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A B S T R A C T

Background

Every year West African countries within the Sahelo-Sudanian band are afflicted with major
meningococcal meningitis (MCM) disease outbreaks, which affect up to 200,000 people, mainly
young children, in one of the world’s poorest regions. The timing of the epidemic year, which
starts in February and ends in late May, and the spatial distribution of disease cases throughout
the ‘‘Meningitis Belt’’ strongly indicate a close linkage between the life cycle of the causative
agent of MCM and climate variability. However, mechanisms responsible for the observed
patterns are still not clearly identified.

Methods and Findings

By comparing the information on cases and deaths of MCM from World Health Organization
weekly reports with atmospheric datasets, we quantified the relationship between the seasonal
occurrence of MCM in Mali, a West African country, and large-scale atmospheric circulation.
Regional atmospheric indexes based on surface wind speed show a clear link between
population dynamics of the disease and climate: the onset of epidemics and the winter
maximum defined by the atmospheric index share the same mean week (sixth week of the
year; standard deviation, 2 wk) and are highly correlated.

Conclusions

This study is the first that provides a clear, quantitative demonstration of the connections
that exist between MCM epidemics and regional climate variability in Africa. Moreover, this
statistically robust explanation of the MCM dynamics enables the development of an Early
Warning Index for meningitis epidemic onset in West Africa. The development of such an index
will undoubtedly help nationwide and international public health institutions and policy
makers to better control MCM disease within the so-called westward–eastward pan-African
Meningitis Belt.
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Introduction

Meningococcal meningitis (MCM) has affected Sahelian
Africa for centuries and became endemic over the past 25 y.
During the 1980s, the World Health Organization (WHO)
registered between 25,000 and 200,000 disease cases per year,
with about 10% of them resulting in death, and with the
highest infection rates observed in younger children [1].
MCM became, therefore, a public health concern in the
poorest regions in the world following the severe drought at
the end of the 1970s.

MCM is an infection of the meninges, caused by the
bacteria Neisseria meningitidis, that causes high death rates in
African communities. The agent is highly contagious, and
person-to-person aerial transmission occurs through respi-
ratory and throat secretions [2]. Interaction between differ-
ent environmental parameters (e.g., immune receptivity of
individuals, a poor socioeconomic level, the transmission of a
more virulent serotype [such as the recent emergence of the
serogroup W135 in West Africa], social interactions [such as
pilgrimages, tribe migrations, and meetings], and some
specific climatic conditions) may play a part in MCM disease
outbreaks and spread within local populations [2].

Among favorable conditions for the resurgence and then
dispersion of the disease, climatic conditions may be
important as environmental forces inducing periodic fluctu-
ations of disease incidence. Recent findings concerning the
population dynamics of some infectious diseases have clearly

identified the importance of climate as a major driver [3,4].
MCM outbreaks in West Africa usually start at the beginning
of February, and then disappear in late May. The geo-
graphical distribution of disease cases is called the ‘‘Menin-
gitis Belt ’’ and is roughly circumscribed to the
biogeographical Sahelo-Sudanian band [5,6]. This Sahelo-
Sudanian region has a dry winter, dominated by northern
winds, called the Harmattan, followed by a wet season starting
in spring with the monsoon. The co-occurrence in both space
and time of MCM disease cases and climate variability within
the Sahelo-Sudanian area suggests that the occurrence of
MCM might be directly related to climate. So far, very few
studies have tried to quantify the potential linkages that
could exist between climate and MCM outbreaks (Figure 1).
The winter climate causes damage to the mucous mem-

branes of the oral cavity through dry air and strong dust
winds, and creates propitious conditions for the transmission
of the bacteria responsible for MCM; low absolute humidity
and dust may enhance meningococcal invasion by damaging
the mucosal barrier directly or by inhibiting mucosal immune
defenses. In contrast, higher humidity during both the spring
and summer seasons strongly reduces disease risk by
decreasing the transmission capacity of the bacteria [7,8],
and MCM epidemics generally stop with the onset of rainfall
[9]. In addition to the seasonal cycle, the link between climate
and meningitis has also been documented at the interannual
scale in northern Benin, where Besancenot et al. [10] have

