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Abstract

Background: Toxoplasma gondii is found worldwide, but distribution of its genotypes as well as clinical expression of
human toxoplasmosis varies across the continents. Several studies in Europe, North America and South America argued for
a role of genotypes in the clinical expression of human toxoplasmosis. Genetic data concerning T. gondii isolates from Africa
are scarce and not sufficient to investigate the population structure, a fundamental analysis for a better understanding of
distribution, circulation, and transmission.

Methodology/Principal Findings: Seropositive animals originating from urban and rural areas in Gabon were analyzed for T.
gondii isolation and genotyping. Sixty-eight isolates, including one mixed infection (69 strains), were obtained by bioassay
in mice. Genotyping was performed using length polymorphism of 13 microsatellite markers located on 10 different
chromosomes. Results were analyzed in terms of population structure by Bayesian statistical modeling, Neighbor-joining
trees reconstruction based on genetic distances, FST and linkage disequilibrium. A moderate genetic diversity was detected.
Three haplogroups and one single genotype clustered 27 genotypes. The majority of strains belonged to one haplogroup
corresponding to the worldwide Type III. The remaining strains were distributed into two haplogroups (Africa 1 and 3) and
one single genotype. Mouse virulence at isolation was significantly different between haplogroups. Africa 1 haplogroup was
the most virulent.

Conclusion: Africa 1 and 3 haplogroups were proposed as being new major haplogroups of T. gondii circulating in Africa. A
possible link with strains circulating in South and Central America is discussed. Analysis of population structure
demonstrated a local spread within a rural area and strain circulation between the main cities of the country. This
circulation, favored by human activity could lead to genetic exchanges. For the first time, key epidemiological questions
were addressed for the West African T. gondii population, using the high discriminatory power of microsatellite markers,
thus creating a basis for further epidemiological and clinical investigations.
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Introduction

Toxoplasma gondii is a worldwide haploid protozoan parasite, and

distribution of its genotypes varies across the continents (e.g. [1]).

In Europe and the USA, T. gondii has a low genetic diversity with

three main lineages, Type I, II and III, based on clonal population

structure and virulence in mice [2,3]. In tropical regions of South

America, T. gondii strains are highly divergent from those of

Europe or North America and display a high degree of genetic

diversity [4,5,6,7]. Although Type II isolates have been found in

Chile and Brazil [8,9], they seems very rare elsewhere in South

America [2,10]. Genetically distinct isolates are found in different

regions of South America [11]. Common clonal lineages, different

from the three classical Types, may circulate on this continent [5]

with some atypical genotypes highly pathogenic to humans [6].

For example, a high frequency of ocular toxoplasmosis in some

areas of Brazil [12], as well severe cases of acquired toxoplasmosis

in otherwise healthy adults have been reported [4,13].

In contrast to Europe and the Americas, the genetic diversity

and population structure of T. gondii from Africa, where limited

data are available, are still controversial. Two recent genotyping

studies based on T. gondii strains isolated from chickens from
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diverse African countries [14,15] have suggested that like in

Europe and in the USA, the same three main lineages

predominate in Africa with one strain considered to be a

recombinant between Type II and III strains [16]. Nonetheless,

non classical genotypes of the parasite, called Africa 1 and Africa 2,

have been isolated from immunocompromised patients with

toxoplasmosis acquired in Western and Central Africa [17].

Because these genotypes were also repeatedly recovered in

patients from different African countries they were proposed as

common clonal lineages in Africa. It is clear that issue of the

population structure of T. gondii in Africa is far from being

resolved.

As in many African countries, Gabon has a contrasted

environment with remote rural areas and urban centers which

permitted analysis of genotype circulation in different biotopes.

Microsatellites, as rapidly evolving neutral markers, are excellent

tools for differentiating among strains and analysing population

structure. In the present paper, we genotyped 69 T. gondii strains

from domestic animals in Gabon using for the first time 13

microsatellite (MS) markers [17,18,19,20] to precisely identify the

strains, study the Gabonese population genetic structure and make

comparison with reference strains and isolates from different

continents. Haplogroups associated with Africa are described and

correlated to mouse-virulence. Finally, we discuss the possible

relationships between human pathogenicity, T. gondii genetic

diversity, and population structure on the African continent.

Methods

Ethics statement
All procedures carried out on animals were in agreement with

ethical rules. All experimental procedures were conducted

according to European guidelines for animal care (‘‘Journal

Officiel des Communautés Européennes’’, L358, December 18,

1986) after reviewed by the Ethics Committee Ile de France Sud

(Registration number: 07-004).

Domestic animal samples and bioassay in mice
T. gondii isolated from animals originating from eight different

areas in Gabon (Figure S1) between February 2007, and

December 2007, were analyzed. Samples were collected from

the households of four main areas: Libreville (latitude: 0u 239

North, longitude: 9u 279 East), Franceville (latitude: 1u 379 South,

longitude: 13u 349 East), Makokou (latitude: 0u 339 North,

longitude: 12u 509 East), and Dienga (latitude: 1u 529 South,

longitude: 12u 439 East), a small rural village with a high

prevalence of T. gondii infection [21]. Contrary to Dienga, the

three localities Libreville, Franceville and Makokou are considered

as urban environments. Occasionally, samples were obtained from

Bakoumba (latitude: 1u 429 South, longitude: 12u 539 East), La

Lopé (latitude: 0u 059South, longitude: 11u 369 East), Léconi

(latitude: 1u 359South, longitude: 14u 159 East), and around

Mougoundou, a Congolese village near the border with Gabon,

10 km south of Dienga, (latitude: 1u 579 South, longitude: 12u 399

East). These areas were located 10 to 570 km apart from each

other.

