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Abstract

To better understand Zaire ebolavirus (ZEBOV) circulation and transmission to humans, we conducted a large serological
survey of rural populations in Gabon, a country characterized by both epidemic and non epidemic regions. The survey
lasted three years and covered 4,349 individuals from 220 randomly selected villages, representing 10.7% of all villages in
Gabon. Using a sensitive and specific ELISA method, we found a ZEBOV-specific IgG seroprevalence of 15.3% overall, the
highest ever reported. The seroprevalence rate was significantly higher in forested areas (19.4%) than in other ecosystems,
namely grassland (12.4%), savannah (10.5%), and lakeland (2.7%). No other risk factors for seropositivity were found. The
specificity of anti-ZEBOV IgG was confirmed by Western blot in 138 individuals, and CD8 T cells from seven IgG+ individuals
were shown to produce IFN-c after ZEBOV stimulation. Together, these findings show that a large fraction of the human
population living in forested areas of Gabon has both humoral and cellular immunity to ZEBOV. In the absence of identified
risk factors, the high prevalence of ‘‘immune’’ persons suggests a common source of human exposure such as fruits
contaminated by bat saliva. These findings provide significant new insights into ZEBOV circulation and human exposure,
and raise important questions as to the human pathogenicity of ZEBOV and the existence of natural protective
immunization.
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Introduction

Ebolavirus (EBOV) and its close relative marburgvirus (MARV)

compose the Filoviridae family of viruses causing severe hemor-

rhagic fever (HF) in humans and non human primates [1]. The

EBOV genome is about 19 000 nucleotides long and consists of a

single strand of negative-sense RNA that encodes seven linearly

arranged gene products, in the following order: the nucleoprotein

(NP), VP35, VP40, glycoprotein, VP30, VP24, and the polymerase

(L). The genus Marburgvirus consists of a single species, while there

are five known species of Ebola-like-viruses that have different

geographic locations and case fatality rates, and about 32% to

41% of nucleotide sequence differences [2]. The species Reston

ebolavirus was first isolated from Asian cynomolgus monkeys from

the Philippines; it is pathogenic for non human primates but

apparently non pathogenic for humans [3,4]. Recently, Reston

ebolavirus was also isolated from domestic Philippino swine with a

severe respiratory syndrome and coinfected by porcine reproduc-

tive and respiratory syndrome virus [5]. The species Côte d’Ivoire

ebolavirus has been associated with a single, non fatal human case,

in Ivory Coast in 1994 [6]. Sudan ebolavirus has caused four known

outbreaks, three in Sudan [7–9] and one in Uganda [10,11] with a

reported case fatality rate of around 50%. The latest species to be

discovered, Bundibugyo ebolavirus, was discovered in 2007 in

Uganda, where it was responsible for a large outbreak, with 116

confirmed cases and 30 deaths (case fatality rate 26%) [12]. Zaire

ebolavirus (ZEBOV) is the most pathogenic species, with reported

case fatality rates of up to 90%. ZEBOV has caused several

outbreaks in Central Africa, Democratic Republic of Congo

(DRC), Republic of Congo (RC) and Gabon [13–17]. North-east

Gabon experienced four outbreaks between 1994 and 2002, with a

total of 259 confirmed human cases and only 79 survivors (case

fatality rate: 69%).

Recently, significant advances have been made in our under-

standing of filovirus ecology. Antibodies and nucleotide sequences

specific for ZEBOV [18,19] have been detected in the liver and

spleen of three fruit bat species in Gabon and RC (Hypsignathus

monstrosus, Epomops franquetti, and Myonycteris torquata), and antibodies

and nucleotide sequences specific for MARV [20,21] have been

found in a fruit bat species in Gabon (Rousettus aegyptiacus) and in two

insectivorous bat species in DRC (Rhinolophus eloquens and Miniopterus

inflatus). More recently, MARV was isolated for the first time in

cave-dwelling Rousettus aegyptiacus in Uganda [22]. Together, these

findings raise the possibility that these bats might be a filovirus
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reservoir, but the mechanism of primary ZEBOV transmission to

humans, potentially leading to outbreaks, remains unclear. The

Ebola hemorrhagic fever (EHF) outbreaks that occurred in Gabon

and RC between 2001 and 2003 were also associated with major

outbreaks among wild-living large mammals (especially chimpan-

zees and gorillas), devastating local animal populations [16,23,24].

The primary human cases involved hunters who became infected

after handling animal carcasses found in the forest [16]. Similarly,

the 1996 Mayibout outbreak in Gabon started among children who

handled a chimpanzee carcass [15]. A recent study showed that the

2007 Luebo outbreak in DRC was linked to massive fruit bat

migration, strongly suggesting for the first time that humans could

be infected directly by bats [25]. However, the source of most

EBOV and MARV outbreaks has not been identified.

