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Abstract

Base composition is highly variable among and within plant genomes, especially at third

codon positions, ranging from GC-poor and homogeneous species to GC-rich and highly

heterogeneous ones (particularly Monocots). Consequently, synonymous codon usage

is biased in most species, even when base composition is relatively homogeneous. The

causes of these variations are still under debate, with three main forces being possibly

involved: mutational bias, selection and GC-biased gene conversion (gBGC). So far, both

selection and gBGC have been detected in some species but how their relative strength

varies among and within species remains unclear. Population genetics approaches allow

to jointly estimating the intensity of selection, gBGC and mutational bias. We extended a

recently developed method and applied it to a large population genomic dataset based on

transcriptome sequencing of 11 angiosperm species spread across the phylogeny. We

found that at synonymous positions, base composition is far from mutation-drift equilibrium

in most genomes and that gBGC is a widespread and stronger process than selection.

gBGC could strongly contribute to base composition variation among plant species, imply-

ing that it should be taken into account in plant genome analyses, especially for GC-rich

ones.
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Author summary

In protein coding genes, base composition strongly varies within and among plant

genomes, especially at positions where changes do not alter the coded protein (synony-

mous variations). Some species, such as the model plant Arabidopsis thaliana, are rela-

tively GC-poor and homogeneous while others, such as grasses, are highly heterogeneous

and GC-rich. The causes of these variations are still debated: are they mainly due to selec-

tive or neutral processes? Answering to this question is important to correctly infer

whether variations in base composition may have functional roles or not. We extended a

population genetics method to jointly estimate the different forces that may affect synony-

mous variations and applied it to genomic datasets in 11 flowering plant species. We

found that GC-biased gene conversion, a neutral process associated with recombination

that mimics selection by favouring G and C bases, is a widespread and stronger process

than selection and that it could explain the large variation in base composition observed

in plant genomes. Our results bear implications for analysing plant genomes and for cor-

rectly interpreting what could be functional or not.

Introduction

Base composition strongly varies across and within plant genomes [1]. This is especially strik-

ing at the coding sequence level for synonymous sites where highly contrasted patterns are

observed. Most Gymnosperms, basal Angiosperms and Eudicots have relatively GC-poor and

homogeneous genomes. In contrast, Monocot species present a much wider range of variation

from GC-poor species to GC-rich and highly heterogeneous ones, some with bimodal GC con-

tent distribution among genes, these differences being mainly driven by GC content at third

codon position (GC3) [1]. Commelinids (a group containing palm trees, banana and grasses,

among others) have particularly GC-rich and heterogeneous genomes but GC-richness and

bimodality have been showed to be ancestral to Monocots, suggesting erosion of GC content

in some lineages and maintenance in others [2]. As a consequence, in most species, synony-

mous codons are not used in equal frequency with some codons more frequently used than

others, a feature that is called the codon usage bias [reviewed in 3]. This is true even in rela-

tively homogeneous genomes such as in Arabidopsis thaliana [e.g. 4].

Which forces drive the evolution of genome base composition and codon usage is still

under debate. Mutational processes can contribute to observed variations between species and

within genomes [e.g. 5]. However, mutation can hardly explain a strong bias towards G and C

bases, as it is biased towards A and T in most organisms studied so far [Chapter 6 in 6]. Selec-

tion on codon usage (SCU) has thus appeared as one of the key forces shaping codon usage as

it has been demonstrated in many organisms both in prokaryotes and eukaryotes [reviewed

in 3]. Codon bias can thus result from the balance between mutation, natural selection and

genetic drift [7]. The main cause for SCU is likely that preferred codons increase the accuracy

and/or the efficiency of translation but other mechanisms involving mRNA stability, protein

folding, splicing regulation and robustness to translational errors could also play a role [3,8,9].

In some species, SCU appears to be very weak or inexistent, typically when effective sizes are

small [10], as typically assumed for mammals [but see 8]. However, mammalian genomes

exhibit strong variations in base composition, the so-called isochore structure [11], which are

mainly driven by GC-biased gene conversion (gBGC) [12]. gBGC is a neutral recombination-

associated process favouring the fixation of G and C (hereafter S for strong) over A and T

(hereafter W for weak) alleles because of biased mismatch repair following heteroduplex
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formation during meiosis [13]. Although gBGC is a neutral process–i.e. the fate of S vs. W

alleles is not driven by their effect on fitness—gBGC induces a transmission dynamic during

reproduction identical to natural selection for population genetics [14]. Therefore, we here

refer to it as a “selective-like” process as opposed to mutation and drift. gBGC has been experi-

mentally demonstrated in yeast [15,16], humans [17,18], birds [19] and rice [20]. Many indi-

rect genomic evidences also supported gBGC in eukaryotes [21,22] and even recently in some

prokaryotes [23], although it seems to be weak or absent in some species as Drosophila [24]

where selection on codon usage predominates [25,26,27,28].

In plants, both SCU [4,29,30] and gBGC [21,31,32] have been documented, but how their

magnitudes and relative strength vary among species remains unclear. Recently, it has been

proposed that the wide variations in genic GC content distribution observed in Angiosperms

could be explained by the interaction between gene structure, recombination pattern and

gBGC [33]. Increasing evidence suggests that in various organisms, including plants, recombi-

nation occurs preferentially in promoter regions of genes, or near transcription initiation

sites [34,35,36]. This generates a 5’-3’ recombination gradient, and consequently a gBGC gra-

dient, which could explain the 5’-3’ GC content gradient observed in GC-rich species, such as

Commelinids [1,2]. A mechanistic consequence is that short genes, especially with no or few

introns, are on average GC-richer [37]. A stronger gBGC gradient and/or a higher proportion

of short genes would increase the average GC content and simple changes in the gBGC gradi-

ent can explain a wide range of GC content distribution from unimodal to bimodal ones [33].

So far, the magnitude of gBGC and SCU has been quantified only in a handful of plant

species [29,30,32,38]. As in other species studied, weak SCU and gBGC intensities were esti-

mated. The population-scale coefficients, 4Nes or 4Neb, are usually of the order of 1, where

Ne is the effective population size and s and b the intensity of SCU and gBGC respectively

[26,29,30,32,38,39]. However, high gBGC values (4Neb> 10) have been estimated in the

close vicinity of recombination hotspots in mammals [38,40] and across the entire honeybee

genome [41]. Differences in population-scale intensities can be due to variation in Ne and/or

in s or b. For gBGC, b is the product of the recombination rate r and the basal conversion rate

per recombination event, b0. Within a genome, variations in gBGC intensities are mainly due

to variation in recombination rate [e.g. 38]. Among species, b0 can also vary. For instance, b
was estimated to be 2.5 times lower in honeybees than in humans but recombination rate is

more than 18 times higher [41], suggesting that b0 could be 45 times lower in honeybees than

in humans. The very intense population-scale gBGC in honeybees is thus explained by the

combination of a large Ne and extremely high recombination rates [41].

Several methods have been developed to estimate the intensity of SCU and gBGC, either

from polymorphism data alone, or from the combination of polymorphism and divergence

data [e.g. 26,27,38]. These methods rely on the fact that preferred codons (for SCU) or GC

alleles (for gBGC) are expected to segregate with higher frequency than neutral and un-pre-

ferred or AT alleles, fitting a population genetics model with selection or gBGC to the different

site frequency spectra (SFS). As demography affects SFS, it must be taken into account in the

model. Moreover, mutations must be polarized, i.e. the ancestral or derived state of mutations

must be determined using one or several outgroup species. Otherwise, selection or gBGC can

be estimated from the shape of the folded SFS by assuming equilibrium base composition [42]

or allowing only recent change in base composition [e.g. 25,26,27], which is not the case in

mammals [43] and some Monocots [2], for example. As errors in the polarization of mutations

can lead to spurious signatures of selection or gBGC [44], this issue must also be taken into

account.

