");
               if (flux_entree_std -- NULL) (
                         printf("Fichier %s introuvable. Abandon\n", fic_entree_std);
                           return(0):
                }
               flux_entree_donnee = fopen(fic_courant, "r");
               if (flux_entree_donnee -- NULL) (
                       printf("Fichier %s introuvable. Abandon\n", fic_courant);
                       return(0):
               if (courant < 10) sprintf(fic_sortie, "tstdts", "cycle0", courant, ".DA");</pre>
               else sprintf(fic sortie, "%s%d%s", "cycle", courant, ".DA");
               flux_sortie = fopen(fic_sortie, "a");
               if (flux sortie -- NULL) (
                       printf("Fichier %s introuvable. Abandon\n", fic sortie);
                       return(0);
               if (courant < 10) sprintf(fic_sortie com, "%s%d%s", "cycle0", courant, ".CO");
               else sprintf(fic_sortie_com, "%s%d%s", "cycle", courant, ".CO");
               flux_sortie_com - fopen(fic_sortie_com, "a");
               if (flux sortie com -- NULL) (
                       printf("Fichier %s introuvable. Abandon\n", fic_sortie_com);
```

```
printf("Fichier %s ouvert\n", fic courant);
                printf("Fichier %s ouvert\n\n", fic_sortie_com);
                printf("Fichier %s ouvert\n", fic_sortie);
                i-1; compteur mesure - 0; nbre trace manquante - 0; arret - 0;
                nb oct - fread(ftr std cou, SIZE TRACE STD, 1, flux entree std);
                for (j-1;j<- tr std cou.nbre mesure;j++) {
                        nb_oct = fread(&pos, SIZE_POSITION, 1, flux_entree_std);
                        construction_liste(ptr_liste_std_cou, pos, 1);
                ptr position1 - (ptr liste std cou->premier) ->ptr donnee;
                ptr_position2 = ((ptr_liste_std_cou->premier)->sulv)->ptr_donnee;
                indication_montante =( ptr_position1->lat - ptr_position2->lat < 0 );</pre>
                nb oct - fread(&mes, SIZE MESURE, 1, flux entree donnee);
                if ( (courant -- debut) && (temps_ref -- 0) )temps_ref - mes.utc;
                while ( (nb_oct = fread(&tr_std_suiv,SIZE_TRACE_STD,1,flux_entree_std) ) > 0 ) (
                        for (j-1; j<- tr_std_suiv.nbre_mesure; j++) (
                                nb_oct = fread(&pos,SIZE_POSITION, 1, flux_entree_std);
                        if { trace_tronque(tr_std_cou) & trace_est(tr_std_cou) } correctif = nbre_
max mesure trace std - tr std cou.nbre mesure;
                        else (
                                correctif - 0;
                                temps_ref - determination temps_ref(mes, temps_ref);
                        if ( (mes.utc < temps_ref + tr_std_cou.nbre_mesure + correctif +inc) && (!arret)
                                if (!ajout_liste_donnee(ptr_liste_donnee,mes)) return(0);
                                ptr mes reste - formation liste donnee(ptr liste donnee, temps_ref + tr_s
td_cou.nbre_mesure +correctif + inc,flux_entree_donnee );
                                tr_std_cou.revolution +- courant - 1;
                                tr std cou.nbre mesure = ptr liste_donnee->nbre;
                                compteur_mesure +- tr_std_cou.nbre_mesure;
                                determination_tab_long_trl_classe(tr_std_cou.tab_long,ptr_liste_donnee);
                                afficher_trace_presente(flux_sortie_com, i, tr_std_cou);
                                if ( i--1) afficher_trace_presente(stdout,i,tr_std_cou);
                                if ( i==1) afficher_trace_presente(flux_sortie_com_bis,i,tr_std_cou);
                                nb_oct - fwrite(ftr_std_cou, SIZE_TRACE_STD, 1, flux_sortie);
                                if ( !ecriture_fichier(ptr_liste_donnee, flux_sortie, SI2E_MESURE))
                                        printf("\n\nErreur dans ecritute du fichier \s\n\n", fic_sortie);
                                        return(0);
                                free_liste(ptr_liste_donnee);
                                free_liste(ptr_liste_std_cou);
                                free liste(ptr liste std suiv);
                                if (ptr_mes_reste !- NULL) mes - *ptr_mes_reste;
                                else (
                                        printf("FIN DU FICHIER !!!!!\n\n");
                                        arret -1;
                                1
                                afficher_trace_manquante(flux_sortie_com,i,tr_std_cou);
                                /*afficher trace manquante(stdout, i, tr std cou); */
                                nbre trace manquante++;
                        if { determination trace montante(indication_montante, tr_std_cou.trace) == dete
```

.

D

Ы

ڡ

);

```
if ( trace tronque(tr std cou) && trace est(tr std cou) ) correctif - nbre max me
sure_trace_std - tr_std_cou.nbre_mesure;
               else (
                      correctif - 0;
                      temps_ref = determination_temps_ref(mes,temps_ref);
               (
                      if([ajout_liste_donnee(ptr_liste_donnee,mes)) return(0);
                      ptr_mes_reste = formation_liste_donnee(ptr_liste_donnee,temps_ref + tr_std_cou.
nbre mesure +correctif + inc, flux entree donnee );
                      determination_tab_long_tri_classe(tr_std_cou.tab_long,ptr_liste_donnee);
                      tr std cou.revolution +- courant - 1;
                      tr_std_cou.nbre_mesure - ptr_liste_donnee->nbre;
                      compteur_mesure += tr_std_cou.nbre_mesure;
                      afficher_trace_presente(flux_sortie_com,i,tr_std_cou);
                      afficher_trace_presente(flux_sortie_com_bis,i,tr_std_cou);
                      afficher_trace_presente(stdout,i,tr_std_cou);
                      nb_oct = fwrite(str_std_cou,SIZE_TRACE_STD,1,flux_sortie);
                      if ( |ecriture fichier(ptr liste donnee, flux sortie, SIZE MESURE)) (
                              printf("\n\nErreur dans ecritute du fichier %s\n\n", fic_sortie);
                              return(0);
                 else (
                      afficher_trace_manquante(flux_sortie_com,i,tr_std_cou);
                      /*afficher_trace_manquante(stdout,i,tr_std_cou); */
                      nbre_trace_manquante++;
               temps ref - temps ref + (int) duree revolution;
               fprintf(stdout, "\nNbre de mesures comptees
                                                                 : %10d \n", compteur mesure);
               fprintf(flux_sortie_com, "\nNbre de mesures comptees
                                                                         : %10d\n", compteur_mesure)
               fprintf(stdout, "Nbre de traces manquantes
                                                                : %10d \n", nbre_trace_manquante);
               fprintf(flux sortie com, "Nore de traces manquantes
                                                                         : $10d \n", nbre trace mang
uante);
               fprintf(stdout, "Temps reference pour cycle nr %2d : %10d \n\n",courant + 1,temps ref)
               fprintf(flux_sortie_com, "Temps reference pour cycle nr %2d : %10d \n\n",courant + 1,t
emps_ref);
               fprintf(flux_sortie_com_bis,"\nNbre de mesures comptees : 10d\n",compteur_mesure);
               fprintf(flux sortie com bis, "Nbre de traces manquantes : %10d\n", nbre trace manquan
te);
               fprintf(flux_sortie_com_bis, "Temps reference utile pour le cycle nr %2d : %10d\n\n\n
", courant + 1, temps ref);
```

rmination trace montante(indication montante, tr std suiv.trace)) pas = (int) duree revolution;

else pas - (int) (duree_revolution/2);

temps_ref = temps_ref + pas;

tr_std_cou = tr_std_suiv;

free_liste(ptr_liste_donnee); free liste(ptr liste std cou); /*free_liste(ptr_liste_std_suiv);*/ fclose(flux_entree_donnee);

fclose(flux entree std);

fclose(flux sortie);

printf("Fichier %s ferme\n",fic_courant);

printf("Fichier %s ferme\n", fic_sortie);

/*printf("Fichier %s ferme\n", fic_entree_std); */

```
fclose(flux sortie com);
               printf("Fichier %s ferme\n\n\n", fic_sortie_com);
               if ((suppression_fichier(fic_courant)) return(0);
               courant++;
       fclose(flux sortie com bis);
       printf("Fichier %s ferme\n", fic_sortie_com_bis);
       printf("\n\n... <RETURN> pour retour sur menu ...\07\n\n");
       vide = getchar();
       return(1);
/****************** FIN TRI PAR TRACES ******/
```

D

3

۷

2

```
int determination pas_lat(ptr_std,ptr_std_bis) /* retourne le pas de latitude superieur ou inferieur *
                                                    de la surface elementaire Sk
                        *ptr_std, *ptr_std_bis;
        position
        int inter:
        if (ptr_std_bis->lat - 32767) inter - 0;
        else
                if (ptr std bis->lat * ptr std->lat < 0) inter = absol(ptr_std_bis->lat - ptr_std->la
t);
                else inter = absol(absol(ptr std_bis->lat) - absol(ptr_std->lat));
                return (inter);
        1:
void
                                                /* retourne les deux distances des mesures reelles*/
                                                /* par rapport a la positoin standard (pos_moy)
calcul_distance(donneel,donnee2,pos_moy,dl1,dl2)
        donnee donneel, donnee2;
        position
                        pos_moy;
        double *dl1, *d12;
        double inter,
                inter_lat1, inter_long1,
                inter lat distl, Inter long distl,
                inter_lat2, inter_long2,
                inter_lat_dist2, Inter_long_dist2;
        inter_lat1 = (double)donnee_valeur_lat(donnee1.pos.lat,pos_moy.lat);
        inter_lat_dist1 = (1852 * 60 * inter_lat1 / 1000000);
        inter_longl = (double) donneel.pos.lon = (double) pos_moy.lon;
        inter_long_dist1 = abso(1852 * inter_long1 * 60/1000000 * cos((pi/180)*(donnee1.pos.lat/1000000
 + pos_moy.lat/1000000)/2));
        *dl1 = sqrt( (inter_lat_dist1*inter_lat_dist1) + (inter_long_dist1 * inter_long_dist1) );
        inter_lat2 = (double) donnee valeur_lat(donnee2.pos.lat,pos_moy.lat);
        inter_lat_dist2 - (1852 * 60 * inter_lat2 / 1000000);
        inter_long2 = (double) donnee2.pos.lon - (double) pos_moy.lon;
        inter long dist2 = abso(1852 * inter long2 * 60/1000000 * cos((pi/180)*(donnee2.pos.lat/1000000
 + pos_moy.lat/1000000)/2));
        *dl2 = sqrt( (inter lat dist2*inter lat dist2) + (inter long dist2 * inter long dist2) );
                                        /* effectue un calcul utile pour 1 interpolation*/
int
interpolation_int(val1, val2, dl1, dl2)
         int vall;
         int val2;
        double dl1,dl2;
         int
                hh;
        double inter:
        if ( (val1 (= 32767) && (val1 (= 32767) && (val2 (= 32767) && (val2 (= 32767) ) (
                inter = (val1 * d12 + val2 * d11) / ( d11 + d12);
                if (inter > 0) hh = (int) (inter + 0.5);
                else hh = ( int) (inter - 0.49);
        .1 ..
                if ( (val1 -- 32767) || (val1 -- 2147483646)) hh - val2;
                else hh - vall;
        return (hh);
};
                                        /* effectue 1 interpolation finale entre deux positions */
void
interpolation_commune(donneel,donnee2,pos_moy,resultat)
```

```
donnee donneel, donnee2;
        position
                        pos_moy;
        donnee *resultat;
        double dll.dl2;
        calcul distance (donnee1, donnee2, pos_moy, &dl1, &dl2);
                                - interpolation int (donneel.utc, donnee2.utc, d11, d12);
        resultat->utc
                                - interpolation int (donneel.pos.lat, donneel.pos.lat, d11, d12);
        resultat->pos.lat
                                - interpolation int (donneel.pos.lon, donnee2.pos.lon, d11, d12);
        resultat->pos.lon
                                - interpolation_int(donneel.orbite,donnee2.orbite,dll,dl2);
        resultat->orbite
                                - interpolation_short(donneel.ocean_tide,donnee2.ocean_tide,d11,d12);
        resultat->ocean tide
                                - interpolation short h (donneel.h, donnee2.h, dl1, dl2);
        resultat->h
                                - interpolation short (donneel.wetto, donnee2.wetto, d11, d12);
        resultat->wetto
1:
                                        /* effectue 1 interpolation pour une trace entiere*/
interpolation_lineaire(t_d,t_p,dim,pas_inter,info,test,indice,info_avant_inter_tr,info_apres_inter_tr)
        position
                        t_p();
        donnee
                        t d[]:
               dim, pas inter, test, indice;
        int
        interpolation_resultat *info;
                       *info avant_inter_tr, *info_apres_inter_tr;
        etat trace
        int
                i,j,j_min,j_max;
                valeur sup, valeur inf;
        int
                position sup, position inf:
        int
               tab(nbre_max_mesure_trace_std), resultat:
        donnee
        int
                res - -1, res 2 - -1, premiere_fois - 1;
        double
               d11,d12;
        donnee donnee manguante;
        donnee_manquante.utc = 32767;
        donnee manquante.pos.lat - 32767;
        donnee manquante.pos.lon- 32767;
        donnee_manquante.orbite = 32767;
        donnee manquante.h - 32767;
        donnee manquante.ocean tide - 32767;
        donnee_manquante.wetto = 32767;
        for( i=0 ; i < dim ; i++) {
                if ( donnee_invalide_interpol(t_d[i])) info_avant_inter_tr->nbre_donnee_invalide++;
                if ( donnee_future(t_d(i)) ) info_avant_inter_tr->nbre_donnee_future++ ;
                if ( donnee_exploitable(t_d[i]) ) info_avant_Inter_tr->nbre_donnee_exploitable++ ;
                if ( !donnee_manquante_test(t_d[i])) Info_avant_inter_tr->nbre_donnee_lue++;
                valeur inf - lat inf;
                valeur sup - lat sup:
                position inf - -10;
                position sup - -10;
                        jmin - i - pas_inter:
                j max - i + pas inter;
                for ( j = j_min : j <= j_max : j++ ) {
                        if ( (j >= 0) 44 (j < dim) 44 (!donnee_manquante_test(t_d[j]) ) ) (
                                if { t d[j].pos.lat > t p[i].lat) {
                                        if ( t_d(j).pos.lat < valeur_sup) (.
                                                valeur sup - t d[j].pos.lat;
                                                position_sup - j;
                                        if ( t_d[j].pos.lat > valeur_inf) {
```

```
A2-1
```

```
valeur inf = t d[j].pos.lat;
                                              position_inf - j:
                                      1
               if ( (position_sup -- -10) || (position_inf -- -10) ) (
                      resultat - donnee manquante;
                      if ([donnee manquante test(t d[i]) ) (
                              if (donnee_future(t_d[i])) info->nbre_donnee_perdu_future++;
                              else {
                                      if (donnee invalide interpol(t d[i])) info->nbre donnee perdu i
nvalide++;
                                      else if (donnee_exploitable(t_d(i))) info->nbre_donnee_perdu_ex
ploit++;
                              if ( (i-- 0) | (i -- dim -1) ) info->nbre donnee perdu limite zone++
               else (
                       interpolation commune(t d[position sup], t d[position inf], t p[i], are sultat);
                      info->nbre donnee interpolee++;
                      if( (donnee future(t d[position sup]) 44 donnee exploitable(t d[position inf
resultat.h = 32767;
                      if ( !donnee_manquante_test(t_d[i]) ) info->nbre_donnee_dans_boite++;
                      if ( [donnee exploitable(t_d[i]) && donnee_exploitable(resultat) ) info->nbre_d
onnee_cree++;
                      if { donnee exploitable(t_d[i]) && [donnee_exploitable(resultat) ) info->nbre_d
onnee_perdu_exploit++;
                       if ( donnee invalide interpol(t d[i]) && (donnee invalide interpol(resultat) )
info->nbre_donnee_perdu_invalide++;
                      "if ( donnee future(t_d[i]) && !donnee_future(result&t) ) info->nbre_donnee_perd
u future++;
                      if (abs(position_inf - position_sup) -- 1) info->inter_1++;
                      if ( abs(position inf - position sup ) == 2)
                              info->inter 2++;
                              /*if ((test) && (premiere fois) ) (
                                      res 2 - 1;
                                      affichage_test_interpolation(t_d(position_inf), position_inf,t_d
[position_sup], position_sup, t_p[i], i, stdout);
                                      premiere fois - 0;
                      if ((test) 44 (1 -- indice) ) {
                               affichage test interpolation(t d[position inf), position inf,t d[positi
on_sup],position_sup,t_p[i],i,stdout);
                              res - in
               tab[i] - resultat;
       for( i=0 ; i < dim ; i++) {
               t_d(i) = tab(i);
if ( donnee_invalide_interpol(t_d(i))) info_apres_inter_tr->nbre_donnee_invalide++;
               if ( donnee future(t d(i)) ) info apres inter tr->nbre donnee future++ ;
               if ( donnee_exploitable(t_d(i]) ) info_apres_inter_tr->nbre_donnee_exploitable++ ;
               if (!donnee_manquante_test(t_d[i])) info_apres_inter_tr->nbre_donnee_lue++;
```

```
if ( (test) 44 (res !- -1)) (
                fprintf(stdout, "\nDonnee interpolee $4d :\n", res);
                fprintf(stdout," lat : $10d Lon : $10d utc : $10d Orb : $10d h : $6d ot : $6d we : $6d\
n\n",t d[res].pos.lat,t_d[res].pos.lon,t_d[res].utc,t_d[res].orbite,t_d[res].h,t_d[res].ocean_tide,t_d[r
es].wetto);
        /*if ( (test) 44 (res 2 |- -1)) {
                fprintf(stdout, "\nDonnee interpolee %4d :\n", res_2);
                fprintf(stdout," lat : $10d Lon : $10d utc : $10d Orb : $10d h : $6d ot : $6d we : $6d\
n\n",t d[res_2].pos.lat,t_d[res_2].pos.lon,t_d[res_2].utc,t_d[res_2].orbite,t_d[res_2].h,t_d[res_2].ocea
n_tide,t_d(res_2).wetto);
);
                /* effectue la mise d une trace reelle au format d une trace std */
mise_format_trace(t_p,t_d,t_m,n_p,n_m,info,pas_lon,info_avant_affec_tr,info_apres_affec_tr)
       position
                                t p[]:
        mesure
                                t_m{);
        donnee
                                t_d[];
        int
                                n_p;
        int
                                n m:
                                *Info;
        etat_calibration
        int
             pas_lon;
                                info_avant_affec_tr, *info_apres_affec_tr;
        etat_trace
        position
                        pos, pos_suiv, pos_prec, pos_manquante;
        mesure
                        don_prec, don_prec_prec, don_suiv, don_suiv_suiv, donnee_occupe;
        donnee
        int
                boite trouve - 0;
        int
                pas_lat_inf, pas_lat_sup, indication_montante;
        int
                dif_temps;
        int
                       1.1:
        mesure mes manquantes
        mes manquante.utc - 32767;
        mes_manquante.utc_micro = 32767;
        mes manquante.lat - 32767;
        mes manquante.lon- 32767;
        mes manquante.orbite - 32767;
        mes manquante.h = 32767;
        mes manquante.ocean tide - 32767;
        mes manquante.wetto - 32767;
        donnee occupe.utc - 32766;
        donnee_occupe.pos.lat = 32766;
        donnee occupe.pos.lon= 32766;
        donnee occupe.orbite - 32766;
        donnee_occupe.h = 32766;
        donnee occupe.ocean tide - 32766;
        donnee occupe.wetto - 32766;
        pos manquante.lat - 32767;
        pos manquante.lon- 32767;
        indication_montante = (t_p(1).lat - t_p(2).lat < 0);</pre>
        for (1 = 0; 1 < n m ; 1++ ) (
               if ( measure_invalide_interpol(t_m(i))) info_avant_affec_tr->nbre_donnee_invalide++;
                if ( mesure future(t m[i]) ) info avant affec tr->nbre donnee future++ ;
                if ( mesure_exploitable_interpol(t_m(i)) ) info_avant_affec_tr->nbre_donnee_exploitable+
```

+ 1

n prec prec)) {

) {

11):

m(i));

) {

m(i)):

```
A9-19
```

```
if ( [mesure_manquante(t_m[i])) info_avant_affec_tr->nbre_donnee_lue++;
        if ( 1 < -n m/2 ) (
       for ( j = 0; j < n.p; j++) (
               if ( j |= n_p - 1) pos_suiv = t_p(j+1);
                else pos_suiv = pos_manquante;
                if ( j (= 0) pos prec = t p[j-1];
                else pos prec - pos manquante;
                if (indication montante) (
                        pas_lat_inf = determination_pas_lat(&t_p(j), &pos_prec);
                        paa_lat_sup = determination_pas_lat(&t_p[j], &pos_suiv);
                else (
                        pas_lat_inf = determination_pas_lat(&t_p(j),&pos_suiv);
                        pas_lat_sup = determination_pas_lat(&t_p[j], &pos_prec);
               }
                if (dans_boite(&t_p[j],&t_m[i],pas_lat_sup,pas_lat_inf,pas_lon)) {
                        if ( |boite occupe(it_d(j)) ) {
                                affectation_finale(it_d[j],it_m[i]);
                                t_m(i) = mes_manquante;
                                boite trouve - 1;
                                break;
       else (
                for (j = n_p - 1 : j > 0 : j - 1)
                if ( j != n_p - 1) pos_suiv = t_p[j+1];
                else pos suiv - pos manquante;
                if ( j != 0) pos prec = t p(j-1);
                else pos prec - pos manquante;
                if (indication_montante) (
                        pas_lat_inf = determination_pas_lat(&t p[j], &pos prec);
                        pas_lat_sup = determination_pas_lat(&t_p[j], &pos_suiv);
                else (
                       pas_lat_inf = determination_pas_lat(&t_p(j), &pos_suiv);
                       pas_lat_sup = determination_pas_lat(&t_p(j), &pos_prec);
               if (dans_boite(&t_p[j],&t_m[i],pas_lat_sup,pas_lat_inf,pas_lon)) {
                       if ( |boite_occupe(&t_d[j]) ) (
                                affectation_finale(st_d(j), st_m(i));
                                t_m[i] - mes_manquante;
                                boite trouve - 1;
                                break;
       if (boite_trouve) (
               boite trouve - 0;
               info->nbre_mesure_premier_jet++;
               continue;
for (i = 0; i < n_m; i++) (
       if (|mesure_manquante(t_m[i])) {
               for (j = 0 ; j < n_p ; j++) (
                       if ( j != n p - 1) pos suiv = t p(j+1);
                       else pos_suiv - pos_manquante;
                       if ( j != 0) pos_prec = t_p(j-1);
```