Figure 1. The ‘‘Meningitis Belt’’ in West Africa

Modified from the WHO [9].
DOI: 10.1371/journal.pmed.0020006.g001

PLoS Medicine | http://www.plosmedicine.org January 2005 | Volume 2 | Issue 1 | e60044

Climate Drives Meningitis Epidemics Onset



suggested a positive relationship between low absolute
humidity and interannual variability in meningitis. Mean-
while, although the global influence of climate is quite clear,
the effects of climatic variability on MCM population
dynamics are still only partially known because of the mixing
of different processes acting at different spatial hierarchical
scales, and the interactions between disease outbreaks and
medical, demographical, and socioeconomic conditions.

Most studies thus far have focused on very small spatial
scales, and the need remains to discriminate between local
properties and potential large-scale effects in disease
patterns, to go beyond data heterogeneities and idiosyncratic
details in order to identify important disease patterns
influenced by large-scale forces such as climate variability
(see Methods). The aim of the present work is thus to
document the climatic context of MCM disease outbreaks and
population dynamics in a highly affected Sahelian country,
that is, Mali, and to show, if it exists, the presence of a
correlation between climate and seasonal resurgence of
disease. The idea behind the present study was to explain
MCM disease dynamics in Mali in a statistically robust way,
which will permit us to propose some tools for predicting
disease risks for the benefit of public health.

Methods

The Scaling-Up Approach: From Local to Global Scales
Recent findings concerning the population dynamics of

some infectious diseases have clearly identified the impor-
tance of climate as a major driver [3,4]. With evidence of the
impact of large-scale meterological phenomena such as El
Niño on infectious disease patterns, modern epidemiology is
now confronted with a scale problem in the identification of
the spatiotemporal scales that might be relevant to explain
patterns and processes [11]. Since most previous studies have
focused on very small spatial scales, there is a need for
‘‘bottom-up’’ approaches to discriminate between local
properties and potential large-scale effects on disease
patterns. One of the simplest assumptions of these ‘‘bot-
tom-up’’ approaches is the assumption that local scales are
random processes overlaying a driving large-scale phenom-
enon such as climate variability. As such, this scaling-up
approach seeks to point out the emerging patterns condi-
tioned by the large-scale processes, with a random or
deterministic function f such that:

Local data ¼ f ðlarge�scale forces; idiosyncratic detailsÞ: ð1Þ

The aggregation of local data in the scaling-up approach is
a simple way to go beyond data heterogeneities and
idiosyncratic details so that only the important disease effects
of large-scale forces remain. That is the rationale for our
study: to show that large-scale phenomena such as the
seasonal Harmattan winds over the whole of Mali can
contribute to the periodic resurgence of MCM and its
variation in time on a national scale, even if this aggregate
analysis for the entire country is not able to capture
variations at smaller space scales.

Epidemiological Data: The WHO Weekly Reports
The diagnosis of MCM is based on both physical examina-

tion and on evaluation of the cerebrospinal fluid (CSF) from a
lumbar puncture. As the disease is characterized by a sudden

onset of intense headache, fever, nausea, vomiting, photo-
phobia, and stiff neck, in association with neurological
symptoms (lethargy, delirium, coma, and convulsions), the
WHO [9] recommends that the clinical diagnosis include an
examination for meningeal rigidity, neurological signs,
purpura, blood pressure, and focal infection. A lumbar
puncture and CSF examination are then used to confirm
the diagnosis based on physical examination and to identify
the meningococcus [9]. This diagnosis is the basis for disease
surveillance and case reporting using a standard case
definition for MCM (Box 1) that can be implemented in any
health-care setting. Meningitis reports are included in the
weekly reports of notifiable diseases and are aggregated at
different spatial scales from the health site to the country
level. The present study is based on these weekly reports by
the WHO’s Department of Communicable Disease Surveil-
lance and Response of cases and deaths due to MCM over the
whole of Mali from 1994 to 2002.