We specifically address the following questions: (i) do neutral or selective forces mainly

affect base composition? (ii) if active, what are the intensities of gBGC and SCU and how do
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they vary across species? (iii) are the average gBGC and the 5’-3’ gBGC gradient stronger in

GC-rich genomes? To do so we used and extended the recent method developed by Glémin

et al. [38] that controls for both demography and polarization errors. We applied it to a large

population genomic dataset of 11 species spread across the Angiosperm phylogeny to detect

and quantify the forces affecting synonymous positions. Our results show that base composi-

tion is far from mutation-drift equilibrium in most studied genomes, that gBGC is a wide-

spread process being the major force acting on synonymous sites, overwhelming the effect of

SCU and contributing to explain the difference between GC-rich (Commelinids, here) and

GC-poor genomes (Eudicots and yam, here).

Results

Building a large dataset of sequence polymorphism and divergence in 11

plant species

We focused our analyses on 11 plant species spread across the Angiosperm phylogeny with

contrasted base composition and mating systems (Fig 1 and Table 1). To survey the wide varia-

tion observed in Monocots, and in line with the sampling of a previous study [2], we sampled

one basal Monocots (Dioscorea abyssinica, yam), two non-grass Commelinids (Musa acumi-
nata, banana and Elaeis guineensis, palm tree) and three grasses with contrasted mating system

Fig 1. Phylogeny of the species used in this study. Phylogenetic relationship of the species used in this

study. The phylogeny was computed with PhyML [75] on a set of 33 1–1 orthologous protein clusters obtained

with SiLiX [76] and the resulting tree was made ultrametric (see untransformed trees in S5 and S6 Figs).

Images for S. bicolor, T. monococcum, D. abyssinica and O. europaea come from the pixabay website.

Images for S. pimpinellifolium and M. acuminata are provided by the authors. All other images come from the

Wikimedia website.

https://doi.org/10.1371/journal.pgen.1006799.g001
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(Pennisetum glaucum, pearl millet, Sorghum bicolor, sorghum and Triticum monococcum, ein-

korn wheat). In Eudicots, both Rosids (Theobroma cacao, cacao and Vitis vinifera, grapevine)

and Asterids (Coffea canephora, coffee tree,Olea europaea, olive tree and Solanum pimpinellifo-
lium, tomato) are represented. For practical reasons cultivated species have been chosen but

we only sampled wild individuals over the species range, except for palm tree for which culti-

vated individuals were sampled (See S1 Table for sampling details). In this species cultivation

is very recent without real domestication process (19th century [45]). For each species, we used

RNA-seq techniques to sequence the transcriptome of about ten individuals plus two individu-

als from two outgroup species, giving a total of 130 individual transcriptomes. Using transcrip-

tomes has been shown to be a useful approach for comparative population genomics with no

or minor bias for genome wide comparison [46,47]. When a well-annotated reference genome

was available (see Material and methods), we used it as a reference for read mapping. Other-

wise we used a de novo transcriptome assembly already obtained for these species (focal + out-

groups) [48] (Table 1 and S2 Table). After quality trimming and mapping of the raw reads, we

kept contigs with at least one read mapped for every individual, giving between more than

24,000 (P. glaucum) and 45,000 (in O. europaea) contigs per species (Table 1). This initial data-

set was used for gene expression analyses (see below). Genotype calling and filtering of paralo-

gous sequences were performed using the read2snp software [47] for each species separately,

and coding sequence regions were extracted (see Material and methods). The resulting datasets

were used to compute nucleotide diversity statistics that did not require any outgroup infor-

mation. The number of identified SNPs varies from 4,409 in T.monococcum (which suffered

from the lowest depth of sequencing) to 115,483 in C. canephora. Variations in the numbers of

SNPs also revealed the large variation in polymorphism levels with πS ranging from 0.17% in

E. guineensis to 1.22% inM. acuminata. The level of constraints on proteins, as measured by

the πN/πS ratio, varies between 0.122 in T.monococcum and 0.261 in E. guineensis (Table 2).

Table 1. List of studied species and datasets characteristics.

Species Name Group Mating

system

Outgroup 1 Outgroup 2 Reference # of

individuals

Sorghum bicolor Sorghum Monocot—

Commelinid

Mixed Sorghum

brachypodum

Zea mays Genome 9

Pennisetum glaucum Pearl millet Monocot—

Commelinid

Outcrossing Pennisetum

polystachion

Pennisetum

alopecuroides

Transcriptome 10

Triticum monococcum Einkorn

wheat

Monocot—

Commelinid

Selfing Taeniatherum caput-

medusae

Eremopyrum

bonaepartis

Transcriptome 10

Musa acuminata Banana Monocot—

Commelinid

Outcrossing Musa balbisiana Musa becarii Transcriptome 10

Elaeis guineensis Oil palm

tree

Monocot—

Commelinid

Outcrossing Phoenix dactylifera Mauritia flexuosa Transcriptome 10

Dioscorea abyssinica Yam Monocot—Basal Outcrossing Dioscorea

praheensilis

Dioscorea trifida Transcriptome 5

Coffea canephora Coffee tree Eudicot—

Asterid

Outcrossing Empogona

ruandensis

Coffea

pseudozanguebariae

Transcriptome 12

Solanum

pimpinellifolium

Tomato Eudicot—

Asterid

Mixed Solanum melongena Capsicum annuum Genome 10

Olea europaea subsp.

europaea*
Olive tree Eudicot—

Asterid

Outcrossing Olea europaea subsp.

cuspidata

Phillyrea angustifloia Transcriptome 10

Theobroma cacao Cocoa Eudicot—Rosid Outcrossing Herrania nititda Theobroma speciosa Genome 10

Vitis vinifera Grape vine Eudicot—Rosid Outcrossing Vitis romaneti Vitis riparia Genome 12

* Simply noted Olea europaea in the rest of the article

https://doi.org/10.1371/journal.pgen.1006799.t001
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For the analyses requiring polarized SNPs, we also added orthologous sequences from two out-

groups to each sequence alignment of the focal species individuals (see Material and methods).

The number of polarized SNPs ranged from 3,253 in S. pimpinellifolium to 89,793 inM. acumi-
nata. Other details about the datasets are given in Table 2. Overall, although the dataset does

not represent the full transcriptome of each species it allows large-scale comparative analyses.

Base composition, patterns of codon usage and codon preferences vary

across species

We first looked at base composition: GC3 varies from 0.38 to 0.44 in Eudicots and from 0.46

to 0.56 in Monocots (Table 2). As observed in previous studies [2,43], these values tend to be

lower than genome wide averages (when available) but the relative differences in base compo-

sition among species were conserved, notably the GC-poorness of Eudicots compared to

Monocots. Grass species exhibited a bimodal GC3 distribution except T.monococcum where

bimodality was not apparent (S1 Fig). This is likely because the sequencing depth was lower

for this species so that GC-rich genes (most likely short ones [37]) have been under sampled.

We also characterized codon usage in each species by computing the Relative Synonymous

Codon Usage (RSCU) for every codon as the frequency of a particular codon normalised by

the frequency of the amino acid it codes for (S3 Table, S2 Fig). Patterns of RSCU were rela-

tively consistent between species but reflected differences of GC content between them, nota-

bly a higher usage of G or C-ending codons in GC-rich species.