It is generally accepted that ZEBOV is associated with a case

fatality rate of about 90%, but this may be an overestimate. First,

seven cases of asymptomatic infection were identified during the

1996 Booué outbreak in Gabon [26]. Second, some ELISA-based

serosurveys [27] have shown high antibody prevalence rates among

populations living in areas where no cases of EHF have ever been

reported, suggesting that ZEBOV might also be capable of causing

mild illness or even asymptomatic infection in humans. The IgG

seroprevalence was 9.3% in villages located in the 1995 outbreak

area around Kikwit, DRC, where no EHF cases were reported [28].

Likewise, a seroprevalence of 13.2% was found in the Aka Pygmy

population of Central African Republic, where no ZEBOV

outbreaks have ever been reported [29]. These findings confirmed

those of older studies based on less-specific immunofluorescence

assays that showed an antibody prevalence of around 10% in several

non epidemic parts of Africa [30–34]. In contrast, a more recent

survey showed a low anti-ZEBOV IgG prevalence (1.4%) among

979 people living in the northern region of Gabon that experienced

EHF outbreaks between 1994 and 1997 [35]. The authors deduced

that mild or asymptomatic EHF infection was possible but rare.

The source and significance of anti-ZEBOV IgG seropositivity

among people who have never had clinical signs of hemorrhagic

fever or who live in non epidemic areas are both unclear, but they

may have major implications for our understanding of the

epidemiology of ZEBOV of primary transmission to humans and

outbreaks. We therefore conducted a very large serological survey of

ZEBOV exposure among rural populations of Gabon, a country

with both epidemic and non epidemic regions. The specificity of

ZEBOV-specific IgG was confirmed by western blot, and ZEBOV-

specific memory T cell responses were investigated for the first time.

Results

Survey Participation
We enrolled 4,349 individuals in 220 randomly selected villages

covering all the ecological regions of the country (Figure 1). Blood

samples and sociodemographic data were available for all 4,349

participants. All participants were $16 years old, and 2,227

(51.2%) females and 2,122 (48.4%) males participated. The

participants were located in the Forest (2,540 participants;

58.4% of the study population), Grassland (918; 21.1%), Savannah

(448; 10.3%) and Lakeland (443; 10.2%) regions. The Forest area

was subdivided into North-Eastern Forest (825; 19%), Interior

Forest (1,314; 30.2%) and Mountain Forest (401; 9.2%).

Cut-Off Calculation
The cut-off value for IgG positivity was determined by using a

negative control population of volunteers sampled in Marseille,

France in 2008. Nothing was known of ZEBOV circulation in the

area studied. It was therefore impossible to define a control

population with which to determine the OD distribution in

seronegative subjects: inclusion of seropositive subjects among the

controls would have undermined the validity of this distribution

and the determination of a valid cutoff. We therefore chose a more

rigorous approach, based on the choice of control subjects who

were almost certain to be seronegative, yielding a valid

‘‘background’’ OD distribution; we also chose a curve largely

covering this distribution and made a conservative choice of cutoff

(error risk below 1/1000 for the first ‘‘positive’’ value). The cutoff

was therefore based on a highly conservative approach. Finally,

the OD distribution of the Gabonese population sample showed a

strong excess of values in the range [0.05, 0.20] (relative to the

reference distribution), but, thanks to the use of a conservative

approach, these values were not considered as positive.

The distribution in the negative control population was centered

near 0 (mean 0.006, median 0.009), with a standard deviation of

0.071 (data not shown). This distribution can be surrounded in the

positive values by a negative exponential distribution (y = a*exp

(-35*(x-0.006))). The exponential distribution gave a better fit than

normal and gamma distributions. With this formal distribution, the

observed distribution of all ODs was under the curve and the

probability of an individual having an OD above 0.2 was less than

1%. A sample was considered positive when its adjusted OD was

above the cut-off (0.2 at 1:1600 dilution) and when the OD in the

viral antigen-coated well was twice as high as the OD in the

uninfected antigen-coated well. All samples were tested in duplicate.

ZEBOV-Specific IgG Seroprevalence and Regional
Distribution

The seroprevalence of ZEBOV-specific IgG in the study

population was 15.3% overall (Table 1), and varied significantly

Figure 1. Map of Gabonese villages (red circles) included in the
survey, according to the ecological region. Villages where
children ,16 years were specifically included in the study are indicated
by yellow circles. The overall prevalence of ZEBOV-specific IgG in each
ecological region is shown.
doi:10.1371/journal.pone.0009126.g001
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according to the ecological area (Figure 1, Table 1). The

seroprevalence rate in the Forest region (19.4%) was significantly

higher than that found in the other regions (p,0.001). Similarly,

the seroprevalence rate in the Lakeland region (2.7%) was

significantly lower than that found in the other areas (p,0.001).

No significant difference was observed (p$0.3) between Savannah

(10.5%) and Grassland (12.4%) nor between the three types of

Forest area (p$0.4) (Table 1).