```
else pos prec - pos manquante;
if (indication montante) (
       pas lat inf - determination pas lat(it p[j], ipos prec);
        pas lat sup - determination pas lat(it p[j], ipos suiv);
else {
        pas lat inf - determination pas_lat(&t_p[j], &pos_suiv);
        pas lat sup - determination pas lat(&t_p[j], &pos_prec);
if (dans_boite(&t_p[j],&t_m[i],pas_lat_sup,pas_lat_inf,pas_lon)) {
        If ( ) -- n p - 1) (
               don suiv - donnee occupe;
                don_suiv_suiv - donnee_occupe;
        else {
                if (j -- n p -2) (
                        don suiv - t_d(j+1);
                        don_suiv_suiv - donnee_occupe;
                else {
                        don_suiv - t_d[j+1];
                        don_suiv_suiv - t_d[j+2];
        if ( j -- 0) (
                don_prec - donnee_occupe;
                don prec prec - donnee occupe;
        else {
                if (j -- 1) (
                        don_prec - t_d(j-1);
                        don prec prec - donnee occupe;
                       don_prec - t_d(j-1);
                        don_prec_prec = t_d[j-2];
       if ( boite occupe(&don suiv) && boite occupe(&don prec) ) {
                if ( boite occupe(&don_suiv_suiv) && boite_occupe(&do
                        if ( !donnee_exploitable(t_d[j]) ) (
                                if ( mesure exploitable interpol(t m[i])
                                        affectation_finale(&t_d[j],&t_m[
                                        info->nbre_mes_non_exp_perdu++;
                                else (
                                        moyenne boite commune(it_d[j],t_
                                        info->nbre_moyenne++;
                       else {
                                if ( mesure exploitable interpol(t m[i])
                                        moyenne_boite_commune(&t_d(j),t_
                                        info->nbre moyenne++;
```

```
else (
                                                                         info->nbre mes non exp perdu++;
                                                        if ( |boite_occupe(&don_suiv_suiv) && |boite_oc
cupe (&don prec prec) ) {
                                                                if (t_m[i].utc > t_d[j].utc) {
                                                                          affectation finale(4t d[j + 2]
, &don_suiv);
                                                                          affectation_finale(&t_d[j + 1] |i]);
, 4t m[1]);
                                                                          info->nbre post aff++;
                                                                else (
                                                                         affectation_finale(&t_d(j - 2),
(don prec);
                                                                         affectation finale(at d[j - 1],
4t_m(1));
                                                                         info->nbre pre_aff++;
                                                        else {
                                                                if (boite_occupe(&don_suiv_suiv)) {
affectation_finale(&t_d[j-2],&don_prec);
                                                                         if (t_m(i).utc > t_d(j).utc) {
                                                                                  t_d(j - 1] - t_d(j);
                                                                                 affectation_finale(&t_d
(j), 4t_m(i));
                                                                         else affectation_finale(&t_d[j
-1], &t_m(i));
                                                                         info->nbre pre aff++;
                                                                else (
affectation_finale(&t_d[j+2],&don_suiv);
                                                                         if (t_m(i).utc > t_d(j).utc) af
fectation_finale(&t_d[j+1],&t_m(i));
                                                                         else (
t_d(j + 1) - t_d(j);
                                                                                 affectation_finale(&t_d
[j], &t_m[i]);
info->nbre_post_aff++;
                                        else
                                                if ( !boite_occupe(&don_suiv) && |boite_occupe(&don_pre
c) ) (
                                                        if (t_m(i).utc > t_d(j).utc) (
                                                                 affectation_finale(&t_d[j+1],&t_m[i]);
                                                                 info->nbre_post_aff++;
```

```
else (
                                                                    affectation_finale(&t_d(j-1),&t_m(i));
info->nbre_pre_aff++;
                                                   else {
                                                            if (boite occupe(&don suiv)) (
                                                                    if (t_m[i].utc > t_d(j).utc) (
                                                                              t d(j - 1) - t d(j);
                                                                             affectation_finale(&t_d[j],&t_m[
11);
                                                                    else affectation_finale(&t_d[j -1],&t_m[
                                                                    info->nbre pre aff++;
                                                            else (
                                                                     if (t m[i].utc > t d[j].utc) affectation
_finale(&t_d[j+1],&t_m[i]);
                                                                     else {
t_d[j + 1] - t_d[j];
                                                                             affectation finale(4t d[j],4t m[
1));
info->nbre post aff++;
                                           break;
                         if ( j -- n p) (
                                  info->nbre donnee manquante++;
        for (j = 0 ; j < n_p ; j++) {
                if ( j != n_p - 1) don_suiv = t_d(j+1);
                 else don sulv.utc = 32767;
                 if ( j != 0) don_prec - t_d[j-1];
                 else don prec.utc = 32767;
                if ( (don_prec.utc != 32767) && (don_suiv.utc != 32767) ) {
                 dif temps - don_sulv.utc - don_prec.utc ;
                         if (( t_d(j).utc -- 32767) 44 (dif_temps -- 1) ) (
                                  /*printf("%4d: %10d %10d %10d \n",ptr_courant_finale->no,ptr_don->po
s.lat,ptr_don->pos.lon,ptr_don->utc); */
                                  info->nbre_boite_sautee++;
        for (i = 0; i < np; i++) (
                if ( donnee_invalide_interpol(t_d[i])) info_apres_affec_tr->nbre_donnee_invalide++;
                if ( donnee_future(t_d(i)) ) info_apres_affeo_tr->nbre_donnee_future++ ;
if ( donnee_exploitable(t_d(i)) ) info_apres_affeo_tr->nbre_donnee_exploitable++ ;
                 if ( [donnee manquante test(t d(i])) Info apres affec tr->nbre donnee lue++;
        )
```

#include "includ.h"

```
1:
D
3
      sateur */
~
```

上

```
char afficher_menu_principal() /* affiche le menu prinipal et retourne le choix saisi par 1 utilisateu
r */
        char
                choix
        char
                chaine(10);
        int i, vide;
        do (
                system("clear");
                for (i = 1;i < 10; i++) printf("\n");
printf ("\t\t MENU PRINCIPAL \
                                                      \n\n\n*);
                printf ("\t\t
                                 0 : Quitter \n\n");
                printf ("\t\t
                                 1 : Traitement initial \n\n");
                printf ("\t\t
                                 2 : Determination cycle standard \n\n");
                printf ("\t\t
                                3 : Tri des cycles par traces \n\n");
                printf ("\t\t
                                4 : Mise au format des cycles\n\n");
                printf ("\t\t
                                 5 : Visualisation \n\n\n\n");
                printf ("\t\t
                                          Choix : ");
                scanf("%s", chaine);
                vide - getchar();
                choix - chaine(01;
           while ( (choix !- '5') && (choix !- '4') &&(choix !- '3') &&(choix !- '2') &&(choix !- '1')
44 (choix != '0') );
        return (choix);
char afficher_menu_cycle_standard()/* affiche le menu secondaire et retourne le choix saisi par 1 utili
        int 1;
        char
                choix, vide;
        char
                chaine[10];
                system("clear");
                for (i = 1;i < 10; i++) printf("\n");
                printf ("\t\t
                                 MENU CYCLE STANDARD
                                                            \n\n\n");
                printf ("\t\t
                                 0 : Quitter \n\n");
                printf ("\t\t
                                 1 : Creation du fichier passage equateur binaire\n\n");
                printf ("\t\t
                                 2 : Creation du fichier longitude moyenne equateur\n\n");
                printf ("\t\t
                                 3 : Creation du fichier standard primaire\n\n");
                printf ("\t\t
                                 4 : Recherche des traces avec le plus de mesures\n\n");
                printf ("\t\t
                                 5 : Creation des traces standard \n\n");
                printf ("\t\t
                                 6 : Creation du fichier standard final\n\n\n\n");
                printf ("\t\t
                                         Choix : ");
                scanf("%s", chaine);
                vide - getchar();
                choix - chaine[0];
        ) while ( (choix !- '6') && (choix !- '5') && (choix !- '4') && (choix !- '3') && (choix !- '2') &
&{choix !- '1') && (choix !- '0') );
         return (choix);
       1:
```

```
/*lance la fonction qui affiche le menu secondaire puis suivant le choix
void menu_cycle standard()
retournee lance la fonction correspondante*/
       char .
              choix - '1' ;
       int
               resultat,
               vide:
        while (choix !- '0') (
               resultat - 1;
               switch (choix - afficher_menu_cycle_standard()) {
                       Case '0' 1
                               system("clear");
                               return;
                               break;
                       case '1'
                               system("clear");
                               resultat - creation passage equateur binaire();
                               break;
                       Case '2' :
                               system("clear");
                               resultat - creation_fichier_longitude_moyenne();
                               break:
                       Case '3' :
                               system("clear");
                               resultat ~ creation_cycle_standard(0);
                               break;
                       Case '4' :
                               system("clear");
                               resultat - determination meilleure trace();
                               break;
                       case '5' :
                               system("clear");
                               resultat - determination_traces_moyennes();
                       Case '6' :
                               system("clear");
                               resultat -
                                               creation cycle standard(1);
                               break:
                       default :
                               system("clear");
                               break;
               if (!resultat) (
                       printf("\n\n\n RETURN pour continuer ....\7");
                       vide - getchar();
       )
```

```
. . . . . . .
           /*
           . . . . . . . . .
/*
main(argc, argv)
      int
              argc;
      char
              *argv[];
             choix - '1';
      char
             resultat, vide;
      int
       if (argc (- 1)
             printf("usage : reel \n");
             exit(1);
      while (choix !- '0') (
             resultat - 1;
             switch (choix - afficher_menu_principal()) (
                   case '0' :
                         system("clear");
                         exit;
                         break;
                   case '1' :
                         system("clear");
                         resultat = tri_par_cycle();
                         break;
                   case '2' :
                         system("clear");
                         menu_cycle_standard();
                         break;
                   case '3' 1
                         system("clear");
                         resultat - tri_par_trace();
                         break;
                   Case '4' :
                         system("clear");
                         resultat - mise_format_cycle();
                         break;
                   case '5' :
                         system("visu_GEOSAT");break;
                   default :
                         system("clear");
```

break;

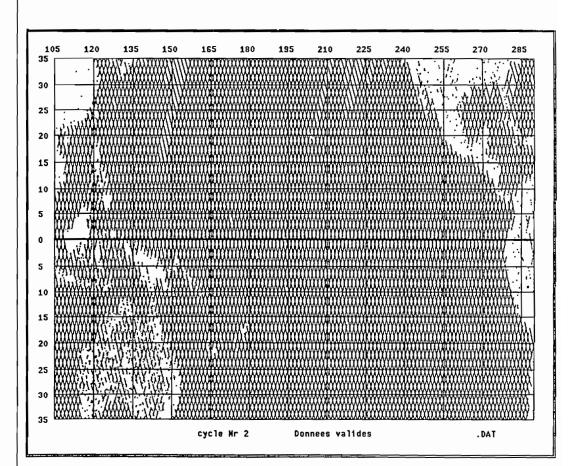
vide - getchar();

printf("\n\n\n RETURN pour continuer\7");

if (|resultat) {

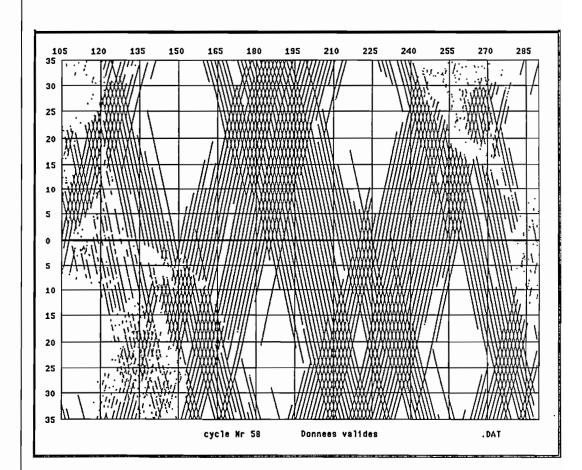
 1:

ANNEXE 3

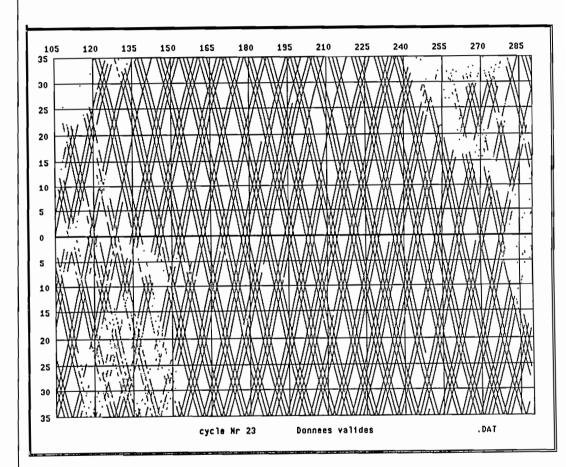

FICHIERS ASCII DE TESTS ET DE RESULTATS

Fichier cycle58.COM + visualisation Fichier cycle23.COM + visualisation	A3-1 A3-2 A3-3 A3-4
Fichier cycle23.COM + visualisation	A3-3
Fichier cycle51.COM + visualisation	Ą3-4
Création du fichier "passage équateur moyen" (module2)	
	A3-5
	A3-8
Création du cycle standard primaire (module 2)	
	A3-11
Tri par trace (module 3)	
	A3-12
the contract of the contract o	A3-15
	A3-16
Détermination de deux traces moyennes (module 2)	
	A3-17
	A3-19
Création du cycle standard final (module 2)	
· · · · · · · · · · · · · · · · · · ·	A3-21
Mise au format et interpolation (module 4)	
	A3-24
	A3-25
	A3-27

latitude max (deg) : 72.058253

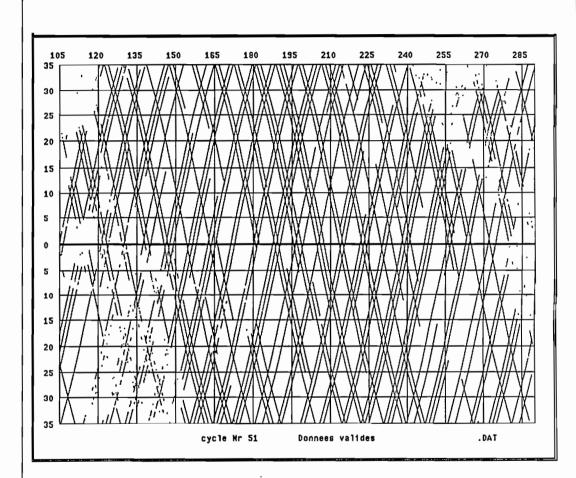

```
コントン
```

```
----- CYCLE nr : 2 -----
nbre d enregistrements lus
nbre d enregistrements ecrits :
                                            270477
                                                           pourcentages
nbre total de donnees invalides :
                                             14785
                                                           5.5
  hauteur invalide
                                                               0.0
  correction maree absente
                                                   664
                                                               0.2
  correction vapeur d eau absente :
                                                  5343
                                                               2.0
  ecart-type de h > 30cm
                                                  1105
                                                               0.4
  attitude > 1.2 degres
                                                   228
                                                               0.1
  hauteur des vagues > 10 m
                                                  7439
                                                               2.8
nbre de donnees terrestres
                                             6590
                                                           2.4
Valeur de h max (cm)
                                            10002
Valeur de h min (cm)
                                            -5211
Temps debut du cycle
                        (3) :
                                   59883258.563800
Temps fin du cycle
                                   61351620.212756
                        (3) :
Duree en seconde du cycle (s) :
                                    1468361.648956
                                                     <1473163.2> (theorique)
Temps reference
                                   58410094.318978
Temps reference debut de cycle:
                                   59883257.518978
Temps reference fin de cycle :
                                   61356420.718978
                                         1.044822
     (temps debut du cycle - temps reference debut du cycle)
Debut du cycle :
T(s): 59883258 T(m-s): 563800 Lat(m-d): 34945959 Lon(m-d): 179699699 h(cm):
Fin du cycle :
T(s): 61351620 T(m-s): 212756 Lat(m-d): -34955174 Lon(m-d): 173481771 h(cm): 32766
Donnee suivante:
T(s): 61356431 T(m-s): 628098 Lat(m-d): 34357170 Lon(m-d): 179369724 h(cm):
    m-s : micro secondes m-d : micro degres
Nombre de cas de 2 mesures successives :
                                                   267021
Proportion representativite
                                                 0.987223
--- Ecarts min, moy et max de 2 mesures successives ---
              : Ecart min : 0.979917 Moy : 0.979922 Ecart max : 0.979924
V merid (deg/s) : Ecart min : 0.055283 Moy : 0.056552 Ecart max : 0.057052
V zonale (deg/s): Ecart min: 0.022624 Moy: 0.025158 Ecart max: 0.031584
V moy (km/s) : Ecart min : 6.782835 Moy : 6.811608 Ecart max : 6.821690
Ecart moyen latitude entre 2 mesures successives (deg): 0.055417
Ecart moyen longitude entre 2 mesures successives (deg): 0.024653
```



latitude max (deg) : 72.060079

```
----- CYCLE nr : 58 ------
nbre d enregistrements lus
                                            485501
nbre d enregistrements ecrits :
                                            131810
                                                           pourcentages
nbre total de donnees invalides :
                                             24012
                                                           18.2
  hauteur invalide
                                                   11
                                                               0.0
  correction maree absente
                                                  211
  correction vapeur d eau absente :
                                                  130
                                                               0.1
  ecart-type de h > 30cm
                                                  677
                                                               0.5
  attitude > 1.2 degres
                                                 16769
                                                               12.7
  hauteur des vagues > 10 m
                                                  6214
                                                               4.7
nbre de donnees terrestres
                                                           2.9
Valeur de h max (cm)
                                            21504
Valeur de h min (cm)
                                            -5196
Temps debut du cycle
                        (s) :
                                  142380513.658776
Temps fin du cycle
                        (s) :
                                  143847981.627636
                                    1467467.968860
Duree en seconde du cycle (s) :
                                                    <1473163.2> (theorique)
Temps reference
                                   58410094.318978
                        (8) :
Temps reference debut de cycle:
                                  142380396.718978
Temps reference fin de cycle :
                                  143853559.918978
Ecart courant
                                       116.939798
                           :
     (temps debut du cycle - temps reference debut du cycle)
Debut du cycle :
T(s): 142380513 T(m-s): 658776 Lat(m-d): 26122427 Lon(m-d): 175094566 h(cm): -623
Fin du cycle :
T(s): 143847981 T(m-s): 627636 Lat(m-d): 6616032 Lon(m-d): 191766814 h(cm): 32767
Donnee suivante:
T(s): 143853516 T(m-s): 225191 Lat(m-d): 34997183 Lon(m-d): 179725640 h(cm):
    m-s : micro secondes m-d : micro degres
Nombre de cas de 2 mesures successives :
                                                  129509
Proportion representativite
                                                 0.982543
--- Ecarts min, moy et max de 2 mesures successives ---
              : Ecart min : 0.979921 Moy : 0.979922 Ecart max : 0.979924
V merid (deg/s): Ecart min: 0.055281 Moy: 0.056577 Ecart max: 0.057054
V zonale (deg/s): Ecart min: 0.022622 Moy: 0.025029 Ecart max: 0.031583
V moy (km/s) : Ecart min : 6.782297 Moy : 6.811971 Ecart max : 6.822013
Ecart moyen latitude entre 2 mesures successives (deg): 0.055441
Ecart moyen longitude entre 2 mesures successives (deg): 0.024527
```



```
----- CYCLE nr : 23 ------
nbre d enregistrements lus
                                              474913
nbre d enregistrements ecrits :
                                              137893
                                                            pourcentages
nbre total de donnees invalides :
                                                9603
  hauteur invalide
                                                                  0.0
   correction maree absente
                                                     199
                                                                  0.1
   correction vapeur d eau absente :
                                                     241
                                                                  0.2
   ecart-type de h > 30cm
                                                     640
                                                                  0.5
  attitude > 1.2 degres
                                                    2737
                                                                 2.0
  hauteur des vaques > 10 m
                                                    5783
                                                                  4.2
                                               3529
                                                              2.6
nbre de donnees terrestres
Valeur de h max (cm)
                                               8193
Valeur de h min
                                             -31581
Temps debut du cycle
                         (8) :
                                    91480789.264544
Temps fin du cycle
                         (3) :
                                     92287308.887964
Duree en seconde du cycle (s) :
                                      806519.623420
                                                       <1473163.2> (theorique)
                                     58410094.318978
Temps reference
Temps reference debut de cycle:
                                     90819684.718978
Temps reference fin de cycle :
                                     92292847.918978
Ecart courant
                                      661104.545566
      (temps debut du cycle - temps reference debut du cycle)
Debut du
 T(s)
                          264544 Lat(m-d): -34979091 Lon(m-d): 133238420 h(cm): -1768
Fin d
                          887964 Lat(m-d): 6347565 Lon(m-d): 191661404 h(cm): 32767
T (Y
Donnee sui-
 T(s): ~92295
    ): \9228______(|m-s): \565818 Lat(m-d): 34953656 Lon(m-d): 179703471 h(cm): m-s: micro secondes: m-d: micro degres
Nombre de cas de 2 mesures successives :
                                                     136034
Proportion representativite
                                                   0.986519
--- Ecarts min, moy et max de 2 mesures successives ---
            : Ecart min : 0.979921 Moy : 0.979922 Ecart max : 0.979922
V merid (deg/s) : Ecart min : 0.055283 Moy : 0.056552 Ecart max : 0.057052
V zonale (deg/s): Ecart min : 0.022622 Moy : 0.025153 Ecart max : 0.031583
V moy (km/s) : Ecart min : 6.782479 Moy : 6.811444 Ecart max : 6.821795
Ecart moyen latitude entre 2 mesures successives (deg): 0.055416
Ecart moyen longitude entre 2 mesures successives (deg): 0.024648
latitude max (deg) : 72.059992
```