In order to evaluate the possible effect of selection on codon usage, we defined the sets of

preferred (P) and un-preferred (U) codons for each species. The fitness consequences of using

optimal or suboptimal codons should be higher in highly expressed genes, causing the usage of

optimal codons to increase with gene expression (and that of non-optimal ones to decrease).

Thus, we defined preferred (or un-preferred) codons as codons for which RSCU increases (or

decreases) with gene expression as in [49] (see Materials & methods for more details). S3 Table

shows detailed results for each species. In contrast with genome-wide codon usage, nearly

all species showed a bias towards preferred codons ending in G or C (Table 2, Fig 2 and S3

Table), only P. glaucum and S. bicolor showing a more balanced AT/GC sharing of codon pref-

erence. Preferences for two-fold degenerated codons were highly conserved across species,

with only GC-ending preferred codon except for aspartic acid and tyrosine in P. glaucum (Fig

2, S3 Table). Preferences for other amino acids were slightly more labile but there were always

one preferred GC-ending and one un-preferred AT-ending codon common to all species.

Fig 2. Patterns of codon preference among the 11 studied species. The colour scale indicates the magnitude of ΔRSCU, the difference in the

Relative Synonymous Codon Usage between highly and lowly expressed genes. The greenest codons are the most preferred and the reddest the least

preferred. Codons ending in G or C are in red and those ending in A or T in blue.

https://doi.org/10.1371/journal.pgen.1006799.g002
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Frequency of optimal codons of a gene (Fop, i.e. the frequency of preferred codons [50]),

increased with expression as expected but the difference in Fop between the most highly and

most lowly expressed genes was weak to moderate (from ~5% in C. canephora to 15% in T.

monococcum andM. acuminata) and tended to be higher in Commelinid species (Fig 3).

Because most preferred codons ended with G or C, GC3 and expression were also positively

correlated in all species.

Selective-like evolutionary forces affect base composition

To determine which forces affect variation in base composition and codon usage among spe-

cies, we first evaluated whether base composition at synonymous sites was at mutation-drift

equilibrium. Glémin et al. [38] showed that the asymmetry of the distribution of non-polarized

GC allele frequencies (measured by the skewness coefficient of the distribution) was a robust

test of this equilibrium. This statistic is not affected by possible polarization errors (see later

for more on polarization errors). A skewness coefficient equal to 0 is expected under equilib-

rium whereas negative (or positive) values mean higher (or lower) GC content than expected

under mutation-drift equilibrium. The same rationale can be applied to codon frequencies.

Fig 3. Relationship between the frequency of optimal codons (FOP) and expression in the 11 studied

species. For each species, genes have been split into eight categories of expression (based on RPKM) of

same size and the mean FOP for each category is plotted with its 95% confidence interval.

https://doi.org/10.1371/journal.pgen.1006799.g003
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We found that GC content and the frequency of preferred codons were significantly higher

than predicted by mutational effects in all species, with the exception of coffee, which interest-

ingly showed a lower GC content than expected under mutation-drift balance (Table 3).

As base composition equilibrates slowly under mutation pressure [33], non-equilibrium

conditions could be due to long-term changes in mutational patterns. To test further whether

selective-like forces can explain the excess of GC and preferred codons, we developed a

modified MacDonald Kreitman test [51] comparing W!S (or U!P) to S!W (or P!U)

polymorphic and divergent sites (Material & Methods and S1 Text). SNPs and fixed muta-

tions (substitutions) were polarized by parsimony using two outgroup taxa for each focal

species. We built contingency tables by counting the number of polymorphic or divergent

sites for each of the two mutational categories. From these contingency tables, we computed

neutrality, NI, [52] and direction of selection, DoS, [53] indices. In the case of selective-like

forces favouring the fixation of W!S or U!P mutation, NI values are expected to be lower

than 1 and DoS values to be positive. P-values were computed from a Chi-squared test on the

contingency tables. NI was lower than 1 and DoS positive in all species except S. pimpinellifo-
lium (Table 3), indicating that selective-like forces drove the fixation of GC and preferred

codon alleles. In P. glaucum, although significant, the departure from the neutral expectation

for GC content is minute, which can be explained by very weak gBGC but also by a recent

increase in its intensity (see Results below and S1 Text). Overall, this analysis showed that in

most species selective-like forces tended to drive base and codon composition away from

Table 3. Skewness, neutrality index (NI) and direction of selection (DoS) statistics for GC content and codon usage.

Species GC content Codon usage

Mean allele

frequency of GC

alleles

Skewness p-

valuea
NI DoS p-

valueb
Mean frequency

of Pref alleles

Skewness p-

valuea
NI DoS p-

valueb

Sorghum bicolor 0.576 -0.351 <10E-

16

0.834 0.043 7.50E-

07

0.535 -0.164 5.45E-

06

0.94 0.02 0.256

Pennisetum

glaucum

0.562 -0.294 <10E-

16

0.963 0.009 0.007 0.534 -0.158 <10E-

16

0.87 0.03 3.72E-

15

Triticum

monococcum

0.547 -0.222 1.81E-

05

0.728 0.078 8.70E-

11

0.550 -0.236 1.16E-

05

0.71 0.08 3.84E-

11

Musa acuminata 0.570 -0.343 <10E-

16

0.827 0.047 <10E-

16

0.570 -0.344 <10E-

16

0.83 0.05 7.01E-

15

Elaeis guineensis 0.540 -0.201 <10E-

16

0.819 0.050 3.30E-

09

0.535 -0.170 3.06E-

13

0.82 0.05 1.79E-

08

Dioscorea

abyssinica

0.554 -0.277 <10E-

16

0.856 0.037 0.035 0.549 -0.252 <10E-

16

0.87 0.03 0.112

Coffea canephora 0.450 0.234 <10E-

16

0.913 0.022 3.13E-

05

0.458 0.199 <10E-

16

0.92 0.02 5.47E-

04

Solanum

pimpinellifolium

0.534 -0.152 0.019 1.132 -0.031 0.051 0.539 -0.174 0.016 0.73 0.08 1.04E-

06

Olea europaea 0.509 -0.047 0.001 0.884 0.031 0.003 0.510 -0.051 0.001 0.89 0.03 0.017

Theobroma cacao 0.515 -0.071 4.66E-

04

0.838 0.044 7.14E-

14

0.510 -0.045 0.053 0.88 0.03 5.38E-

06

Vitis vinifera 0.550 -0.229 <10E-

16

0.737 0.075 <10E-

16

0.538 -0.172 <10E-

16

0.66 0.10 3.80E-

88

a Null hypothesis: skewness = 0
b Null hypothesis: NI = 1 / DoS = 0 (equivalent test done on the same contingency table).

https://doi.org/10.1371/journal.pgen.1006799.t003
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their mutational equilibrium. Selection and gBGC are the two known alternatives whose

effects have to be distinguished.

Disentangling gBGC and SCU?

Although they may have different mechanistic causes and biological consequences, selection

and gBGC leave similar evolutionary footprints and are not easy to disentangle, especially in

species where most preferred codons end in G or C (Table 2). We first applied correlative

approaches to try to disentangle both processes. Then we tried to quantify their respective

intensities.

Under the SCU hypothesis, departure from neutrality should be stronger for highly

expressed genes and/or genes with strongly biased codon composition. Under the gBGC

hypothesis, departure from neutrality should increase with recombination rates. However,

recombination data was not available in our datasets. As gBGC leads to an increase in GC con-

tent, departure from neutrality should thus also increases with GC content. We split synony-

mous SNPs and substitutions into eight groups of same size according to their GC3 or their

gene expression level (measured by the mean RPKM values across all individuals of a given

population), and computed the NI and DoS indices for each category based on W/S or U/P

changes. For all species except D. abyssinica and S. bicolor, we found a strong positive (or nega-

tive) correlation between GC3 and DoS (or NI), indicating a stronger bias in favour of S alleles

in GC-rich genes (Fig 4). In contrast, the relationship between expression level and DoS or NI

measured on codon usage was weaker, with more variable and on average lower correlation

coefficients (Fig 4). These results tend to point out gBGC as a stronger force than SCU affect-

ing synonymous variations in our datasets.