For a seroprevalence study, 425 animals were screened for T.

gondii antibodies at 1:20, 1:40, 1:400 and 1:800 dilutions using a

modified agglutination test (MAT) technique. A total of 267

domestic animals (.1-year old) had positive T. gondii antibody

titres .1:20.

According to the availability of animals at each site and for

homogeneity of sampling in different locations, 72 seropositive

animals were selected for bioassay in mice. For Dienga, 19 samples

were taken from free-range chickens, and 19 from other domestic

animals to give an overview of the strains present in the village: 12

goats, six sheep, and one domestic cat. Thirty-four free-range

chickens were obtained in the seven other geographically distant

locations: 17 were collected in Libreville, six in Franceville, seven

around Makokou, and one in Bakoumba, La Lopé, Léconi, and

Mougoundou. The animals were purchased and brought alive to

the International Medical Research Centre of Franceville

(CIRMF) where they were bled and euthanized. 0.5–1.5 ml of

serum was stored at +4uC until use.

Adult Swiss mice (Mus musculus) (Charles River France,

L’Arbresle, France) three to seven weeks of age were used in this

study. They were individually housed in level two bio safety

facilities at CIRMF. Brain and cardiac muscle tissue from

seropositive domestic animals (4.2–50 g) were homogenized in

125–250 ml 0.9% NaCl containing 0.4% trypsin and 40 mg/ml

gentamycin and incubated for 90 min at 37uC. The suspensions

were filtered through fine mesh gauze, washed three times by

centrifugation for 10 min at 433 g. The pellets were then

resuspended in 0.9% NaCl before inoculation (700 ml i.p.) into

mice (3–6 per group). A 200 ml aliquot from this suspension was

also used for DNA extraction and quantification of T. gondii by

real-time quantitative PCR assay targeting the 200- to 300-fold

repetitive 529 bp DNA fragment (GenBank accession number

AF146527) [22].

Inoculated mice were monitored daily for clinical signs of acute

toxoplasmosis; i.e. roughcast hairs, ascites, tottering gait, hunched

appearance with evidence of early emaciation and dehydration. In

case of clinical signs, the presence of tachyzoites was examined in

peritoneal exudates by microscopy. Surviving mice were tested for

T. gondii antibodies at four weeks by MAT starting at a 1:20

dilution. All surviving mice were euthanized at four to six weeks

post-inoculation. Microscopic examination was performed for the

detection of cysts in brain. Depending on the virulence of the

isolate, ascites with tachyzoite forms and/or brain tissue

suspensions with cyst forms were collected and aliquots (200 ml)

for DNA extraction stored at 220uC. Live parasites were

Author Summary

Prevalence of human toxoplasmosis in tropical African
countries usually exceeds 50%. Its role as a major
opportunistic infection of AIDS patients is regularly
described. Due to the lack of investigation, congenital
infection is certainly underestimated in Africa. Incidence of
Toxoplasma ocular disease is higher in Africa and South
America than in Europe. Severe cases in immunocompe-
tent patients were described after infection acquired in
Amazonia, but nothing is known about such cases in
Africa. Several studies argued for a role of genotypes in the
clinical expression of human toxoplasmosis, and for a
geographical structuration of Toxoplasma across conti-
nents. Genetic data concerning isolates from Africa are
scarce. Here, apart from the worldwide Type III, we
described two main haplogroups, Africa 1 and 3. We
detected genetic exchanges between urban centers
favored by trade exchange and transportation. It shows
how important human influence is, even in shaping the
genetic structure of a zoonotic disease agent. Finding of
identical haplogroups in South America suggested that
these African and American strains share a common
ancestor. As a higher pathogenicity in human of South
American genotypes has been described, this similarity of
genotypes should encourage further clinical studies with
genotype analysis in Africa.

Toxoplasma gondii in Gabon (Africa)
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cryopreserved in liquid nitrogen with RPMI containing 10% FCS

and 10% DMSO. All samples were sent to the T. gondii Biological

Resource Centre (BRC Toxoplasma) laboratory of Limoges, for

genotyping studies.

Genotyping of T. gondii isolates
Sixty-eight T. gondii isolates were obtained by bioassay in mice.

DNA from ascitic fluids or brain tissue was extracted using the

QIAamp DNA MiniKit (Qiagen, Courtaboeuf, France). Refer-

ence strains, obtained from BRC Toxoplasma, were studied in

parallel with the new isolates: reference strains for Type I (GT1,

ENT, and B1), Type II (Me49 and PRU), and Type III (CTG,

VEG and NED) and seven other reference strains originating from

Africa [an Africa 2 strain (CCH002-2004-NIA), and an Africa 1

strain (DPHT)], South America (TgCkBr93, TgCkBr59,

TgCkBr40), Caribbean islands (ENVL-2002-MAC), or France

(GPHT) [4,17,18,23,24,25,26].

Genotyping was performed using the length polymorphism of

13 multilocus MS markers located on 10 different chromosomes

(Table S1), in 2 multiplex PCR assays. The first multiplex assay

included 7 MS markers, TUB2, W35, TgM-A, B18, B17, M33

[17,19] and M48 [20]. Six other MS markers were used in the

second multiplex PCR assay: AA, N82, N83, N60, N61 [18], and

M102 [20]. We also sequenced the W35 marker region as

described elsewhere [4]. This was done because polymorphism of

Type II and III strains does not differ by fragment length but by

the nature of the tandem repeats (TC)7(TG)2 for Type II and

(TC)6(TG)3 for Type III [19].

