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Abstract. Global land surface models (LSMs) such as the
Joint UK Land Environment Simulator (JULES) are origi-
nally developed to provide surface boundary conditions for
climate models. They are increasingly used for hydrologi-
cal simulation, for instance to simulate the impacts of land
use changes and other perturbations on the water cycle. This
study investigates how well such models represent the ma-
jor hydrological fluxes at the relevant spatial and temporal
scales – an important question for reliable model applica-
tions in poorly understood, data-scarce environments. The
JULES-LSM is implemented in a 360 000 km2 humid tropi-
cal mountain basin of the Peruvian Andes–Amazon at 12-km
grid resolution, forced with daily satellite and climate reanal-
ysis data. The simulations are evaluated using conventional
discharge-based evaluation methods, and by further compar-
ing the magnitude and internal variability of the basin surface
fluxes such as evapotranspiration, throughfall, and surface
and subsurface runoff of the model with those observed in
similar environments elsewhere. We find reasonably positive
model efficiencies and high correlations between the simu-
lated and observed streamflows, but high root-mean-square
errors affecting the performance in smaller, upper sub-basins.
We attribute this to errors in the water balance and JULES-
LSM’s inability to model baseflow. We also found a tendency
to under-represent the high evapotranspiration rates of the re-
gion. We conclude that strategies to improve the representa-
tion of tropical systems to be (1) addressing errors in the forc-
ing and (2) incorporating local wetland and regional flood-
plain in the subsurface representation.

1 Introduction

The humid tropics host extremely biodiverse ecosystems,
which are subject to changing climate and land use patterns
and potentially changing water cycles. With an area of ap-
proximately 6 million km2 (Latrubesse et al., 2005), Ama-
zonia hosts a significant part of the world’s remaining rain-
forest and is an important supplier of atmospheric moisture
(Salati and Vose, 1984). Many hydrological studies have con-
tinued to focus on the continental and lower Amazon (e.g.
Vörösmarty et al., 1989; D’Almeida et al., 2006; Paiva et al.,
2011; Guimberteau et al., 2012), while the upper Andes–
Amazon system receives far less attention, despite being sub-
ject to increasing human impacts such as deforestation, oil
exploitation, mining, and hydropower production. The po-
tential impact of a changing climate and land use on the
hydrological regime of the Amazon headwaters is a serious
concern, not only because of its influence on the downstream
basin, but also because of its link to local ecosystem services.

Hydrological models are a common approach to under-
standing and predicting the impact of change, but modellers
of tropical environments face issues with process understand-
ing and data availability for parameterization and validation
of models (Giertz et al., 2006). Models for tropical basins in
the literature tend to be conceptual models requiring few in-
puts (e.g.Darko, 2002; Campling et al., 2002; Bormann and
Diekkrüger, 2004), but depending strongly on local calibra-
tion. This can be complicated by the low availability and high
degree of uncertainty introduced by the streamflow data. This
is especially true for the Amazon where the river morphology
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1114 Z. Zulkafli et al.: JULES-LSM hydrology for humid tropical environments

continuously changes due to active erosion in the uplands
(seeAalto et al., 2006). Another disadvantage of conceptual
models is the unidentifiability of their parameters (Ebel and
Loague, 2006), which complicates scenario analysis.

Distributed physics-based modelling has been attempted
in smaller catchments with some success (Vertessy and
Elsenbeer, 1999; Legesse et al., 2003; Bekoe, 2005). More
recently, land surface models (LSMs) have been used for
physics-based hydrological modelling at the global scale
(e.g. Arora and Boer, 2003; Alkama et al., 2011) and the
continental-scale Amazon (Decharme and Douville, 2006;
Guimberteau et al., 2012). LSMs, also referred to in the lit-
erature as land surface schemes (LSS) and land surface pa-
rameterizations (LSP), were originally developed by the cli-
mate modelling community to provide the land–atmospheric
boundary condition in operational weather forecasting and
global climate simulations. An LSM operates in continuous
time and fully distributed mode, as it simulates the exchanges
of energy, water and carbon between the land surface and
the atmosphere by accounting for processes in the ground
and vegetation canopy. A particular strength of LSMs is the
biophysical consistency between various modelled processes
such as photosynthesis, carbon and nutrient cycles, irrigation,
and crop growth. This provides an opportunity for hydrolo-
gists to study the impact of change on hydrology in interac-
tion with the other land surface processes.