```
i.
```

nbre d enregistrements lus :	336794		
nbre d enregistrements ecrits :	94128	pourcentages	
		F	
nbre total de donnees invalides :	9889	10.5	
hauteur invalide	:	5 0.0	
correction maree absente	•	209 0.2	
correction vapeur d eau absente		139 0.1	
ecart-type de h > 30cm attitude > 1.2 degres	•	501 0.5 441 6.8	
hauteur des vaques > 10 m		594 2.8	
madeal day vagads > 10 m		2.0	
nbre de donnees terrestres :	1982	2.1	
Valeur de h max (cm) :	31856		
Valeur de h min (cm) :	-5321		
variation in man (day)	***************************************		
Temps debut du cycle (s) :	132068214.351002		
Temps fin du cycle (s) :	133536575.027755		
Duree en seconde du cycle (s) :	1468360.676753	<1473163.2> (theor	ique)
Temps reference(s) :	58410094.318978		
Temps reference debut de cycle:	132068254.318978		
Temps reference de ce :	133541417.518978		
.Ecar. :	-39.967976		
į temps	reference debut du	cycle)	
ķ,]			
Debut du cycle			
	Lat(m-d): 34982113	Lon(m-d): 179713052	h(cm): ~940
Fin du cycle :			
T(s): 133536575 T(m-s): 27755	Lat(m-d): -34988858	Lon(m-d): 173457991	h(cm): 32766
Donnee suivante: T(s): 133541374 T(m-s): 684062	1 at (mad) . 34000011	100/0-41: 170716100	h(cm): 0
m-s: micro secondes m-d:		LON(M-d): 1/9/16198	n(cm):
m b i militar broshadb m u i	milero degres		
Nombre de cas de 2 mesures success		92912	
Proportion representativite	: 0.:	987081	
Ecarts min, moy et max de 2 mes	ures successives		
politic many may be man as a mea			
	921 Moy : 0.979922		
V merid (deg/s) : Ecart min : 0.05			
V zonale (deg/s): Ecart min : 0.02			
V moy (km/s) : Ecart min : 6.78	2773 Moy : 6.811838	Ecart max : 6.82190	1
Ecart moyen latitude entre 2 mesur	es successives (deg)	: 0.055416	
Ecart moyen longitude entre 2 mesur			
	•		
latitude max (deg) : 72.061845			

----- CYCLE nr : 51 ------

2000	MAAAAA		%					9999		• •		YEWESSAMS .	Grand III. Grand	1.5%(4)//15	- 8408	800000000000000000000000000000000000000
									56			90.275100	90.282122	90.285640	0.010540	1.171205 9
									57	94		257.721239	257.729022	257.733012	0.011773	1.308216 9
			pr	emier CDROM (no	v 86 a avril 87	')			58	91		232.639170	232.646941	232.650968	0.011798	1.310994 9
									59 60	100		207.556845 182.474387	207.564605 182.482137	207.568670 182.486241	0.011825 0.011854	1.313994 9 1.317216 9
									61			157.392194	157.399932	157.404071	0.011877	1.319772 9
		Nr				Ecart entre Lo				10		132.310308	132.318035	132.322212	0.011904	1.322772 9
inde		elrevol	min	moy	max			Imesures	63			299.782636	299.789587	299.793328	0.010692	1.188095 9
										10		107.228259	107.235976	107.240188	0.011929	1.325550 9
										10		274.700974	274.707914	274.711693	0.010719	1.191095 9
1	1	1001	164.044890	164.052037	164.055339	0.010449	1.16109	9 9	66			249.618737	249.625665	249.629478	0.010741	1.193540 9
2	3	2001	138.962103	138.969253	138.972541	0.010438	1.1598		67			224.536580	224.543494	224.547336	0.010756	1.195207 9
3	5	3001	113.880552	113.887707	113.890981	0.010429	1.15887	10 9		111		199.454344	199.461249	199.465126	0.010782	1.198096 9
4	6	3001	281.326918	281.334808	281.338369	0.011451	1.27243			11:		174.372581	174.379473	174.383382	0.010801	1.200207 9
5	8	4001	256.246177	256.254073	256.257621	0.011444	1.2716			11		149.290075	149.296955	149.300901	0.010826	1.202985 9
6	10	5001	231.164037	231.171939	231.175477	0.011440	1.2712			11		124.207744	124.214614	124.218592	0.010848	1.205430 9
7	12	6001	206.081685	206.089591	206.093113	0.011428	1.2698			120		291.653770	291.661409	291,665858	0.012088	1.343219 9
	14	7001	180.999207	181.007119	181.010631	0.011424	1.26943			12		99.127095	99.133952	99.137963	0.010868	1.207652 9
9	16	8001	155.917020	155.924936	155.928436	0.011416	1.26854			12		266.573322	266.580951	266.585434	0.012112	1.345885 9
10	18	9001 10001	130.835109	130.843029	130.846514	0.011405	1.26732			12		241.491755	241.499372	241.503888	0.012133	1.348219 9 1.351108 9
11	19 20	10001	298.307406 105.753027	298.314588 105.760953	298.317768 105.764428	0.010362 0.011401	1.15142		77	12:		216.409462 191.327049	216.417071 191.334648	216.421621 191.339228	0.012159 0.012179	1.351108 9 1.353330 9
12 13	21	11001	273.225701	273.232887	273.236053	0.010352	1.1503		78			166.244726	166.252314	166.256928	0.012202	1.355886 9
14	23	12001	248.143434	248.150622	248.153778	0.010344	1.1494		1 79			141.162806	141.170386	141.175033	0.012227	1.358664 9
15	25	13001	223.061270	223.068459	223.071599	0.010329	1.1477		80	134		116.080852	116.088422	116.093098	0.012246	1.360776 9
16	27	14001	197.979029	197.986221	197.989339	0.010310	1.1456			13		283.553524	283.560309	283.564546	0.011022	1.224765 9
17	29	15001	172.897252	172.904446	172.907551	0.010299	1.1444	25 9		13		90.998682	91.006241	91.010951	0.012269	1.363331 9
18	31	16001	147.814683	147.821878	147.824968	0.010285	1.1428			13		258.471469	258.478241	258.482510	0.011041	1.226876 9
19	33	17001	122.732440	122.739638	122.742716	0.010276	1.1418			13		233.389242	233.396006	233.400308	0.011066	1.229654 9
20	34	17001	290.178539	290.186482	290.189857	0.011318	1.2576			14		208.306998	208.313753	208.318083	0.011085	1.231765 9
21	35 36	18001	97.651825 265.098067	97.659023	97.662085	0.010260	1.1400		86			183.225078 158.142914	183.231822 158.149650	183.236183 158.154045	0.011105 0.011131	1.233988 9 1.236877 9
22 23	36	18001 19001	240.016388	265.106014 240.024337	265.109379 240.027688	0.011312 0.011300	1.2569			14		133.060182	133.066909	133.071331	0.011131	1.238877 9
24	40	20001	214.934086	214.942037	214.945375	0.011289	1.2544			14		300.506115	300.513624	300.518521	0.012406	1.378555 9
25	42	21001	189.851655	189.859609	189.862936	0.011281	1.2535			14		107.979091	107.985808	107.990262	0.011171	1.241322 9
26	44	22001	164.769344	164.777298	164.780609	0.011265	1.2517		91	15	75001	275.425409	275.432908	275.437833	0.012424	1.380555 9
27	46	23001	139.687432	139.695388	139.698688	0.011256	1.2507	57 9		15		250.344406	250.351899	250.356855	0.012449	1.383333 9
28	48	24001	114.605460	114.613417	114.616705	0.011245	1.2495			15		225.262154	225.269641	225.274627	0.012473	1.386000 9
29	49	25001	282.078109	282.085315	282.088313	0.010204	1.1338			15		200.179782	200.187262	. 200.192276	0.012494	1.388333 9
30	50	25001	89.523267	89.531224	89.534496	0.011229	1.2477			15		175.097345	175.104819	175.109865	0.012520	1.391222 9
31 32	51 53	26001 27001	256.996005 231.913781	257.003210 231.920986	257.006247 231.924063	0.010242 0.010282	1.13809			16		150.015276 124.933335	150.022744 124.940797	150.027817 124.945900	0.012541 0.012565	1.393556 9 1.396223 9
33	55	28001	206.831525	206.838731	206.841851	0.010282	1.1474		98			292.405815	292.412485	292.417142	0.011327	1.258656 9
34	57	29001	181.749638	181.756842	181.759999	0.010361	1.1513			16		99.851217	99.858676	99.863809	0.012592	1.399223 9
35	59	30001	156.667411	156.674615	156.677814	0.010403	1.1559			16		267.324001	267.330665	267.335352	0.011351	1.261323 9
36		31001	131.584713	131.591511	131.594799	0.010086	1.1207	56 8		16		242.241728	242.248388	242.253104	0.011376	1.264101 9
37	62	31001	299.030677	299.038630	299.041945	0.011268	1.2521			16		217.159550	217.166203	217.170946	0.011396	1.266324 9
38	63	32001	106.503712	106.510902	106.514097	0.010385	1.1539			17		192.077384	192.084033	192.088806	0.011422	1.269213 9
39	64	32001	273.950053	273.957995	273.961353	0.011300	1.2556			17		166.995521	167.002165	167.006966	0.011445	1.271768 9
40	66	33001	248.868964	248.876896	248.880300	0.011336	1.2596		105			141.912797	141.919436	141.924266	0.011469	1.274435 9
41	68	34001	223.786692	223.794615	223.798064	0.011372	1.2636			17		116.831021	116.837658	116.842517	0.011496	1.277436 9
42	70	35001	198.704309	198.712221	198.715712	0.011403	1.2671			17		284.277242 91.750519	284.284672 91.757151	284.290005 91.762037	0.012763 0.011518	1.418225 9 1.279880 9
43 44	72 7 4	36001 37001	173.621885 148.539841	173.629787 148.547734	173.633324 148.551312	0.011439 0.011471	1.2711		109			259.196628	259.204057	259.209420	0.012792	1.421447 9
45	76	38001	123.457891	123.465774	123.469395	0.011504	1.2783			18		234.114620	234.122047	234.127436	0.012792	1.424114 9
46		39001	290.930366	290.937483	290.940678	0.010312	1.1458		111			209.032303	209.039727	209.045147	0.012844	1.427225 9
47	78	39001	98.375764	98.383638	98.387303	0.011539	1.2822			18		183.949848	183.957273	183.962721	0.012873	1.430448 9
48	79	40001	265.848514	265.855619	265.858856	0.010342	1.1492			18		158.867631	158.875053	158.880529	0.012898	1.433226 9
49	81	41001	240.766244	240.773338	240.776619	0.010375	1.1528			19		133.785745	133.793168	133.798675	0.012930	1.436782 9
50	83	42001	215.684050	215.691131	215.694451	0.010401	1.1557		115			301.258100	301.264721	301.269781	0.011681	1.297993 9
51	85	43001	190.601914	190.608982	190.612345	0.010431	1.1590		116			108.703711	108.711135	108.716668	0.012957	1.439782 9
52	87	44001	165.520007	165.527065	165.530467	0.010460	1.1623			19		276.176465	276.183085	276.188173	0.011708	1.300993 9
53	89	45001	140.437256	140.444301	140.447743	0.010487	1.1653			19		251.094243	251.100861	251.105976	0.011733	1.303771 9
54	91	46001	115.355602	115.362636	115.366118	0.010516	1.1685			19		226.012068	226.018687	226.023831	0.011763	1.307105 9
55	92	46001	282.801906	282.809698	282.813648	0.011742	1.3047	/1 9	120	19	9 100001	200.929821	200.936442	200.941615	0.011794	1.310549 9

92/05/15 11:39:13						990 W. Y.		~~	37		Signatura.	a ayasa sa s		6	7)
					(equate	uror.	CO	IVI		NAME OF STREET				
121 201 101001	175.848043	175.854663	175.859864	0.011821	1.313550				154001	93.948954	93.956757	93.962931	0.013977	1.553124	9
122 203 102001 123 205 103001	150.765581 125.683154	150.772205 125.689778	150.777437 125.695037	0.011856 0.011883	1.317439 1.320439	9			155001 156001	261.421830 236.339570	261.428792 236.346538	261.434476 236.352169	0.012646 0.012599	1.405224	9 9
124 206 103001	293.129098	293.136529	293.142268	0.013170	1.463450	ģ			157001	211.257324	211.264294	211.269870	0.012546	1.394112	9
125 207 104001	100.602445	100.609069	100.614357	0.011912	1.323661	9			158001	186.175297	186.182272	186.187876	0.012579	1.397778	9
126 208 104001	268.048641	268.056076	268.061842	0.013201	1.466895	9			159001	161.093229	161.100209	161.105854	0.012625	1.402890	9
127 210 105001 128 212 106001	242.967167 217.884866	242.974604 217.892308	242.980401 217.898136	0.013234 0.013270	1.470562 1.474562	9			160001 160001	136.010438 303.456303	136.017421 303.464135	136.023106 303.470096	0.012668 0.013793	1.407668	9
129 214 107001	192.802451	192.809896	192.815752	0.013270	1.478007	9			161001	110.929117	110.936107	110.941829	0.013793	1.412557	9
130 216 108001	167.720099	167.727547	167.733434	0.013335	1.481785	9	195	322	161001	278.375352	278.383186	278.389188	0.013836	1.537456	9
131 218 109001 132 220 110001	142.638150	142.645605	142.651522	0.013372	1.485897	9			162001	253.294481	253.302322	253.308364	0.013883	1.542679	9
133 221 111001	117.556194 285.028881	117.563651 285.035528	117.569596 285.041024	0.013402 0.012143	1.489230	9			163001 164001	228.212265 203.129894	228.220112 203.137744	228.226197 203.143870	0.013932 0.013976	1.548124	9 9
134 222 111001	92.474023	92.481488	92.487466	0.013443	1.493786	9	199	330	165001	178.047419	178.055277	178.061445	0.014026	1.558569	9
135 223 112001 136 225 113001	259.946859	259.953509	259.959036	0.012177	1.353108	9			166001	152.965283	152.973145	152.979356	0.014073	1.563792	9
137 227 114001	234.864613 209.782365	234.871269 209.789026	234.876829 209.794614	0.012216 0.012249	1.357442 1.361109	9 9			167001 168001	127.883346 295.355847	127.891214 295.362870	127.897465 295.368876	0.014119 0.013029	1.568903 1.447782	9
138 229 115001	184.700391	184.707056	184.712676	0.012285	1.365109	9			168001	102.801237	102.809112	102.815406	0.014169	1.574459	9
139 231 116001	159.618273	159.624947	159.630599	0.012326	1.369665	9			169001	270.274082	270.281112	270.287158	0.013076	1.453005	9
140 233 117001 141 234 117001	134.535503 301.981395	134.542182 301.988898	134.547863	0.012360	1.373443	9			170001	245.191800	245.198835	245.204924	0.013124	1.458339	9
142 235 118001	109.454297	109.460983	301.995062 109.466697	0.013667 0.012400	1.518677	9			171001 172001	220.109633 195.027413	220.116671 195.034458	220.122800 195.040629	0.013167 0.013216	1.463117	9
143 236 118001	276.900572	276.908080	276.914275	0.013703	1.522677	9			173001	169.945606	169.952655	169.958870	0.013264	1.473896	9
144 238 119001	251.819635	251.827151	251.833380	0.013745	1.527344	9			174001	144.862943	144.869998	144.876253	0.013310	1.479007	9
145 240 120001 146 242 121001	226.737394 201.655019	226.744920 201.662552	226.751179 201.668844	0.013785 0.013825	1.531789 1.536234	9			175001 175001	119.780920 287.226955	119.787980 287.234866	119.794277 287.241462	0.013357 0.014507	1.484230	9
147 244 122001	176.572557	176.580100	176.586426	0.013869	1.541123	ģ			176001	94.700374	94.707438	94.713780	0.013406	1.489675	ģ
148 246 123001	151.490449	151.498002	151.504358	0.013909	1.545568	9	213	352	176001	262.146424	262.154342	262.160985	0.014561	1.618018	9
149 248 124001	126.408505	126.416067	126.422458	0.013953	1.550457	9			177001	237.064561	237.072483	237.079171	0.014610	1.623463	9
150 249 125001 151 250 125001	293.880997 101.326387	293.887739 101.333960	293.893678 101.340384	0.0126 81 0.013997	1.409113 1.555347	9 9			178001 179001	211.982250 186.899805	211.990179 186.907739	211.996910 186.914518	0.014660 0.014713	1.629019 1.634909	9 9
152 251 126001	268.799204	268.805956	268.811930	0.012726	1.414113	ģ			180001	161.817536	161.825474	161.832297	0.014761	1.640242	9
153 253 127001	243.716921	243.723682	243.729688	0.012767	1.418669	9	218	362	181001	136.735646	136.743587	136.750455	0.014809	1.645576	9
154 255 128001 155 257 129001	218.634745 193.552544	218.641516 193.559325	218.647555 193.565401	0.012810 0.012857	1.423447	9			182001 182001	304.208043 111.653645	304.215134 111.661589	304.221737	0.013694 0.014860	1.521677	9
156 259 130001	168.470709	168.477500	168.483608	0.012899	1.433337	9			183001	279.126467	279.133564	279.140214	0.013747	1.527567	9
157 261 131001	143.388009	143.394810	143.400953	0.012944	1.438337	9			184001	254.044290	254.050552	254.055584	0.011294	1.254989	8
158 263 132001 159 264 132001	118.306102 285.752223	118.312916 285.759870	118.319093 285.766533	0.012991 0.014310	1.443560 1.590127	9		369 371	185001 186001	228.962083 203.879825	228.969172 203.886909	228.975786 203.893489	0.013703 0.013664	1.522677	9
160 265 133001	93.225579	93.232402	93.238612	0.013033	1.448227	9		373	187001	178.798001	178.805077	178.811622	0.013621	1.513566	9
161 266 133001	260.671649	260.679309	260.686008	0.014359	1.595572	9	226	375	188001	153.715650	153.722723	153.729233	0.013583	1.509343	9
162 268 134001 163 270 135001	235.589704	235.597375	235.604108	0.014404	1.600572	9			189001	128.633064	128.640130	128.646607	0.013543	1.504898	9
163 270 135001 164 272 136001	210.507385 185.424930	210.515070 185.432628	210.521840 185.439432	0.014455 0.014502	1.606240 1.611462	9			189001 190001	296.078884 103.552221	296.086801 103.559281	296.093551 103.565721	0.014667 0.013500	1.629797 1.500120	9
165 274 137001	160.342681	160.350391	160.357231	0.014550	1.616796	9			190001	270.998378	271.006288	271.013007	0.014629	1.625574	ģ
166 276 138001	135.260787	135.268512	135.275390	0.014603	1.622685	9			191001	245.917100	245.925004	245.931689	0.014589	1.621130	9
167 277 139001 168 278 139001	302.733170 110.178764	302.740066 110.186502	302.746490 110.193414	0.013320 0.014650	1.480118	9		384 386	192001 193001	220.834805 195.752404	220.842704 195.760296	220.849358 195.766920	0.014553 0.014516	1.617129	9
169 279 140001	277.651557	277.658469	277.664930	0.013373	1.486008	9			194001	170.670010	170.677897	170.684488	0.014478	1.608795	9
170 281 141001	252.569349	252.575460	252.581221	0.011872	1.319217	8			195001	145.588018	145.595898	145.602460	0.014442	1.604795	9
171 283 142001	227.487153	227.494074	227.500481	0.013326	1.481007	9			196001	120.506063	120.513935	120.520465	0.014402	1.600350	9
172 285 143001 173 287 144001	202.404893 177.323089	202.411817 177.330014	202.418166 177.336306	0.013273 0.013217	1.474896 1.468673	9			197001 197001	287.978756 95.423913	287.985772 95.431782	287.991985 95.438281	0.013229 0.014368	1.470006 1.596572	9 9
174 289 145001	152.240676	152.247605	152.253842	0.013166	1.463006	9			198001	262.896819	262.903828	262.910007	0.013188	1.465451	9
175 291 146001	127.158157	127.165088	127.171267	0.013110	1.456783	9			199001	237.814559	237.821562	237.827711	0.013152	1.461450	9
176 292 146001 177 293 147001	294.604024 102.077379	294.611794	294.618406	0.014362	1.598128	9			200001	212.732332	212.739327	212.745446	0.013114	1.457228	9
178 294 147001	269.523544	102.084311 269.531316	102.090435 269.537871	0.013056 0.014327	1.450783 1.592016	9			201001 202001	187.650268 162.568262	187.657256 162.575243	187.663342 162.581301	0.013074 0.013039.	1.452783 1.448894	9
179 296 148001	244.442162	244.449937	244.456438	0.014276	1.586349	9			203001	137.485477	137.492450	137.498477	0.013000	1.444560	é
180 298 149001	219.359856	219.367637	219.374082	0.014226	1.580793	9			203001	304.931340	304.939165	304.945491	0.014151	1.572459	9
181 300 150001 182 302 151001	194.277441 169.195061	194.285224 169.202848	194.291614 169.209185	0.014173 0.014124	1.574904 1.569459	9 9			204001 204001	112.404053 279.850260	112.411019	112.417015	0.012962	1.440337	9
183 304 152001	144.113084	144.120877	144.127157	0.014073	1.563792	9			205001	254.769466	279.858075 254.777275	279.864371 254.783543	0.014111 0.014077	1.568014 1.564236	9
184 306 153001	119.031121	119.038917	119.045143	0.014022	1.556125	9	249	412	206001	229.687297	229.695097	229.701339	0.014042	1.560347	9
185 307 154001	286.503817	286.510775	286.516513	0.012696	1.410780	9	250	414	207001	204.604945	204.612737	204.618949	0.014004	1.556124	9

179.522478 154.440329

129.358415

96.900780

264.373483

239.291203

214.208976 189.126860

179.530263 154.448104

129.366183

179.536450 154.454264

129.372314

96.912277

264.383962

239.301677

214.219441 189.137314

0.013972 0.013935

0.013899

0.011497

0.010479 0.010474

0.010465 0.010454

1.552569 9 1.548457 9 1.544457 9

251 416 208001 252 418 209001 253 420 210001

290 480 240001

291 481 241001

292 483 242001

293 485 243001 294 487 244001

A3-7

253	420	210001	129.358415	129.366183	129.372314	0.013899	1.544457	,
254	421	211001	296.830923	296.837827	296.843623	0.012700	1.411224	9
255	422	211001	104.276332	104.284090	104.290197	0.013865	1.540679	9
256	423	212001	271.749198	271.756095	271.761863	0.012665	1.407335	9
257	425	213001	246.666935	246.673822	246.679564	0.012629	1.403334	9
258	427	214001	221.584783	221.591658	221.597373	0.012590	1.399001	9
259	429	215001	196.502564	196.509430	196.515118	0.012554	1.395000	9
260	431	216001	171.420790	171.427644	171.433307	0.012517	1.390889	9
261	433	217001	146.338183	146.345029	146.350663	0.012480	1.386778	9
262	435	218001	121.256060	121.262895	121.268505	0.012445	1.382888	9
263	436	218001	288.702029	288.709716	288.715645	0.013616	1.513010	9
264	437	219001	96.175496	96.182319	96.187902	0.012406	1.378555	9
265	438	219001	263.621548	263.629224	263.635131	0.013583	1.509343	9
266	440	220001	238.539787	238.547452	238.553333	0.013546	1.505232	9
267	442	221001	213.457494	213.465149	213.471006	0.013512	1.501453	9
268	444	222001	188.375071	188.382714	188.388549	0.013478	1.497675	9
269	446	223001	163.292794	163.300424	163.306233	0.013439	1.493342	9
270	448	224001	138.210906	138,218527	138.224313	0.013407	1.489786	9
271	449	225001	305.683308	305.690064	305.695494	0.012186	1.354108	9
272	450	225001	113.128935	113.136543	113.142307	0.013372	1.485897	9
273	451	226001	280.601779	280.608523	280.613931	0.012152	1.350330	9
274	453	227001	255.519649	255.526379	255.531762	0.012113	1.345997	9
275	455	228001	230.437445	230.444165	230.449522	0.012077	1.341996	9