Primers for PCR (sequences are shown Table S1) were

synthesized by Applied Biosystems, France. For multiplex PCR

assays we used the QIAGEN Multiplex PCR kits (Qiagen, France)

with 2x QIAGEN Multiplex PCR Master Mix (final concentration

1x), 0.04 mM of each primer, 5.5 ml distilled water and 4 ml DNA

in a total volume of 25 ml. Amplifications were carried out in a

GeneAmp PCRSystem 2700 thermalcycler (Applied Biosystems,

France): 15 min at 95uC, followed by 40 cycles consisting of 94uC
for 30 s, 61uC for 3 min, and 72uC for 60 s. The last extension

step was at 60uC for 30 min. Electrophoresis of PCR products was

carried out on an ABI Prism 3130xl genetic analyzer (Applied

Biosystems, France) and data were stored and analyzed with

GeneMapper analysis software (version 4.0, Applied Biosystems,

France).

Data analysis
Genetic and genotypic diversity, population genetic

structure and linkage disequilibrium. Two indexes were

used to describe genetic and genotypic diversity. Nei’s unbiased

genetic diversity HS [27] was estimated for the whole population

and within geographic subsamples and genotypic diversity was

calculated from the number of multilocus genotypes on the total

number of individuals (strains). To evaluate the possible impact of

genetic exchanges on the population under survey, the population

structure was explored by a set of complementary statistical tests.

F-statistics are the most widely used parameters to assess

population structure [28,29]. For FST value estimations, we used

samples from the geographic populations of Dienga, Libreville,

Franceville and Makokou. To take into account the Allendorf-

Phelps effect due to small sample size, we corrected FST values by

subtracting 1/(2S) from the FST values, S being the mean number

of sampled individuals of each pair of colonies [30]. Data were

analyzed with the software FSTAT (version 2.9.4; [31]), which

computes estimates, and tests their significance using

randomization procedure (n = 10,000 randomizations was used).

Linkage disequilibrium (LD) between pairs of loci (nonrandom

association of alleles at different loci) was assessed with a

randomization test (genotypes at two loci are associated at random

a number of times) performed in FSTAT. The statistic used was

the log likelihood ratio G summed over all subpopulations.

Because this procedure was repeated on all pairs of loci, we

applied the sequential Bonferroni correction [32] to the p values (p

value divided by number of tests). LD was calculated for the two

largest geographic populations: Libreville and Dienga. A good

estimation of the population LD for Franceville and Makokou was

not possible due to lack of sufficient isolates. The LD estimation

inside haplogroups in sympatric conditions was calculated only in

Dienga (sufficient number of isolates).

Clustering analysis. The entire dataset comprising 69 T.

gondii strains (one more strain than the number of isolates due to a

mixed infection) was submitted for clustering analysis using

STRUCTURE 2.2 software [33] to explore Gabonese T. gondii

population structure. For a spatial coherence, reference strains, not

originating from Gabon, were not included in this analysis.

STRUCTURE uses Bayesian Monte-Carlo Markov Chain

sampling to identify the optimal number of clusters K for a given

multi-locus dataset by minimizing departures from Hardy-

Weinberg and linkage equilibrium expectations, without needing

to identify population subunits a priori. We used 1,000,000

generations, of which the first 100,000 were discarded as burn-

in, and applied the admixture model with correlated allele

frequencies. We simulated the dataset for K = 1 through to

K = 10 and performed 10 STRUCTURE runs for each value of

K. We then employed the methods of Evanno and colleagues [34]

and Garnier and colleagues [35] to assess the optimal value of K

(i.e. the optimal number of clusters in the dataset). Simultaneously,

STRUCTURE calculates the proportion (qik) of each genotype of

individual samples that is derived from each of the K clusters.

Individual samples can have membership in multiple clusters, but

membership coefficients (qik values) sum to unity across clusters.

Clusters, obtained using Bayesian model (STRUCTURE), were

also analyzed with F-statistic.

To quantify the extent of genetic distance among Gabonese

populations and evaluate their position towards the three reference

Types and strains from different continents, Neighbor-joining trees

were reconstructed from the genetic distances among individual

isolates using Populations 1.2.30 (1999, Olivier Langella, CNRS

UPR9034, http://bioinformatics.org/,tryphon/populations/).

Only reference strains for Type I, II, and III were included in a

first individual distance tree and all the reference strains were

added in a second divergence tree based on individuals, but

showing only the genotypes for a clearer graphic representation.

As recommended by de Meeus and colleagues [36] and Takezaki

and colleagues [37], trees were reconstructed using the Cavalli-

Sforza and Edwards chord-distance estimator [38]. This analysis

was repeated for 1000 bootstrap replicates in which loci were

sampled with replacement. Unrooted trees were obtained with R

2.10.1 software [39].

Mouse virulence. To determine the association between

multilocus genotypes and virulence phenotypes in mice, as already

described by Pena and colleagues [5], parasite virulence was

defined at the time of parasite isolation by mouse mortality within

four weeks of infection (Table S2). Unlike Pena and colleagues [5],

we relied on haplogroups instead of genotypes to increase the

number of mice for calculation of cumulative mortality and added

the estimate of the inoculum dose by real-time PCR to evaluate a

possible dose effect on virulence.