Fig 4. DoS statistics as a function of GC3 and expression level. Correlation between GC3 and DoS computed on WS changes (left panel) or between

expression level (measured through RPKM) and DoS computed on UP changes (right). Pearson correlation coefficients are given for each species (red:

significant at the 5% level, blue non-significant).

https://doi.org/10.1371/journal.pgen.1006799.g004
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We then split our datasets into four independent categories based on two GC3 groups

crossed by two expression level groups to test which factor has the strongest effect on the bias

towards S or P alleles. The rationale is that SCU should make the bias towards P alleles increase

with gene expression independently of GC3. On the other hand, gBGC should increase the

bias towards S alleles with GC3 independently of gene expression. We found that DoS clearly

increased with GC3 in all species for both lowly and highly expressed genes, with the exception

of D. abyssinica and S. bicolor where it decreased for lowly expressed genes, and S. pimpinellifo-
lium where there was little change for lowly expressed genes. On the other hand, the effect of

expression on DoS was inconsistent or only weak in most species (Fig 5). These results confirm

that the effect of gBGC appears stronger than the effect of SCU.

Estimation of gBGC/SCU intensity and mutational bias

To evaluate further the forces affecting base composition we estimated the intensity of selec-

tion (S = 4Nes) and gBGC (B = 4Neb) from site frequency spectra (SFS). SFS for all species are

represented in S3 Fig. We used the method recently developed by Glémin et al. [38] that takes

SNP polarization errors into account, which avoids observing spurious signature of selection

or gBGC. As mentioned above, the observed pattern in P. glaucum (excess of GC content but

almost no departure from neutrality according to the NI and DoS indices, see Table 3) suggests

a recent change in the intensity of selection and/or gBGC. Also, transition to selfing, which

usually can be very recent in plants [54], could have effectively shut down gBGC in the recent

past due to a deficit in heterozygous positions. To capture these possible changes of fixation

bias through time, we extended the model of [38] by combining frequency spectra and diver-

gence estimates as summarized on Fig 6 (and see S2 Text for full details). Divergence is deter-

mined by both mutation and selection/gBGC so it is not possible to disentangle these two

Fig 5. Combined effect of GC3 and expression level on DoS statistics. The DoS statistics was computed on W/S (gBGC) or U/P (SCU) changes for

four gene categories: GC-rich and highly expressed, GC-rich and lowly expressed, GC-poor and highly expressed, GC-poor and lowly expressed.

https://doi.org/10.1371/journal.pgen.1006799.g005
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factors from the divergence data alone. However, if we assume constant and identical mutation

bias at the polymorphism and the divergence level, this leave enough degrees of freedom to fit

an additional S or B parameter. Thus, we assumed a single mutation bias but two different

selection/gBGC intensities, one fitted on polymorphism data and the other on divergence. We

evaluated the statistical significance of the shift in intensity by a likelihood ratio test with the

model where the two intensities were equal (i.e. no change over time). Simulations showed

that not taking polarization errors into account can bias selection/gBGC estimates as already

shown in [38] and also leads to spurious detection of changes in selection/gBGC intensities (S2

Text). Simulations also showed that the estimated differences between the two intensities were

often underestimated. This is expected as B values estimated in the model correspond to aver-

ages over the conditions that mutations have experienced during their lifetime (drift and

gBGC/selection intensities), so it depends on when changes occurred. However, the method

accurately retrieved the appropriate weighted averages for B0 and B1 and efficiently accommo-

dates for demographic variations (see S2 Text). Overall, the test of heterogeneity of selection/

gBGC is a conservative approach. If we relax the assumption of constant mutational bias,

changes in both bias and selection/gBGC are no more identifiable. Recent S/B estimates are

Fig 6. Schematic presentation of the method to estimate recent and ancestral gBGC or SCU. In

addition to polymorphic derived mutations used to infer recent gBGC or selection (B1/S1) as in [38] we also

consider substitutions (i.e. fixed derived mutations) on the branch leading to the focal species. Each

box corresponds to a site position in a sequence alignment. Both kinds of mutations are polarized with the two

same outgroups and are thus sensitive to the same probability of polarization error. We assume that gBGC

and selection may have change so that fixed mutations may have undergo a different intensity. Note that

these two B or S values correspond to average of potentially more complex variations over the two periods.

https://doi.org/10.1371/journal.pgen.1006799.g006
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not affected but ancestral estimates are underestimated (resp. overestimated) when mutation

bias decreases (resp. increases). However, the method is still powerful to detect departure from

a constant regime of selection/mutation/drift equilibrium (S2 Text).

We applied the method to the total frequency spectra, either for W/S or U/P polymor-

phisms and substitutions. In all species, significant (at the 5% level) gBGC or SCU were

detected but at low intensity (B or S< 1, Table 4). In four species (P. glaucum, E. guineensis, D.

abyssinica and V. vinifera) we found significant differences between ancestral and recent inten-

sities for gBGC and/or SCU. In particular, the recent significant increase in gBGC in P. glau-
cum (from 0.224 to 0.524, Table 4) can explain why NI is very close to one (or DoS close to

zero) (see above and S1 Text). On average, Monocots, especially Commelinids species tended

to exhibit stronger gBGC than Eudicots and B tended to increase with mean GC3, but no rela-

tionship is significant with only 11 species when either B0 or B1 are used. However, using the

constant B estimates (S4 Table), weakly significant relationships were found for the difference

between Commelinids and other species (Wilcoxon test: p-value = 0.0519) and the correlation

between B and GC3 (ρSpearman = 0.691, p-value = 0.023). No significant relationship was found

for SCU. No significant relationship between B or S and πS was found either.

As the two processes are entangled, it is difficult to properly and separately estimate their

respective intensities. To do so, we developed a second extension of the method of [38].

Combining the two processes, nine kinds of mutations can occur (see S2 Text). By assuming

that selection and gBGC act additively, it is in theory possible to estimate separately the two

effects. We fit a general model to the nine SFS and the nine substitution counts, with a con-

stant mutation bias, two B and two S values. The details of the model are reported in S2 Text.

Simulations showed that the method could efficiently estimate both gBGC and SCU but

tended to slightly underestimate recent gBGC and overestimate recent SCU (S2 Text). When

the distributions of SNPs and substitutions are highly unbalanced (typically S/P and W/U

states are confounded and there are very few WS-PU and SW-UP mutations), it is more diffi-

cult to detect both effects with a significant level (S2 Text). Finally, if assignation of codon

preference is not perfect, typically for four-fold and six-fold degenerated codons, this could

also underestimate SCU and reduce the power to detect it, especially for highly unbalanced

dataset for which it is anyway inherently difficult to distinguish gBGC and SCU (see S2

Text). For both selection and gBGC and both ancestral and recent periods, we either fixed

the value to 0 or let it be freely estimated, leading to 16 different models. For each species,

the best model according to AIC criteria (see Methods) is given in Table 5 while all results

are given in S5 Table. In six species the model with only gBGC was the best one, this could

also includeM. acuminata where it was not possible to disentangle between gBGC and SCU.