However, despite their sophistication, LSMs are newcom-
ers to hydrological modelling, and while there have been
point scale validation exercises in flux tower sites (Baldocchi
et al., 2001) representing various environments (e.g.Blyth
et al., 2011), none has thoroughly assessed their performance
in tropical upland basins. First, there is the issue with model
structure that stems from universalization of locally observed
processes. Such a simplifying assumption may not hold in
topographically complex environments where there may be
multiple interacting factors controlling the hydrological re-
sponse. Additionally, there are established weaknesses in the
LSMs even for temperate climates that may be more prob-
lematic over the humid tropics. For instance, LSMs are often
criticized for an absence of a groundwater model and there-
fore unsuitable for basins with a shallow water table as it
assumes free gravity drainage from the soil column (Yeh and
Eltahir, 2005). Moreover, lateral runoff processes reported in
the humid tropical literature (Dunne, 1978; Campling et al.,
2002; Giertz et al., 2006; Chappell, 2010) such as saturation
excess surface runoff, interflows in the organic layer, and nat-
ural pipes are seldom modelled explicitly due to the LSM
vertical structure.

Parameter uncertainty is a second issue. In comparison
with the temperate regions, the tropics have lagged in soil
characterization with respect to runoff producing mecha-
nisms (Giertz and Diekkr̈uger, 2003). In this context, an LSM
offers an advantage in that its worldwide application means
global datasets of soil and vegetation data are available.
While these exist, they may not be direct field-measurements.

For instance, soil hydraulic parameters are derived from
soil texture maps using pedotransfer functions (PTF). As
these functions were constructed through analyses of wa-
ter retention data from temperate soils (e.g.Cosby et al.,
1984), they may not reliably reproduce the hydraulic be-
haviour exhibited by humid tropical soils, for example, low
water retention even at high clay contents (Hodnett and
Tomasella, 2002). As such, the PTFs derived using solely
tropical soils (Tomasella and Hodnett, 1998; Tomasella et al.,
2000; Hodnett and Tomasella, 2002) may be more applicable
for tropical soils, yet remains limited in their representative-
ness for the younger volcanic soils in the uplands (Hodnett
and Tomasella, 2002).

The number of parameters required per LSM pixel fur-
ther introduces issues of data collection and scaling. Con-
sequently, the majority are effective parameters that are not
well constrained and applied homogeneously in space. This
may not be a serious issue in land surface modelling, which
is mainly concerned with representing fluxes at large spa-
tial scales. However, it becomes problematic for hydrologi-
cal modelling, where local heterogeneity and non-linear re-
sponses to perturbations need to be simulated, and especially
in mountainous environments where a high degree of hetero-
geneity may be expected over a small scale.

In spite of the limitations, LSMs are increasingly used to
simulate hydrological fluxes such as discharge at basin and
global scales. This paper studies the implications for mod-
elling humid tropical upland basins. The case study is the
upper Amazon River (Marãnón River) basin in Peru, which
hosts half of the Pacaya Samiria National Reserve, the largest
floodable forest reserve in the Peruvian Amazonia, where the
hydrological system provides important ecosystem services
for unique species of fish and freshwater turtles that are vul-
nerable to extinction, as well as approximately 10 000 km2

aguaje (Mauritia flexuosa) palm forests of high economic im-
portance (Kahn, 1988).

Our approach moves beyond the traditional model eval-
uation using strictly observational data to decide whether a
model is acceptable. Instead, our aim is to evaluate a “fit for
purpose” simulation system that “shadows” the natural sys-
tem as closely as possible (Beven et al., 2012). This does not
necessarily mean that internally all fluxes are correct at the
pixel scale and at each time step, which is infeasible given
the lack of observations. Rather, we intend to present a sim-
ulation that most closely resembles the reality in terms of the
main statistical properties (especially the mean and variation
of the basin’s hydrological fluxes), under the assumption that
such a system will be the most robust in representing the im-
pact of perturbations at a basin level.
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2 Materials and methods

2.1 The JULES land surface model

A full description of the model JULES (Joint UK Land Envi-
ronment Simulator) can be found inBest et al.(2011), while
a brief description is provided for completeness. Land sur-
faces are modelled as tiles consisting of vegetated and non-
vegetated surfaces with distinct parameters for radiation bal-
ance, resistance to heat and momentum transfer, canopy in-
terception, plant photosynthesis, respiration and growth, etc.
Land–atmospheric heat and moisture exchanges for each grid
are calculated by area-weighted averaging of the tile fluxes,
and these are exchanged with a shared soil column.

The LSM requires time series of meteorological data,
i.e. incoming short-wave and long-wave radiation, temper-
ature, specific humidity, wind speed, and surface pressure.
These are used in a full energy balance equation that includes
components of radiation, sensible heat, latent heat, canopy
heat, and ground surface heat. The potential evaporation es-
timation is based on the Penman–Monteith (Penman, 1948)
approach. Canopy evaporation is assumed to occur at the po-
tential rate, while plant transpiration and bare soil evapora-
tion are restricted by canopy resistance and the soil moisture
state, respectively.