The Typical Seasonal Pattern of the Disease
In this study, an epidemic is defined in terms of population

dynamics following Anderson and May [12] and Grenfell and
Dobson [13]. This definition considers disease resurgence and
its variation in time and allows us to focus on the cyclic
character of the disease resurgence each year, even if the
number of annual cases is low, and it makes it easier to find
temporal correlations between climate and disease. To
represent a typical seasonal cycle of a meningitis epidemic,
we computed the weekly mean of standardized anomalies
M(w) of the number of cases as

MðwÞ ¼

Xy¼2002

y¼1994

XyðwÞ � �Xy

ry

� �

N
; ð2Þ

where �Xy and ry represent, respectively, the mean and the
standard deviation of the 54 weekly values of cases Xy(w) for
the year y, and N = 9 represents the number of years for the
1994–2002 period.

Box 1. Standard Case Definition of MCM Modified from the
WHO [9]

This case definition allows the detection of cases of meningococcal
septicemia.

1. Suspected case of acute meningitisa. Sudden onset of fever (.38.5
8C rectal or 38.0 8C axillary) with stiff neck. In patients under 1 y of age, a
suspected case of meningitis occurs when fever is accompanied by a
bulging fontanelle.

2. Probable case of bacterial meningitisb. Suspected case of acute
meningitis as defined above with turbid CSF.

3. Probable case of MCMb. Suspected case of either acute or bacterial
meningitis as defined above with Gram stain showing Gram-negative
diplococcus or ongoing epidemic or petechial or purpural rash.

4. Confirmed casec. Suspected or probable case as defined above with
either positive CSF antigen detection for N. meningitides or positive
culture of CSF or blood with identification of N. meningitides.

aOften the only diagnosis that can be made in dispensaries (peripheral
level of health care).
bDiagnosed in health centers where lumbar punctures and CSF
examination are feasible (intermediate level).
cDiagnosed in well-equipped hospitals (provincial or central level).
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The Onset of the Epidemic
We determined the week of the onset of the epidemic for

each year by characterizing a breaking slope in the annual
cycle of the number of cases. The dates of the breaking slope
have been determined objectively by using the Mann–
Whitney–Pettitt test [14], which is a nonparametric test used
here to detect a ‘‘change point’’ in a time series. A change
point is defined as a point on either side of which values are
on average higher or lower than the whole of the other data
points. Considering the studied time series Xy(w), we
computed Uy(w) as

UyðwÞ ¼ Uyðw� 1Þ þ VyðwÞ; ð3Þ

where 2 � w � 54 and Uy(1) = Vy(1), where Vy(w) is defined by

VyðwÞ ¼
X54
j¼1

signðXyðwÞ � XyðjÞÞ: ð4Þ

Then the the most significant change point of the year y is
the point for which the value jUy(w)j is maximized. The
probability Py(w) of a given week being a change point is
defined by

PyðwÞ ¼ 1� exp
�6U2

y ðwÞ
T3 þ T2

 !
; ð5Þ

where T = 54 (the length of the time series in weeks).

Atmospheric Data: The NCEP/NCAR Reanalysis
The National Centers for Environmental Prediction

(NCEP) and the National Center for Atmospheric Research
(NCAR) have completed a reanalysis project with a current
version of the Medium Range Forecast model [15]. This
dataset consists of a reanalysis of the global observational
network of meteorological variables (wind, temperature,
geopotential height [i.e., the height of a pressure surface
above mean sea level], humidity on pressure levels, surface
variables, and flux variables such as precipitation rate), with a
‘‘frozen’’ state-of-the-art analysis and forecast system at a
triangular spectral truncation of T62, performing data
assimilation throughout the period from 1948 to the present.
This analysis enables circumvention of problems involving
previous numerical weather prediction analyses due to
changes in techniques, models, and data assimilation. Data
are reported on a 2.5832.58 grid every 6 h (00.00, 06.00, 12.00,
and 18.00 UTC) on 17 pressure levels from 1,000 hPa to 10
hPa, a good resolution for studying synoptic weather systems.
For this study we used the wind speed fields at 1,000 hPa (near
the surface) for the 9 y of the 1994–2002 period: first we
averaged the four outputs of each day, and then we averaged
these daily means for each week to obtain a weekly value.