As shown in Table 2, no significant difference (p$0.9) in

seroprevalence was observed across villages where no ZEBOV

outbreaks had been reported (19.5%), villages hit by the 1996–

1997 outbreaks (20.2%), and villages hit by the 2001–02 outbreak

(18.3%).

Seroprevalence rates varied widely across neighboring villages

in each ecological region (Figure 2), ranging from 0% to 13.2% in

Lakeland, 0% to 16.1% in Savannah, 3.8% to 30.8% in

Grassland, and 5% to 33.3% in Forest.

Influence of Sociodemographic Characteristics on
ZEBOV-Specific IgG Seroprevalence

Because the seroprevalence rates varied across the ecological

areas, we examined the possible influence of sociodemographic

characteristics (Table 3). No correlation was found between the

seroprevalence rate and gender, age, hunting activity or contact

with specific forest animals in a given ecological area (Table 3).

The ‘hunting’ subgroup consisted of men who hunted frequently or

occasionally, and thus excluded females. The ‘contact with specific

forest animals’ subgroup included hunters, individuals who kept wild

animals as pets, those who butchered dead animals, and those who

cooked them.

The seroprevalence did not significantly vary with age (Table 3).

However, only individuals older than 21 years were included in

this analysis, owing to the small number of younger participants.

In order to evaluate the influence of age among individuals

younger than 21 years, we conducted a specific field study of

children living in six villages located in the north-east forest area.

We enrolled 395 children between 2 and 15 years old. The

seroprevalence rate was significantly lower in the 1–10 year age

group (8.7%; p = 0.005) than in all the other age groups (Table 4).

The seroprevalence rates were 18.5% in the 11–20 year age group,

20.2% in the 21–30 year age group, 23.7% in the 31–40 year age

group, 20.1% in the 41–50 year group and 18.5% in the $51 year

group. The seroprevalence rates increased linearly with age below

15 years (Figure 3).

Detection of Specific Anti-ZEBOV IgG by Western Blot
To confirm the specificity of anti-ZEBOV IgG, 150 randomly

selected sera of the 667 positive samples were analyzed by western

blotting in denaturing conditions with purified ZEBOV antigens,

but technical problems meant that clear-cut results could not be

obtained for 12 of them. All 138 sera tested by western blot (about

21% of all the positive samples) reacted with at least one ZEBOV

protein. These selected sera represented a broad range of ODs and

a broad geographic area of Gabon. Depending on the individual,

IgG reactivity was directed against NP, VP40, VP35 VP24 and/or

sGP (Figure 4). In total, 76% of the 138 sera reacted to VP40, 56%

to NP, 36% to VP35 and 24% to sGP, while only one sample

reacted to VP24. The IgG reactivity of serum from two survivors

was also mainly directed to NP and VP40 (Figure 4).

ZEBOV-Specific T Lymphocyte Memory Responses
To detect ZEBOV-specific T cell memory responses in these

IgG+ individuals, intracellular levels of TNF-a and IFN-c were

determined in CD4+ and CD8+ T cell populations from seven

randomly selected IgG+ individuals. Positive gating for lympho-

cytes based on forward and side scatter was followed by

CD3+CD4+ and CD3+CD8+ gating, and specific populations

were further defined by using antibodies specific for CD8 and

CD4, respectively. Cytokine-positive cells were expressed as a

percentage of the corresponding lymphocyte subset.

With samples from IgG+ individuals and from three survivors of

ZEBOV infection, the percentage of circulating CD4+ T cells

producing IFN-c did not increase after PBMC stimulation (data

not shown). In contrast, with samples from the seven IgG+
individuals, the percentage of circulating CD8+ T cells producing

IFN-c was higher on day 2 or 3 of PBMC stimulation by iZEBOV

than after mock stimulation (Figure 5). This increase was noted on

day 2 in individuals #IgG+1, IgG+3 and IgG+4, and on day 3 in

Table 1. Prevalence of ZEBOV-specific IgG in Gabon
according to the ecological region.

N positive prevalence p value

All participants 4,349 667 15.3%

Lakeland area 443 12 2.7% ,0.001 ,0.001 ,0.001

Savannah area 448 47 10.5% ,0.001 0.3 referent

Grassland 918 114 12.4% ,0.001 referent

Forest aera 2,540 494 19.4% referent

Northern-Eastern 825 167 20.2%

Interior 1,314 242 18.4% 0.4

Mountains 401 85 21.2%

doi:10.1371/journal.pone.0009126.t001

Table 2. Prevalence of ZEBOV-specific IgG in Gabon
according to epidemic and non epidemic areas in Gabon.