In JULES the local throughfall rate is proportional to the
local precipitation rate by the fraction of occupied canopy
storage,C/Cmax, whereCmax is a vegetation parameter and is
a linear function of the leaf area index (LAI). On the ground
surface, throughfall is partitioned into surface runoff and in-
filtration into the soil moisture pool based on the Hortonian
infiltration excess mechanism, enhanced by a vegetation-
specific factor to account for macroporosity in the soil.

In the subsurface, an instantaneous redistribution of mois-
ture is assumed and water is exchanged between the soil
layers using a finite difference approximation to the Darcy–
Richards diffusion equation, with infiltration and gravity
drainage as the upper and lower boundaries respectively, and
root uptake as a sink. The soil water retention characteris-
tics follow the model ofBrooks and Corey(1964) or the al-
ternativevan Genuchten(1980) formulation. In the alternate
soil hydrology model of JULES (Clark and Gedney, 2008),
a grid-based implementation of TOPMODEL calculates the
local saturation excess runoff based on a time-moving sur-
face partial contributing area. In this configuration the model
applies an exponential decay to the soil hydraulic conduc-
tivity with depth, assumes a null-flux lower boundary, and
applies an anisotropic factor to generate lateral flows for the
subsurface.

For the study basin, we evaluated both the basic JULES
(JULES-BASE) and the JULES-TOPMODEL parameteriza-
tions in distributed mode. The study basin is divided into pix-
els of 0.125◦ latitude–longitude (∼ 14 km) resolution. Each
pixel is assigned a set of soil parameters, the distribution
of the land cover types, and time series of meteorological

variables from global datasets. The model goes through a
warming up period to initialize the internal states.

2.2 Runoff routing

The runoff generated by JULES consists of local surface and
subsurface runoff that needs to be routed for a meaningful as-
sessment against streamflow measurement data. Our model
is a simple delay function, with the delay for each pixel be-
ing the distance between the pixel and the outlet divided by
the flood wave velocity (C). The flood wave velocity for the
surface and subsurface runoff are the two parameters of the
model that are optimized through a Monte Carlo simulation.

The lag timet to the outlet from pixeli will vary by its
distanced to the outlet along the stream network:

ti1 =
di

C1
(1)

ti2 =
di

C2
, (2)

where the subscripts 1 and 2 represent surface and subsurface
components respectively. Finally, the simulated flow at the
outlet (Qsim) is the sum of all contributing local hydrographs
in the basin, lagged in time.

Qsim,t =

n∑
i=1

(
Qi1

(
t − ti1

)
+ Qi2

(
t − ti2

))
(3)

2.3 Data

2.3.1 Study area

The study area is the Marañón (Peruvian Amazon) River
basin upstream of the confluence with the Ucayali River that
forms the proper Amazon River (Fig.1). On average, the
yearly discharge in the Marañón River is 14 900 m3 s−1, as
measured at San Regis station (74◦ W, 4.4◦ S) (Espinoza-
Villar et al., 2009a). The climate of the region has been dis-
cussed extensively by various works, see for exampleKvist
and Nebel(2001), Garreaud et al.(2009) and Espinoza-
Villar et al. (2009b). The average yearly temperature in the
Marãnón River Basin is about 23–27◦C, and the austral win-
ter (JJA) is warmer than austral summer (DJF), during which
cloud formation and rainfall effectively reduces the temper-
ature (Kvist and Nebel, 2001; Garreaud et al., 2009). Pre-
cipitation characteristics vary across latitudes as influenced
by synoptic meteorological phenomena operating at vary-
ing time scales (see Table1). Precipitation is also orographi-
cally controlled, with the wettest band found at an altitude of
1.3 m a.s.l. on the eastern face of the Andes (Bookhagen and
Strecker, 2008). The Andean ranges, with elevations exceed-
ing 4000 m, are effective hydrometeorological controls sep-
arating their west and east and connecting regions at lower
and higher latitudes (Garreaud et al., 2009).

The basin is underlain by silty Gleysols in the river flood-
plains, and young unstructured Cambisols in the Andean

www.hydrol-earth-syst-sci.net/17/1113/2013/ Hydrol. Earth Syst. Sci., 17, 1113–1132, 2013
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Fig. 1. The Peruvian Amazon basin. The Marañón River merges
with Ucayali River from the south and Napo River from the north
beyond the downstream limits of the basin to form the Amazon
proper river. The basin relief (in red) shows the location of the
Andean ranges where the climate and physiography are highly
variable.

foothills and Leptosols and Regosols further upland (FAO,
2009). The tropical wet climate supports expansive lowland,
montane, and floodable forests as well as wet grassland (lo-
cally known as Ṕaramos) on the Andes. In the southwest,
shielding by the eastern Andean range generates a drier cli-
mate and grassland above the tree line.