Computation of the Harmattan Wind Index
The principal component analysis (PCA) [16] is a multi-

variate procedure that extracts the common variance that
exists in a set of variables. The main use of PCA is to reduce
the size of a dataset while retaining as much information as
possible in principal components (PCs), which are linear
combinations of the initial variables. In this study, this
technique has been used in order to summarize the
spatiotemporal variability of wind fields at low levels. As the
input data are spatial objects (grid points), the PCA gives for
each mode a spatial pattern associated with a time series (the

PC). We performed the PCA on the weekly values from 1994
to 2002 of wind speed at 1,000 hPa over the Mali window (in
red in Figure 1) by taking into account all the grid points
from 12.58 N to 258 N and from 12.58 W to 2.58 E. The input
matrix was thus composed of 6 3 7 = 42 loadings (the
number of grid points over the spatial window) and 486
scores (the number of weeks in the 1994–2002 period). Data
was first standardized in order to extract the correlation
matrix C = X9X, where X represents the input matrix and X9
its transpose. The ath PC time series wa can thus be obtained
by a linear combination of the initial variables through

wa ¼ Xua; ð6Þ

where ua is the ath eigenvector of the correlation matrix C
associated with the eigenvalue ka.
The ath spatial pattern is the correlation map between the

initial wind fields and the ath PC time series. The examination
of the different spatial patterns and PC time series (not
shown here but previously discussed in [17]) reveals a close
relationship between Harmattan wind dynamics and the third
PC with negative values, which represents a strong wind in
southern Mali. The Harmattan wind index of the study thus
represents the third PC, with a temporal pattern very similar
to the seasonal cycle of wind speed associated with the
Harmattan winds over Mali.

Results

The ‘‘Epidemic Seasonality’’ in Mali
The weekly records of the WHO’s Department of Commu-

nicable Disease Surveillance and Response of cases and
deaths due to MCM for the 1994–2002 period allowed us to
describe the seasonal evolution of MCM epidemics in Mali.
Two important parameters were used: the date of the onset of
the epidemic and the date of the seasonal maximum number
of cases. We determined for each year the week of the onset
of the epidemic (here called ‘‘Wo’’) as determined by a
breaking slope in the annual cycle of the number of cases.
The dates of breaking slope have been determined objectively
by using the Mann–Whitney–Pettitt test [14], which is a
nonparametric test used here to detect a change point in a
time series. This test has the advantage of being adapted to
small samples, giving the point of the most significant change
and the probability of it being a significant change point (see
Materials and Methods). The mean date of epidemic onset fell
between the fifth and sixth week of the year (7–15 February),
with a standard deviation of about 2 wk (5.2 6 1.7 wk). For
the 1994–2002 period, the maximum number of cases
occurred between week 13 and week 14, that is, between 1
April and 15 April, with a standard deviation of about 2 wk
(13.7 6 1.6 wk) (Figure 2).
In order to mitigate the effect of strong variability from

one year to another during the 1994–2002 period, we
computed the average of standardized anomalies of the
number of cases (bars in Figure 2) to represent a typical
seasonal pattern of a meningitis epidemic. The first 5 wk are
characterized by negative anomalies. The average length of
the ‘‘epidemic year,’’ as defined by the number of consecutive
weeks with positive anomalies, is 4 mo (16 wk).
To improve the description of the seasonal pattern of the

epidemic and to reduce noise due to the variability of the
onset date year to year, we determined the composite mean
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of the number of cases over the 1994–2002 period by using
the week of epidemic onset for each year as the respective
reference date, Wo. The red curve of Figure 2 shows the mean
seasonal course before and after the onset of the epidemic,
showing an abrupt increase of the number of cases—the
‘‘upward phase’’—until the sixth week after the onset, a highly
active period of the disease—the ‘‘active phase’’—from ‘‘Woþ
6’’ to ‘‘Wo þ 10,’’ followed by a decrease of the number of
cases—the ‘‘downward phase’’—until the end of the epidemic
around 16 wk after the onset. Both upward and downward
phases lasted on average 1.5 mo.