Forest area N positive prevalence p value

Villages without outbreak 2,307 449 19.5% referent

Villages hit by 1996 outbreaks 129 26 20.2% 0.9

Villages hit by 2001 outbreak 104 19 18.3% 0.9

doi:10.1371/journal.pone.0009126.t002

Figure 2. Prevalence of ZEBOV-specific IgG in villages within
each ecological region. Each circle represents a group of two or
three neighboring villages.
doi:10.1371/journal.pone.0009126.g002
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individuals #IgG+2, IgG+5, IgG+6 and IgG+7. The strongest

responses were observed in individuals #IgG+1, IgG+2 and

IgG+3, with a 3-fold increase. Similar levels of IFN-c-producing

CD8+ T cells were observed in PBMC obtained from three

survivors of ZEBOV infection, after iZEBOV stimulation. By

contrast, no increase was observed with samples from the four

IgG-negative controls (Figure 5).

PBMC from one individual were stimulated with iZEBOV on

day 0 and again on day 6. The percentage of circulating IFN-c-

producing CD8+ T rose one day after each stimulation, i.e. on day

2 and day 7 (Figure 6). No increase in the percentage of TNF-a-

producing CD8+ or CD4+ T cells was observed with PBMC from

IgG+ individuals, although both CD8+ and CD4+ T cells from all

three survivors produced low levels of TNF-a on day 3 after

iZEBOV stimulation (data not shown).

Discussion

To our knowledge this is the largest human serological survey of

Ebola virus conducted to date. It lasted three years and covered

4,349 individuals in 220 randomly selected villages, representing

10.7% of all villages in Gabon. The overall seroprevalence of

ZEBOV-specific IgG was 15.3%, the highest rate ever found. The

seroprevalence was even higher in forested areas (representing L

of the total surface area of Gabon), reaching 19.4% overall and

33.8% in some villages. The lowest seroprevalence was found in

the Lakeland region (2.7%).

These results are consistent with previous studies showing

seroprevalence rates ranging from 1.8% to 21.3% [30–34].

However, these latter surveys used a poorly specific IFAT method

associated with frequent false-positive results [27]. Two recent

small serosurveys based on the same ELISA assay as that used here

showed elevated seroprevalence rates in some forested regions of

central Africa. For example, ZEBOV-specific IgG was found in

9.3% of 161 individuals living in unaffected villages near Kikwit, a

few weeks after the 1995 outbreak [28]. Likewise, a rate of 13.2%

was found among 190 Aka Pygmies in Central African Republic,

where ZEBOV outbreaks have never been reported [29].

However, these surveys involved only small numbers of individuals

and a low plasma dilution (1:400), and the specificity of ZEBOV

IgG was not confirmed in more specific tests such as western blot.

We used western blot, for the first time, to confirm the

specificity of ZEBOV IgG in 138 ELISA-positive samples selected

randomly from various regions of Gabon (about one in five of the

positive samples). As previously shown among survivors [36] and

Table 3. Prevalence of ZEBOV-specific IgG according to demographic characteristics in individuals aged $20 years, Gabon.

Forest Grassland Savannah Lakeland

N Pos (%) p value N Pos (%) p value N Pos (%) p value N Pos (%) p value

Male 1,181 248 (21%) 0,07 471 72 (15.3%) 0.01 191 25 (13.1%) 0.1 206 9 (4.4%) 0.09

Female 1,359 246 (18.1%) 447 42 (9.4%) 257 22 (8.6%) 237 3 (1.3%)

Age (years)

21–30 343 275 (19.6%) 0.4 122 14 (11.5%) 0.7 55 5 (9.1%) 0.9 70 3 (4.3%) 0.7

31–40 425 343 (19.3%) 157 17 (10.8%) 74 8 (10.8%) 82 3 (3.7%)

41–50 498 390 (21.7%) 197 29 (14.7%) 102 10 (9.8%) 72 2 (2.8%)

$51 1186 215 (18.1%) 404 51 (12.6%) 197 23 (11%) 209 4 (1.9%)

Hunting 775 163 (21%) 0,9 262 43 (16.4%) 0.5 128 14 (10.9%) 0.3 67 6 (8.9%) 0.07

No hunting 403 85 (21.1%) 209 29 (13.9%) 63 11 (17.5%) 135 3 (2.2%)

Contact with animals 2473 481 (19.4%) 0,9 ND ND ND

No contact with animals 67 13 (19.4%) ND ND ND

doi:10.1371/journal.pone.0009126.t003

Figure 3. Prevalence of ZEBOV-specific IgG according to age in
the north-eastern region of Gabon (green). The overall prevalence
of ZEBOV-specific IgG according to age is shown in brown.
doi:10.1371/journal.pone.0009126.g003

Table 4. Prevalence of ZEBOV-specific IgG according to age
in the north-eastern region of Gabon.