2.3.2 Land surface data

The watershed boundary for the study basin is delin-
eated based on HydroSHEDS 90-m resolution hydrographic
dataset (Lehner et al., 2008). A gridded map of mean
and standard deviation of the topographic indices for TOP-
MODEL was also generated from this dataset.

Two sets of land surface parameters governing the soil hy-
draulics were created using the pedotransfer functions de-
veloped byTomasella and Hodnett(1998) andCosby et al.
(1984), the latter for use in a sensitivity analysis. The func-
tions take values of silt and clay fraction in the soil, which
are available through the Harmonized World Soil Database
(FAO, 2009) at 1-km resolution (FAO, 2009). The HWSD
sources the ISRIC World Soil Information Soil and Ter-
rain Database (SOTER), which is considered highly reli-
able in South America (FAO, 2009), although a more recent

Table 1. Large-scale meteorological phenomena and timescales,
adapted fromCarvalho et al.(2004).

Time scale Large Scale Meteorology

Diurnal and seasonal Intertropical Convergent Zone (ITCZ)
Intraseasonal South American Monsoon System (SAMS)
Interannual El Nino Southern Oscillation (ENSO)
Interdecadal Pacific Decadal Oscillation (PDO)

mapping study byQuesada et al.(2011) is more likely to
provide more accurate information across the Amazon Basin.
The global soil textural map provides information for the top-
soil (top 30 cm) and subsoil that was assigned to the top 2
(total depth of 35 cm) and bottom 2 (total depth of 265 cm)
layers in JULES.

The land cover was parameterized based on multiple land
cover maps. The primary source is the Digital Ecological
Systems Map of the Amazon Basin of Peru and Bolivia
(Josse et al., 2007b). This is a 90-m resolution field-verified
mapping based on satellite imagery. In areas outside of this
map’s coverage, the 1-km IGBP-DIS land cover classifica-
tion map ofLoveland et al.(2000) was used.

The model default vegetation parameters (see Tables 5
and 6 inBest et al., 2011) are applied uniformly in space
for each of the 5 plant functional types, with the exception
of canopy height and LAI, whose spatial distribution were
obtained from the UK Met Office version 7.7 Central Ancil-
lary Program and are based on satellite-derived normalized
difference vegetation indices (NDVI). Additionally, canopy
heights of broadtree leaves were mapped from the local dig-
ital ecological systems database (Josse et al., 2007a).

2.3.3 Meteorological data

The global land surface model driving data developed by
Sheffield et al.(2006) were used and included meteorolog-
ical variables such as long- and short-wave radiation, tem-
perature, pressure, specific humidity, wind, and precipita-
tion. The dataset is the first generation NCEP (US National
Center of Environmental PredictionsKalnay et al., 1996)
climate reanalysis product merged with ground data (the
data will be henceforth referred to as NCEP). The dataset
at 1.0◦ latitude–longitude (111 km) grids were further dis-
aggregated to 0.125◦ latitude–longitude (14 km) grids using
the lapse rate interpolation method described in the same pa-
per. The nearest neighbour interpolation method was used to
disaggregate precipitation. An alternate precipitation dataset
from the TRMM 3B42 (version 6, 0.25◦ resolution,Huffman
et al., 2007) remote sensing product was bias corrected with
TRMM 2A25 climatology (0.1◦ resolution) ofNesbitt and
Anders (2009) (the data will be henceforth referred to as
TRMM). The simulation of JULES was performed over the
entire basin for a period of 11 yr between 1998 and 2008 to

Hydrol. Earth Syst. Sci., 17, 1113–1132, 2013 www.hydrol-earth-syst-sci.net/17/1113/2013/
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coincide with the periods of available data from NCEP and
the TRMM precipitation.

2.3.4 Streamflow data

Daily streamflow data for four hydrological stations at San
Regis, Borja, Santiago, and Chazuta were obtained through
HYBAM (geodynamical, HYdrological and Biogeochemi-
cal control of erosion alteration and material transport in the
AMazon Basin) from the Servicio Nacional de Meteorologı́a
e Hidroloǵıa, Peru (SENAMHI) and the Nacional de Mete-
oroloǵıa e Hidroloǵıa, Ecuador (INAMHI) monitoring net-
works (for station locations and synthesis, refer to Fig.1 and
Table2). Missing days from the time series were excluded
from the analysis, and the 95th percentile lower and up-
per uncertainty bounds (L.U.B. and U.U.B.) were calculated
adapting the method inDaren-Harmel and Smith(2007).