The Atmospheric Circulation during an Epidemic in Mali
Rainfall distribution over West Africa is controlled by the

meridional migration of the intertropical convergence zone
following the seasonal excursion of the sun [18]. The
latitudinal shift of this zone of high humidity and instability
leads to an opposition of two main annual regimes: the
bimodal regime of the Guinean latitudes (from the equator to

78 N) with two rainy seasons during spring and autumn, and
the unimodal regime of monsoon over Sudano-Sahelian
Africa and succession of a dry winter and a wet summer
[19]. North of the intertropical convergence zone, the
intertropical front is defined as the confluence line between
moist southwesterly monsoon winds and dry northeasterly
Harmattan [20,21]. The seasonal progression of this system,
involving a migration toward the summer pole of moisture
and winds converging in the low layers, can be documented
by using weekly fields surface wind speed from NCEP and
NCAR data, which provide gridded atmospheric parameters
with a 2.58 resolution [15]. The relationship between
atmospheric circulation and the seasonal course of the
MCM epidemic in Mali was studied using a regional index
summarizing the spatiotemporal evolution of the low-layer
circulation. This index was obtained from a dominant mode
of a PCA (see Materials and Methods) applied to weekly fields
of surface wind speed over the 1994–2002 period in Mali. The
seasonal pattern shows the Harmattan wind dynamics (Figure
3) with negative values representing strong winds, and
positive values representing weak winds, in the southern part
of Mali, the area under study in the present work.
Using this atmospheric index, we defined the date of

‘‘winter maximum’’ as the first minimum of the wind index
for each year of the period 1994–2002. The winter maximum
thus corresponds to the week where wind speed is the
strongest. The mean date of winter maximum is around the
sixth week, with a standard deviation of 2 wk, corresponding
to the week when the Intertropical Front is located at its
southern latitude. The Harmattan wind index shows a
temporal pattern very similar to the that of the number of
cases of MCM, with a clear breaking slope at the sixth week,
on 15 February, corresponding to the onset of the epidemic
and to the winter maximum, and with a recession of the
disease at the 16th week concomitant with the onset of the
wet season in the south part of Mali in early May. It is
interesting to note that although they are determined from
two different datasets, the mean weeks of winter maximum

Figure 3. Temporal Patterns of Epidemics and Climate

Weekly means of the Harmattan wind index over the 1994–2002
period and mean seasonal pattern of the number of cases of MCM (in
standardized anomalies).
DOI: 10.1371/journal.pmed.0020006.g003

Figure 2. The Seasonal Periodicity of Meningitis Cases

Mean seasonal pattern of the number of cases of MCM over the 1994–2002 period in standardized anomalies (bars). The red curve represents the
same evolution, but in composite mean, using the week of epidemic onset as the reference date, Wo, each year. Time series in red is shown from
‘‘Wo � 3 wk’’ to ‘‘Wo þ 30 wk.’’
DOI: 10.1371/journal.pmed.0020006.g002
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and of the onset of the epidemic are identical, 7–15 February.
This coherence is reinforced by a very strong correlation
between the two dates (0.92) for the years 1994 to 2002. Figure
4 shows the linear regression analysis between week of winter
maximum and week of epidemic onset. Although the number
of years under consideration is low, the scatter plot points
out the close statistical linkage between these two events,
suggesting that the winter maximum explains more than 85%
of the variance in the week of epidemic onset in Mali: An
earlier winter is associated with an earlier onset of the
epidemic, and a later winter with a later onset. However, even
though the results of the correlation analysis are strongly
significant, the high R2 is partially due to the low number of
considered years (only nine); this low number is the main
limitation of the present analysis.