For three species, the best model included both gBGC and SCU and only S. pimpinellifolium
appeared to be affected by SCU but not gBGC. If codon preferences were perfectly deter-

mined, this result is expected to be robust and conservative because simulations suggest that

SCU is slightly more easily detected than gBGC. If there were some errors in codon prefer-

ence identification, this can partly explain that SCU was less often detected. However, the

species for which SCU was not detected did not present the most unbalanced codon prefer-

ence (see Table 2) and identification error rate should have been rather high (>20% see S2

Text) to strongly bias results. Overall, this confirms that synonymous sites are widely affected

by gBGC in the studied plant species and that SCU either only plays a minor role or is partly

masked by the effect of gBGC.

This method also allowed us to estimate mutation bias. As already observed in most species,

mutation was biased towards AT alleles, with a bias slightly ranging from 1.6 to 2.2 (Table 4),

which is of the same order as what was found in humans [38,55]. Interestingly, C. canephora
was again an exception with almost no mutational bias (λ = 1.05).
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Table 4. Separated estimations of recent and ancestral gBGC (B = 4Neb) and SCU (S = 4Nes).

Species gBGC

lambda 4Neb

ancestral

4Neb

recent

p-value

ancestral = 0

p-value

recent = 0

p-value

recent = ancestral

Sorghum bicolor 1.61

[1.51–

2.69]

0.378

[0.290–

0.516]

0.078

[-0.492–

0.739]

2.73E-14 0.758 0.189

Pennisetum

glaucum

1.73

[1.69–

1.83]

0.224

[0.189–

0.261]

0.524

[0.383–

0.661]

<10E-16 1.15E-13 2.18E-06

Triticum

monococcum

1.99

[1.67–

2.25]

0.448

[0.269–

0.613]

-0.008

[-0.824–

0.691]

1.39E-05 0.985 0.164

Musa acuminata 1.71

[1.66–

1.80]

0.313

[0.253–

0.370]

0.397

[0.234–

0.546]

<10E-16 2.68E-06 0.343

Elaeis

guineensis

1.84

[1.77–

1.93]

0.328

[0.267–

0.400]

0.516

[0.328–

0.702]

<10E-16 1.76E-07 0.034

Dioscorea

abyssinica

2.20

[2.10–

2.47]

1.171

[0.127–

4.067]

0.008

[-0.221–

0.264]

0.032 0.949 0.072

Coffea

canephora

1.05

[1.02–

1.10]

0.154

[0.110–

0.202]

0.243

[0.113–

0.366]

9.47E-11 3.77E-04 0.171

Solanum

pimpinellifolium

2.05

[1.74–

2.63]

0.114

[-0.057–

0.392]

0.759

[-0.491–

3.785]

0.215 0.153 0.193

Olea europaea 1.58

[1.53–

1.64]

0.167

[0.080–

0.268]

0.031

[-0.127–

0.168]

<10E-16 0.687 0.132

Theobroma

cacao

1.67

[1.59–

1.74]

0.316

[0.258–

0.377]

0.465

[0.222–

0.683]

<10E-16 6.54E-05 0.135

Vitis vinifera 2.15

[2.08–

2.22]

0.360

[0.318–

0.413]

0.024

[-0.101–

0.153]

<10E-16 0.71 1.55E-08

Species SCU

lambda 4Nes

ancestral

4Nes

recent

p-value

ancestral = 0

p-value

recent = 0

p-value

recent = ancestral

Sorghum bicolor 2.04

[1.70–

2.47]

0.139

[0.023–

0.260]

0.439

[-0.251–

1.083]

0.010 0.143 0.341

Pennisetum

glaucum

1.76

[1.70–

1.87]

0.181

[0.137–

0.226]

0.126

[-0.062–

0.289]

2.33E-15 0.165 0.484

Triticum

monococcum

2.84

[2.33–

3.31]

0.534

[0.353–

0.718]

0.236

[-0.610–

1.029]

1.14E-06 0.581 0.409

Musa acuminata 2.02

[1.96–

2.15]

0.315

[0.256–

0.362]

0.392

[0.221–

0.553]

<10E-16 5.21E-06 0.394

Elaeis

guineensis

1.58

[1.50–

1.66]

0.324

[0.233–

0.396]

0.512

[0.322–

0.704]

3.00E-15 6.51E-07 0.043

Dioscorea

abyssinica

1.68

[1.39–

1.74]

1.909

[0.306–

9.994]

-0.101

[-0.311–

0.135]

0.023 0.470 0.037

(Continued )
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Variation along genes

So far, we considered either global effects at the transcriptome scale or variations among genes

belonging to different categories. However, most plant species exhibit a more or less pro-

nounced gradient in base composition from 5’ to 3’ [1], which is strongly linked to exon-intron

structure [37]. In particular, in some species the first exon is much GC-richer than other

exons. Moreover, it has been proposed that this gradient could be due to a gBGC gradient

Table 4. (Continued)

Coffea

canephora

0.89

[0.86–

0.95]

0.148

[0.079–

0.197]

0.196

[0.039–

0.330]

5.91E-08 0.012 0.515

Solanum

pimpinellifolium

1.56

[1.32–

2.05]

0.465

[0.270–

0.857]

0.566

[-0.567–

3.900]

3.39E-06 0.285 0.834

Olea europaea 1.18

[1.13–

1.22]

0.148

[0.040–

0.241]

0.025

[-0.162–

0.186]

0.004 0.772 0.214

Theobroma

cacao

1.09

[1.02–

1.16]

0.245

[0.167–

0.339]

0.397

[0.107–

0.673]

2.85E-11 3.00E-03 0.185

Vitis vinifera 1.26

[1.22–

1.32]

0.470

[0.421–

0.525]

0.118

[-0.028–

0.258]

<10E-16 0.103 7.09E-08

https://doi.org/10.1371/journal.pgen.1006799.t004

Table 5. Best model for the joined estimations of recent and ancestral gBGC (B = 4Neb) and SCU

(S = 4Nes).

Species 4Neb ancestral 4Neb recent 4Nes ancestral 4Nes recent

Sorghum bicolor 0.439 [0.334–

0.525]

0 0 0

Pennisetum glaucum 0.218 [0.182–

0.253]

0.561 [0.393–

0.689]

0.139 [0.106–

0.175]

0

Triticum monococcum 0.264 [0.042–

0.443]

0 0.247 [0.027–

0.468]

0

Musa acuminata 1 0.312 [0.281–

0.395]

0.394 [0.241–

0.580]

0 0

Musa acuminata 2 0 0 0.317 [0.284–

0.400]

0.398 [0.176–

0.540]

Elaeis guineensis 0.329 [0.241–

0.383]

0.517 [0.234–

0.744]

0 0

Dioscorea abyssinica 1.256 [0.564–

2.202]

0 0 0

Coffea canephora 0.154 [0.119–

0.227]

0.244 [0.070–

0.361]

0 0

Solanum

pimpinellifolium

0 0 0.459 [0.311–

0.603]

0

Olea europaea 0.168 [0.074–

0.250]

0 0 0

Theobroma cacao 0.318 [0.241–

0.383]

0.474 [0.234–

0.744]

0 0

Vitis vinifera 0.256 [0.216–

0.295]

0 0.380 [0.323–

0.439]

0

For Musa acuminata the two best models with very close AIC values are given.

https://doi.org/10.1371/journal.pgen.1006799.t005
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associated with a recombination gradient [33]. To quantitatively test this hypothesis, we sepa-

rated SNPs and fixed derived mutations as a function of their position along genes. The best

choice would have been to split them according to exon ranking [37]. However, as exon anno-

tation was lacking (or imprecise) for most species in our datasets, we split contigs into two

sets: the first 252 base pairs, corresponding to the median length of the first exon in Arabidop-
sis, banana and rice (Gramene database [56]), used as a proxy for the first exon, and the rest of

the contig. We then estimated B on these two sets of contigs. Some imprecision in the “first

exon” definition and variation in transcript length among species reduced the power of this

analysis and results should be interpreted with caution. However, we did not expect that it

could create artifactual B gradient as the use of a stringent criterion reinforced the observed

patterns despite reducing datasets (see below).