The following response variables were analyzed: survival time,

and presence or absence of ascites. Two explicative variables were

Toxoplasma gondii in Gabon (Africa)
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also tested: haplogroups (three modalities: Africa 1, Africa 3, and

Type III) and dose of parasites present in inoculums classified in

three classes (three modalities: ,100, [100-1000[, $1000

parasites, according to usual definition of T. gondii virulence in

mouse model; [10]). Two strains (GAB3-2007-GAL-DOM5A and

GAB3-2007-GAL-DOM5B) present in mixed infection were

excluded from the analysis. Another isolate (GAB1-2007-GAL-

DOM20) was also excluded due to early sacrifice after inoculation.

A Cox proportional-hazard regression analysis was performed

to explain the relation between survival time and the two factors,

haplogroup and dose, while the Kaplan–Meier method was used

to estimate the survival curves of the different haplogroups.

To refine the relationship between haplogroup and virulence in

mice, haplogroups were also characterized using another phenotypic

trait of virulence, the presence of ascites. Association between presence

of ascites and haplogroup membership of the isolates adjusted for

dose effect was evaluated by a multivariate logistic regression

analysis. Statistical analyses were performed using SAS software

(version 9.1.3; SAS Institute) and level of significance was 0.05.

Results

Allelic polymorphism and genetic diversity
Three MS markers showed low allelic polymorphism: one allele

for B18, M33 and N82, two alleles for TUB2, TgM-A, B17 and

M102, three for W35 and four for N60. Higher allelic

polymorphism was found for the other MS markers, particularly

N61 and AA with nine alleles (Table S2). Compared to data

obtained from other continents, there were no novel variant alleles

on the 13 MS markers among these isolates. The mean genetic

diversity (HS) for the whole Gabonese population was 0.29. HS

values were 0.12, 0.27, 0.26 and 0.27 for the populations of

Dienga, Libreville, Franceville and Makokou, respectively.

Overall, a total of 27 different genotypes based on 13 MS

markers was found in the population of 69 Gabonese animal

strains (Table S2). Fourteen of them differed from another

genotype by only one MS marker. Twelve genotypes comprised

two or more isolates, while 15 genotypes corresponded to a single

isolate. Each genotype was confined to one geographic area, if we

considered Dienga and Mougoundou (located at 10 km apart),

which shared the same genotype (#12), as one unique area. In

Libreville or Dienga, eight genotypes were found, while four

genotypes were found in Franceville or Makokou. The genotypic

diversity was 0.39 (27/69).

A mixed infection found in one isolate (GAB3-2007-GAL-

DOM5) was identified by the presence of two alleles at six loci:

W35 (248 and 242), TgM-A (205 and 207), M48 (227 and 229),

N60 (147 and 142), N83 (131 and 135), and N61 (128 and 134)

(Table S2). Remarkably, two T. gondii strains, A and B, were

identified based on differential virulence in the mouse bioassay.

Mice infected with strain ‘‘A’’ produced ascites with tachyzoites,

while strain ‘‘B’’ produced only brain tissue cysts. T. gondii

genotyping of ascites identified a lone genotype #4. Genotyping of

brain tissue cysts detected mixed genotypes. Knowing the MS

profile of genotype #4, genotype #9 was deduced from the mixed

genotypes.

Clustering analysis
STRUCTURE analysis. The results of analysis with

STRUCTURE without a priori information on sample location

are presented in figures 1 and 2B. The variation of the Ln P(D)

values with the number of inferred clusters K (Figure 1A) indicated

that K = 2 is the most likely number of clusters followed by K = 3

and K = 5. This finding was also confirmed using the Evanno and

colleagues [34] (Figure 1B) and Garnier and colleagues [35]

(Figure 1C) methods.

Figure 1. Determination of the optimal value of K (i.e. the optimal number of clusters in the dataset). A. Mean (6 SD) of Ln P(D) over 10
STRUCTURE runs for successive K values ranging from 1 to 10, B. Variations of DK as calculated by Evanno and colleagues [34] and C. Variations of
L(K+1)-L(K) as calculated by Garnier and colleagues [35] for successive K values.
doi:10.1371/journal.pntd.0000876.g001
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Based on clustering solution K = 2 (Figure 2B), we found that

cluster C2.1 comprised all the isolates (except one: GAB1-GAL-

DOM10) from Dienga, while Libreville and Léconi were

represented by only one isolate respectively. Two isolates

originating from Makokou and La Lopé respectively were

admixed (i.e. had a genome nearly equally shared between two

clusters). All the other isolates belonged to cluster C2.2 whatever

their location.

Clustering solutions K = 3 and K = 5 are the results of sub-

clustering of the more likely solution K = 2. From K = 2 to K = 3,

two sub-clusters of C2.2 were found so that the cluster C3.3 was

now quasi-exclusively constituted by isolates from both Libreville

and Franceville whereas the cluster C3.2 also included Makokou

isolates. From K = 3 to K = 5, the main change in clustering was

due to the partition of cluster C3.1 (mainly Dienga strains) in two

sub-clusters C5.1 and C5.2, and two admixed strains (GAB3-

2007-GAL-DOM13 and GAB1-2007-CAP-AEG1). Cluster C3.3

was divided into two sub-clusters C5.4 and C5.5.