L.U.B.t = Qobs,t (1 − PER/100) (4)

U.U.B.t = Qobs,t (1 + PER/100) (5)

For this study, the probable error ranges (PER) were esti-
mated using the standard deviation of the errors between the
gauged and field-measured discharges during the calibration
campaigns. The water balance closure was assessed and 4 ad-
ditional stations, i.e. Paute, Nueva Loja, Nuevo Rocafuerte,
and San Sebastian from INAMHI were included for compar-
ative analysis. The last three stations are located in the Napo
River basin in Ecuador, which is tributary to the Peruvian
Amazon further downstream of San Regis.

2.4 Model evaluation

Streamflow simulations were assessed with the Nash–
Sutcliffe model efficiency (NSE), the root-mean-square er-
ror (RMSE), the relative bias and the Pearson correlation.
The calculated deviations were modified using approach 1
described byDaren-Harmel and Smith(2007) to account for
streamflow data uncertainty. The entire time series available
from the modelling period of 1998–2008 were used.

The internal model fluxes (i.e. evapotranspiration, canopy
throughfall, surface runoff, and subsurface runoff) are eval-
uated by calculating the statistics of the spatial variabil-
ity over each major biomes – lowland forest and flood for-
est (below 1200 m a.s.l.), montane forest (between 1200 and
3500 m a.s.l.), and upland (above 3500 m a.s.l.) systems as
shown in Fig.2 – within the entire basin. In the absence of
a dense network of local observations, the distribution of ob-
servations from the literature (Table4) are taken as substitute
for observations from a “real” system. The assumption is that
the best simulation for the basin will produce similar natural
variability, assessed in terms of the mean and spread of the
distributions.

Fig. 2. The major biomes in the Marañón River basin. The classi-
fication was performed using an ecosystem map and altitude and
the evaluation of JULES was performed separately for each of the
natural biomes.

3 Results and discussion

3.1 Uncertainties in the observations

Potential errors in the observations of precipitation and
streamflow were assessed by analysing the runoff ratio,
i.e. the total observed streamflow to the total precipitation
input (Table3). Ratios typical for humid tropical environ-
ments are in the range of 0.6–0.7 (Campling et al., 2002;
Buytaert et al., 2006a; Rollenbeck and Anhuf, 2007), while
the values found in the study basins exceed 0.80, with values
up to 1.88. This suggests severe errors in either the stream-
flow measurements or precipitation products, or unaccounted
sources of water. For the latter, cloud water input may be re-
sponsible, as this can be significant in montane forests, rang-
ing between 22–1990 mm yr−1 (see a comprehensive study
by Bruijnzeel et al., 2011). However, a seasonality analysis
of the water balance (results not shown) highlights that the
largest overestimations of the runoff ratio occur during the
austral winter. This is incompatible with cloud water input,
which would occur during periods of persistent cloud cover
(Zadroga, 1981) which in the case of the Marañón Basin is
the austral summer.

Previous studies that highlighted difficulties with water
balance closure in similar magnitudes have attributed these to
errors in precipitation because of the scarcity of gauge data

www.hydrol-earth-syst-sci.net/17/1113/2013/ Hydrol. Earth Syst. Sci., 17, 1113–1132, 2013
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Table 2.Hydrological stations description.

Station River basin Coordinates Elevation Drainage Period of MeanQobs Normalized
(m) area available (all available meanQobs

(km2) data data, m3 s−1) (× 1000 m3

s−1 km−2)

San Regis Marãnón 73.9◦ W, 4.5◦ S 93 363 848 1986–2011 16 601 45.6

Borja Marãnón, upstream 77.5◦ W, 4.5◦ S 200 114 991 1986–2011 4539 39.5

Santiago Santiago – northern tributary 78.0◦ W, 3.1◦ S 290 23 806 2001–2011 1585 66.6
to Marãnón upstream of
Borja

Paute Paute – tributary to 78.6◦ W, 2.6◦ S 1840 4917 1999–2004 109 22.2
Santiago

Chazuta Huallaga – southern tributary 76.1◦ W, 6.6◦ S 180 69 175 1998–2009 3042 44.0
to Marãnón downstream
of Borja

Nuevo Rocafuerte Napo – northern tributary 75.4◦ W, 0.9◦ S 189 27 534 2001–2011 2176 79.0
to Marãnón downstream
of San Regis

San Sebastian Coca – tributary to Napo 77.0◦ W, 0.3◦ S 290 5329 2000–2011 459 86.1