276	457	229001	205.355203	205.361908	205.367244	0.012041	1.337996	9
277	459	230001	180.273362	180.280053	180.285364	0.012002	1.333662	9
278	461	231001	155.191087	155.197767	155.203055	0.011968	1.329884	9
279	463	232001	130.108455	130.115120	130.120385	0.011930	1.325662	9
280	464	232001	297.554253	297.561772	297.567377	0.013124	1.458339	9
281	465	233001	105.027550	105.034201	105.039441	0.011891	1.321328	9
282	466	233001	272.473712	272.481216	272.486800	0.013088	1.454339	9
283	468	234001	247.392544	247.400035	247.405595	0.013051	1.450227	9
284	470	235001	222.310274	222.317752	222.323292	0.013018	1.446560	9
285	472	236001	197.227897	197.235359	197.240878	0.012981	1.442449	9
286	474	237001	172.145501	172.152951	172.158447	0.012946	1.438560	9
287	476	238001	147.063500	147.070934	147.076411	0.012911	1.434670	9
288	478	239001	121.982932	121.989908	121.994434	0.011502	1.278102	ŧ
289	479	240001	289.455391	289.461618	289.465881	0.010490	1.165649	8

96.907769

264.379721

239.297455

214.215239 189.133134

1.277547

1.162871 8 1.161648 8

1.164426

1.163871

257.727795

257.736843

0.020334

2.259514 62

			6 CD	ROMs (periode	e entiere :nov 8	6 a oct 89)			58	96	48001	232.634420	232.645718	232.654919	0.020499	2.277849	62
				(pozzou					59	98	49001	207.552073	207.563385	207.572735	0.020662	2.295961	62
									60		50001	182.469599	182.480923	182.490425	0.020826	2.314185	62
									61		51001	157.387386	157.398725	157.408377	0.020991	2.332520	62
	1 Nr	Nr	Longitudes	a 1 equateur	r pour une trace	lEcart entre Lo	n min et max	! Nbre	62		52001	132.305480	132.316834	132.326635	0.021155	2.350744	62
inde		erevol	min	тоу		i degres		mesures		105	53001	299.777839	299.788550	299.797893	0.020054	2.228400	62
	•								64		53001	107.223417	107.234784	107.244737	0.021320	2.369078	62
										107	54001	274.696159	274.706886	274.716378	0.020219	2.246735	62
1	1	1001	164.038813	164.050267	164.061885	0.023072	2.56376	1 62		109	55001	249.613908	249.624295	249.631073	0.017165	1.907375	59
2	3	2001	138.956066	138.967194	138.973732	0.017666	1.96304		67		56001	224.531730	224.542658	224.555847	0.024117	2.679881	62
3	5	3001	113.874555	113.885789	113.892916	0.018361	2.04027			113	57001	199.449483	199.460411	199.473519	0.024036	2.670880	62
4	6	3001	281.321121	281.332737	281.339643	0.018522	2.05816			115	58001	174.367703	174.378633	174.391661	0.023958	2.662213	62
5	8	4001	256.240403	256.252189		0.022188	2.46553			117	59001	149.285179	149.296115	149.309058	0.023879	2.653434	62
6	10	5001	231.158310	231.170069		0.021847	2.42763			119	60001	124.202837	124.213541	124.226634	0.023797	2.644323	60
7	12	6001	206.075998	206.087736	206.097511	0.021513	2.39052			120	60001	291.648816	291.660146	291.672692	0.023876	2.653101	60
8	14	7001	180.993565	181.005280	181.014748	0.021183	2.35385			121	61001	99.122171	99.133101	99.145888	0.023717	2.635433	62
9	16	8001	155.911423	155.923114	155.932271	0.020848	2.31663			122	61001	266.568358	266.579912	266.592153	0.023795	2.644100	62
10	18	9001	130.829552	130.841224	130.850075	0.020523	2,28051			124	62001	241.486773	241.498322	241.510492	0.023719	2.635655	62
11	19	10001	298.301668	298.312968	298.322574	0.020906	2.32307			126	63001	216.404469	216.416012	216.428105	0.023636	2.626432	62
12	20	10001	105.747516	105.759167	105.767710	0.020194	2.24395			128	64001	191.322047	191.333581	191.345600	0.023553	2.617209	62
13	21	11001	273.219990	273.231285	273.240590	0.020600	2.28907			130	65001	166.239710	166.251240	166.263181	0.023471	2.608098	62
14	23	12001	248.137748	248.148829	248.158044	0.020296	2.25529			132	66001	141.157784	141.169307	141.181169	0.023385	2.598541	62
15	25	13001	223.055609	223.066894	223.075602	0.019993	2.22162				67001	116.075821	116.087338	116.099122	0.023301	2.589207	62
16	27	14001	197.973397	197.984676		0.019692	2.18817			135	68001	283.548521	283.559406	283.571654	0.023133	2.570539	62
17	29	15001	172.891644.	172.902920	172.911036	0.019392	2.15483			136	68001	90.993637	91.004933	91.016855	0.023218	2.579984	60
18	31	16001	147.809102	147.820372	147.828199	0.019097	2.12205			137	69001	258.466453	258.477124	258.489503	0.023050	2.561316	60
19	33	17001	122.726885	122.738079	122.745688	0.018803	2.08938			139	70001	233.384220	233.395088	233.407181	0.022961	2.551426	62
20	34	17001	290.173321	290.184758	290.192486	0.019165	2.12961				71001	208.301969	208.312826	208.324845	0.022876	2.541981	62
21	35	18001	97.646295	97.657555	97.665048	0.018753	2.08383			143	72001	183.220038	183.230887	183.242826	0.022788	2.532203	62
22	36	18001	265.092895	265.104382	265.112279	0.019384	2.153950			145	73001	158.137872	158.148710	158.160571	0.022699	2.522313	62
23	38	19001	240.011256	240.022722	240.030868	0.019612	2.17928		88	147	74001	133.055133	133.066043	133.077745	0.022612	2.512645	60
24	40	20001	214.928994	214.940440	214.948832	0.019838	2.204399	9 62	89	148	74001	300.501035	300.512577	300.523731	0.022696	2.521980	60
25	42	21001	189.846607	189.858031	189.866674	0.020067	2.22984	5 62	90	149	75001	107.974035	107.984997	107.996555	0.022520	2.502422	61
26	44	22001	164.764335	164.775740	164.784635	0.020300	2.25573	6 62	91	150	75001	275.420323	275.431917	275.442931	0.022608	2.512201	61
27	46	23001	139.682465	139.693851	139.702998	0.020533	2.28162	7 62	92	152	76001	250.339316	250.350758	250.361834	0.022518	2.502200	62
28	48	24001	114.600535	114.611901	114.621305	0.020770	2.307962	2 62	93	154	77001	225.257065	225.268498	225.279493	0.022428	2.492199	62
29	49	25001	282.072761	282.083864	282.093216	0.020455	2.27296		94		78001	200.174687	200.186116	200.197028	0.022341	2.482532	62
30	50	25001	89.518379	89.529441	89.536544	0.018165	2.01849			158	79001	175.092250	175.103671	175.114498	0.022248	2.472198	62
31	51	26001	256.990680	257.001738	257.009032	0.018352	2.039274		96		80001	150.010182	150.021596	150.032339	0.022157	2.462086	62
32	53	27001	231.908483	231.919676	231.928830	0.020347	2.26095		97		81001	124.928238	124.939649	124.950305	0.022067	2.452085	62
33	55	28001	206.826252	206.837431	206.846400	0.020148	2.238840		98	163	82001	292.400747	292.411516	292.422632	0.021885	2.431861	62
34	57 59	29001 30001	181.744391	181.755553	181.764335	0.019944	2.21617				82001	99.846126	99.857530	99.868099	0.021973	2.441640	62
35	61	31001	156.662191	156.673338	156.681932	0.019741	2.193620		100	165	83001	267.318932	267.329697	267.340724	0.021792	2.421527	62
36	62		131.579517	131.590636	131.599063	0.019546	2.171952			167	84001	242.236665	242.247200	242.258361	0.021696	2.410860	60
37	63	31001	299.026032	299.037330	299.045765	0.019733	2.192731				85001	217.154486	217.165220	217.176093	0.021607	2.400970	62
3 8 39	64	32001	106.498542	106.509583	106.517887	0.019345	2.14961		103	171	86001	192.072324	192.083041	192.093835	0.021511	2.390302	62
	66	32001 33001	273.945449	273.956517	273.964976	0.019527	2.169840		104	173	87001	166.990467	167.001166	167.011884	0.021417	2.379857	62
40 41	68	34001	248.864396 223.782166	248.875503 223.793236	248.883721	0.019325	2.147394			175	88001	141.907744	141.918268	141.929069	0.021325	2.369634	61
42	70	35001	198.699821	198.710856	223.801384	0.019218	2.135504		106	177	89001	116.825978	116.836535	116.847203	0.021225	2.358522	61
43	72	36001	173.617398	173.628437	198.719161	0.019340	2.149061		107 108	178	89001	284.272179	284.283378	284.293498	0.021319	2.368967	61
44	74	37001	148.535333	148.546399	173.636897 148.555018	0.019499 0.019685	2.166729		109	179 180	90001	91.745481	91.756117	91.766612	0.021131	2.348077	62
45	76	38001	123.453357	123.464456	123.473232	0.019875	2.208510		110	182	90001	259.191576	259.202841	259.212798	0.021222	2.358189	62
46	77	39001	290.925375								91001	234.109575	234.120816	234.130705	0.021130	2.347966	62
47	78	39001	98.371209	290.936339 98.382338	290.944728	0.019353	2.150505		. 111	184	92001	209.027265	209.038484	209.048299	0.021034	2.337298	62
48	79	40001			98.391269	0.020060	2.229067		112	186	93001	183.944825	183.956018	183.965760	0.020935	2.326297	62
49	81	41001	265.843549	265.854492	265.863037	0.019488	2.165507		113	188	94001	158.862615	158.873787	158.883641	0.021026	2.336409	62
	_		240.761304	240.771970	240.779812	0.018508	2.056609		114	190	95001	133.780743	133.791891	133.801938	0.021195.	2.355188	62
50	83	42001	215.679134	215.690025	215.698298	0.019164	2.129504			191	96001	301.253117	301.263611	301.273668	0.020551	2.283627	62
51	85 87	43001	190.597025	190.607885	190.615957	0.018932	2.103724			192	96001	108.698724	108.709848	108.720083	0.021359	2.373412	62
52 53	87 89	44001 · 45001	165.515144	165.525978	165.533991	0.018847	2.094279		117	193	97001	276.171498	276.181968	276.191948	0.020450	2.272404	62
53 54	91	46001	140.432418	140.443223	140.451376	0.018958	2.106613		118	195	98001	251.089287	251.099573	251.109641	0.020354	2.261736	61
			115.350791	115.361452	115.369861	0.019070	2.119058		119	. 197	99001	226.007125	226.017545	226.027687	0.020562	2.284849	62
55	92	46001	282.797194	282.808361	282.817366	0.020172	2.241513		120		100001	200.924897	200.935289	200.945788	0.020891	2.321408	62
56	93	47001	90.270312	90.281055	90.289500	0.019188	2.132171	62	121	201	101001	175.843130	175.853499	175.864358	0.021228	2.358855	62

	11:	9:55					(equateu	r06.	.CC	M						<i></i>
		102001	150.760688	150.771031	150.782262	0.021574	2.397303	62	187	309	155001	261.416347	261.427188	261.443543	0.027196	3.022020	62
123	205	103001	125.678280	125.688596	125.700200	0.021920	2.435750	62	188	311	156001	236.334079	236.344941	236.361360	0.027281	3.031465	62
124 125	206 207	103001 104001	293.124221	293.135172	293.146991	0.022770	2.530202	62	189	313	157001	211.251619	211.262705	211.279191	0.027372	3.041577	62
126	208	104001	100.597585 268.043786	100.607878 268.054712	100.619863 268.066914	0.022278 0.023128	2.475531 2.569983	62 62	190	315 317	158001 159001	186.169784 161.087708	186.180691 161.098639	186.197251 161.115273	0.027467 0.027565	3.052133 3.063023	62 62
127	210	105001	242.962327	242.973232	242.985824	0.023497	2.610987	62	192	319	160001	136.004908	136.015861	136.032578	0.027670	3.074690	62
128		106001	217.880043	217.890931	217.903920	0.023877	2.653212	62	193	320	160001	303.450414	303.462432	303.479299	0.028885	3.209701	62
129	214	107001	192.797649	192.808515	192.821902	0.024253	2.694993	62	194	321	161001	110.923586	110.934558	110.951360	0.027774	3.086247	62
130 131	216 218	108001 109001	167.715317 142.633345	167.726163 142.644218	167.739955 142.658420	0.024638 0.025075	2.737775 2.786334	62 62	195	322 324	161001 162001	278.369456	278.381495	278.398445	0.028989	3.221258	62
	220	110001	117.551359	117.562261	117.576875	0.025516	2.835338	62	197	326	163001	253.288584 228.206363	253.300645 228.218448	253.317685 228.235579	0.029101 0.029216	3.233703 3.246482	62 62
133		111001	285.024065	285.034306	285.049110	0.025045	2.783000	62	198	328	164001	203.123990	203.136096	203.153321	0.029331	3.259261	62
134		111001	92.469170	92.479961	92.495131	0.025961	2.884786	61	199	330	165001	178.041518	178.053645	178.070973	0.029455	3.273040	62
135		112001	259.942041	259.952158	259.967512	0.025471	2.830338	61	200	332	166001	152.959379	152.971530	152.988959	0.029580	3.286930	62
136 137	225 227	113001 114001	234.859801 209.777552	234.870042	234.885704	0.025903	2.878341	62	201	334	167001	127.877446	127.889616	127.907157	0.029711	3.301486	62
138	229	115001	184.695579	209.787795 184.705822	209.803896 184.722371	0.026344 0.026792	2.927345 2.977127	62 62	202	335 336	168001 168001	295.350308 102.795341	295.361428 102.807533	295.378924 102.825186	0.028616 0.029845	3.179810 3.316376	62 62
139	231	116001	159.613468	159.623712	159.640715	0.027247	3.027687	62	204	337	169001	270.268543	270.279690	270.297305	0.028762	3.196033	62
140	233	117001	134.530697	134.540818	134.558405	0.027708	3.078913	61	205	339	170001	245.186257	245.197311	245.215169	0.028912	3.212701	61
141	234	117001	301.976487	301.987375	302.005201	0.028714	3.190700	61	206	341	171001	220.104085	220.115281	220.133156	0.029071	3.230370	62
142 143		118001 118001	109.449495 276.895664	109.459316 276.906237	109.468225	0.018730	2.081278	60	207	343	172001	195.021861	195.033084	195.051101	0.029240	3.249149	62
144		119001	251.814733	251.825728	276.914981 251.843656	0.019317 0.028923	2.146505 3.213924	60 62	208	345 347	173001 174001	169.940052 144.857386	169.951298 144.868658	169.969460 144.886973	0.029408 0.029587	3.267817 3.287707	62 62
145	240	120001	226.732517	226.743482	226.761275	0.028758	3.195589	62	210	349	175001	119.775361	119.785994	119.794277	0.018916	2.101946	59
146	242	121001	201.650149	201.661100	201.678763	0.028614	3.179588	62	211	350	175001	287.221113	287.232739	287.241462	0.020349	2.261181	59
147	244	122001	176.567704	176.578636	176.596175	0.028471	3.163698	62	212	351	176001	94.694805	94.706115	94.724183	0.029378	3.264483	62
148 149	246 248	123001 124001	151.485614 126.403688	151.496526 126.414580	151.513941 126.431878	0.028327 0.028190	3.147696 3.132473	62 62	213	352 354	176001 177001	262.140596 237.058744	262.152878 237.071016	262.170927	0.030331	3.370381	62
150	249	125001	293.876092	293.886408	293.903503	0.027411	3.045910	62	215	356	178001	211.976451	211.988710	237.088655 212.005945	0.029911 0.029494	3.323710 3.277373	62 62
151	250	125001	101.321520	101.332463	101.349648	0.028128	3.125583	62	216	358	179001	186.894020	186.906270	186.923098	0.029078	3.231147	62
152	251	126001	268.794275	268.804616	268.821602	0.027327	3.036576	62	217	360	180001	161.811769	161.824006	161.840433	0.028664	3.165144	62
153 154	253 255	127001 128001	243.711969 218.629771	243.722046 218.640145	243.739211 218.656931	0.027242 0.027160	3.027131	60 62	218	362 363	181001	136.729897	136.742121	136.758152	0.028255	3.139696	62
155		129001	193.547548	193.557939	193.574636	0.027180	3.018019 3.010019	62	220	364	182001 182001	304.202466 111.647913	304.213808 111.660126	304.229464 111.675762	0.026998 0.027849	3.000018 3.094581	62 62
156	259	130001	168.465690	168.476097	168.492707	0.027017	3.002129	62	221	365	183001	279.120891	279.132241	279.147508	0.026617	2.957681	62
157		131001	143.382968	143.393392	143.409921	0.026953	2.995017	62	222	367	184001	254.038639	254.049939	254.064951	0.026312	2.923789	61
158 159	263 264	1 32 001 132001	118.301041 285.747015	118.311340 285.758127	118.327937 285.774825	0.026896 0.027810	2.988684 3.090247	61 61	223	369 371	185001 186001	228.956509 203.874113	228.968061 203.885625	228.982375 203.899749	0.025866 0.025636	2.874230 2.848672	61 62
160	265	133001	93.220496	93.230947	93.247336	0.026840	2.982461	62	225	373	187001	178.792285	178.803809	178.817561	0.025276	2.808669	62
161	266	133001	260.666401	260.677685	260.694182	0.027781	3.087025	62	226	375	188001	153.709937	153.721473	153.734857	0.024920	2.769110	62
162 163	268 270	134001	235.584415	235.595730	235.612168	0.027753	3.083913	62	227	377	189001	128.627351	128.638899	128.651916	0.024565	2.729663	62
164	272	135001 136001	210.502058 185.419563	210.513405 185.430945	210.529790 185.447278	0.027732 0.027715	3.081580 3.079691	62 62	228	378 379	189001 190001	296.073344	296.085444	296.098449	0.025105	2.789668	62
165	274	137001	160.337275	160.348689	160.364974	0.027699	3.077913	62	230	380	190001	103.546514 270.992867	103.558069 271.004951	103.570727 271.017594	0.024213 0.024727	2.690549 2.747664	62 62
166	276	138001	135.255348	135.266793	135.283036	0.027688	3.076691	62	231	382	191001	245.911618	245.923688	245.935978	0.024360	2.706883	62
167	277	139001	302.727969	302.738495	302.754586	0.026617	2.957681	62	232	384	192001	220.829359	220.841411	220.853349	0.023990	2.665769	62
168 169	278 279	139001 140001	110.173288 277.646339	110.184767	110.200968	0.027680	3.075802	62	233	386	193001	195.746991	195.759026	195.770615	0.023624	2.625099	62
170	281	141001	252.564112	277.656882 252.574403	277.672937 252.590692	0.026598 0.026580	2.955570 2.953570	62 60	234	388 390	194001 195001	170.664638 145.582683	170.676652 145.594678	170.687899 145.605585	0.023261 0.022902	2.584762 2.544870	62 62
171		142001	227.481896	227.492467	227.508472	0.026576	2.953125	62	236	392	196001	120.500767	120.512741	120.523314	0.022547	2.505423	62
172		143001	202.399623	202.410206	202.426196	0.026573	2.952792	62	237	393	197001	287.973151	287.984725	287.994975	0.021824	2.425083	62
173	287	144001	177.317802	177.328397	177.344380	0.026578	2.953347	62	238	394	197001	95.418662	95.430364	95.440858	0.022196	2.466420	60
174	289 291	145001	152.235373	152.245985	152.261972	0.026599	2.955681	62	239	395	198001	262.891241	262.902551	262.912732	0.021491	2.388080	60
175 176		146001 146001	127.152841 294.598345	127.163466 294.610017	127.179460 294.626143	0.026619 0.027798	2.957903 3.088914	62	240	397	199001 200001	237.809011	237.820560	237.830172	0.021161	2.351410	62
177	293	147001	102.072042	102.082687	102.098697	0.026655	2.961904	62 62	242	399 401	201001	212.726810 187.644751	212.738346 187.656298	212.747644 187.665857	0.020 83 4 0.021106	2.315074 2.345299	62 62
178	294	147001	269.517839	269.529539	269.545683	0.027844	3.094025	62	243	403	202001	162.562751	162.574308	162.584228	0.021177	2.386524	62
179	296	148001	244.436434	244.448160	244.464332	0.027898	3.100026	62	244	405	203001	137.479972	137.491382	137.501821	0.021849.	2.427861	61
180 181	298 300	149001	219.354110	219.365860	219.382066	0.027956	3.106471	62	245	406	203001	304.926148	304.937993	304.948418	0.022270	2.474642	61
182		150001 151001	194.271671 169.1 89274	194.283450 169.201077	194.299691 169.217362	0.028020 0.028088	3.113582 3.121139	62 62	246	407 408	204001 204001	112.398554 279.845076	112.410128 279.856889	112.420784 279.865482	0.022230 0.020406	2.470198	62 61
183		152001	144.107281	144.119110	144.135440	0.028159	3.129028	62	248	410	205001	254.764289	254.776262	254.786003	0.021714	2.267515 2.412860	62
184	306	153001	119.025300	119.037154	119.053535	0.028235	3.137473	62	249	412	206001	229.682128	229.694094	229.703595	0.021467	2.385413	62
185		154001	286.498348	286.509166	286.525460	0.027112	3.012685	62	250		207001	204.599785	204.611745	204.621005	0.021220	2.357966	62
186	308	154001	93.943124	93.955000	93.971439	0.028315	3.146363	62	251	416	208001	179.517327	179.529284	179.538310	0.020983	2.331631	62

<i>10.000000</i>	~~~~	***********	···	•	***	**************	****	************	***	*******		******	***************	***********	y
***	*****	*****	* * 1	****	* *						******	* * * *	*******	******	
**								ANDARD PRI						**	
***	*****	*****	• • •	****	* *	*******	* * *	******	*	****	*******	• • • •	******	* * * * * * * *	
		Nr				premiere	P					teur	Iderniere		
index	trace	revol	ı	pos	ı	Lat		Lon	ı	Lat	Lon		Lat	Lon	
									-						
1	1	1001		1263		34970020		179594340		0	164050286	-	34970020	148506232	
2	3	2001		1263		34970020		154511576		0	138967522	-	34970020	123423468	
3	5	3001		992		34970020		129430050		0	113885996	-	19951200	105017756	
4	6	3001		983		-19452420		289979498		0	281332964		34970020	265788910	
5	8	4001		1263		-34970020		271796304		0	256252250		34970020	240708196	
6	10	5001		1263		-34970020		246714192		0	231170138		34970020	215626084	
7	12	6001		1263		-34970020		221631866		0	206087812		34970020	190543758	
8	14	7001		1263		-34970020		196549417		0	181005363		34970020	165461309	
9	16	8001		1263		-34970020		171467257		0	155923203		34970020	140379149	
10	18	9001		1263		-34970020		146385373		0	130841319		34970020	115297265	
11	19	10001		294		-18731960		289986742		0	0	-	34970020	282768980	
12	20	10001		662		-34970020		121303322		0	105759268		1662600	105020248	
13	21	11001		1263		34970020		288775410		0	273231356	-	34970020	257687302	
14	23	12001		1263		34970020		263692904		0	248148850	-	34970020	232604796	
15	25	13001		1263		34970020		238611028		0	223066974	-	34970020	207522920	
16	27	14001		1263		34970020		213528813		0	197984759		34970020	182440705	
17	29	15001		1263		34970020		188447059		0	172903005	-	34970020	157358951	
18	31	16001		1263		34970020		163364515		0	147820461	-	34970020	132276407	