Distance analysis. In addition to STRUCTURE analysis, a

genetic distance-based approach was also used to define the

population structure of Gabonese T. gondii strains and make

comparison with other reference strains (Table S2, Figure 2A, 3).

Remarkably, the distance trees also identified the two major

clusters defined by STRUCTURE showing the robustness of this

clustering. However, they were not supported by significant

bootstrap values (data not shown). Genetic trees based on

Neighbor-joining showed that the 27 genotypes (Figure 3) could

be also clustered in three main groups: a group clustering Africa 1

haplogroup and Type I, a group clustering Type III and Type III-like

strains, and haplogroup Africa 3. These groups correspond to the

hypothesis K = 3 of STRUCTURE with subclustering in two

clusters of C2.2, which also confirms the robustness of this

clustering. One single genotype (GAB2-2007-GAL-DOM6) did

not fit into these main groups. The Africa 1, Type III, and Africa 3

haplogroups included 11, 35, and 19 strains respectively (Table 1).

The three isolates from Type III-like group did not form a

homogenous group inside Type III/III-like group.

With MS markers used for typing strains (TUB2, W35, TgM-A,

B18, B17, and M33) [17], these haplogroups were characterized

by different combinations of classical Type I, II, or III alleles. Our

Type III isolates were identical with these markers to Type III

reference strains. Type III-like strains (genotypes #26 and #27)

differed from Type III by a Type I allele for TUB2. With these

same MS typing markers, the two other haplogroups and the

single isolate were different from the three classical lineages: Africa

1 strains harbored defined mixtures of I, and III alleles, while Africa

3 strains and the single genotype were a mix of alleles I, II, and III.

However on the divergence tree analysis, which is based on all

the 13 MS markers (Figure 3), Africa 1 strains and the single

genotype clustered with Type I and Type II reference strains,

respectively. Africa 1 also clustered with GPHT, DPHT,

TgCkBr59, and TgCkBr40 strains. Africa 3 clustered with

TgCkBr93, and Type III and III-like strains with Type III

reference strains. ENVL-2002-MAC strain was closed to one of

the Type III-like strains (GAB4-2007-GAL-DOM1). The Africa 2

strain (CCH002-2004-NIA) was apart from all the other strains.

The Type III/III-like group (equivalent to cluster C2.1 of

STRUCTURE with K = 2) included strains from Dienga, and two

from Libreville and Léconi. Among Type III isolates from Dienga,

a less supported subclustering was observed corresponding to the

two sub-clusters C5.1 and C5.2, and the two admixed strains from

K = 5 of STRUCTURE (Figures 2A, B). Likewise, in Africa 1

haplogroup, as STRUCTURE analysis divided Cluster C3.3 into

two sub-clusters C5.4 and C5.5, divergence tree showed the same

less supported subclustering.

Inside Africa 3 haplogroup, the Makokou isolates also formed a

homogeneous subgroup (Figure 2A). Isolates from Libreville and

Franceville were distributed in Africa 1 and 3 haplogroups, with less

supported subclusters of isolates in each town.

Population structure analysis
Regarding the geographical populations, all pairwise FST values

from Dienga, Makokou, Libreville and Franceville, were signifi-

cant (p = 0.0083) with values ranging between 0.11 and 0.64. In

addition, pairwise FST values for the Dienga population vs the

three urban populations (Makokou, Libreville and Franceville)

were higher (0.56–0.64) than pairwise FST values between these

three latter populations (0.11–0.19) (Table 2). The two main

clusters (K = 2) and subclusters (K = 3 and K = 5) recognized by

model-based and distance based analyses were also supported by

F-statistics. All FST values were .0.22 and significant (p#0.05)

indicating strong genetic differentiation between these clusters.

Concerning the LD calculations for Libreville and Dienga

populations, 9 out of the 45 pairs (20%, n = 10 polymorphic loci)

and 12 out of the 36 pairs (33%, n = 9 polymorphic loci) remained

in significant linkage disequilibrium, respectively, after sequential

Bonferroni correction. This cannot be attributed to close physical

linkage between loci, since the 13 loci were distributed among 10

different chromosomes, so that all but three pairs among the 75

involve loci located on different chromosomes (Table S1). These

findings indicated strong linkage at a genome-wide scale.

For Type III population from Dienga (sympatric conditions), the

LD was calculated. Five out of 10 pairs (50%, n = 5 polymorphic

loci, all on different chromosomes) remained in significant linkage

disequilibrium, after sequential Bonferroni.

Analysis of haplogroups and virulence in mice
The characteristics used to define virulence for each isolate are