For all species except D. abyssinica and S. pimpinellifolium, the ancestral B was higher in the

first part than in the rest of contigs. The signature was less clear for recent B as far less values

were significant. Ancestral and recent B were not significantly different in most species (S6

Table). To illustrate the global pattern, Fig 7 shows average gBGC gradients for all species, i.e.
assuming the same ancestral and recent B values. Interestingly, while there was no clear taxo-

nomic effect on global gBGC estimates (Table 4), there was a sharp difference between Com-

melinid species and the others for the first part of contigs (Wilcoxon test p-value = 0.030, Fig

7C), in agreement with the strong 5’– 3’ GC gradient observed in these species [1,2]. B values

and GC3 tended to be positively correlated on the first part of contigs (ρSpearman = 0.591, p-

value = 0.061) but not significantly in the rest (ρSpearman = 0.382, p-value = 0.248). These analy-

ses were performed on all contigs but some of them do not start by a start codon. We restricted

the analyses to the subset of contigs starting by a start codon and we found very similar results

with stronger statistical support: in the first exon, B was significantly higher in Commelinids

than in other species (Wilcoxon test p-value = 0.0043) and B values and GC3 were significantly

and positively correlated both on the first part of contigs (ρSpearman = 0.80, p-value = 0.0052)

and in the rest of contigs (ρSpearman = 0.70, p-value = 0.0208) (S6 Table and S4 Fig). In line

with previous results showing that first exons contribute to most of the variation in GC content

among species [2,33,37], these results show that species also mostly differ in their gBGC inten-

sities in the first part of genes.

Discussion

Selective-like evolution of synonymous variations in plant genomes

It has already been shown that base composition in grass genomes is not at mutation-drift

equilibrium with both gBGC and selection increasing GC content despite mutational bias

toward A/T [31]. Our results demonstrate that even in GC-poor genomes base composition is

not at mutation-drift equilibrium, implying that selective-like forces are widespread in all the

11 plant species we studied. In all species, either the skewness and/or the DoS/NI statistics

show evidence of departure from equilibrium and purely neutral evolution (Table 3). All spe-

cies except C. canephora have higher GC content than predicted by mutational effect alone,

which could be explained by a mutation/gBGC (or selection)/drift balance.

The case of C. canephora remains intriguing. Mutation seems not to be biased towards AT

as observed in all mutation accumulation experiments [reviewed in 57] and through indirect

methods [58]. So far, GC biased mutation has only been observed in the bacteria Burkholderia
cenocepacia [57]. However, despite no apparent or very weak AT mutational bias and evidence

of both recent and ancestral gBGC (Table 4), GC content is rather low (GC3 = 0.42, Table 2)

and lower than expected under mutation pressure alone (1/(1+λ) = 0.49) as revealed by the

positive skewness statistics (Table 3). Preferred codons mostly end in G or C (Table 2) so that
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SCU is not a possible explanation for this low GC content. Rather, a recent change in mutation

bias is a more probable explanation. Using B0 = 0.154 or B1 = 0.243 (Table 4), a mutational

bias of 1.61 or 1.76 would be necessary to reach the observed GC3 (= 0.42). Such values are in

the same range as observed for the other species. D. abyssinica is another intriguing case where

DoS decreases with GC content, contrary to other species (Fig 4). We currently have no clear

hypothesis to explain this pattern and it should be viewed with caution because DoS is esti-

mated with few substitutions in this species but it would be compatible with an increase in AT

mutation bias with GC content. Further investigation of mutational patterns in these species

would be useful to understand better these two intriguing cases.

Beyond departure from equilibrium, comparison of ancestral and recent gBGC or selection

also reveals the dynamic nature of forces affecting base composition. At least four species (P.

glaucum, E. guineensis, D. abyssinica and V. vinifera) show evidence of significant change in

gBGC and/or SCU intensity over time (Table 4). If we consider the first part of genes only,

changes also occurred inM. acuminata and T. cacao (S6 Table). Moreover, our method is con-

servative (see S2 Text) so we may have missed variations in other species. Changes occurred in

Fig 7. GC3 and gBGC gradients along genes. A: gBGC strength estimations (4Neb) for first exons (252 first bp of contigs) and rest of gene. Error bars

indicate the 95% confidence intervals. With the exception of D. abyssinica and S. pimpinellifolium, all species exhibit stronger gBGC in the first exons

compared to the rest of genes. B. Correlations between GC3 and gBGC strength in first exons (red) and rest of genes (blue). Each dot corresponds to one

species. GC3 and 4Neb tend to be positively correlated in both regions: ρSpearman = 0.591, p-value = 0.061 for first exons and ρSpearman = 0.382, p-

value = 0.248 for the rest of genes. C. Comparison of 4Neb estimates between first exons and rest of genes for Commelinids (all Monocots with the

exception of D. abyssinica, left panel) and other species (right panel). 4Neb values are higher in first exons compared to rest of genes in Commelinids

species, while other species exhibit no differences between first exons and rest of genes.

https://doi.org/10.1371/journal.pgen.1006799.g007
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both directions. In the three selfing or mixed mating species (S. pimpinellifolium, T.monococ-
cum, and S. bicolor) the ancestral gBGC or SCU intensity is significantly positive but the recent

one is null. This is supported by the rather recent evolution of selfing in these species, which

nullifies the effect of gBGC through the increase in homozygosity levels and reduces the effi-

cacy of selection [59]. In other species, gBGC or SCU have increased (e.g. P. glaucum) or

decreased (e.g. V. vinifera). Recalling that B = 4Nerb0 (see Introduction), this could be

explained by changes in effective population size (Ne) recombination rate (r), gBGC intensity

per recombination event (b0) and also conversion tract length, which might also vary among

species [60]. To date, we do not know anything about the stability of b0 across generations and

how fast it can evolve. In some species, such as mammals, recombination can evolve very rap-

idly, at least at the hotspot scale [61] but it can be more stable in other species like in birds

[62], yeast [63] or maize [64]. Moreover, we average gBGC over the whole transcriptome so

recent genome-scale changes in recombination should be necessary to explain changes in B.

Although recent changes in r and b0 are possible, changes in effective population size over

time appears to be the most likely explanation.

Selective-like evolution and non-equilibrium conditions can have practical impacts on sev-

eral genomic analyses. First, gBGC can lead to spurious signatures of positive selection [65],

significantly increasing the rate of false positive in genome scan approaches in mammals [66].

This problem should also be taken into account in plant genomes, even in GC-poor ones. Sec-

ond, SCU/gBGC and non-stationary evolution, due for instance to changes in population size,

can strongly affect the estimation of the rate of adaptive evolution through McDonald-Kreit-

man approaches, especially at high GC content [67]. In species far from equilibrium such as

Commelinids, it should be an issue to consider.

gBGC, SCU or both?