19	33	17001		1263		34970020		138282205		0	122738151	-	34970020	107194097	
20	34	17001		624		443360		289987792		0	0		34970020	274640810	
21	35	18001		333		34970020		113201700		0	0		16570580	105023212	
22	36	18001		1263		-34970020		280648560		0	265104506		34970020	249560452	
23	38	19001		1263		-34970020		255566899		0	240022845		34970020	224478791	
24	40	20001		1263		-34970020		230484616		0	214940562		34970020	199396508	
25	42	21001		1263		-34970020		205402206		0	189858152		34970020	174314098	
26	44	22001		1263		-34970020		180319913		0	164775859		34970020	149231805	
27	46	23001		1263		-34970020		155238021		0	139693967		34970020	124149913	
28	4 B	24001		1022		-34970020		130156069		0	114612015		21613800	105004755	
29	49	25001		953		17789820		289991427		0	282083913		34970020	266539859	
30	50	25001		3		-34970020		105073737		0	0		34859180	105024469	
31	51	26001		1263		34970020		272546024		0	257001970		34970020	241457916	
32	53	27001		1263		34970020		247463811		0	231919757		34970020	216375703	
33	55	28001		1263		34970020		222381567		0	206837513		34970020	191293459	
34	57	29001		1263		34970020		197299690		0	181755636		34970020	166211582	
35	59	30001		1263		34970020		172217476		-	156673422		34970020	141129368	
36	61	31001		1263		34970020		147134776		0	131590722		34970020	116046668	
37	62	31001		265		20339140		289996734		0	0		34970020	283493358	
38	63	32001		693		34970020		122053794		0	106509740		-3380620	105007066	
39	64	32001		1263		-34970020		289500763		0	273956709		34970020	258412655	
40	66	33001		1263		-34970020		264419681		0	248875627		34970020	233331573	
41	68	34001		1263		-34970020		239337421		0	223793367		34970020	208249313	
42	70	35001		1263		-34970020		214255046		0	198710992		34970020	183166938	
43	72	36001		1263		-34970020		189172633		0	173628579		34970020	158084525	
44	74	37001		1263		-34970020		164090601		0	148546547		34970020	133002493	
45	76	38001		1263		-34970020		139008663		0	123464609		34970020	107920555	
46	77	39001		593		-2161380		289975736		•	0		34970020	275392408	
47	78	39001		363		-34970020		113926548		0	0		14907980	105009040	
48	79	40001		1263		34970020		281398674		0	265854620		34970020	250310566	
49	81	41001		1263		34970020		256316089		0	240772035		34970020	225227981	
50	83	42001		1263		34970020		231234208		0	215690154		34970020	200146100	
51	85	43001		1263		34970020		206152068		0	19060801#		34970020	175063960	
52	87	44001		1263		34970020		181070159		0	165526105		34970020	149982051	
53	89 91	45001		1263		34970020		155987403		0	140443349		34970020	124899295	
54 55	92	46001		1052		34970020		130905747		0	115361693		23276400	105015413	
33	32	46001		923		-16127220		289977121		J	282808627		34970020	267264573	

56	93	47001	34	34970020	105825241	0	0	33141160	105012319
57	94	47001	1263	-34970020	273272015	Ō	257727961	34970020	242183907
58	96	48001	1263	-34970020	248189944	ŏ	232645890	34970020	217101836
59	98	49001	1263	-34970020	223107618	0	207563564	34970020	192019510
60	100	50001	1263	-34970020	198025162	0	182481108	34970020	166937054
61	102	51001	1263	-34970020	172942969	0	157398915	34970020	141854861
62	104	52001	1263	-34970020	147861084	0	132317030	34970020	116772976
63	105	53001	234	-22057160	289984368	0	0	-34970020	284244666
64	106	53001	722	-34970020	122779039	ŏ	107234985	4987800	105017925
						_			
65	107	54001	1252	34360400	289980140	0	274707060	-34970020	259163006
66	109	55001	1263	34970020	265168483	0	249624429	-34970020	234080375
67	111	56001	1263	34970020	240086972	0	224542918	-34970020	208998864
68	113	57001	1263	34970020	215004730	0	199460676	-34970020	183916622
69	115	58001	1263	34970020	189922958	0	174378904	-34970020	158834850
70	117	59001	1263	34970020	164840444	0	149296390	-34970020	133752336
						•	,.,,,,,,,	21372020	
246	407	204001	022	34970020	102054000		110410160	1	105010060
			932		127954223	0	112410169	-16626000	105019969
247	408	204001	1043	-22777620	289981500	0	279856926	34970020	264312872
248	410	205001	1263	-34970020	270320393	0	254776339	34970020	239232285
249	412	206001	1263	-34970020	245238226	0	229694172	34970020	214150118
250	414	207001	1263	-34970020	220155877	0	204611823	34970020	189067769
251	416	208001	1263	-34970020	195073590	0	179529536	34970020	163985482
252	418	209001	1263	-34970020	169991441	ŏ	154447387	34970020	138903333
253	420	210001	1263	-34970020	144909531	ŏ	129365477	34970020	113821423
						_			
254	421	211001	354	-15406760	289988966	0	0	-34970020	281293164
255	422	211001	602	-34970020	119827451	0	0	-1662600	105022417
256	423	212001	1263	34970020	287299552	0	271755498	-34970020	256211444
257	425	213001	1263	34970020	262217291	0	246673237	-34970020	231129183
258	427	214001	1263	34970020	237135141	0	221591087	-34970020	206047033
259	429	215001	1263	34970020	212052927	0	196508873	-34970020	180964819
260	431	216001	1263	34970020	186971155	ŏ	171427101	-34970020	155883047
261	433	217001	1263	34970020	161888554	ŏ	146344500	-34970020	130800446
	435					0			
262		218001	1263	34970020	136806435		121262381	-34970020	105718327
263	436	218001	684	-2881840	289990091	0	288709123	34970020	273165069
264	437	219001	274	34970020	111725874	0	0	19840360	105000792
265	43B	219001	1263	-34970020	279172701	0	263628647	34970020	248084593
266	440	220001	1263	-34970020	254090945	0	238546891	34970020	223002837
267	442	221001	1263	-34970020	229008659	0	213464605	34970020	197920551
268	444	222001	1263	-34970020	203926241	0	188382187	34970020	172838133
269	446	223001	1263	-34970020			163299916	34970020	
					178843970	0			147755862
270	448	224001	1263	-34970020	153762091	0	138218037	34970020	122673983
271	450	225001	962	-34970020	128680127	0	113136073	18288600	105006853
272	451	226001	1013	21115020	289993702	0	280608148	-34970020	265064094
273	453	227001	1263	34970020	271069918	0	255525864	-34970020	239981810
274	455	228001	1263	34970020	245987875	0	230443821	-34970020	214899767
275	457	229001	1263	34970020	220905634	0	205361580	-34970020	189817526
276	459	230001	1263	34970020	195823796	ō	180279742	-34970020	164735688
277	461	231001	1263	34970020	170741526	ŏ	155197472	-34970020	
									139653418
278	463	232001	1263	34970020	145658895	0	130114841	-34970020	114570787
279	464	232001	325	17013940	289998780	0	0	34970020	282017364
280	465	233001	633	34970020	120577808	0	105033754	-55420	105009120
281	466	233001	1263	-34970020	288024751	0	272480697	34970020	256936643
282	468	234001	1263	~34970020	262943761	0	247399707	34970020	231855653
283	470	235001	1263	-34970020	237861487	ō	222317433	34970020	206773379
284	472	236001		-34970020		ŏ			
			1263		212779104		197235050	34970020	181690996
285	474	237001	1263	-34970020	187696706	0	172152652	34970020	156608598
286	476	236001	1263	-34970020	162614701	0	147070647	34970020	131526593
287	478	239001	1263	-34970020	137532759	0	121988705	3497002Q	106444651
288	479	240001	653	1163820	289977922	0	289460608	-34970020	273916554
289	480	240001	303	-34970020	112450634	ō	0	-18233180	105011166
290	481	241001	1263	34970020	279922779	ō	264378725	-34970020	248834671
291	483	242001	1263	34970020	254840527	ŏ	239296473	-34970020	223752419
292	485	243001	1263	34970020	229758193	ō	214214139		
								-34970020	198670085
293	487	244001	1263	34970020	204676102	0	189132048	-34970020	173587994

	WWW.			**							ejologa.	~	.000		*** 158			#Promi	(1.0 mg/2)	(1000000000000000000000000000000000000	anganga 🗱
	***		*****	******					*********		57	94	470	002 113	37 -3		273406221		0	29612739	
					TRI PAR	TRACE		CYCLE 02		••	5.0	96	480	002 120	53 ~3		248303950	0	0	34997614	216973720
	***	****	******	******	*********	********	* * * * *	*******	*********	******	59	98	490	002 12	59 -3	4975278	223231733	0	0	34982645	191898875
											60	100	500	002 12			198157287	0	0	34970083	166822707
	XXXXX	xxxxx	XXXXXXX	XXXXXXX	«xxxxxxxxxx	: trace man	nquan	te				102		002 11			173081716	0	0	34958894	141746694
												104					147033752	0	0	27731925	120487299
		Nr	Nr	Nbre	premiere	position	pos	ition equat	eur dernier	e position		105					288600993	0	0	-34988337	284117962
	index	trac	e revol	mes	Lat	Lon	Lat	Lon	Lat	Lon	64	106					122899197	0	0	5609092	105006783
											65			002 11			289974242	0	0	-34971393	259047458
	_	1	1002	1089		179699699	0	0	-28355979	151907903	66	109				6027003	260628898	0	0	-34950537	233977251
	2		2002	608		145327405	0	0	-34995378	123291981	67	111					239619849	0	0	-34989312	
	3	5	3002	689		129550144	0	0	-21438575	105015923	68	113					215127558	0	0	-34977546 -34969299	
	4	6	3002	400	-20493324	289783772	0	0	29522238	268606033	69	115		002 123			190051334 164974084	0	0	-34958775	
	5		4002	1247	-34991893	271928084	0	0	34257362	240998814	70	117					139438868	0	0	-34997063	108538329
	6	10	5002	1263	-34956620	246825825	0	0	34946316	215526869	'1	119		002 24		4502633	289874241	0	0	27782375	279806058
	7	12	6002	1259	-34972213	221753470	0	0	34983931	190420997	12	121		_			113407202	0	0	17078097	106091603
	8	14	7002	1264	-34984856	196678976	0	0	349/3333	140364039	1 24	122		002 9			282246091	0	ň	29416630	253907839
	9	16	8002	1195	-33433307	171603427 145645222	0	0	34301334	140200334	'3	124		002 12			257174774	0	٥	34966333	225844375
	10	18	9002	745 262		289808736	0	0	203/9223	1195/4/42	1 26	126		002 12			232072114	0	0	34950390	
	11	19 20	10002 10002	464		121421056	0	ŭ	-34991427	10502030308	'22	120		002 12			206998152	0	ň	34991643	
	12 13	21	11002	1200	34976650	288895427		,	-34034030	267670042	1 20	130		002 12			181922740	0	ō	34980475	
	14	23	12002	963	27565834	259900053	٨	ŭ	-34974079	237370042	1 79	132		002 10:			156847078	0	ŏ	34968526	125512297
	15	25	13002	1262	34906593	238692267	٨	0	-34993100	202199000	1 60	134		002 7			131770938	0	ō	25372861	105400927
	16	27	14002	1232	34973344	213649225	Ô	ŏ	-28355979 -34995378 -21438575 29522238 34257752 34946516 34985931 34973335 34961954 26579223 -34991427 1866745 -34974079 -34953186 -34992188 -34980485 -34972119 -34961178 -34999138 32712880	182317165	81	135		002 5			289989743	ŏ	ō	-34995948	
	17	29	15002	1223	34981981	188572927	ŏ	ŏ	-34972119	157239690	82	136					106665896	Ō	0	-31972536	105017168
	18	31	16002	905	34992429	163495756	ō	ŏ	-34961178	132164018	83	137		002 11			271123730	Ō	0	-34975942	242815921
	19	33	17002	1061		137930449	ō	0	-34999138	107061237	84	139		002 114			247890449	0	0	-34958406	217742510
	20	34	17002	205		285394256	ō	ŏ	32712880	275781602	85	141		002 10			219111090	0	0	-34999748	192635435
	21	35	18001			XXXXXXXXXX	×××××	XXXXXXXXXX	XXXXX		86	143	720	002 12	64 3	4963161	198892421	0	0	-34990704	167557714
	22	36	18002	961	-34970378	280768356	0	0	29088926	252597873	87	145	730	002 10	69 3		173815039	0		-34494045	142757594
	23	38	19002	1264	-34989133	255697049	0	0	34967682	224367519	8.8	147	7 740	002 9	19 3	4550313	148492408	0	0	-31815228	119143458
	24	40	20002	1262	-34952062	230594409	0	0	34951719	199293456	89	146	740	002 1	82 2	5051364	289978011	0	0	34963931	284858450
)	25	42	21002	1263	-34965157	205520375	0	0	34992960	174186641	90	149	750	002 6	05 3	4999463	123666210	0	0	-7451575	105017913
	26	44	22002	1262	-34976541	180444939	0	0	34981748	149110256	91	150				9772437	288294886	0	0	28453352	
,	27	46	23002	954	-34987356	155369291	0	0	34969626	124035643	92	152		002 12			266013592	0	0	34991060	234683297
	28	48	24002	627	-34999224	130293182	0	0	21336303	105788357	93	154		002 12			240941926	0	0	34974741	209609865
	29	49	25002	629	19229278	289974728	0	0	-34997137	266408969	94	156		002 12			215868747	0	0	34960991 34949150	184534360
•	30	50	25002	7	-34961456	105188333	0	0	-34636272	105003639	95	156		002 12			190762887	0	0	34949130	
)	31	51	26002	1105	34757937	272541516	0	0	-34976764	241339342	96	160		002 12			165687210 140611137	0	0	22690629	115503800
	32	53 55	27002	1160	34830455	247501533	0	0	-34959522	216265/11	97	162		002 3			289775361	0	0	~34966035	276754718
	33 34	57	28002 29002	1058 1264	23714301 34962026	216750877 197414384	0	0	-34940//1	151105404	30	164		002 3			115536020	0	0	-12788469	105009462
	35	59	30002	1031	34699599	172182706	ŏ	ŏ	-34332371	141372548	100			002 10			281417674	ō	ō	-34947809	251684690
	36	61	31002	918	34984279	147261141	ŏ	ŏ	-33503397	116752487	101			002 10			257849412	ō	ō	-34982137	
	37	62	31002	220		289984019	ŏ	ŏ	33931988	283963735	102			002 12			231303345	0	0	-34968268	201506692
	38	63	32002	451	34998784	122188386	ō	ō	-1530600	105904462	103			002 12			207764130	0	0	-34957466	176429580
	39	64	32002	989	-32556924	288281532	ō	ō	31193644	260365299	104			002 12	63 3	4950539	182656382	0	0	-34949196	151352224
	40	66	33002	1264	-34965109	264536399	ō	ō	34990975	233207169	105			002 9	35 3	4961747	157579452	0	0	-34991289	126246331
	41	68	34002	1264	-34983034		0	0	34974693	208133645	106	177	7 89	DO2 8:	29 3	0780451	130219581	0	0	-27718412	105013421
	42	70	35002	1264	-34997040	214391379	0	0	34961037	183058103	107	176	89	002 4	56 -	9987740	288285483	0	0	31052430	270767332
	43	72	36002	1257	-34954751	189285448	0	0	34949266	157981628	108			001		xxxxx	*****	xxxxxxx	xxxxxxx	XXXX.	
	44	74	37002	1214	-34965568	164209790	0	0	33524167	133698785	109	180	90	002 11	19 -3	4993271	274883160	0	0	34961244	243552824
	45	76	38002	677	-34922559	139102836	0	0	22524308	114103394	110	182	910	002 12		4957857	249780864	0	0	34998619	218449384
	46	77	39002	376	-2942635	289770456	0	0	-34966228	275278607	111			002 12			224708758	0	0	34983498	193374658
	47	78	39002	341	-34991678	114058782	0	0	-16294422	105005214	112			002 12			199634347	0	0	34970932	168298504
	48	79	40002	1120	34949580	281503409	0	0	-34947632	250208708	113			002 12			174558745	0	0	34959874	143222352
	49	81	41002	1071	33066967	255371663	0	0	-34982207	225106019	114						146914233	0	0	28941684	121360358
	50	83	42002	1263	34985076	231360947	0	0	-34968455	200030370	115						289242660	0	0	-34989362	285593468
	51	85	43002	1263	34996503	206286508	0	0	-34957789	174953209	116						124376062	0	0	8738796	105224940
	52	87	44002	1126	34950688	181178661	0	0	-34841048	149937635	117			002 10			289083043	0	0	-34972817	260522792
	53	89	45002	574	15124707	146570105	0	0	-34991099	124770283	118			002 9		8280993	263208395	0	0	-34952031	235452721
	54	91	46002	758	34977878	131028759	0	0	32712880 (XXXXX 29088926 34967662 34991748 34992960 34981748 34969626 21338303 -34997137 -34636272 -34976764 -34959522 -34946771 -34992080 -34332371 -33503397 33931988 -1530600 31193644 34990975 34974693 34961037 34974693 34966228 -16294422 -34947632 -34982207 -34968455 -34957789 -34841048 -34991099 -246377371 33235296	105020529	119			002 12:			240765545	0	0	34981244 34988619 34983498 34970932 34959874 28941684 -34989362 8738796 -34972817 -3499251 -3499251 -34970553	210347222
	55	92	46002	413		283539292	0	0	33235296	268121047	120						215512286	0	0	-349/6693	160192925
	56	93	47001		xxxxx	XXXXXXXXXX	XXXX	XXXXXXXXXX	XXXXX		121	201	1010	102 12	3	4983024	191528304	U	U	-347/0323	100192023
											1										

A3-12

-34951779

-26099857

414 207002

416 208002

-34946111

-34959342

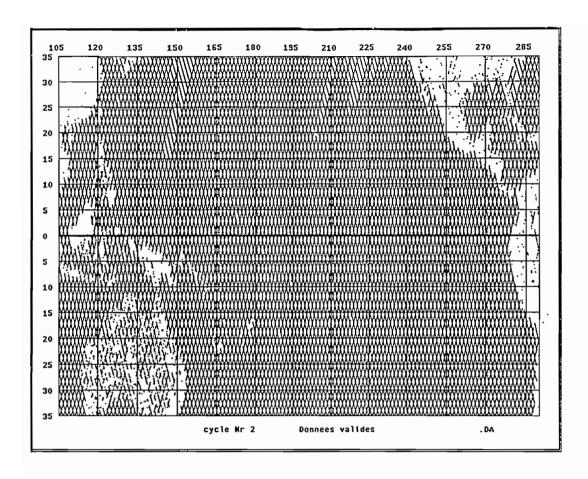
220267895 0

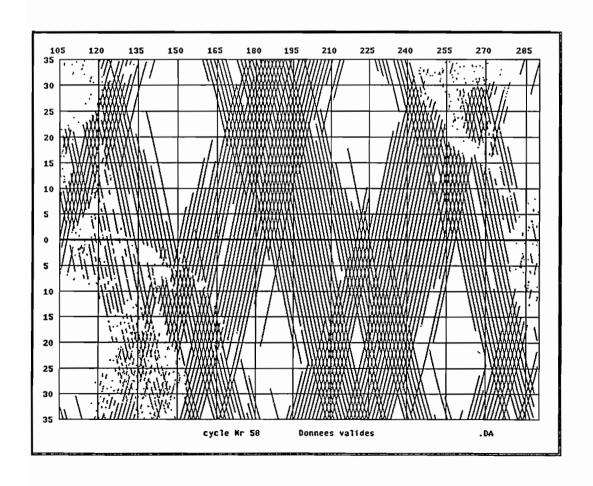
 -34950519

288262313 0

109613719 0

2000000	*********	***************************************	***** *******************************			*****			***************************************
252	418	209002	1232	-34971182	170118435	0	0	34660227	138969106
253	420	210002	615	-33300377	144101157	0	0	25335491	118699958
254	421	211002	270	-20200408	288524998	0	0	-34958334	281187860
255	422	211002	387	-34997554	119967765	0	0	-1799017	105003951
256	423	212002	1139	34956922	287412949	0	0	-34994192	256087104
257	425	213002	983	31985573	260692337	0	0	-34972735	231016881
258	427	214002	1262	34996343	237272192	0	0	-34957175	205942180
259	429	215002	1013	22500441	205868311	0	0	-34999106	180834837
260	431	216002	1242	34964429	187091525	0	0	-34990007	155757797
261	433	217002	943	34975836	162014778	0	0	-34978029	130682681
262	435	218002	1098	34720495	136786805	0	0	-34960926	105611350
263	436	218002	356	-2966768	289893366	0	0	31912150	274740771
264	437	219001		XXXXX	*****	XXX	*****	XXXXX	
265	438	219002	972	-34953107	279287177	0	0	18944952	255870952
266	440	220002	1263	-34972654	254216217	0	0	34983442	222886752
267	442	221002	1262	-34990302	229144811	0	0	34966866	197812940
268	444	222002	1263	-34949845	204040161	0	0	34953171	172737398
269	446	223002	1264	-34961903	178965048	0	0	34995536	147630498
270	448	224002	773	-34973458	153889746	0	0	34982606	122556379
271	450	225002	514	-34986257	128814026	0	0	11341621	108591797
272	451	226002	763	22544455	289986116	0	0	-34952919	264962180
273	453	227002	1090	34532109	270941815	0	0	-34985756	239861999
274	455	228002	1176	33952710	245535746	0	0	-34968148	214788501
275	457	229002	1263	34999146	221044447	0	0	-34954841	189712553
276	459	230002	1262	34954818	195938198	0	0	-34999629	164604278
277	461	231002	1027	34964825	170861199	0	0	-34989470	139528138
278	463	232002	932	34979097	145785927	0	0	-34973955	114455398
279	464	232002	246	20856423	288957011	0	0	34319698	282274677
280	465	233002	411	34993987	120713449	0	0	-82111	105006872
281	466	233002	1027	-34289536	287763888	0	0	30488547	259261278
282	468	234002	1264	-34959234	263060919	0	0	34996140	231731804
283	470	235002	1264	-34977734	237989545	0	0	34979199	206658554
284	472	236002	1264	-34992275	212916440	0	0	34964943	181583325
285	474	237002	1252	-34950614	187810788	0	0	34952561	156507211
286	476	238002	1218	-34962147	162735494	0	0	34179570	131861944
287	478	239002	651	-33780704	136988292	0	0	22692255	112554135
288	479	240002	376	-14322717	283678674	0	0	-34966029	273806119
289	480	240002	279	-34990091	112585359	0	0	-19733511	105023770
290	461	241002	1021	34679952	279877523	0	0	-34946400	248736673
291	483	242002	1098	30939831	252762026	0	0	-34980605	223634034
292	485	243002	1264	34987812	229889741	0	0	-34966289	198558663
293	487	244002	1261	34999691	204815543	0	0	-34955174	173481771


Nbre de mesures comptees : 270477
Nbre de traces manquantes : 5
Temps reference pour cycle nr 3 : 61356417


D

ယ

********************************* TRI PAR TRACE . ! Nr | Nr | Nbre | premiere position | position equateur |derniere position index|trace|revol | mes | Lat Lon | Lat Lon | Lat 1 1 1002 1089 34945959 179699699 0 293 487 244002 1261 34999691 204815543 0 0 -2#355979 151907903 0 -34955174 173481771 Nbre de mesures comptees i 270477 Nore de traces manquantes : 5 Temps reference utile pour le cycle nr 3 : 61356417 ... | Nr | Nr | Nbre | premiere position | position equateur (derniere position index|trace|revol | mes | Lat Lon | Lat Lon | Lat Lon 0 -30177747 1509#3321 0 -3496#601 173475319 1 1 1017 1044 34988368 179724922 0 293 487 244017 647 34992022 204812109 0 0 -34968601 173475319 Note de mesures comptees : 246446
Note de traces manquantes : 8 Temps reference utile pour le cycle nr 18 : \$3453866 | Nr | Nr | Nbre | premiere position | position equateur | derniere position index|trace|revol | mes | Lat Lon | Lat Lon | Lat 1 1 1018 833 34946107 179704045 0 0 -33766776 149069430 293 487 244018 1261 34956188 204788300 0 0 -34953347 173484702 Nore de mesures comptees : 233743 Nore de traces manquantes : 6 Temps reference utile pour le cycle nr 19 : \$4927029 ••• ****** FICHIER CYCLe45DAT

inde			Nr revol										positi Lat			ur	derniere Lat	position Lon
1	1		1045		552 1247		6305 34973			66551			0		0		9771600	151188730
bre	de t	rac	res co es mar nce ut	nqu	entes	1	1		1732 6 1r 4		12	241	02401					
•••																		
***	****	***	****	•••		FI	CHIER	cyc	:105	BDAT		,	*****	****	****	**		
.nde:	Nr	ce l	Nr revol	 !	Nbre mes	· I	premi	ere	pos	ition		!	positi Lat		quate		derniere	position Lon
inde:	Nr	ce l	Nr	1	Nbre mes		premi	ere	pos	ition Lon 7509	1566	1	positi	on e	quate	ur 		Lon
nde: 1 93 bre	l Nr citra 1 487 de m	24	Nr revol 1058 4058	i i i	Nbre mes 907 514 tees		premi La 26122 34986	427 5977	pos 1 2	1tion Lon 7509	1566	1	positi Lat	on e	quate	ur 	Lat 6390886	Lon 15286685