shown in Table S2. Inoculum dose ranged from one to 44 600

parasites in the total volume inoculated. The majority of strains

belonging to haplogroups Africa 1 and Africa 3 were isolated from

tissue samples with higher dose classes ($1000 parasites or

between 100 and 1000 parasites), than Type III strains (,100

parasites) (Table S2 and 1). A Fisher exact test found that the three

groups were significantly different according to dose classes

(p,0.0001). Considering these results, all the further analyses

were adjusted on dose effect. The single genotype and Type III-like

genotypes appeared to be weakly pathogenic, the small sample size

Figure 2. Neighbor-joining tree and clusters as inferred from Cavalli-Sforza distances and by STRUCTURE calculated for 13
microsatellite markers and on all 69 Gabonese T. gondii strains. A: Neighbor-joining tree as inferred from Cavalli-Sforza distances on all 69
Gabonese T. gondii strains and seven Type reference strains. Midpoint rooting was applied for the Neighbor-joining tree; no outgroup was used.
Geographical origin and genotype membership (# genotype number) for each strain are reported. Colors correspond to colors of populations found
with STRUCTURE for K = 3 (blue, green and red for respectively cluster C3.1, C3.2 and C3.3 and black for the single isolate strain: GAB4-2007-GAL-
DOM1 and for Type reference strains), except for Type III-like isolates which are in purple. B: Clusters as inferred by STRUCTURE on all 69 Gabonese T.
gondii strains. K = 2, K = 3 and K = 5 are indicated by bars in different colors next to the tree. The partition (i.e. relative qik) of each of the 69 T. gondii
strain genotypes within each cluster for the most likely number of inferred clusters K = 2, 3 and 5 is presented.
doi:10.1371/journal.pntd.0000876.g002
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Figure 3. Neighbor-joining tree of genotypes inferred from Cavalli-Sforza distances calculated for the data of 13 microsatellite
markers and all 69 Gabonese isolates, including also all the reference strains. [Seven Type reference strains: Type I (GT1, ENT, and B1), Type
II (Me49 and PRU), Type III (CTG, VEG and NED), Africa 2 (CCH002-2004-NIA) (Ajzenberg et al. 2009), and Africa 1 (DPHT) (Ajzenberg et al., 2009), and
seven reference isolates originating from different countries: France (GPHT), Brazil (TgCkBr93, TgCkBr59, TgCkBr40), and Caribbean islands (ENVL-
2002-MAC)]. Note: Midpoint rooting was applied for the Neighbor-joining tree; no outgroup was used. Colors correspond to colors of populations
found with STRUCTURE for K = 3 (blue, green and red for respectively cluster C3.1, C3.2 and C3.3 and black for the single isolate strain: GAB4-2007-
GAL-DOM1 and for Type reference strains), except for Type III-like isolates which are in purple.
doi:10.1371/journal.pntd.0000876.g003

Table 1. Mouse virulence among haplogroups of T. gondii isolates.

Factors T. gondii haplogroups

Africa 1 Type III Type III-like Africa 3 Single genotype

Number of strains 11a 35 3 19b 1

Number of mice infected 33a 124 6 57b 3

Inoculum dose classed by strains: ,100 0 (0) 19 (54.3) 2 (66.7) 2 (11.1) 0 (0)

[100-1000[ 5 (50.0) 12 (34.3) 1 (33.3) 5 (27.8) 0 (0)

$1000 5 (50.0) 4 (11.4) 0 (0) 11 (61.1) 1 (100)

Presence of ascites by number of mice 27 (90.0) 7 (5.8) 0 (0) 28 (51.8) 0 (0)

Number of mice dead at 4 weeks p.i. (cumulative mortality) 27 (90.0) 10 (8.3)c 1 (15.0) 52 (96.3) 0 (0)

Note. Data are no. (%) of subjects.
aThese numbers include the strain GAB3-2007-GAL-DOM5B which was excluded from the following calculation and corresponded to three mice in the study.
bThese numbers include the strain GAB3-2007-GAL-DOM5A which was excluded from the following calculation and corresponded to three mice in the study.
cThese values does not include the strain GAB1-2007-GAL-DOM20 which corresponded to three mice in the study.
doi:10.1371/journal.pntd.0000876.t001
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was not amenable to statistical analysis and, therefore, these strains

were excluded from further analyses.

Using the Cox proportional-hazards regression analyses, we

assessed the relationships between survival time and the two

factors: dose and haplogroup membership of the isolates. The dose

factor was slightly significant (p = 0.04) in relation with survival

time compared to haplogroup membership factor (p,0,001)

(Table 3). The proportion of mice killed by Type III isolates

(8.3% at four weeks) indicated a weakly virulent phenotype,

whereas Africa 1 and 3 isolates demonstrated a highly virulent

phenotype (mortality greater than 90%) (Table 1). The survival

curves showed that mice infected with strains harboring alleles I

(Africa 1 and 3) had a shorter median survival time (respectively 8

days and 14 days) compared with those infected with Type III

(median survival time not reached) (Figure 4). The estimation of

the hazard-ratio adjusted for quantity of parasites, showed that

isolates from the Africa 1 haplogroup killed mice nearly two times

faster than isolates from the Africa 3 haplogroup (Figure 4, Table 3).

According to logistic regression analysis, the presence of ascites

adjusted for dose effect, was significantly associated with

haplogroups (p,0. 001). Ascites occurred in 60 (67.4%) of 89

mice which died before 4 weeks and only for 2 (1.7%) of the 116

surviving mice. No interaction between dose and haplogroup was

found in both statistical models.

Discussion

Compared to Europe and the Americas, the population

structure of African T. gondii has been underexplored. Previous

studies were based on a limited number of isolated African strains

and markers used to characterize these strains defined the Type

level [14,15,16,17] but not the population structure. The

development of MS markers [18,20], that discriminate within

these Types, has for the first time enabled us, to reliably address or

define important epidemiological issues such as i) the diversity of

strains and groups, ii) the existence of geographical subpopula-

tions, and iii) the extent of gene flow throughout Toxoplasma

circulation between these subpopulations. The impact of homo-

plasy with MS markers is well known [40]. In this work it has been

minimized by the selection of variable and numerous (n = 13) MS

markers located, for most of them, on different chromosomes

(Table S1). Moreover, this effect was shown as being not a matter

of concern in population genetics [40].