Nueva Loja Aguarico – tributary to Napo 76.8◦ W, 0.0◦ N 299 4640 2001–2011 593 127.8

for the upper basin (i.e. upstream of Brazil) (Guimberteau
et al., 2012; Coe, 2002). Indeed, large errors have been re-
ported in the literature with the TRMM and NCEP precipita-
tion over the Amazon Basin.Ward et al.(2011) observed in
Paute Basin both datasets underestimating precipitation dur-
ing the dry season by 50 mm month−1 on average. In the
Brazilian Amazonia,Clarke et al.(2010) observed a neg-
ative bias in the maximum annual daily rainfall of up to
80 mm day−1 in the NCEP reanalysis data, and an extension
of the dry season when compared to gauged data. Both stud-
ies also found poor correlation to the gauged time series.

The most unrealistic runoff ratios were found at the north-
ern Andean basins (Paute, Santiago, Nueva Loja, and San
Sebastian, Table3). Large, lowland basins such as Borja,
Chazuta, San Regis, and Nuevo Rocafuerte have lower and
more reasonable runoff ratios. This is compatible withWard
et al. (2011), who found comparable, unrealistically high
runoff ratio values over the Paute Basin in Ecuador and the
Baker Basin in Chilean/Argentinean Andes, even with in-
terpolated rain gauge data. This may highlight that the un-
certainty of precipitation by global precipitation products
in the study area is the most problematic when applied at
small scale and over the mountainous regions, particularly in
south-east Ecuador. This has been previously demonstrated
in studies of rain gauge data byBuytaert et al.(2006b) and
radar data byRollenbeck and Bendix(2011). Both attribute
the difficulties of capturing precipitation to the highly vari-
able topography. According toBuytaert et al.(2006b), due
to relief-induced micro-climates, the extent of precipitation
events may be as small as 4 km.Rollenbeck and Bendix
(2011) revealed multiple interactive processes such as con-
vective and orographic rainfall at local and regional scales.

Table 3. Data uncertainty and water balance closure calculated at
the hydrological stations. PER = probable error range;Qobs: ob-
served streamflow;P : precipitation. Time domain: 1998–2008.

Station PER (%) Qobs
PTRMM

Qobs
PNCEP

San Regis 6.28 0.82 0.71
Borja 13 0.94 1.00
Santiago 7.05 1.36 1.14
Paute – 1.10 0.39
Chazuta 1.31 0.81 1.11
Nuevo Rocafuerte – 1.20 0.80
San Sebastian – 1.47 1.09
Nueva Loja – 1.76 1.88

These are unlikely to be fully resolved even using the high-
est resolution that most regional climate models are currently
capable of.

The TRMM data, on the basis of the model performance,
provide a reasonable starting point for estimates of precipi-
tation and are superior to precipitation data from NCEP re-
analysis data. Pinpointing the exact weakness of the TRMM
data is a challenging task, as the TRMM 3B42 precipitation
is derived from multiple observational datasets, converted
from measurements of infrared (IR) temperatures, passive
microwave radiation, and radar reflectivities from multiple
sources of satellites that work at different temporal and spa-
tial scales and domains (Huffman et al., 2007). Dinku et al.
(2010) attributes the tendency of TRMM to underpredict
precipitation in mountain areas to several reasons. Firstly,
the temperature measured above orographic clouds greatly

Hydrol. Earth Syst. Sci., 17, 1113–1132, 2013 www.hydrol-earth-syst-sci.net/17/1113/2013/



Z. Zulkafli et al.: JULES-LSM hydrology for humid tropical environments 1119
Ta

bl
e

4.
S

um
m

ar
y

of
flu

xe
s

fr
om

hu
m

id
tr

op
ic

al
hy

dr
ol

og
y

lit
er

at
ur

e.

R
ef

er
en

ce
Lo

ca
tio

n
P

re
ci

pi
ta

tio
n

E
va

po
tr

an
sp

ira
tio

n
T

hr
ou

gh
fa

ll
S

ur
fa

ce
S

ub
su

rf
ac

e
(m

m
)

(m
m

)
(m

m
)

R
un

of
f

R
un

of
f

(m
m

)
(m

m
)

Lo
w

la
nd

fo
re

st
s

R
ef

er
en

ce
s

inB
ru

ijn
ze

el
et

al
.(2

01
1)

C
en

tr
al

A
m

az
on

ia
,D

uc
ke

25
00

13
10

P
as

oh
,M

al
ay

si
a

18
00

14
48

La
m

bi
r

H
ill

s,
M

al
ay

si
a

27
40

13
03

R
ef

er
en

ce
s

inR
ol

le
nb

ec
k

an
d

A
nh

uf(
20

07
)