Northern-Eastern forest

Age (years) N Pos (%) p value

1–10 207 18 (8.7%) 0.005

11–20 232 43 (18.5%) 0.7

21–30 124 25 (20.2%)

31–40 152 36 (23.7%)

41–50 164 33 (20.1%)

$51 341 63 (18.5%)

doi:10.1371/journal.pone.0009126.t004

Ebolavirus in Human Population

PLoS ONE | www.plosone.org 4 February 2015 | Volume 5 | Issue 2 | e9126



in individuals with asymptomatic infection [26], we found that

anti-ZEBOV IgG was mainly directed to the viral proteins NP,

VP40, VP35 and sGP. These results, together with the high

seroprevalence rates and ELISA positivity on highly diluted sera,

support the specificity of the observed IgG reactivity. They thus

imply that IgG antibodies were generated in response to ZEBOV

exposure of the individuals concerned. In order to rule out false-

positive antibody responses, we further investigated ZEBOV-

specific T cell memory responses in seven randomly selected IgG+
individuals. Despite inter-individual variability, we observed

higher IFN-c production in CD8+ T cells from IgG+ individuals

than in negative controls, a finding indicative of memory T cell

responses to ZEBOV. It is now well recognized that CD8 T cell

responses to acute viral infection can be divided into three distinct

phases [37–40]. Antigenic stimulation leads to massive clonal

expansion of naı̈ve CD8 T cells and to the acquisition of effector

functions, including IFN-c and TNF-a production and cytotoxic

activity that render the cells capable of killing virus-infected cells.

Once the infection is resolved, 90–95% of activated effector CD8

T cells die through apoptosis, while the remainder form a long-

lived population of memory cells. Memory CD8 T cells have an

enhanced capacity to control secondary antigen exposure, through

more efficient proliferation, rapid acquisition of effector functions,

IFN-c and TNF-a production, and migration to peripheral sites of

infection [41]. Long-term protective memory after initial antigen

exposure has been shown in individuals vaccinated against the

viruses causing smallpox, yellow fever, measles and polio [42].

Memory CD8 T cell responses can persist for up to 75 years after

vaccination, thus providing lifelong protection [43]. Furthermore,

a recent study showed that 90% of individuals vaccinated against

smallpox still had vaccinia virus-specific IFN-c-producing CD8 T

cells, indicating that long-term protection is mediated by memory

CD8 T cell responses [44,45]. Highly effective protection of

experimental rodents and non human primates against Ebola virus

infection after various types of vaccination is associated with the

generation of ZEBOV-specific IFN-c-producing CD8 T cells and

antibody responses [46–52]. Consequently, the detection of both

ZEBOV-specific IgG and IFN-c-producing CD8 T cell responses

in all the healthy seropositive individuals tested here shows that

these individuals must have been exposed to ZEBOV. Although

EHF is not always associated with bleeding, other symptoms

(abrupt-onset high fever, severe diarrhea and vomiting, breast and

chest pain, etc.) are frequently severe and are therefore easily

remembered. Furthermore, even if bleeding does not occur, severe

forms of ZEBOV infections are associated with high viral load in

other body fluids and, therefore, with high infectivity, inducing

human-to-human transmission and secondary cases. Such events

are unlikely to go undetected in Gabon. For these reasons, we

believe most of the seropositive persons identified in our survey

had probably had mild or asymptomatic infection, or were simply

exposed to viral particles.

The similar rates of EBOV seropositivity in non epidemic

regions and outbreak areas of Gabon, together with the small

number of survivors from past outbreaks, rule out an important

role of human-to-human transmission and rather suggest direct or

indirect contact with infected animals. Moreover importantly,

ZEBOV is mainly excreted in blood, diarrhea and vomit. ZEBOV

is present in very large amounts in these fluids (more than several

million virions per mL) during the acute phase of the disease.

Although viral particles have been detected in saliva and sweat

from acutely ill patients, human-human transmission by this route

has not been documented. This putative transmission route would

be even more unlikely in the case of mild or asymptomatic disease

which is associated with a much lower viral load. Only three

animal species, in addition to humans, have been shown to be

naturally infected by ZEBOV. Chimpanzees and gorillas are

unlikely candidates, as infection occurs only occasionally and

death ensues rapidly [16,23,24]. Moreover, wild populations are

small and live deep in the forest far from villages, while physical

contacts with humans are rare and generally involve dead

carcasses.

Fruit bat species (Hypsignathus monstrosus, Epomops franqueti and

Myonycteris torquata) are naturally infected by ZEBOV, suggesting

they may act as natural reservoirs [18,19]. All three bat species

have broad geographical ranges that are known to include the

entire tropical forest regions of equatorial central Africa [53].