~~~~	

	7: 21950 8: 21951 9: 21948 10: 21937 11: 21923 1	
** ECARTS MOYENS MERIDIENS ET ZONAUX (micro-degres) **	13 : 21902	2 : 21914 3 : 21864 4 : 21923 5 : 21973
***************************************	31 : 21977 32 : 21981 33 : 21983 34 : 21986 35 : 21990 3	: 21997 : 22047
	43 : 22051 44 : 22054 45 : 22059 46 : 22066 47 : 22069 4	: 22071
Nombre de surfaces dont le nombre de donnees est inferieur au seuil : trace montante : 0 trace descendante: 114	49: 22072 50: 22070 51: 22063 52: 22050 53: 22035 55: 55: 22012 56: 22001 57: 21992 58: 21994 59: 2200	: 22023
	606 : 30525 607 : 30540 608 : 30560 609 : 30588 610 : 30619 611 : 30654 61;	: 30698
	613 : 30748 614 : 30802 615 : 30854 616 : 30901 617 : 30951 619	: 31002
		: 31250 : 31323
PREMIER ARC M1 LON nore mesures : 631	631 : 31336	
1: 22044	EUXIEME ARC M2 LAT nbre mesures : 631	
13 : 21974	1 : 55320 2 : 55313 3 : 55325 4 : 55339 5 : 55342	: 55345
19: 22037		55251
31 : 22025 32 : 22014 33 : 22005 34 : 22003 35 : 22007 36 : 22020	19 : 55103 20 : 55124 21 : 55149 22 : 55179 23 : 55217 24	: 55252
37 : 22033		55365 5 : 55397
49: 22059 50: 22061 51: 22063 52: 22065 53: 22066 54: 22061	37 : 55418	. 33391
55 : 22052    56 : 22044    57 : 22037    58 : 22030    59 : 22025    60 : 22021    61 : 22024    62 : 22037    63 : 22052    64 : 22068    65 : 22083    66 : 22093	606 : \$5262	
67 : 22102	607 : 55223 608 : 55191 609 : 55176 610 : 55166 611 : 55162 613	: 55175
 565 : 29205    566 : 29234    567 : 29257    568 : 29275    569 : 29293    570 : 29318		: 55330 : 55420
571 : 29350	625 : 55412 626 : 55406 627 : 55394 628 : 55368 629 : 55345 630	: 55331
577 : 29654 578 : 29705 579 : 29751 580 : 29789 581 : 29828 582 : 29867 583 : 29906 584 : 29936 585 : 29960 586 : 29983 587 : 30010 588 : 30031	631 : 55330	
589 : 30047 590 : 30061 591 : 30080 592 : 30104 593 : 30131 594 : 30160		
595 : 30192	REMIER ARC D1 LON nbre mesures : 631 1: 22022 2: 22025 3: 22020 4: 22015 5: 22012	: 22009
607 : 30634 608 : 30655 609 : 30675 610 : 30691 611 : 30704 612 : 30722	7: 22005 8: 21999 9: 21993 10: 21995 11: 21997 12	: 21996
613 : 30749 614 : 30779 615 : 30805 616 : 30830 617 : 30866 618 : 30914 619 : 30958 620 : 30998 621 : 31041 622 : 31087 623 : 31131 624 : 31160		: 22006
625 : 31174 626 : 31184 627 : 31191 628 : 31187 629 : 31180 630 : 31172	25 : 21996	: 21938
631 : 31173		: 21954 : 22073
	43 : 22086 44 : 22093 45 : 22095 46 : 22097 47 : 22094 48	: 22091
PREMIER ARC M1 LAT nbre mesures : 631	49 : 22084 50 : 22074 51 : 22064 52 : 22054 53 : 22047	
1: 55580 2: 55587 3: 55574 4: 55559 5: 55550 6: 55538		: 30630
7: 55522 8: 55466 9: 55448 10: 55426 11: 55413 12: 55398 13: 55393 14: 55398 15: 55417 16: 55445 17: 55475 18: 55506		: 31005
19: 55538 20: 55567 21: 55596 22: 55621 23: 55640 24: 55651	625 : 31290 626 : 31314 627 : 31342 628 : 31362 629 : 31370 630	: 31378
25 : 55654	631 : 31390	
37 : 55482		
43 : 55537 44 : 55527 45 : 55519 46 : 55513 47 : 55513 48 : 55514	REMIER ARC D1 LAT nbre mesures : 631	
606 : 55438		: 55487 : 55441
607 : 55407 608 : 55378 609 : 55347 610 : 55310 611 : 55267 612 : 55232	13 : 55446 14 : 55455 15 : 55459 16 : 55463 17 : 55467 19	: 55470
613 : 55215 614 : 55203 615 : 55184 616 : 55164 617 : 55163 618 : 55186 619 : 55202 620 : 55212 621 : 55230 622 : 55254 623 : 55276 624 : 55275		: 55444 : 55258
625 : 55248 626 : 55231 627 : 55209 628 : 55169 629 : 55124 630 : 55080	31 : 55232	: 55281
631 : 55057		: 55566 : 55576
DEUXIEME ARC M2 LON nbre mesures : 631 1: 21941		: 55162 : 55040

me				-	***	
<b>4</b> :	4	-4	٦u		·K	Δ
			"	6 -	7,	7 7

00	25:07													4
613 :		614 :	55113	615		55174	616		55235	617 :		618		55326
619 :		620 ı		621		55417	622		55435	623 t		624	-	55436
625 : 631 :		626 1	55442	627	:	55458	628	ı	55459	629 :	55442	630	:	55426
DEUXIEME			e mesures			31								
1 :		2 1	22013	3	ı	22019	-	:		5 :		6		22025
7 :		<b>8</b> 1			1		10	-	22016	11 :		12	-	22008
13 :		14 :		15	-	22032	16			17 :		18		22077
19 :		20 :		21		22107	22			23 1		24	-	22115
25 :		26 :		27	•		28	-		29 :		30	-	22130
31 :		32 1		33		22118	34			35 :		36	1	22080
37 :	22065	38 :	22049	39	:	22039	40	: '	22032	41 :	22034			
612 :						20241			20-52		20467			30886
613 : 619 :		614 : 620 :		615 621		30841 30975	616 622		30853 31017	617 : 623 :		618 624		31111
625		626 1		627		31206	628		31244	629 1		630		31306
631 :		626 1	31170	021	•	31206	028	•	31244	025 1	.31203	630	•	31300
DEUXIEME	ARC D2	LAT nbr	e mesures		6	31								
1 :	55471	2 :	55474	3	ı	55489	4	:	55504	5 :	55509	6	1	55509
7 :	55502	8 :	55506	9	:	55501	10	:	55489	11 :	55474	12	:	55469
	55476			15			16		55574	17 :		18		55647
	55676			21			22		55720	23 :		24	:	55726
	55732	26 1	55742	27	ı	55748	28	:	55751	29 ı	55752			
606 :	55485													
607 :	55475	608 :	55452	609	:	55426	610	t	55405	611 :	55390	612	:	55375
613 :	55340	614 :	55291	615	1	55243	616		55199	617 :	55160	618	:	55130
619 :	55107	620 :	55100	621	:	55107	622	:	55123	623 t	55154	624		55181
625 1	55201	626 t	55214	627	1	55230	628	1	55264	629 :	5529 <b>9</b>	630	:	55311
631 :	55313													

n N

 TRACE	Montante	nr 414	

Nr de l interva	ille / posit	ion du milieu	de 1 intervall	e   Nombres d	e mesures dans	l intervalle
 Ech nr : 165	std :	-25.881140	216.115901		res : 49	
	, moy et max de					
	s de 1 interval				Lon moy et la	
min	moy	max	degres	km	degres	km
	215.544512				-0.571389	
	moy et max de		Ecart de lat		Ecart de lati	
des mesure min	es de l interval moy	T-0				la Lat std km
	moy	/MEX		km		
-25.907635						0.076600
Ech nr : 166	Std:	-25.825720	216.091267		res: 49	
215.505983 -25.852595	215.518157 -25.825410	215.531809 -25.800005	0.025826 0.052590	2.583167 5.843801	-0.573110 0.000310	-63.683997 0.034483
25.632393 Sch nr : 167	-23.023410 Std :	-25.770300	216.066633		res : 49	0.034463
215.479654	215.491822	215.505466	0.025812	2.582966	-0.574811	-63.872951
-25.797552	-25.770365	-25,744962	0.052590	5.843801	-0.000065	-0.007221
Ech nr : 168	Std:	-25.714880	216.041999	Nbre mesu		***************************************
215.453345	215.465240	215.479144	0.025799	2.582874	-0.576759	-64.089460
-25.741857	-25.714754	-25.689916	0.051941	5.771684	0.000126	0.013953
Ech nr : 169	Std:	-25.659460	216.017365	Nbre mesu	res : 49	
215.416731	215.438410	215.452841	0.036110	3.616868	-0.578955	-64.333482
-25.686275	-25.658578	-25.632397	0.053878	5.986923	0.000882	0.097994
Ech nr : 170	Std:	-25.604040	215.992731	Nbre mesu	res : 49	
215.390470	215.411869	215.426559	0.036089	3.616448	-0.580862	-64.545340
-25.631218	-25.602960	-25.576693	0.054525	6.058818	0.001080	0.120064
Ech nr : 171	Std:	-25.548620	215.968097		res : 49	
215.364228	215.385349	215.400298	0.036070	3.616224	-0.582748	-64.754953
-25.575414 Ech nr : 172	-25.547337 Std:	-25.521630	0.053784	5.976478	0.001283	0.142599
215.338007	215.358850	-25.493200 215.374056	215.943463 0.036049	3.615794	res: 49 -0.584613	-64.962237
-25.520352	-25.491710	-25.466023	0.054329	6.037038	0.001490	0.165557
Ech nr : 173	Std:	-25.437780	215.918829	Nbre mesu		********
215.311806	215.332284	215.347647	0.035841	3.596598	-0.586545	-65.176832
-25.464920	-25.435923	-25.410950	0.053970	5.997146	0.001857	0.206396
Ech nr : 174	std :	-25.382360	215.894195	Nore mesu		
215.285624	215.305644	215.321448	0.035824	3,596563	-0.588551	-65.399737
-25.404447	-25.379883	-25.355142	0.049305	5.478772	0.002477	0.275260
•••						
 Ech nr :1079	Std :	24.772740	193.600425	Whys mean	ires: 49	
194.189034	194.206987	194.221737	0.032703	3.299577	0.606562	67.401181
24.745655	24.771695	24.800092	0.054437	6.049039	-0.001045	-0.116107
Ech nr :1080	Std :	24.828160	193.575791	Nbre mesu		-0.110107
194.163019	194.180716	194.195741	0.032722	3.300010	0.604925	67.219264
194.103019	134.160/16	134.133/41	0.032722	3.300010	0.004323	01.219264

						<b></b>	
	24.800849	24.827451	24.855538	. 0.054689	6.077042	-0.000709	-0.078802
Ech	nr :1081	Std:	24.883580	193.551157	Nbre mesures	: 49	
	194.136984	194.154425	194.169726	0.032742	3.300539	0.603268	67.035104
	24.857695	24.883203	24.910727	0.053032	5.892916	-0.000377	-0.041910
Ech	nr :1082	Std :	24.939000	193.526523	Nbre mesures	: 48	
	194.110930	194.128282	194.143691	0.032761	3.300977	0.601759	66.867453
	24.912881	24.938395	24.966409	0.053528	5.948031	-0.000605	-0.067211
Ech	nr :1083	Std:	24.994420	193.501889	Nore mesures	: 47	
	194.084857	194.102361	194.117636	0.032779	3.301304	0.600472	66.724468
	24.968064	24.993808	25.021588	0.053524	5.947587	-0.000612	-0.068015
	Ech nr :1084	St	d: 25.049	340 193.477255	Nbre mes	sures : 48	
	194.058764	194.076133	194.091562	0.032798	3.301739	0.598878	66.547360
	25.023243	25.048755	25.076764	0.053521	5.947254	-0.001085	-0.120586
Ech	nr :1085	Std :	25.105260	193.452621	Nbre mesures	: 48	
	194.032651	194.050030	194.065468	0.032817	3.302164	0.597409	66.384044
	25.078419	25.103929	25.131936	0.053517	5.946809	-0.001331	-0.147868
Ech	nr :1086	Std:	25.160680	193.427987	Nore mesures	: 48	
	194.006518	194.023906	194.039355	0.032837	3.302684	0.595919	66.218531
	25.133591	25.159100	25.187104	0.053513	5.946365	-0.001580	-0.175579
Ech	nr :1087	Std :	25.216100	193.403353	Nbre mesures		
	193.980366	193.997763	194.013222	0.032856	3.303099	0.594410	66.050814
	25.188759	25.214267	25.242269	0.053510	5.946031	-0.001833	-0.203695
Ech	nr :1088	Std:	25.271520	193.378719	Nore mesures		
	193.954194	193.971327	193.987069	0.032875	3.303494	0.592608	65.850596
	25.244570	25.270005	25.297430	0,052860	5.873803	-0.001515	-0.168368
Ech	nr :1089	Std:	25.326940	193.354085	Nbre mesures		
		193.944871	193.960896	0.039500	3.967392	0.590786	65.648140
	25.299726	25.325739	25.354241	0.054515	6.057707	-0.001201	-0.133476
Ech	nr :1090	Std:	25.382360	193.329451	Nbre mesures		
	193.895184	193.918394	193.934703	0.039519	3.967472	0.588943	65.443367
	25.359534	25.381469	25.409394	0.049860	5.540443	-0.000891	-0.099013
Ech	nr :1091	Std:	25.437780	193.304817	Nbre mesures		
	193.868951	193.891897	193.908490	0.039539	3.967646	0.587080	65.236371
	25.414688	25.437195	25.465175	0.050487	5.610115	-0.000585	-0.064961
Ech	nr :1092	Std:	25.493200	193.280183	Nbre mesures		
	193.842698	193.865653	193.882257	0.039559	3.967834	0.585470	65.057475
	25.469838	25.492344	25.520317	0.050479	5.609226	-0.000856	-0.095170
ECN	nr :1093	Std :	25.548620	193.255549	Nore mesures	0.583840	64.876315
	193.816425	193.839389 25.547488	193.856004 25.575455	0.039579 0.050471	3.968016 5.608338	-0.001132	-0.125790
Ech	25.524984 nr :1094	23.34/488 Std :	25.604040	193.230915	Nore mesures		-0.123790
ECII	193.790132	193.813105	193.829730	0.039598	3.968093	0.582190	64.692918
	25.580127	25.602629	25.630589	0.050462	5.607337	-0.001411	-0.156841
Ech	nr :1095	Std:	25.659460	193.206281	Nbre mesures		-0.130041
20	193.763819	193.786800	193.803437	0.039618	3.968265	0.580519	64.507260
	25.635265	25.657765	25.685720	0.050455	5.606560	-0.001695	-0.188311
Ech	nr :1096	Std :	25.714880	193.181647	Nbre mesures		-0.100311
2011	193.737485	193.760475	193.777123	0.039638	3.968431	0.578828	64.319321
	25.690400	25.712898	25.740847	0.050447	5.605671	-0.001982	-0.220203
Ech	nr :1097	Std:	25.770300	193.157013	Nore mesures		
	193.711130	193.734129	193.750788	0.039658	3.968592	0.577116	64.129130
	25.745531	25.768028	25.795969	0.050438	5.604671	-0.002272	-0.252506
1							