E
st

ad
o

A
m

az
on

as
,V

en
ez

ue
la

32
44

14
92

25
95

19
5

18
48

F
re

nc
h

G
ui

an
a

32
00

13
46

B
el

em
,P

ar
a

B
ra

si
l

18
19

19
05

S
C

ar
lo

s
D

e
R

io
N

eg
ro

,V
en

ez
ue

la
36

64
20

65
31

88
17

59
S

C
ar

lo
s

D
e

R
io

N
eg

ro
,V

en
ez

ue
la

35
00

15
02

24
50

R
es

er
va

D
uc

ke
,B

ra
zi

l
22

09
11

19
19

66
67

64
0

La
ke

C
al

ad
o,

B
ra

zi
l

28
70

11
5

16
79

R
es

er
va

D
uc

ke
,B

ra
zi

l
23

91
21

28
R

es
er

va
D

uc
ke

,B
ra

zi
l

23
91

21
75

M
an

au
s,

B
ra

zi
l

30
00

23
40

78
0

R
es

er
va

D
uc

ke
,B

ra
zi

l
26

36
13

18
23

20
R

es
er

va
Ja

ru
,B

ra
zi

l
35

63
N

eg
ŕo
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Ṕaram

os
6000

B
uytaertetal.(2006a)

H
uagraum

a,M
achanagra,E

cuador
1200

600
850

S
oroche,M

achanagra,E
cuador

800
450

500
C

elleri(2007)
B

urgay
820

D
uda

1120
Jadan

750
M

atadero
1230

M
azar

1160
Y

anuncay
1100

Tom
ebam

ba
980

200
600

P
aute

1030

Hydrol. Earth Syst. Sci., 17, 1113–1132, 2013 www.hydrol-earth-syst-sci.net/17/1113/2013/



Z. Zulkafli et al.: JULES-LSM hydrology for humid tropical environments 1123

1998 2000 2002 2004 2006 2008

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Time

R
un

of
f r

at
io

S.Regis
Borja
Santiago
Chazuta
Loja
Rocafuerte
S.Sebastian
Paute
TRMM
NCEP

Fig. 3. Temporal and spatial trends in the runoff ratios calculated using observed streamflows and TRMM and NCEP precipitation. The
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Fig. 5. Modelled versus measured streamflows at all four gauging points for the modelling period 2006–2007. The overlying barplots are
the basin-average precipitation time series. Black: observed flow, gray: 95 % confidence interval, blue: JULES-BASE and TRMM, magenta:
JULES-TOPMODEL and TRMM, red: JULES-BASE and NCEP, orange: JULES-TOPMODEL and NCEP.

exceeds the temperature threshold above which the clouds
are considered precipitating. The warm clouds also tend not
to contain ice particles, which would provide more accurate
estimates of rainfall from passive microwave observations.
The recent release of version 7 (Huffman and Bolvin, 2012)
of the product may bring some improvements, but a full anal-
ysis is outside the intended scope of this paper.

Several noteworthy trends can also be observed in the in-
terannual variation in the runoff ratio (Fig.3). The ratios cal-
culated with the TRMM product are higher and increasing
between 1998 and 2004, but show a sharp decreasing trend
after 2004. In contrast, the runoff ratios with NCEP precipi-
tation are generally lower prior to 2004, but deteriorate after
2004, yielding values above 1. The significance of the year
2004 as a turning point for both datasets is not clear – in the
case of TRMM data, it may be possible that this is linked
to changes in the estimation algorithm for one of the con-
tributing satellites in mid-2003 (Huffman et al., 2007), but in
the case of NCEP, the reanalysis model has been held static
throughout the time series. Nevertheless, there is the general
tendency of a drier climate during the wet season (based on

the trend of maximum annual flows at Borja, not shown) and
the fact that calibration campaigns for the streamflow stations
started in 2003–2004. Therefore, despite the strong case for
precipitation uncertainty, the possibility of a high streamflow
data uncertainty cannot be discounted.

3.2 Simulation of streamflow

Figure4 illustrates several spatial and temporal trends in the
model performance indicators that are in line with the ob-
served trends in the water balance in Sect.3.1. The relative
bias is increasingly negative from the largest to the small-
est basin and diverges between the simulations with TRMM
and NCEP. Moreover, with the TRMM simulations, the bias
starts to decrease in 2004, which coincides with the improve-
ment in the runoff ratio, and the opposite is true with the
NCEP simulations. The correlation between modelled and
observed time series are relatively stable throughout the en-
tire modelling period; this suggests that the model is reason-
ably capable of capturing the majority of the fluctuations in
the hydrograph, provided that the water balance is accurate.
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Fig. 6.Comparison of flow duration curves from observed and simulated streamflows.