This study represents the most comprehensive attempt to

document within African diversity in T. gondii to date. Nonetheless,

some sample sizes remain a limit in population genetic terms,

although efforts were made to correct for any confounding effects.

Similarly, caution is required given the deviation of T. gondii from

the assumptions of most standard population genetic models due

to clonality.

Our results, with 27 genotypes out of 69 strains, suggest a

diverse T. gondii population in the Gabon area. However, the mean

genetic and genotypic diversities could be considered as moderate,

compared to data sets from other continents which were studied

with equivalent MS characterization [4,41]. A very high diversity

in T. gondii strains was found in the wild environment of the

Amazonian rainforest in French Guiana and Surinam [4,6]. The

mean genetic diversity for Gabonese strains was similar to what

has been found for 104 French animal isolates from three regions

(French BRC for T. gondii, personal data). This moderate and

similar genetic diversity in the two environments (French and

Gabonese animals) could be explained by a comparable degree of

anthropization with domestication of cats (definitive host) and

intermediate hosts for sampling areas [4]. Allelic polymorphism for

each MS marker is comparable to polymorphism observed in

other studies using the same markers [1,41]. The few differences

observed for some loci, as the monomorphic version of N82

marker, may be explained by the diverse geographic areas studied.

No novel alleles was found in this African sample population.

The Bayesian model for predicting population structure,

distance-based analysis methods, and F-statistics analysis resolved

partitions among the total sample of 69 isolates. All these tests were

concordant and clearly demonstrated the existence of three main

haplogroups among strains sampled in Gabon, Type III, Africa 1

and 3 haplogroups. In addition to genetic factors, phenotypic

factors provided by virulence analysis (survival time and presence

of ascites) distinguished these three haplogroups (see below).

Except for Type III, the two other haplogroups did not correspond

to classical Type I and II, This result contrasted with studies of

isolates collected from chickens in several African countries

showing a predominance of classical lineages in these areas:

mainly Type III and some Type II [15], and a majority of Types I

and II, with just one Type III in Uganda [14]. The most

remarkable difference with our study is the predominance of Type

II strains in these studies. This may be explained by the geographic

origins of samples. Type II was found predominantly in Uganda, a

Central-East African country, whereas other studies [15,17], and

this one used mainly samples from Western and Middle Africa.

The finding of Type III in our Gabonese isolates confirms the

widespread distribution of this Type, already described in North

and South America, Europe, Africa, and Asia [3,15,18,42,43]. But

in Gabon, except for two strains from Libreville and Léconi, all the

Type III strains came from the small village of Dienga. We might

have expected the opposite phenomenon (Type III in the large

cities of the country) if the global spread was due to recent

migration [1]. An explanation may be the limited sampling in

Table 2. FST estimates of inter-geographical population
differentiation for four subpopulations based on
microsatellite data.

Populations Dienga Makokou Libreville Franceville

Dienga * 0.0083 0.0083 0.0083

Makokou 0.64 * 0.0083 0.0083

Libreville 0.56 0.11 * 0.0083

Franceville 0.64 0.19 0.12 *

Note. Italics indicate p-values generated from 10 000 random permutations
leading to a value larger than or equal to that observed. ‘‘Allendorfs phelps’’
effect has been taken into account for each FST value.
doi:10.1371/journal.pntd.0000876.t002

Table 3. P values and hazard ratios (95% IC) for mouse
survival time estimated from the Cox proportional-hazard
regression analysis.

Factor Hazard Ratio* IC 95% P

Haplogroup effect ,0.001

Africa 1 vs Type III 62.2 26.0–148.5 ,0.001

Africa 3 vs Type III 28.2 12,9–61,2 ,0.001

Africa 1 vs Africa 3 2.2 1.3–3.7 ,0.001

Note: Mouse survival time was studied during 28-days post-inoculation.
*Hazard ratio were adjusted on the number of inoculated parasites.
doi:10.1371/journal.pntd.0000876.t003
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urban areas. The location of Type III in a remote rural area of

Africa suggests either a recent introduction in this village from an

imported animal (the high LD argued for a local clonal spread of

this lineage) or that Type III is ancestral in Africa. This last

hypothesis on the ancestral nature of Type III is in agreement with

the hypothesis concerning ROP18 III previously proposed [44].

Velmurugan and colleagues [15] also found genotypes different

from the classical Types II and III. Due to different genotyping

markers, it is not possible to compare these non-classical genotypes

with those described in the present study. In Lindstrom and

colleagues [14], incomplete genotyping for some isolates (only two

to four markers for defining Type I) could have misidentified non

classical isolates or recombinant genotypes. Among the non-

classical haplogroups, the Africa 1 was also found in patients

originating from other West and Central African countries [17]. It

has been collected at different times in various and distant areas,

from Senegal to Uganda through Gabon. Another haplogroup

described for the first time in this study, Africa 3 was largely

distributed in Gabon and represents another major haplogroup in

Africa. The Africa 2 haplogroup, described by Ajzenberg and

colleagues [17], was not found in Gabon.