Technical issues. We found clear evidences that base composition evolution is not

driven only by mutation. However, it was more difficult to distinguish gBGC from SCU

because we only used coding regions in our study. Unfortunately, we were not able to use 5’

or 3’ flanking regions to compare them with synonymous coding positions. These flanking

regions were too short and of lower sequencing coverage and quality: they were not fre-

quently sequenced and corresponded to sequence ends. Comparison with introns or non-

coding regions would be helpful in the future to confirm our findings, as it was done in rice

[31] or maize [32]. To bypass this problem, we developed a new method that jointly estimates

gBGC and SCU and allows testing which processes are significant. However, the two pro-

cesses are especially difficult to distinguish in species where most preferred codons end in G

or C, such asM. acuminata and T.monococcum (Tables 2 and 5 and S2 Text) and when the

power is limited by the number of SNPs (S. pimpinellifolium and T.monococcum). An addi-

tional problem is that codon preferences can be imperfectly characterized (whereas there is

no ambiguity to define W and S positions). When codon preference are correctly identified,

simulations suggest that weaker SCU than gBGC could be estimated even for a highly unbal-

anced dataset (at least ancestral SCU, see S2 Text). However, it becomes more problematic

for unbalanced dataset when some preferences are incorrectly identified, reducing the power

to detect SCU (S2 Text). Finally, correlative approaches with GC content and expression can

also help distinguishing the two processes. Overall, although each individual result (species-

specific and or approach-specific) can be insufficiently conclusive, they collectively point

towards the general conclusion of a major contribution of gBGC and a lower contribution

of SCU, or a contribution partly masked by gBGC, to explain synonymous variation in the

studied plant species.
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Predominant signature of gBGC. The combination of our different results suggests that

gBGC prevails over SCU in the studied plants. While signatures of gBGC were detected in all

species but S. pimpinellifolium, SCU was detected only in four or five species (Table 5). How-

ever, in these species, the change in NI/DoS with expression is consistent with SCU only in P.

glaucum (Fig 4). These poorly supported results do not necessarily mean that SCU is not active.

Indeed, we were able to defined preferred codons in all our species, and Fop increases with

expression level in all of them (Fig 2). However, changes in Fop with expression are moderate

to low (15% to 5%) and on average lower to what was observed in Drosophila (15%) or Caenor-
habditis (25%), but slightly higher than Arabidopsis (5%) [49]. Thus, SCU is likely active but at

a level too low to be detected by our methodology in some species, especially because gBGC

masks its effect. In some species such as maize, recombination and gene expression levels are

positively correlated as they mainly occurred in open chromatin regions of the genome [32].

This could affect the ability to identify preferred codons because S alleles would increase with

expression (and be considered as preferred) because of gBGC, not SCU. Beyond the potential

methodological artefact, it also means that gBGC would counteract (for W preferred codons)

or reinforce (for S preferred codons) the action of SCU, with a global reduction of SCU on

average [68]. A larger dataset (increasing both the number of SNPs and of individuals) would

probably be necessary to properly estimate SCU in the presence of gBGC, especially when the

most preferred codons end with G or C. It should be noted that in P. glaucum, one of the spe-

cies where SCU was quite confidently detected, a high number of SNPs and a rather equili-

brated patterns of codon preference were identified. Finally, in Drosophila, it was shown that

SCU varies among codons [27], while we only assumed a constant selection coefficient. Gener-

alization of our model by including the approach of [27] is likely a promising avenue to dissect

the interaction between gBGC and SCU.

Coevolution between GC and codon usage?. The difficulty in distinguishing gBGC and

SCU also raises the question of the interaction between these two processes. The predomi-

nance of GC ending preferred codons has also been observed in many bacteria [69]. The bias

towards GC ending preferred codons increases with genomic GC content, with species having

a GC content higher than 40% being strongly biased towards GC preference [69]. The classical

Bulmer’s model of coevolution between preferred codons and tRNA predicts a match between

the frequency of tRNAs and preferred codons with two equivalent stable states (either AT or

GC preference), and so does not explain the observed bias in preference [70]. However, our

results are compatible with a modified version of this model in which an external force on base

composition is introduced [71]. We propose that gBGC could act as such a force. By increasing

GC content, gBGC could disrupt the co-evolutionary equilibrium between preferred codons

and tRNAs abundance towards a higher level of GC preference. This would in turn leads to the

confounding effects of gBGC and SCU.

GC content gradient and the gBGC hypothesis

We detected gBGC in all but one species but its intensity is rather weak (Tables 4 and 5 and S4

and S5 Tables), of the same order to what was estimated in humans [38] but lower than in

other mammals [39], maize [72], and particularly honey bee [41]. Low values can be explained

by the fact that we only estimated average B values. In many plants studied so far, recombina-

tion was found to be heterogeneous along chromosomes [e.g. 36] and locally occurring in

hotspots [e.g. 34,35,64], so that gBGC can be locally much higher than average estimates.

However, we did not apply the hotspot model proposed by [38] because it behaves poorly

when not constrained by additional information on hotspot structure, which we lack in the

species studied here. In addition, recombination hotspots are preferentially located outside
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genes, especially in 5’ upstream regions (and 3’ downstream regions to a lesser extent)

[34,35,36]. As we estimated gBGC intensities within coding regions, this can also explain why

we only estimated rather weak B values.

A consequence of this specific recombination hotspot location is the induction of a 5’– 3’

recombination gradient along genes (or more generally an exterior to interior gradient if also

considering downstream location) [34,35]. Recently, it has been proposed that this recombina-

tion gradient could explain the 5’– 3’ gradient observed in grasses and more generally in many

plant species [33]. We tested this model by looking at signatures of gBGC along contigs in our

datasets. In agreement with this model, we found stronger gBGC signatures at the 5’ end of

contigs compared to the rest of contigs in most of our species (Fig 7). The fact that we observed

this gBGC gradient in both Eudicots and Monocots suggests that all these species share the

same meiotic recombination structure with preferential location of recombination in upstream

regions of gene, which was hypothesized to be the ancestral mode of recombination location

in Eukaryotes [73].

Glémin et al. [33] also proposed that changes in the steepness of the recombination/gBGC

gradient could explain variation in GC content distributions among species, from unimodal

GC-poor to bimodal GC-rich distributions. Alternatively, if gradients are stable among spe-

cies, changes in gene structure, especially the number of short mono-exonic genes and the dis-

tribution of length of first introns, could also generate variations in GC content distribution

[33,37]. Here we found that, in the first part of genes, gBGC is the highest in Commelinid spe-

cies, which exhibit the richest and most heterogeneous GC content distributions (Fig 7). This

result parallels the sharp difference in GC content in first exons between rice and Arabidopsis
whereas the centres of genes have a very similar base composition [37]. Our results support the

hypothesis that genic base composition in GC-rich and heterogeneous genomes has been

driven by high gBGC/recombination gradients. As GC content bimodality is likely ancestral to

monocot species and has been lost several times later [2], our results suggest that an increase

in gBGC and or recombination rates occurred at the origin of the Monocot lineage.

Conclusion

Overall, we show that selection on codon usage only plays a minor role in shaping base compo-

sition evolution at synonymous sites in plant genomes and that gBGC is the main driving

force. Our study comes along an increasing number of results showing that gBGC is at work in

many organisms. Plants are no exception. If, as we suggest, gBGC is the main contributor to

base composition variation among plant species, it shifts the question towards understanding

why gBGC may vary between species and more generally why gBGC evolved. Our results also

imply that gBGC should be taken into account when analysing plant genomes, especially GC-

rich ones. Typically, claims of adaptive significance of variation in GC content should be

viewed with caution and properly tested against the “extended null hypothesis” of molecular

evolution including the possible effect of gBGC [65].

Materials & methods

Dataset

We focused our study of synonymous variations in 11 species spread across the Angiosperm

phylogeny with contrasted base composition and mating systems, Coffea canephora, Olea euro-
paea, Solanum pimpinellifolium, Theobroma cacao, Vitis vinifera, Dioscorea abyssinica, Elaeis
guineensis,Musa acuminata, Pennisetum glaucum, Sorghum bicolor and Triticum monococcum.