43-45

Nr de 1 inter	
Ech nr : 727	
Longitudes m	ın,
des mesu	res

A3-20

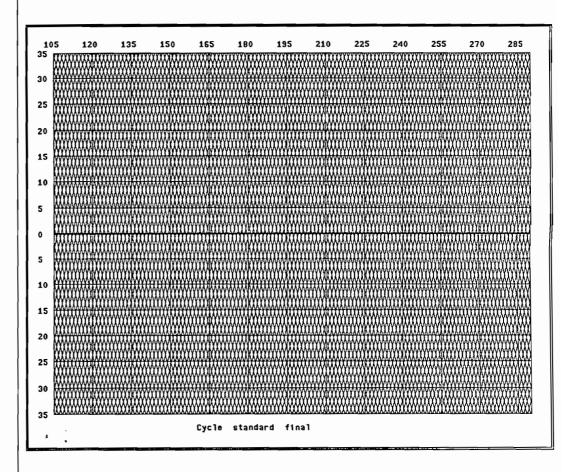
TRACE DESCENDANTE nr 459	
--------------------------	--

•••						
	alle   posit					
Nr de 1 interv	alle i bosit	ion du millet	de I interval	Te 1 Nombles d	e mesures dans .	I Intervalle
Ech nr : 727	Std :	-5.264900	177.939512	Nbre mesu	res : 46	
			•			
	n, moy et max de					
min	es de 1 interval moy	TO A X	degree	km	degres	km
178.165596	178.186291	178.197745	0.032149	3.557329	0.246779	27.422131
	, moy et max des					
des mesur	es de 1 interval	10			Lat moy et 1	
min	moy	RAX			degres	
	-5.264285					
•						
•••						
Ech nr : 728	std :	-5.320320	177.914878	Nore mesu		
178.143270		178.175422	0.032152		0.249051	27.674532
-5.343189		-5.293289	0.049900	5.544888	0.000248	0.027602
Ech nr : 729	Std :	-5.375740	177.890244	Nore mesu		********
178.120941		178.153095	0.032154	3.557237		27.930664
-5.399050		-5.349154	0.049896	5.544444 Nbre mesu	-0.000194	-0.021594
Ech nr : 730 178.098609	Std: 178.119268	-5.431160 178.130765	177.865610	3.557130	0.253658	28.186423
-5.454909		-5.405019	0.049890	5.543777	-0.000636	-0.070699
Ech nr : 731	-3.431790 Std :	-5.486580	177.840976	Nbre mesu		-0.070033
178.076274		178.108431	0.032157	3.556909		28.441821
-5.510768		-5.460883	0.049885	5.543221	-0.001077	-0.119721
Ech nr : 732	Std :	-5.542000	177.816342	Nbre mesu		-0.117,21
178.053935		178.086094	0.032159		0.258251	28.696841
-5.566626		-5.516746	0.049880	5.542666	-0.001518	-0.168663
Ech nr : 733	Std :	-5.597420	177.791708	Nbre mesu		
178.031593		178.063754	0.032161		0.260543	28.951484
-5.622483		-5.572609	0.049874	5.541999	-0.001958	-0.217521
• • •						
Ech nr :1248	Std :	-34.138720	165.105198	Whre mean	res : 47	
165.064803		165.105009	0.040206	3.697959		-1.968387
-34.164857		-34.113525	0.051332	5.704012	0.003095	0.343905
Ech nr :1249	Std :	-34.194140	165.080564		res : 47	0.010700
165.034396		165.074639	0.040243		-0.024113	-2.679439
-34.220538		-34.167797	0.052741	5.860580	0.003088	0.343169
Ech nr :1250	Std :	-34.249560	165.055930	Nbre mesu		
165.003956		165.041967	0.038011		-0.030223	-3.358366
-34.274801		-34.223817	0.050984	5.665342		0.407304
Ech nr :1251	Std:	-34.304980	165.031296		res: 47	0.107501
164.973482		165.010579	0.037097		-0.036692	-4.077196
-34.330573		-34.278470	0.052103	5.789685	0.003672	0.408021
Ech nr :1252	Std 1	-34.360400	165.006662	Nbre mesu		0,100021
	,	2		14054		

	164.942974	164.963467	164.979831	0.036857	3.381041	-0.043195	-4.799871
	-34.386599	-34.356715	-34.334525	0.052074	5.786463	0.003685	0.409463
Ech	nr :1253	Std:	-34.415820	164.982028	Nbre mesures	: 47	
	164.912432	164.931968	164.949325	0.036893	3.382081	-0.050060	-5.562653
	-34.441227	-34.412692	-34.389248	0.051979	5.775906	0.003128	0.347531
Ech	nr :1254	Std :	-34.471240	164.957394	Nbre mesures		
	164.878978	164.900434	164.918785	0.039807	3.646771	-0.056960	-6.329400
	-34.497424	-34.468663	-34.443487	0.053937	5.993479	0.002577	0.286363
Ech	nr :1255	Std :	-34.526660	164.932760	Nbre mesures		
	164.847024	164.868264	164.884127	0.037103	3.396738	-0.064496	-7.166832
	-34.552014	-34.525495	-34.502564	0.049450	5.494884	0.001165	0.129467
Ech	nr :1256	Std :	-34.582080	164.908126	Nbre mesures	: 47	
	164.816379	164.837582	164.853513	0.037134	3.397350	-0.070544	-7.838833
	-34.608151	-34.580007	-34.556793	0.051358	5.706901	0.002073	0.230359
2ch	nr :1257	Std :	-34.637500	164.883492	Nore mesures	: 47	
	164.785700	164.806918	164.822864	0.037164	3.397875	-0.076574	-8.508910
	-34.662371	-34.634227	-34.611015	0.051356	5.706679	0.003273	0.363712
ch	nr :1258	Std:	-34.692920	164.858858	Nbre mesures	: 47	
	164.754986	164.775892	164.792181	0.037195	3.398461	-0.082966	-9.219144
	-34.716584	-34.689017	-34.666687	0.049897	5.544555	0.003903	0.433708
ch	nr :1259	Std :	-34.748340	164.834224	Nbre mesures	: 47	
	164.724237	164.743850	164.760743	0.036506	3.333230	-0.090374	-10.042366
	-34.773643	-34.745530	-34.722463	0.051180	5.687122	0.002810	0.312198
ch	nr :1260	Std :	-34.803760	164.809590	Nore mesures	: 47	
	164.691087	164.711770	164.729983	0.038896	3.549021	-0.097820	-10.869739
	-34.830242	-34.802037	-34.777965	0.052277	5.809020	0.001723	0.191479
Ech	nr :1261	Std :	-34.859180	164.784956	Nore mesures	: 47	
	164.657964	164.680308	164.699189	0.041225	3.759000	-0.104648	-11.628441
	-34.885051	-34.857383	-34.833490	0.051561	5.729458	0.001797	0.199657
Ech	nr :1262	Std :	-34.914600	164.760322	Nbre mesures	: 47	
	164.627104	164.648810	164.668359	0.041255	3.759203	-0.111512	-12.391223
	-34.940548	-34.912723	-34.890076	0.050472	5.608449	0.001877	0.208586
Ech	nr :1263	Std 1	-34.970020	164.735688	Nbre mesures		
	164.596209	164.617604	164.637495	0.041286	3.759517	-0.118084	-13.121513
	-34.996027	-34.967479	-34.944256	0.051771	5.752794	0.002541	0.282351

***	*****	*******	*****		STANDARD FINA		*******	***********	******
***	****		*****				******	********	*****
inde		Nr   e revol				po:		ur  derniere  Lat	position Lon
1	1	1001	1262	34981599		0	164050286	-34972315	148400577
2	3	2001	1262	34981599		0	138967522	-34972315	123317813
3	5	3001	1018	34981599		0	113885996	-21454651	105013338
4 5	6 8	3001 4001	1010 1263	-20946910 -34964471	289981266 271900887	0	281332964	34968642	265675985
6	10	5001	1263	-34964471	246818775	0	256252250 231170138	34968642 34968642	240595271 215513159
7	12	6001	1263	-34964471	221736449	ŏ	206087812	34968642	190430833
8	14	7001	1263	-34964471	196654000	0	181005363	34968642	165348384
9	16	8001	1263	-34964471	171571840	0	155923203	34968642	140266224
10	18	9001	1263	~34964471	146489956	0	130841319	34968642	115184340
11 12	19 20	10001 10001	267 666	-20236767	289984626	0	0	-34972315	282663325
13	21	11001	1262	~34964471 34981599	121407905 288886325	0	105759268 273231356	1887793 -34972315	105010290 257581647
14	23	12001	1262	34981599	263803819	Ö	248148850	-34972315	232499141
15	25	13001	1262	34981599	238721943	ŏ	223066974	-34972315	207417265
16	27	14001	1262	34981599	213639728	ō	197984759	-34972315	182335050
17	29	15001	1262	34981599	188557974	0	172903005	-34972315	157253296
18	31	16001	1262	34981599	163475430	0	147820461	-34972315	132170752
19 20	33 34	17001 17001	1262 623	34981599		0	122738151	-34972315	107088442
21	35	18001	307	499844 34981599	289986619 113312615	0	0	34968642 18024830	274527885
22	36	18001	1263	-34964471	280753143	ŏ	265104506	34968642	249447527
23	38	19001	1263	-34964471	255671482	ŏ	240022845	34968642	224365866
24	40	20001	1263	-34964471	230589199	0	214940562	34968642	199283583
25	42	21001	1263	-34964471	205506789	0	189858152	34968642	174201173
26	44	22001	1263	-34964471	180424496	0	164775859	34968642	149118880
27 28	46 48	23001 24001	1263 1048	-34964471 -34964471	155342604 130260652	0	139693967 114612015	34968642 23056426	124036988 105005528
29	49	25001	978	19245500	289978084	ŏ	282083913	-34972315	266434204
30	50	25001	6	-34964471	105178320	0	0	-34687627	105021778
31	51	26001	1262	34981599	272656939	0	257001970	-34972315	241352261
32	53	27001	1262	34981599	247574726	0	231919757	-34972315	216270048
33 34	55 57	28001 29001	1262 1262	34981599 34981599	222492482 197410605	0	206837513	-34972315	191187804
35	59	30001	1262	34981599	172328391	Ö	181755636 156673422	-34972315 -34972315	166105927 141023713
36	61	31001	1262	34981599	147245691	ŏ	131590722	-34972315	115941013
37	62	31001	238	21838958	289986222	ō	0	34968642	283380433
38	63	32001	700	34981599	122164709	0	106509740	-3769969	105012381
39	64	32001	1263	-34964471	289605346	0	273956709	34968642	258299730
40 41	66 68	33001 34001	1263 1263	-34964471 -34964471	264524264 239442004	0	248875627 223793367	34968642 34968642	233218648
42	70	35001	1263	-34964471	214359629	ŏ	198710992	34968642	183054013
43	72	36001	1263	-34964471	189277216	ō	173628579	34968642	157971600
44	74	37001	1263	-34964471	164195184	0	148546547	34968642	132889568
45	76	38001	1263	-34964471	139113246	0	123464609	34968642	107807630
46	77	39001	588	-2383177	289990636	0	0	-34972315	275286753
47	78	39001	338	-34964471	114031131	0	0	-16292196	105000461
48 49	79 81	40001 41001	1262 1262	34981599	281509589	0	265854620 240772035	-34972315	250204911
50	83	42001	1262	34981599 34981599	256427004 231345123	0	215690154	-34972315 -34972315	225122326
51	85	43001	1262	34981599	206262983	Ö	190608014	-34972315	174958305
52	87	44001	1262	34981599	181181074	ŏ	165526105	-34972315	149876396
53	89	45001	1262	34981599	156098318	ō	140443349	-34972315	124793640
54	91	46001	1076	34981599	131016662	0	115361693	-24667366	105011901
55	92	46001	950	-17623020	289997191	0	282808627	34968642	267151648
56	93	47001	31	34981599	105936156	0	0	33322555	105009959
57	94	47001	1263	-34964471	273376598	0	257727961	34968642	242070982

									88
58	96	48001	1263	-34964471	248294527	0	232645890	34968642	216988911
59	98	49001	1263	-34964471	223212201	0	207563564	34968642	191906585
60	100	50001	1263	-34964471	198129745	0	182481108	34968642	166824129
61	102	51001	1263	-34964471	173047552	0	157398915	34968642	141741936
62	104	52001	1263	-34964471	147965667	0	132317030	34968642	116660051
63	105	53001	208	-23506506	289980064	0	0	-34972315	284139011
64	106	53001	733	-34964471	122883622	0	107234985	5600033	105007653
65	107	54001	1250	34319308	289988646	0	274707060	-34972315	259057351
66	109	55001	1262	34981599	265279398	0	249624429	-34972315	233974720
67	111	56001	1262	34981599	240197887	0	224542918	-34972315	208893209
68	113	57001	1262	34981599	215115645	0	199460676	-34972315	183810967
69	115	58001	1262	34981599	190033873	0	174378904	-34972315	158729195
70	117	59001	1262	34981599	164951359	0	149296390	-34972315	133646681
71	119	60001	1262	34981599	139868742	0	124213773	-34972315	108564064
72	120	60001	556	4218075	289984762	0	0	34968642	276003447
73	121	61001	370	34981599	114788349	0	0	14529695	105006178
74	122	61001	1263	-34964471	282228873	0	266580236	34968642	250923257
75	124	62001	1263	-34964471	257147282	0	241498645	34968642	225841666
76	126	63001	1263	-34964471	232064970	0	216416333	34968642	200759354
77	128	64001	1263	-34964471	206982536	0	191333899	34968642	175676920
78	130	65001	1263	-34964471	181900193	0	166251556	34968642	150594577
79	132	66001	1263	-34964471	156818255	0	141169618	34968642	125512639
80	134	67001	1104	-34964471	131736282	0	116087645	26157607	105023415
81	135	68001	917	15859950	289993839	0	283559664	-34972315	267909955
82	136	68001	55	-34964471	106653828	0	0	-31972270	105006103
83	137	69001	1262	34981599	274132304	0	258477335	-34972315	242827626
84	139	70001	1262	34981599	249050301	0	233395332	-34972315	217745623
85	141	71001	1262	34981599	223968030	0	208313061	-34972315	192663352
86	143	72001	1262	34981599	198886082	0	183231113	-34972315	167581404
87	145	73001	1262	34981599	173803896	0	158148927	-34972315	142499218
88	147	74001	1262	34981599	148721249	0	133066280	-34972315	117416571
89	148	74001	180	25050869	289976473	0	0	34968642	284855877
90	149	75001	766	34981599	123640202	0	107985233	-7440979	105019061
91	150	75001	1227	-32971692	289971985	0	275432195	34968642	259775216
92	152	76001	1263	-34964471	265999621	0	250350984	34968642	234694005
93	154 156	77001 78001	1263	-34964471	240917350	0	225268713	34968642	209611734
95	158	79001	1263 1263	-34964471 -34964471	215834956 190752500	0	200186319 175103863	34968642 34968642	184529340 159446884
96	160	80001	1263	-34964471	165670413	ŏ	150021776	34968642	134364797
97	162	81001	1263	-34964471	140588453	0	124939816	34968642	109282837
98	163	82001	521	-6107363	289980918	٥	124939816	-34972315	276761922
99	164	82001	401	-34964471	115506320	0	0	-12798489	105008404
100	165	83001	1262	34981599	282984768	o	267329799	-34972315	251680090
101	167	84001	1262	34981599	257902480	ō	242247511	-34972315	226597802
102	169	85001	1262	34981599	232820284	ō	217165315	-34972315	201515606
103	171	86001	1262	34981599	207738104	ō	192083135	-34972315	176433426
104	173	87001	1262	34981599	182656228	ō	167001259	-34972315	151351550
105	175	88001	1262	34981599	157573489	0	141918520	-34972315	126268811
106	177	89001	1131	34981599	132491575	0	116836606	-27713001	105021416
107	178	89001	887	-14130080	289988654	0	284283500	34968642	268626521
108	179	90001	81	34981599	107411185	0	0	30552325	105007913
109	180	90001	1263	-34964471	274851624	0	259202987	34968642	243546008
110	182	91001	1263	-34964471	249769603	0	234120966	34968642	218463987
111	184	92001	1263	-34964471	224687275	0	209038638	34968642	193381659
112	186	93001	1263	-34964471	199604813	0	183956176	34968642	168299197
113	188	94001	1263	-34964471	174522585	0	158873948	34968642	143216969
114	190	95001	1263	-34964471	149440692	0	133792055	34968642	118135076
115	191	96001	152	-26603763	289990422	0	0	-34972315	285614023
116	192	96001	799	-34964471	124358651	0	108710014	9259621	105009338
117	193	97001	1201	31601249	289983341	ō	276182091	-34972315	260532382
118	195	98001	1262	34981599	266754631	0	251099662	-34972315	235449953
119	197	99001	1262	34981599	241672640	0	226017671	-34972315	210367962
120	199	100001	1262	34981599	216590384	0	200935415	-34972315	185285706
121	201	101001	1262	34981599	191508594	0	175853625	-34972315	160203916
122	203	102001	1262	34981599	166426125	0	150771156	-34972315	135121447


$\sigma$
1
Ÿ
2
12

		// <b>* 2</b> U								414-4	+57	.ك				500000000000000000000000000000000000000				
123	205	103001	1262	34981599	141343689	0	125688720	-34972315	110039011		188	311	156001	1262	34981599	252000035	0	236345066	-34972315	220695357
	206	103001	490	7871020	289996297		0	34968642	277478360				157001	1262	34981599	226917799		211262830	-34972315	195613121
125		104001	434	34981599		ŏ	ŏ	10986841	105012888		190		158001	1262	34981599	201835783		186180814	-34972315	170531105
126		104001	1263	-34964471		ō	268054877	34968642	252397898		191		159001	1262	34981599		0	161098760	-34972315	145449051
		105001	1263	-34964471		0	242973396	34968642	227316417		192		160001	1262	34981599	151670949	0	136015980	-34972315	120366271
		106001	1263	-34964471		0	217891093	34968642	202234114		193		160001	73	30980803	289981107	0	0	34968642	287805608
129		107001	1263	-34964471	208457311		192808674	34968642	177151695		194		161001	895	34981599	126589643		110934674	-14628975	105021127
130		108001	1263	-34964471		ō	167726318	34968642	152069339		195		161001	1124	-27261641	289978509	0	278381648	34968642	262724669
131	218	109001	1263	-34964471	158293007	0	142644370	34968642	126987391		196	324	162001	1263	-34964471	268949431	0	253300794	34968642	237643815
132	220	110001	1158	-34964471	133211046	0	117562409	29154628	105020569		197	326	163001	1263	-34964471	243867231	0	228218594	34968642	212561615
133	221	111001	853	12315055	289985427	0	285034409	-34972315	269384700		198	328	164001	1263	-34964471	218784875	0	203136238	34968642	187479259
134		111001	106	-34964471	108128711		0	-29147893	105014845		199	330	165001	1263	-34964471	193702420		178053783	34968642	162396804
135		112001	1262	34981599	275607196		259952227	-34972315	244302518		200		166001	1263	-34964471	168620300		152971663	34968642	137314684
136		113001	1262	34981599	250525102		234870133	-34972315	219220424		201		167001	1263	-34964471	143538382		127889745	34968642	112232766
137		114001	1262	34981599	225442849		209787880	-34972315	194138171				168001	391	-13348657	289982987		0	-34972315	279711807
138		115001	1262	34981599	200360869		184705900	-34972315	169056191		203		168001	532	-34964471	118456293		0	-5540976	105011189
139		116001	1262	34981599	175278751		159623782	-34972315	143974073		204		169001	1262	34981599	285934741		270279772	-34972315	254630063
140		117001	1262	34981599		0	134540851	-34972315	118891142		205		170001	1262	34981599	260852478		245197509	-34972315	229547800
141		117001	125	28101190		0	0	34968642	286330470		206		171001	1262	34981599		0	220115359	-34972315	204465650 179383453
		118001	832	34981599	125114610		109459641	-11120186	105001119		207		172001	1262	34981599	210688131		195033162	-34972315	
143		118001	1177	-30201894	289979264		276906603 251825820	34968642	261249624		208		173001 174001	1262	34981599 34981599	185606345 160523704		169951376 144868735	-34972315 -34972315	154301667 129219026
		119001 120001	1263 1263	-34964471 -34964471	267474457 242392210	0	226743573	34968642 34968642	236168841 211086594		210		175001	1262 1234	34981599	135441273		119786304	-33424768	105001837
145 146		121001	1263	-34964471		0.	201661190	34968642	186004211		211		175001	757	-6926661	289991906		287233090	34968642	271576111
		122001	1263	-34964471	192227361	-	176578724	34968642	160921745				176001	189	34981599		ō	0	24563221	105009275
148		123001	1263	-34964471	167145249		151496612	34968642	135839633				176001	1263	-34964471	277801632		262152995	34968642	246496016
149		124001	1263	-34964471	142063300		126414663	34968642	110757684		214		177001	1263	-34964471	252719775		237071138	34968642	221414159
150		125001	456	-9725992	289996513		0	-34972315	278236741		215		178001	1263	-34964471	227637472		211988835	34968642	196331856
151		125001	466	-34964471		0	Ö	-9194103	105006368		216	358	179001	1263	-34964471	202555035		186906398	34968642	171249419
152	251	126001	1262	34981599	284459623	0	268804654	-34972315	253154945		217	360	180001	1263	-34964471	177472773	0	161824136	34968642	146167157
153	253	127001	1262	34981599	259377139	0	243722170	-34972315	228072461		218		181001	1263	~34964471		0	136742252	34968642	121085273
154		128001	1262	34981599	234295151		218640182	-34972315	202990473		219		182001	47	-32425846	289973159		0	-34972315	288564194
155		129001	1262	34981599	209212946		193557977	-34972315	177908268		220		182001	927	-34964471	127308896		111660259	16350511	105016708
156		130001	1262	34981599	184131105		168476136	-34972315	152826427				183001	1095	25726190	289985847		279132338	-34972315	263482629
157		131001	1262	34981599		0	143393430	-34972315	127743721			367	184001	1262	34981599	269704976		254050007	-34972315	238400298
158		132001	1184	34981599		0	118311522	-30651690	105009355		223	369	185001	1262	34981599		0	228967970 203885721	-34972315 -34972315	213318261 188236012
159 160		132001 133001	823 133	-10581154 34981599		0	285758349	34968642 27664643	270101370 105024120		224	371 373	186001 187001	1262 1262	34981599 34981599	219540690 194458873		178803904	-34972315	163154195
		133001	1263	-34964471	276326412	•	260677775	34968642	245020796				188001	1262	34981599	169376534		153721565	-34972315	138071856
		134001	1263	-34964471	251244465		235595828	34968642	219938849		227		189001	1262	34981599	144293957		128638988	-34972315	112989279
163		135001	1263	-34964471	226162147		210513510	34968642	194856531		228		189001	360	15074319	289983189		0	34968642	280428589
164		136001	1263	-34964471		ŏ	185431057	34968642	169774078		229	379	190001	566	34981599	119213124		ō	3668126	105014898
165		137001	1263	-34964471		ō	160348808	34968642	144691829		230	380	190001	1263	-34964471	286653708		271005071	34968642	255348092
166	276	138001	1263	-34964471	150915556	0	135266919	34968642	119609940		231	382	191001	1263	-34964471	261572442	0	245923805	34968642	230266826
167	277	139001	98	-29601757	289976804	0	0	-34972315	287088876		232	384	192001	1263	-34964471	236490160	0	220841523	34968642	205184544
168	278	139001	864	-34964471	125833536	0	110184899	12861678	105007563		233	386	193001	1263	-34964471	211407770	0	195759133	34968642	180102154
169	279	140001	1149	28723455	289976210	0	277656978	-34972315	262007269		234	388	194001	1263	-34964471	186325391	0	170676754	34968642	155019775
		141001	1262	34981599	268229411		252574442	-34972315	236924733		235		195001	1263	-34964471	161243412		145594775	34968642	129937796
		142001	1262	34981599	243147542		227492573	-34972315	211842864		236		196001	1258	-34964471	136161469		120512832	34693003	105011756
		143001	1262	34981599	218065284		202410315	-34972315	186760606		237	393	197001	722	5053198	289994039		287984776	-34972315	272335067
173			1262	34981599	192983479		177328510	-34972315	161678801		238		197001	217	-34964471	111079180		0	-22997760	105008259
174		145001	1262	34981599		0	152246101	-34972315	136596392		239	395	198001	1262	34981599	278557665		262902696	-34972315	247252987
175		146001	1262	34981599		0	127163585	-34972315	111513876		240	397	199001	1262	34981599		0	237820606	-34972315	222170897
176		146001	424	11532320	4	0	0	34968642	278953197		241	399	200001	1262	34981599	228393359		212738390	-34972315	197088681
		147001 147001	500	34981599		0	0	7326256	105002832		242	401	201001 202001	1262	34981599	203311309		187656340 162574348	-34972315 -34972315	172006631 146924639
178			1263	-34964471		0	269529700	34968642	253872721			403		1262	34981599	178229317				
		148001	1263	-34964471		0	244448323	34968642	228791344		244	405 406	203001 203001	1262	34981599	153146546		137491577	-34972315 34968642	121841868 289281230
180		149001	1263	-34964471	235014661		219366024	34968642	203709045		245	406	203001	24 958	33698804 34981599	289993601 128065138		112410160	-18130181	105005554
		150001 151001	1263 1263	-34964471 -34964471		0	194283615 169201243	34968642 34968642	178626636 153544264		247	408	204001	1069	-24216519	289998981		112410169 279856926	34968642	264199947
182 183		152001	1263	-34964471		0	144119276	34968642	128462297		248	410	205001	1263	-34964471	270424976		254776339	34968642	239119360
184		153001	1209	-34964471		ŏ	119037320	31978145	105028454		249	412	206001	1263	-34964471		ŏ	229694172	34968642	214037193
185		154001	788	8716963	289990396	-	286509293	-34972315	270859584		250	414	207001	1263	-34964471		ō	204611823	34968642	188954844
186		154001	160	-34964471		ō	0	-26153357	105014543		251		208001	1263	-34964471	195178173		179529536	34968642	163872557
		155001	1262	34981599	277082283	0	261427314	-34972315	245777605		252	418	209001	1263	-34964471	170096024		154447387	34968642	138790408
											1									