Discussion

In this paper and a previous publication of ours [17], by
using the weekly number of cases of MCM disease in Mali and
large-scale fields of surface wind speed, we clearly identify a
strong relation between climate and the seasonal pattern of
MCM cases in Mali. It is shown that the onset of disease
outbreak is characterized by a clear breaking slope in the
seasonal cycle of the number of cases at the sixth week of the
year, that is, 15 February. The computation of an atmospheric
index based on surface wind speed over Mali points out that
this abrupt shift is also present in the atmospheric signal,
corresponding to the winter wind maximum, when Harmat-
tan winds are the strongest in Sahelo-Sudanian Africa. The
similarity in the seasonal patterns of both Harmattan winds
and MCM disease cases is obvious, with a strong correlation
between the week of winter maximum and that of the onset of
epidemic. Similar results, not illustrated here, have been
obtained by using surface temperatures and specific humidity
for the computation of atmospheric indexes, attesting to the
robustness of the analysis.

However, whatever the climatic index is used, this analysis
does not allow us to link the intensity of the ‘‘epidemic’’ (the
annual number of cases) to the intensity of winter in terms of
absolute humidity and surface wind speed. This lack of a
relation may be due to the time series length, with an
insufficient number of years to study interannual variations,
or it may imply that the climatic influence is limited to
explaining the occurrence of the seasonal cycle of the

epidemic and its geographical range distribution, but not
its intensity. Although they fail to forecast epidemic intensity,
such climatic indexes, with their correlation with the onset
and the seasonal course of the epidemic in Sahel, provide an
important means of disease monitoring and prediction in
Africa. Indeed, the seasonal pattern of humidity and
Harmattan winds can be easily tracked, thus promoting the
emergence of an Early Warning Index (EWI) for the onset of
MCM epidemics. The seasonal forecast of this EWI based on
Harmattan winds could thus be implemented routinely by
using comprehensive coupled models of the atmosphere,
oceans, and land surface that provide a degree of predict-
ability of climate fluctuations with a seasonal lead time in
many parts of the world [22]. The ability of the climate
models to predict the winter maximum could be tested by
using the outputs of the Development of a European Multi-
Model Ensemble System for Seasonal to Interannual Pre-
diction (DEMETER) project, which was conceived and funded
under the European Union Fifth Framework Environment
Programme. The principal aim of DEMETER was to advance
the concept of multimodel ensemble prediction by using a
number of state-of-the-art global-coupled ocean–atmosphere
models and to produce a series of 6-mo multimodel ensemble
hindcasts. The DEMETER project already has application
partners in agronomy and in tropical disease prediction [22].
This EWI parameter, in association with other environ-

mental parameters implicated in disease resurgence [23],
could help to more precisely characterize disease risk maps at
regional scales. The natural extension of this work is to relate
this information on the timing of disease outbreaks with
specific spatial environmental characteristics at finer scales,
in an Early Warning System based on the monitoring of the
impact of climate variability and environmental change on
epidemic occurrence in West Africa. Recent findings by
Molesworth et al. [23] have already quantified the relationship
between the environment and the location of the epidemics
to propose a model based on environmental variables and to
identify regions at risk for meningitis epidemics. The
combination of the EWI for MCM epidemic onset and risk
maps at regional scales could be a starting point to more
optimally direct national and international health policy
strategies and to optimize mass vaccination campaigns. In
addition, more general measures can be taken by national
authorities to improve the control of MCM disease, such as
closing markets and schools and discouraging social gather-
ings when an outbreak is likely to occur [9].
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Patient Summary

Background Climate is known to be one of the factors that can affect
when and how epidemics occur; for example, floods often increase the
risk of waterborne disease. However, there are many more subtle
climatic changes that might also be important in affecting when and
how diseases occur.

What Did the Researchers Do? They looked at the relationship
between a recurring epidemic of a disease called meningococcal
meningitis in Mali in West Africa and the local climatic conditions,
especially the winds. Meningococcal meningitis is a serious infection of
the lining of the brain and spinal cord by a bacterium (called Neisseria
meningitides). These researchers had previously published some detailed
work on the local climate in a French journal. In this paper they have
focussed more on the aspects that deal with disease. They found out
that over several years the onset of the epidemic coincided with the
peak of the winds.

Who Will Use These Results? People who would find these results
useful are those who plan for epidemics. Such information will allow
them to plan in advance, and even predict whether an epidemic will
occur at all. However, these results were based on only the years
between 1994 and 2002, and so will need to be confirmed in more years.
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