These bat populations are particularly abundant in the forested

areas of Gabon, where ZEBOV-specific seroprevalence rates are

high compared to Lakeland and Savannah areas, that themselves

harbor other species of bats [53]. Moreover, these bats roost in

massive numbers on trees and consume their fruits, especially

within and around villages. Thus, it is possible that ZEBOV

antigenic stimulation or aborted infection could occur when

villagers handle and eat fruits which have been contaminated by

bat saliva that may contain infectious virus, inactivated virus, or

simple viral antigens. Brief contact with non infectious viral

particles is sufficient to induce the type of specific immunity

observed in our study. Indeed, CD4+ and CD8+ T cells are

capable of activating and proliferating after a short encounter with

an antigen, without the need for continued antigenic stimulation

[54]. Gender, hunting activity and contact with animals did not

appear to influence the risk of IgG seropositivity in our study. It is

noteworthy that small children are less exposed to potentially

contaminated fruit, and that ZEBOV seropositivity increased

linearly with age during childhood. These routes of infection have

been strongly implicated in pig infection by nipah virus and horse

infection by hendra virus, both viruses belonging to the

Paramyxoviridae family [55,56], another family of Mononegavirales

(enveloped single-stranded viruses with an RNA monosegmented

genome of negative polarity and capsids with helical symmetry).

This study provides important insights into ZEBOV circulation,

human exposure and pathogenicity, and outbreak occurrence. In

particular, we found a strikingly high proportion of individuals

living in forested areas of Gabon who had both specific humoral

and cellular immunity to ZEBOV. The high frequency of

‘immune’ individuals with no disease or outbreak history raises

questions as to the real pathogenicity of ZEBOV for humans in

‘natural’ conditions. Added to the lack of identifiable risk factors,

this points to bats as the main source of human exposure, through

Figure 4. Western blot analysis of ZEBOV-specific IgG from two
symptomatic individuals who recovered (T+), one negative
endemic control, and 10 IgG+ asymptomatic individuals.
doi:10.1371/journal.pone.0009126.g004
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handling and ingestion of contaminated fruits. Past outbreaks in

which no animal source was identified may have been due to fruit

bat activity close to the villages concerned. Rural populations

living in forested regions of the central African forest block thus

appear to be highly exposed to the virus. More and more viruses

are being detected in bats, some of which are known to be

pathogenic for humans.

Materials and Methods

Study Area and Population
The survey was conducted in Gabon, Central Africa. Nearly

80% of Gabon is covered by rain forest, which is subdivided into

three different types, from North-East to South-West of the

country [57]: the northern-eastern forest located near Cameroon

and the Republic of Congo, the interior forest (characterized

mainly by the presence of Okoume trees), and the mountain forest.

Gabon also has a grassland region located between the coastline

and mountain forest, as well as a dry savannah located mainly in

the south-east, south-west and center, and a wide ‘‘Lakeland’’ and

long coastline to the west (Figure 1). Gabon has a surface area of

267,667 km2 and is divided into nine administrative regions

comprising a total of 2,048 villages, most of which are located

along roads (Figure 1). Few villages have more than 300

inhabitants.

The current serosurvey was conducted by a multidisciplinary

team, including a doctor from the Gabonese Ministry of Health, a

nurse, an epidemiologist, a virologist, a veterinarian and

laboratory technicians. It focused on rural villages with fewer

than 300 inhabitants located in the nine administrative regions of

Gabon. It took place during nine one-month field missions,

between 2005 and 2008. The survey covered 220 randomly

selected villages (Figure 1), representing 10.7% of all villages in

Gabon. The traditional chiefs of each village were first informed of

Figure 5. ZEBOV-specific memory T cell analysis by flow cytometry. IFN-c production by CD3+CD8+ T lymphocytes was evaluated by
intracellular flow cytometry on PBMC stimulated with mock supernatant (green histograms) or heat-inactivated ZEBOV culture supernatant (iZEBOV,
red histograms). Analysis performed 2 and 3 days after stimulation of PBMC from seven IgG+ asymptomatic individuals (A), four negative controls
and three laboratory-confirmed survivors of the 2001–2002 outbreak in Gabon (B). No significant responses were observed in CD4+ T lymphocytes.
doi:10.1371/journal.pone.0009126.g005

Ebolavirus in Human Population

PLoS ONE | www.plosone.org 6 February 2015 | Volume 5 | Issue 2 | e9126



the survey, followed, with the chief’s approval, by all interested

villagers. All inhabitants aged $16 years were eligible for the study.

The study was described orally, and volunteers gave their signed

informed consent to be enrolled in the study and for their blood

samples to be used for future research studies. Each participant

answered an anonymous oral questionnaire that included questions

on demographics, lifestyle, work, social activities, diet and past

medical illness. Villages were randomly selected in each of the nine

provinces. We then randomly selected around 10% of the villages in

each province, regardless of their size (50 to 300 persons). We

systematically excluded children, elderly persons (more than ,65

years), persons who were not permanent residents in the villages,

and those who had been permanent residents for less than a year.

Some inhabitants were not present at the time of our visit, because

of their daily activities. In view of all these factors, the number of

persons who refused was quite low (around 15% of the eligible

population), representing 12 to 97 persons per village. This is

unlikely to have had a significant impact on the results. A free

medical examination and basic medicines were proposed to all

participants and non participants. The samples were obtained after

the interview. A total of 4,349 persons were enrolled.