A phylogeny of these species is shown in Fig 1. For practical reasons, we chose diploid culti-

vated species but focused our analysis on wild populations except in Elaeis guineensis where
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domestication is very recent and limited (19th century [45]). Using the same methodology as

[48], we sequenced for each species the transcriptome of ten individuals (12 in the case of C.

canephora and V. vinifera, nine in the case of S. bicolor and five in the case of D. abyssinica)

plus two individuals coming from two outgroup species, using RNA-seq (see S3 Text for

details). After quality cleaning, reads were either mapped on the transcriptome extracted from

the reference genome (when available, see Table 1) or on the de novo transcriptome of each

species (including outgroups) obtained from [48]. For C. canephora and its outgroups, no tran-

scriptome was available. We thus applied the same methodology and pipeline as in [48] to

assemble and annotate contigs. For banana,M. acuminata, Robusta coffee tree, C. canephora,

and for the outgroup Phoenix dactylifera, genome sequences were available but the quality of

mapping was not optimal because of problems of definition of exon/intron boundaries. We

thus preferred assembling a new transcriptome from our data using the same protocol. Details

of the assemblies for all species are given in S2 Table. Details of data processing are provided

in S4 Text. Only contigs with at least one mapped read for each individual was kept for further

analysis. Expression levels for each individual in each contig were computed as RPKM values

(i.e. the number of Reads per Kilobase per Millions mapped reads). We called genotypes and

filtered out paralogs for each species individually using the read2snp software [47] (see S4 Text

for details). Genotypes were called when the coverage was at least 10x and the posterior proba-

bility of the genotype higher than 0.95. Otherwise, the genotype of the individual was consid-

ered as missing data. Orthology between focal and outgroup individuals was determined by

best reciprocal blast hit. Finally, we aligned orthologous contigs (focal and outgroup individu-

als) sequences using MACSE [74].

SNPs detection and polarization

We scanned contig alignments in each focal species for polymorphic sites. We only considered

gapless sites for which all focal individuals were genotyped. Only bi-allelic SNPs were consid-

ered. In the highly selfing T.monococcum, the deficit in heterozygous sites can lead to abnor-

mal site frequency spectra that are difficult to analyse. We thus used an allele sampling

procedure that effectively divides the number of chromosomes by two by merging together

homologous chromosomes in each individual. For heterozygous sites, one allele was randomly

chosen. For the mixed mating S. bicolor and S. pimpinellifolium, we used the full SFSs.

SNPs were polarized using parsimony by comparing alleles in focal individuals to ortholo-

gous positions in outgroups. For each polymorphic site, the ancestral allele was inferred to be

the one identical to both outgroup species, while the other allele was inferred to be derived.

All polarized SNPs are marked ancestral! derived for the remainder of the paper. A and T

bases were grouped together as W (for weak) while G and C bases were grouped together as S

(for strong). We thus classified mutations as W!S, S!W or neutral with respect to gBGC

(S !S or W !W).

SNPs and preferred codons

In each species, preferred (P) and un-preferred (U) codons were defined using the ΔRSCU

method [49]. In each contig, we computed for each codon its RSCU value, or relative fre-

quency (i.e. its frequency in a contig normalized by the frequency of its amino-acid in the

same contig). Contigs were divided into eight groups of identical size based on their expression

levels (RPKM values averaged over all individuals). For each codon, we compared its RSCU

in the first (least expressed) and last (most expressed) class using a Mann-Whitney U test.

Codons were annotated as preferred (or un-preferred) if their RSCU increased (or decreased)

significantly with gene expression levels. All other codons were marked as non-significant. All
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synonymous SNPs for which an ancestral allele is unambiguously identified were annotated

with regards to codon preference: mutations increasing codon preference (from un-preferred

to either non-significant or preferred, or from non-significant to preferred) were annotated

U!P while mutations decreasing codon preference (from preferred to either un-preferred or

non-significant, or from non-significant to un-preferred) were annotated P!U. Mutations

not affecting preference were considered as neutral with respect to SCU.

Substitutions

Using the three species alignments (Focal + two outgroups), we also counted and polarized

substitutions specific to the focal species lineage. Divergent sites were determined as sites that

were fixed in the focal population and different from both outgroups. Only sites identical in

both outgroups were considered. As described above for SNPs, substitutions were classified as

W!S, S!W or neutral, and U!P, P!U and neutral.

Modified MK-test, neutrality and direction of selection indices

We performed a modified McDonald-Kreitman (MK) test [51], comparing W!S to S!W

polymorphic and divergent sites on one hand (gBGC set) and U!P to P!U polymorphic and

divergent sites on the other (SCU set). The underlying theory is detailed in S1 Text. For each

category, the total number of synonymous polymorphic and divergent sites was computed fol-

lowing the criteria detailed above. We performed a Chi-squared test for each set. Significant

tests indicate that sequences do not evolve only under mutation pressure: selection and/or

gBGC must be at work. Furthermore, we computed for each set a neutrality [52] and a direc-

tion of selection [53] indices as follows:

NI ¼
PWS=PSW
DWS=DSW

DoS ¼
DWS

DWS þ DSW
�

PWS
PWS þ PSW

Where PWS and PSW are the number of W!S and S!W SNPs and DWS and DSW the number

of W!S and S!W substitutions respectively. Assuming constant mutational bias, NI values

lower than 1 or positive DoS values indicate SCU and/or gBGC of similar or stronger intensity

at the divergence than at the polymorphism level. Respectively, NI values higher than 1, or

negative DoS values indicate stronger selection and/or gBGC at the polymorphism than at the

divergence level (see S1 Text).

Because these statistics rely on polarized polymorphisms and substitutions, they are poten-

tially sensitive to polarization errors, which could lead to spurious signature of selection/gBGC

[38,44]. Importantly, we showed in S1 Text that the sign of both statistics is insensitive to

polarization errors (as far as they are lower than 50%) and that polarization errors decrease the

magnitude of the statistics, which makes our tests conservative to polarization errors.

Estimation of gBGC and SCU

To estimate gBGC and SCU we extended the method of Glémin et al. [38] as detailed in S2

Text. The rationale of the approach is to fit population genetic models to the three derived

SFS including fixed mutations (W!S or U!P, S!W or P!U, and neutral). Parameters esti-

mated are ancestral (B0 or S0) and recent (B1 or S1) gBGC or selection, mutational bias (λ), as

well as other parameters (see S2 Text for details). We ran a series of nested models where B0
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and B1 (or S0 and S1) are either fixed to zero or freely estimated, plus one model where they are

set to be equal. Models were compared by the appropriate likelihood ratio tests (LRT). To

jointly estimate gBGC and selection, we also extended the model by fitting nine SFS corre-

sponding to the combination of the three basic SFS (e.g. W!S and P!U see S2.1 Table in S2

Text for the complete list). We tested all combinations of models where each parameter can be

either null or freely estimated, so from the null neutral model, B0 = B1 = S0 = S1 = 0, to the

model with the four parameters being freely estimated. As all models are not nested, we then

chose the best model using the Akaike Information Criterion (AIC). When AICs were very

close we chose the model with the lowest number of free parameters.
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66. Ratnakumar A, Mousset S, Glémin S, Berglund J, Galtier N, et al. (2010) Detecting positive selection

within genomes: the problem of biased gene conversion. Philosophical Transactions of the Royal Soci-

ety B-Biological Sciences 365: 2571–2580.

67. Matsumoto T, John A, Baeza-Centurion P, Li B, Akashi H (2016) Codon Usage Selection Can Bias Esti-

mation of the Fraction of Adaptive Amino Acid Fixations. Molecular Biology & Evolution.
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