The question of endemicity of the African haplogroups

described in this study must be addressed. In different papers,

other strains (GPHT, FOU) genotyped with microsatellite markers

as Africa 1 [4,17] clustered with one of the Brazilian Type (BrI)

defined by PCR-RFLP markers [5] or with other Brazilian strains

in haplogroup 6 defined sequencing of introns [7]. We confirmed

these observations by using these strains and other strains from

South or Central America, or from Africa as reference strains in

our genotypic divergence tree (Figure 3). These strains clustered

either with Africa 1 or 3 haplogroups, or with one of the Type III-like

strains. These findings show that these African and American

strains share a common ancestor and support the hypothesis which

suggested the possibility of T. gondii migration during the

transatlantic slave trade during the 18th and 19th centuries

[1,7]. The model for dissemination of T. gondii strains proposed by

Khan and colleagues [7] does not take into account African

continent. The widespread distribution of these major hap-

logroups, together with the propagation considered as predomi-

nantly clonal for T. gondii in a domestic environment [4], strongly

suggest that Africa 1, and 3 strains may correspond to new major

clonal lineages. More sampling across the world would be needed

to confirm this hypothesis.

Whether these additional haplogroups for Africa represent

minor variations of Type I, II, and III, or recombinant strains of

these three lineages remained to be determined. A deeper

sequencing as performed by Lindström Bontell and colleagues

[16] has demonstrated the existence of one natural Type II and III

recombinant strain inside the previous Uganda isolates data set.

Such a sequencing would be needed for strains of our haplogroups.

However, even if sequencing demonstrated such recombination, it

would be a successful recombinant, widespread over continents,

representing a lineage with enhanced fitness, as shown for Types

II, I and III [45]. Type I was described as one major lineage.

However, considering the literature on multilocus typing of

Toxoplasma strains, it was rarely encountered in nature [46]. Africa

1 strains clustered with Type I in divergence trees (Figures 2A, 3).

Considering the rarity of Type I and the genotypic diversity within

Africa 1, one could evoke the possibility of Type I being a divergent

strain from Africa 1. Regarding the haplogroups Africa 3 as the

Africa 2, the question remains.

In our study, we demonstrated a clear relationship between

haplogroups and mouse-virulence: isolates of haplogroups with

Type I alleles (Africa 1 and 3) were significantly associated with

presence of ascites and mortality in infected mice, while Type III

isolates were associated with survival. Africa 1 haplogroup was

associated with a shorter survival time than Africa 3 haplogroup

(Figure 4). Even if this relationship between haplogroup and

virulence at isolation, independent of a dose-effect, was clearly

shown using statistical analysis, this should be confirmed by an

experimental study in controlled conditions. The higher propor-

tion of elevated doses in inoculums of Africa 1 and 3 haplogroups

compared to Type III, independently of host species (chicken,

sheep, goats and cat), was found significant, indicating that

parasite burden could be higher in Africa 1 and 3 naturally infected

animals.

Although these data demonstrate different intrinsic properties of

the different strains, the expression of this virulence in a given host

Figure 4. Proportion of surviving mice infected with T. gondii haplogroups.
doi:10.1371/journal.pntd.0000876.g004
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species is a more complex trait which depends on several host and

parasite characteristics [2]. Pathogenicity in humans cannot be

deduced from virulence in the mouse model. However, several

studies argued for a role of genotypes in the clinical expression of

human toxoplasmosis [47,48,49,50,51]. Notably, a higher propor-

tion of ocular disease was found in South America, associated with

certain non-classical genotypes [12,52]. In Africa, the prevalence

of toxoplasmosis in uveitis may be high. It has been estimated up

to 43% in Sierra Leone [53]. A 100-fold higher incidence of ocular

toxoplasmosis was observed in patients born in West Africa

compared to patients born in Britain [54]. The similarity

demonstrated in this study between genotypes found in Africa

and in South or Central America should encourage further studies

in Africa associating clinical data and genotype analysis.

MS analysis permits population structure study on a large as

well as local scale. In our study, considering the large distances

between areas (from 105 to 590 km apart) and the sampling

method, geographic subdivision was expected. The significant

genetic differentiation between the populations of Dienga,

Libreville, Franceville and Makokou sustains this geographic

isolation (Wahlund effect). But isolation by distance cannot explain

all genetic differences. Whereas distances between Franceville and

Libreville, and Makokou were far more important than the

distance between Dienga and Franceville (Figure S1), strains from

Franceville are genetically closer to Libreville and Makokou strains

than to Dienga strains (Figure 5). Some genotype circulations

which would lead to gene flow between these urban populations

throughout the history was suggested by i) the higher FST values

between Dienga vs urban populations than between the three

urban populations, ii) the clustering of urban populations (K = 2)

by STRUCTURE, iii) their structure similarity (K = 3 and K = 5),

and iv) more generally, low bootstrap values in distance genetic

analysis (Table 2, Figures 2, 4). It may be explained by economic

and human exchanges between the three towns. The trade of

animals, food and pets, together with rodents, could be a

migration opportunity for T. gondii isolates favoring genetic

exchanges between isolates of the large cities. Conversely, Dienga

is a village with very few trade exchanges with the other locations,

which may explain the divergence of this T. gondii population.

Intensive anthropization and urbanization may have an impact on

the circulation of T. gondii strains in Africa.

This detailed population genetics study of T. gondii is an original

process concerning T. gondii epidemiology. It demonstrated in an

African country the existence of a genetic heterogeneity at a

country scale with new major haplogroups and a substantial

population structure at a microgeographic scale. The approach

used here needs to be applied to strains of T. gondii from other

African countries and other continents to ascertain these

population observations and compare the possible differences of

structuring. The geographical genetic structure inside a same

country indicates that further epidemiological and clinical studies

should integrate different scales (country, districts…) and environ-

ment (urban or rural areas, anthropized or wild environment).
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