In addition, we conducted a specific field mission to enroll

laboratory-confirmed survivors of the three Gabonese ZEBOV

outbreaks. After three months of investigations throughout the

outbreak areas of Ogooué Ivindo region between June and August

2007, 20 survivors of the 2001 Mekambo, 1996 Booué and 1996

Mayibout outbreaks were identified and enrolled.

Finally, another specific field mission was carried out to enroll

children aged 15 years or less. In total, 395 children aged between

2 and 15 years were randomly selected in six villages located in the

northern-eastern forest region (Figure 1). In addition to a free

medical examination and basic medicines, all children in each

village had blood smears for malaria diagnosis and blood typing in

the field. The results were given the following day and antimalarial

drugs were provided if appropriate.

The two study protocols were reviewed and approved together

by the Gabonese Ministry of Health (authorization nu00093/

MSP/SG/SGAQM). Written consent was obtained from the

Health Director of each region, the traditional chiefs of each

village, and all participants. The parents’ written consent was

obtained for participating children.

Blood Collection
A total of 4,349 blood samples were collected, usually in the

villages’ local healthcare centers. Our team was located in the

main town of each administrative region, and field laboratory

facilities were set up interior the General Hospital. Blood samples

were collected in the villages on a daily basis, into two 7-ml

Vacutainer tubes containing EDTA (VWR International, France).

The tubes were then transported to the field lab, and plasma was

obtained by centrifugation each evening. Plasma samples were

kept at 220uC until the end of the field mission, then transported

to Centre International de Recherches Médicales de Franceville

(CIRMF), Gabon, and stored at 280uC until use.

Peripheral blood mononuclear cells (PBMC) were collected

from 200 randomly selected individuals from among the 4,349

participants, and from the 20 survivors (see above). PBMC were

separated from whole blood by density gradient centrifugation on

lymphocyte separation medium (Eurobio) at 2,300 rpm for 20 min

at room temperature. PBMC were then washed with phosphate

buffered saline (PBS)-2% fetal calf serum (FCS), and were

cryopreserved in FCS containing 10% DMSO in dry nitrogen

until being transported to CIRMF. PBMC were finally stored at

CIRMF in liquid nitrogen until immunological analysis.

ZEBOV-Specific IgG Detection
An IgG ELISA method was used as previously described [27],

with antigens kindly provided by the Special Pathogens Branch,

Centers for Disease Control (Atlanta, USA). Briefly, Maxisorp

plates (Nunc, Denmark) were coated with ZEBOV antigens diluted

1:1000 in PBS, overnight at +4uC. Control plates were coated with

uninfected Vero cell culture antigens in the same conditions. Sera

were diluted 1:1600 in 5% non fat milk in PBS-Tween 20 (0.1%)

and incubated in the wells overnight at +4uC. Binding was

visualized by using a peroxidase-labeled antibody to human IgG

(Sigma, France) and the TMB detector system (Dynex Technolo-

gies, France). Optical density was measured at 450 nm with an

ELISA plate reader. For each sample, we calculated the corrected

optical density (OD) as the optical density of the antigen-coated well

minus the OD of the corresponding control well.

A panel of 104 sera from individuals who had never visited

Africa was obtained from Marseille, France, and used as negative

controls for cut-off calculation.

Western Blot
ZEBOV antigens were kindly provided by Dr. V.E. Volchkov

(Laboratoire P4 Jean Mérieux, Lyon, France). They were separated on

10% NuPAGE Bis-Tris acrylamide gel (Invitrogen, UK) and

transferred to nitrocellulose membranes for 1 hour at 30 V. The

membranes were blocked overnight at 4uC in PBS, 5% nonfat milk,

and 0.1% Tween 20. The test sera were diluted 1:100 in PBS, 2.5%

milk, 0.1% Tween, and incubated with the membrane for 2 hours at

room temperature. The membrane was then incubated with HRP-

conjugated goat anti-human IgG (H+L) (P.A.R.I.S., France) diluted

1:5000 in PBS 2.5% milk, 0.1% Tween 20. Bound antibodies were

visualized with a chemiluminescent substrate, following the manufac-

turer’s protocol (Pierce, France). Three washes in PBS 0.1% Tween 20

were performed after blocking and each incubation step.

Virus Titration
The virus used in this study belonged to Zaire ebolavirus lineage B

and was isolated from the plasma of a patient who died during the

Figure 6. ZEBOV-specific memory T cell analysis by flow
cytometry. IFN-c production by CD8+ T lymphocytes was evaluated
by intracellular flow cytometry on PBMC stimulated with mock
supernatant (green histograms) or heat-inactivated ZEBOV culture
supernatant (iZEBOV, red histograms). Analyses performed 2, 3, 5 and 7
days after initial iZEBOV or mock stimulation (arrow) of PBMC from
three IgG+ asymptomatic individuals. A second round of stimulation
was performed on day 6. Results for one IgG+ individual are shown.
doi:10.1371/journal.pone.0009126.g006
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2003 outbreak in RC [17]. The virus was isolated on confluent

monolayers of Vero E6 cells in 25-cm2 plastic tissue culture flasks.