ج ر ع

arpi	
ω	
1	
O	
W	

7/////	w		<b>***</b> ***********				(\$70,000,400,000)	N + 1 + 2 + 5 (J + 11)	N. S. W. V. W.
253	420	210001	1263	-34964471	145014114	0	129365477	34968642	113708498
254	421	211001	328	-16852775	289980883	0	0	-34972315	281187509
`255	422	211001	599	-34964471	119932034	0	0	-1823774	105006936
256	423	212001	1262	34981599	287410467	0	271755498	-34972315	256105789
257	425	213001	1262	34981599	262328206	0	246673237	-34972315	231023528
258	427	214001	1262	34981599	237246056	0	221591087	-34972315	205941378
259	429	215001	1262	34981599	212163842	0	196508873	-34972315	180859164
260	431	216001	1262	34981599	187082070	0	171427101	-34972315	155777392
261	433	217001	1262	34981599	161999469	0	146344500	-34972315	130694791
262	435	218001	1262	34981599	136917350	0	121262381	-34972315	105612672
263	436	218001	690	-3210173	289983465	0	288709123	34968642	273052144
264	437	219001	247	34981599	111836789	Ō	0	21352624	105011461
265	438	219001	1263	-34964471	279277284	0	263628647	34968642	247971668
266	440	220001	1263	-34964471	254195528	0	238546891	34968642	222889912
267	442	221001	1263	-34964471	229113242	0	213464605	34968642	197807626
268	444	222001	1263	-34964471	204030824	0	188382187	34968642	172725208
269	446	223001	1263	-34964471	178948553	0	163299916	34968642	147642937
270	448	224001	1263	-34964471	153866674	0	138218037	34968642	122561058
271	450	225001	989	-34964471	128784710	0	113136073	19788460	105001371
272	451	226001	1038	22570682	289989471	0	280608148	-34972315	264958439
273	453	227001	1262	34981599	271180833	0	255525864	-34972315	239876155
274	455	228001	1262	34981599	246098790	0	230443821	-34972315	214794112
275	457	229001	1262	34981599	221016549	0	205361580	-34972315	189711871
276	459	230001	1262	34981599	195934711	0	180279742	-34972315	164630033
277	461	231001	1262	34981599	170852441	0	155197472	-34972315	139547763
278	463	232001	1262	34981599	145769810	0	130114841	~34972315	114465132
279	464	232001	298	18511963	289986510	0	0	34968642	281904439
280	465	233001	633	34981599	120688723	0	105033754	-55522	105011732
281	466	233001	1263	-34964471	288129334	0	272480697	34968642	256823718
282	468	234001	1263	-34964471	263048344	0	247399707	34968642	231742728
283	470	235001	1263	-34964471	237966070	0	222317433	34968642	206660454
284	472	236001	1263	-34964471	212883687	0	197235050	34968642	181578071
285	474	237001	1263	-34964471	187801289	0	172152652	34968642	156495673
286	476	238001	1263	-34964471	162719284	0	147070647	34968642	131413668
287	478	239001	1263	-34964471	137637342	0	121988705	34968642	106331726
288	479	240001	655	1333250	289989602	0	289460608	-34972315	273810899
289	480	240001	276	-34964471	112555217	0	0	-19727299	105013070
290	481	241001	1262	34981599	280033694	0	264378725	-34972315	248729016
291	483	242001	1262	34981599	254951442	0	239296473	-34972315	223646764
292	485	243001	1262	34981599	229869108	0	214214139	-34972315	198564430
293	487	244001	1262	34981599	204787017	0	189132048	-34972315	173482339



```
index[tr| rev |
 1 1 1002
      premiere et derniere positions de la trace reelle
      Don: 34945959 179699699 -28355979 151907903
      premiere et derniere positions de la trace standard
Std: 34981599 179705255 -34972315 148400577
Nbre de mes | Nbre de mes| Nbre | Nbre moy!Nbre decalage
                                                |Nbre don|Nbre don|Nbre saut
Nore de mes ; Nore ue mes; de la trace | de la trace | de la trace | de fec | deuxieme | deuxieme
                                               | perdu |ignoree |realise
 reelle | reelle | prem phase | phase | phase
                                               1 1 1
 don: 1089 std: 1262 jet: 1086 moy: 3 pre: 0 pos: 0 per: 0 xx 0 saut: 3
Don: 34945959 179699699 -28355979 151907903
Std: 34981599 179705255 -34972315 148400577
don: 1089 std: 1262 jet: 1086 moy: 3 pre: 0 pos: 0 per: 0 xx 0 saut: 3
2 3 2002
Don: 15676766 145327405 -34995378 123291981
Std: 34981599 154622491 -34972315 123317813
don: 608 std: 1262 jet: 606 moy: 1 pre: 0 pos: 1 per: 0 xx 0 saut: 2
 3 5 3002
Don: 34973663 129550144 -21438575 105015923
Std: 34981599 129540965 -21454651 105013338
don: 689 std: 1018 jet: 687 moy: 2 pre: 0 pos: 0 per: 0 xx 0 saut: 2
4 6 3002
Don: -20493324 289783772 29522238 268606033
Std: -20946910 289981266 34968642 265675985
don: 400 std: 1010 jet: 400 moy: 0 pre: 0 pos: 0 per: 0 xx 0 saut: 1
5 8 4002
Don: -34991893 271928084
                      34257362 240998814
Std : -34964471 271900887 34968642 240595271
 don: 1247 std: 1263 jet: 1242 moy: 5 pre: 0 pos: 0 per: 0 xx 0 saut: 4
 6 10 5002
Don: -34956620 246825825 34946516 215526869
Std : -34964471 246818775 34968642 215513159
don: 1263 std: 1263 jet: 1259 moy: 4 pre: 0 pos: 0 per: 0 xx 0 saut: 3
 7 12 6002
Don: -34972213 221753470 34985931 190420997
Std : -34964471 221736449 34968642 190430833
don: 1259 std: 1263 jet: 1253 moy: 6 pre: 0 pos: 0 per: 0 xx 0 saut: 5
```

188 319 160002 Don: 32961729 150564924 -34978874 120354267 Std: 34981599 151670949 -34972315 120366271 don: 817 std: 1262 jet: 816 moy: 1 pre: 0 pos: 0 per: 0 xx 0 saut: 2 189 320 160002 Don: 30996978 289977834 34975022 287805731 Std : 30980803 289981107 34968642 287805608 don: 74 std: 73 jet: 73 moy: 1 pre: 0 pos: 0 per: 0 xx 0 saut: 0 190 321 161002 Don: 33902578 126001645 -14652731 105015710 Std: 34981599 126589643 -14628975 105021127 don: 698 std: 895 jet: 696 moy: 2 pre: 0 pos: 0 per: 0 xx 0 saut: 1 191 322 161002 Don: -25367667 289078217 30712989 265046257 Std: -27261641 289978509 34968642 262724669 don: 583 std: 1124 jet: 582 moy: 1 pre: 0 pos: 0 per: 0 xx 0 saut: 3 192 324 162002 Don: -34951607 268959934 34949029 237660922 Std : -34964471 268949431 34968642 237643815 don: 1262 std: 1263 jet: 1258 moy: 4 pre: 0 pos: 0 per: 0 xx 0 saut: 3 193 326 163002 Don: -34969825 243888246 34968642 212561615 Std: -34964471 243867231 34968642 212561615 don: 1264 std: 1263 jet: 1258 moy: 6 pre: 0 pos: 0 per: 0 xx 0 saut: 5 285 481 241002 Don: 34679952 279877523 -34946400 248736673 Std : 34981599 280033694 -34972315 248729016 don: 1021 std: 1262 jet: 1018 moy: 3 pre: 0 pos: 0 per: 0 xx 0 saut: 2 286 483 242002 Don: 30939831 252762026 -34980605 223634034 Std: 34981599 254951442 -34972315 223646764 don: 1098 std: 1262 jet: 1095 moy: 3 pre: 0 pos: 0 per: 0 xx 0 saut: 3 287 485 243002 Don: 34987812 229889741 -34972315 198564430 Std: 34981599 229869108 -34972315 198564430 don: 1264 std: 1262 jet: 1260 moy: 4 pre: 0 pos: 0 per: 0 xx 0 saut: 2 288 487 244002 Don: 34999691 204815543 -34955174 173481771 Std: 34981599 204787017 -34972315 173482339 don: 1261 std: 1262 jet: 1256 moy: 5 pre: 0 pos: 0 per: 0 xx 0 saut: 3

e : 🕶

٠.

```
CYCLE: 1

Avant affectation:
```

```
Note de mesures lues et presentes: 258915

Note de mesures exploitables : 227637

Note de mesures futures : 9943

Note de mesures invalides : 21335

Couverture du cycle en donnees exploitables : 0.718998
```

```
Pendant affectation:

Nbre affectations directes: 258008 Pre affectation: 10 Post affectation: 12

Nbre de moyennes: 876 Nbre de donnee non exploitables perdues: 9

Nbre de sauts: 797

Nbre de donnees ignorees: 0
```

```
Apres affectation:
Nbre de mesures lues et presentes: 258030
Nbre de mesures exploitables : 226818 proportion : 0.879037
Nbre de mesures futures : 9928 proportion : 0.038476
Nbre de mesures invalides : 21284 proportion : 0.082487
Couverture du cycle en donnees exploitables : 0.716411
```

w

2

```
Avant interpolation:

Nore de mesures lues et presentes: 258030

Nore de mesures exploitables : 226818 proportion: 0.879037

Nore de mesures futures : 9928 proportion: 0.038476

Nore de mesures invalides : 21284 proportion: 0.082487
```

Couverture du cycle en données exploitables : 0.716411

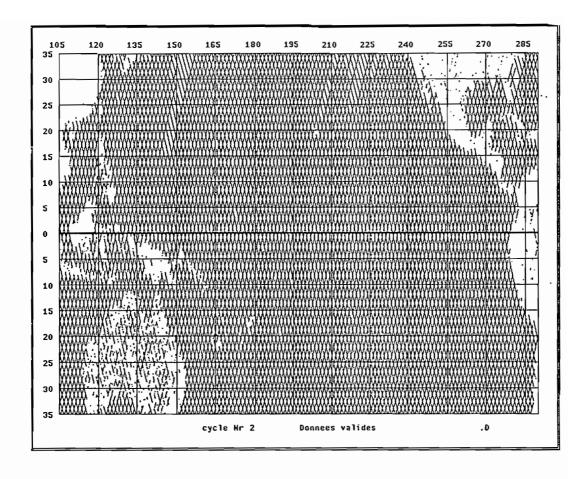
( nbre de positions du cycle standard final : 316603)

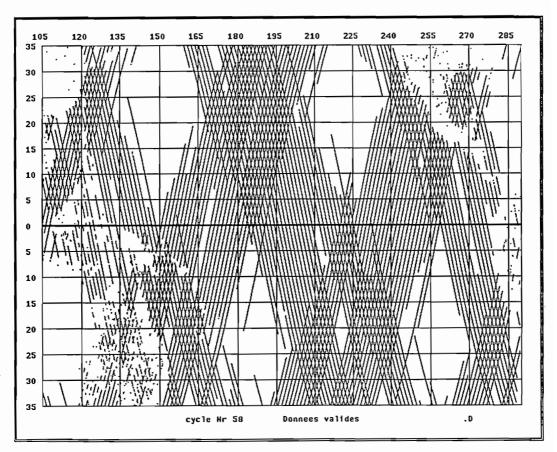
```
Interpolation:
données interpolees: 259098 don future perdue : 429 don exploitables perdues: 1862 don invalide perdue: 1755 don limite de zone : 213 Nbre de données exploitables crees : 743

Apres interpolation :
```

```
Nbre de mesures exploitables : 225699 proportion : 0.871095
Nbre de mesures exploitables : 225699 proportion : 0.871095
Nbre de mesures futures : 9553 proportion : 0.036870
Nbre de mesures invalides : 23846 proportion : 0.092035
Couverture du cycle en donnees exploitables : 0.712877
```

```
CYCLE : 2
Avant affectation :
  Nore de mesures lues et presentes: 270477
     Nbre de mesures exploitables
                                   : 249102 proportion : 0.920973 ( hauteur + corrections valides)
     Nbre de mesures futures
                                    : 6007 proportion : 0.022209 ( hauteur valide, correction inva
lide)
     Nore de mesures invalides
                                    : 15368 proportion: 0.056818 (hauteur invalide)
 Couverture du cycle en données exploitables : 0.786796
Pendant affectation :
   Nore affectations directes: 269507 Pre affectation: 13 Post affectation : 15
   Nbre de moyennes: 939
                                      Nbre de donnee non exploitables perdues : 3
   Nbre de sauts : 820
   Nore de donnees ignorees :
Apres affectation:
  Nore de mesures lues et presentes: 269535
     Nore de mesures exploitables
                                    : 248196 proportion : 0.920830
     Nbre de mesures futures
                                    : 5988, proportion: 0.022216
     Nbre de mesures invalides
                                    : 15351 proportion: 0.056954
 Couverture du cycle en donnees exploitables : 0.783934
.
Avant interpolation :
  Nore de mesures lues et presentes: 269535
     Nbre de mesures exploitables
                                   : 248196 proportion : 0.920830
     Nbre de mesures futures
                                    : 5988 proportion : 0.022216
     Nbre de mesures invalides
                                    : 15351 proportion: 0.056954
 Couverture du cycle en donnees exploitables : 0.783934
Interpolation :
 donnees interpolees: 270666 Nbre total de donnees perdues par interpol : 3727
 don future perdue : 278 don exploitables perdues: 1722 don invalide perdue: 1727
 don limite de zone : 205
 Nbre de données exploitables crees : 799
Apres interpolation :
  Nore de mesures lues et presentes: 270666
     Nbre de mesures exploitables : 247273 proportion : 0.913572
     Nbre de mesures futures
                                    : 5739 proportion : 0.021203
     Nbre de mesures invalides
                                    : 17654 proportion : 0.065224
 Couverture du cycle en données exploitables : 0.781019
 ( nbre de positions du cycle standard final : 316603)
```


**| ...** 


. . .

```
A3-26
```

```
CYCLE : 46
Avant affectation :
  Nore de mesures lues et presentes: 223153
     Nbre de mesures exploitables : 174861 proportion : 0.783592
                                 : 25156 proportion: 0.112730
     Nbre de mesures futures
                                   : 23136 proportion: 0.103678
     Nbre de mesures invalides
 Couverture du cycle en données exploitables : 0.552304
Pendant affectation :
   Nore affectations directes: 222345 Pre affectation: 9 Post-affectation: 10
   Nore de moyennes: 778 Nore de donnee non exploitables perdues:
   Nbre de sauts : 683
   Nbre de donnees ignorees :
Apres affectation:
   Nore de mesures lues et presentes: 222364
     Nore de mesures exploitables : 174248 proportion : 0.783616
     Nbre de mesures futures
                                   : 25061 proportion: 0.112703
     Nbre de mesures invalides
                                   : 23055 proportion: 0.103681
 Couverture du cycle en données exploitables : 0.550367
Avant interpolation :
  Nbre de mesures lues et presentes: 222364
     Nbre de mesures exploitables : 174248 proportion : 0.783616
     Nbre de mesures futures
                                    : 25061 proportion : 0.112703
     Nbre de mesures invalides
                                    : 23055 proportion : 0.103681
  Couverture du cycle en données exploitables : 0.550367
Interpolation :
  donnees interpolees: 222918 Nbre total de donnees perdues par interpol: 2932
 don future perdue : 282 don exploitables perdues: 1228 don invalide perdue: 1422
 don limite de zone : 171
 Nbre de donnees exploitables crees : 623
Apres interpolation :
   Nore de mesures lues et presentes: 222918
     Nore de mesures exploitables : 173643 proportion : 0.778955
     Nbre de mesures futures
                                  : 24860 proportion : 0.111521
     Nbre de mesures invalides
                                   : 24415 proportion: 0.109525
 Couverture du cycle en données exploitables : 0.548457
 ( nbre de positions du cycle standard final : 316603)
```

```
CYCLE : 58
Avant affectation :
  Nbre de mesures lues et presentes: 131810
     Nbre de mesures exploitables : 103911 proportion : 0.788339
     Nbre de mesures futures
                                   : 341 proportion : 0.002587
     Nbre de mesures invalides
                                   : 27558 proportion : 0.209074
 Couverture du cycle en donnees exploitables : 0.328206
Pendant affectation :
   Nbre affectations directes: 131378 Pre affectation: 7 Post affectation : 10
   Nbre de moyennes: 412
                                      Nore de donnee non exploitables perdues:
   Nbre de sauts : 431
   Nbre de donnees ignorees :
Apres affectation:
  Nbre de mesures lues et presentes: 131395
     Nore de mesures exploitables : 103553 proportion : 0.788105
                                   : 338 proportion: 0.002572
     Nbre de mesures futures
     Nore de mesures invalides
                                   : 27504 proportion: 0.209323
 Couverture du cycle en données exploitables : 0.327075
Avant interpolation :
  Nbre de mesures lues et presentes: 131395
     Nbre de mesures exploitables : 103553 proportion : 0.788105
                                 : 338 proportion: 0.002572
     Nbre de mesures futures
                                   : 27504 proportion: 0.209323
     Nbre de mesures invalides
 Couverture du cycle en données exploitables : 0.327075
Interpolation :
 donnees interpolees: 131988 Nbre total de donnees perdues par interpol: 2551
 don future perdue : 80 don exploitables perdues: 1308 don invalide perdue: 1163
 don limite de zone :
                        87
 Nbre de donnees exploitables crees : 464
Apres interpolation :
  Nbre de mesures lues et presentes: 131988
     Nbre de mesures exploitables : 102709 proportion : 0.778169
     Nbre de mesures futures
                                   : 261 proportion : 0.001977
                                   : 29018 proportion: 0.219853
     Nbre de mesures invalides
 Couverture du cycle en données exploitables : 0.324409
( nbre de positions du cycle standard final : 316603)
```