The cells were maintained in Dulbecco’s modified Eagle’s medium

(DMEM, Life Technologies, France) supplemented with 2% heat-

inactivated FCS, penicillin 10 U/ml and streptomycin 10 mg/ml

(Invitrogen) at +37uC with 5% CO2. The virus stock was prepared

from the supernatant of infected Vero E6 cells after two passages

(Vero E6+2).

The ZEBOV stock was titered using a modified conventional

plaque assay [58]. Serial 10-fold dilutions of 250 mL of

supernatant were incubated in DMEM-2% heat-inactivated

FCS for 1 h at 37uC on Vero E6 cells grown to confluence in 6-

well plastic tissue culture plates. Two milliliters of 1.6%

carboxymethyl cellulose (BDH Laboratories, Poole, United

Kingdom) in complete DMEM-2% FCS were then added to

each well, and the plates were incubated at 37uC with 5% CO2

for 5 days. The cells were fixed with 4% formaldehyde (Sigma,

Courtaboeuf, France) in PBS, washed, and permeabilized with

0.5% Triton X-100 (Sigma) in PBS. A mix of monoclonal

antibodies specific for ZEBOV GP, NP, VP40 and VP35, kindly

provided by Dr. S. Baize (Laboratoire P4 Jean Mérieux, Lyon,

France), was then added overnight at +4uC. A peroxidase-

conjugated goat anti-mouse antibody diluted 1:1600 (Sigma)

was then added for 1 h at 37uC, and foci of infected cells were

revealed with diaminobenzidine (Sigma).

All infections were performed in BSL-4 conditions at CIRMF

(glove box model). ZEBOV-infected supernatants were removed

in BSL-4 conditions and heat-inactivated at 56uC for 40 min.

Inactivated ZEBOV (iZEBOV) was stored at 280uC until use.

PBMC Culture and Antigenic Stimulation
Cryopreserved PBMC were rapidly thawed in a 37uC water

bath, washed twice and incubated overnight at 37uC in RPMI

1640 culture medium (Life technologies, UK) with 10% heat-

inactivated FCS (full RPMI-10% FCS), 1% penicillin-streptomy-

cin, 1% nonessential amino acids, and 1 M HEPES. PBMC were

then washed in RPMI medium, adjusted to a density of

16106 cells/mL, and cultured in 24-well flat-bottom culture

plates. Cells were immediately stimulated with inactivated ZEBV

(iZEBOV) at a multiplicity of infection (MOI) of 1. Three samples

containing enough PBMC were again stimulated with iZEBOV at

MOI 1 on day 5 (Figure 4). Interleukin-2 (Becton Dickinson,

France) was added to the cells on day 2 after stimulation with

iZEBOV (PI) at a final concentration of 100 U/mL. Negative

controls included cells stimulated with an equal volume of

uninfected Vero E6 supernatant (mock), and positive controls

included cells stimulated with phytohemagglutinin A (PHA, 3 mg/

mL final).

PBMC Phenotyping and Intracellular Cytokine Staining
PBMC from seven individuals were analyzed on days 2 and 3

after iZEBOV stimulation, and PBMC from three of these

individuals were also analyzed on days 5 and 7. PBMC were

incubated for 5 hours with 10 mg/mL Brefeldin A (Sigma) and

2 mM monensin (Sigma), then harvested and washed in culture

medium. Approximately 0.56106 cells were labeled for 20 min at

room temperature with monoclonal antibodies (Beckman-Coulter,

Geneva, Switzerland): PC5-conjugated anti-human CD3, PC7-

conjugated anti-CD4 and PC7-conjugated anti-CD8. Isotype

controls consisted of cells labeled with FITC-conjugated mouse

IgG1 and PE-conjugated IgG1 (Beckman-Coulter). Cells were

then fixed and permeabilized with IntraPrep reagent (Beckman-

Coulter) as recommended by the manufacturer. Permeabilized

cells were labeled for 20 min at room temperature with FITC-

conjugated anti-IFN-c and PE-conjugated anti-TNF-a (Beckman-

Coulter). Cells were then washed, resuspended in 2% FCS, and

analyzed with an FC500 four-color flow cytometer (Beckman

Coulter) and CXP software (Beckman Coulter).

Statistical Methods
All statistical analyses were performed using STATA software

version 10 (STATA Corporation, College Station, Texas, USA).

Overall and subgroup-specific ZEBOV seroprevalence rates were

estimated and potential differences between subgroups were

evaluated by using binomial survey-adjusted chi-square tests.

Significance was assumed at p #0.01.
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