This point is further evidenced by the RMSE, which takes a
general decreasing trend after the year 2004 and simultane-
ously results in positive Nash–Sutcliffe efficiencies.

The observed hydrographs (Fig.5) show that, with the ex-
ception of San Regis, the river can be extremely flashy with
discharge decreasing by more than 5000 m3 s over the course
of several days. The model seems capable of reproducing this
response where there is dominant orographic control on the
basin hydrology, i.e. in Chazuta. Here the shapes of the rising
limbs and recession are sufficiently modelled, despite several
missed peaks and under/overshooting of the time to peak.
These errors are to be expected at the fine temporal scale
of the model and the additional uncertainty from the runoff
routing scheme.

On the other hand, the Santiago Basin and to a lesser ex-
tent the Borja Basin show a much less seasonally variable
response, in which a flashy regime overlays a larger base-
flow component. The baseflow is likely to be sustained by
an extensive system of Andean wetland and lakes that form
a major part of these upper mountain basins (i.e. Páramos
and Jalcas,Buytaert and Beven, 2011). JULES’ poor estima-
tion of this baseflow may be attributed to the incomplete rep-
resentation of lateral fluxes and the natural stores provided
by these local topographic depressions. This limitation pre-
vails at the full basin scale, where the model fails to replicate
the extremely regulated flow regime observed at San Regis.
The role of the floodplain at this scale cannot be ignored, as
the Ucayali–Maranon depression (Rasanen et al., 1992) is a

prominent feature and is capable of attenuating a large vol-
ume of the flows.

Figure6 is a comparison between the modelled and ob-
served flow duration curves, which provide a better insight
into the model performance over the entire flow regime. The
slopes of the curves are reasonably well simulated, particu-
larly with the TRMM precipitation as the driving variable.
This is likely due to better estimates of precipitation intensi-
ties from the observation dataset, which also comes at a finer
spatial resolution than the NCEP, and therefore may be bet-
ter at capturing local convective rainfall. However, there is an
overall underestimation of the discharge in the low- to mid-
flow region and overestimation of peak flows, further con-
firming a missing flow attenuation component in the model.

For similar reasons, JULES-TOPMODEL is underper-
forming when compared to JULES-BASE. The flashiness of
the response simulated by JULES-TOPMODEL is exagger-
ated, and this is suspected to be due to errors in the parameter
scale. Indeed, the mean topographic indices calculated over
the coarse model grids were negatively skewed, and the time-
series average of the grid-saturated fractions (Fig.7) clearly
shows that the partial areas contributing to saturation excess
runoff were unreasonably overpredicted. In the lower basin,
50 % of the gridbox is saturated on average, which is high
even for the flood forests that go through seasonal flooding.

Figure9 provides some insight into the model’s sensitiv-
ity to variations in the soil parameters. It shows barely dis-
cernible differences in the outcome using the soil parameters
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calculated using temperate PTFs (1) applied vertically uni-
form and (2) stratified, and using tropical PTFs (3) applied
vertically uniform and (4) stratified. This is in spite of the
large range of values between the two estimation methods
(Fig.10) and between the top and subsoil layers (not shown).
This could be due to the large modelling domain, in which
the local effects from the parameter perturbations offset each
other at the regional scale. However, it is more likely that
the model is more responsive to the model forcing, or to
some other parameters that were not included in the sensi-
tivity analysis, e.g. saturated hydraulic conductivity and soil
depth.

3.3 Simulation of internal variability of surface
hydrological fluxes

We further compared JULES’ simulated internal variability
of surface hydrological fluxes to the values published in the
literature (Fig.8) to assess its robustness in representing the
overall hydrological balance of a humid tropical basin. We
identified a general negative bias in the simulation of evapo-
transpiration (ET). The simulated mean for flood forest ET is

even lower than that for the lowland forest, which is counter-
intuitive given the higher water availability in floodplains.
One possibility for this low bias is an underestimation of
canopy interception, but the evidence for this is weak. De-
spite positive skews in the distribution, the simulated canopy
throughfall (TF) largely resides within the literature ranges.

A similar bias was observed byBlyth et al. (2011) (with
JULES) andGuimberteau et al.(2012) (with ORCHIDEE-
LSM) in Amazonia.Blyth et al. (2011) also underestimated
primary production, which may be correlated as the canopy
conductance is a function of photosynthesis rate within the
model (Cox et al., 1999). Both these processes are dependent
on the soil moisture, as is also the bare surface evaporation,
and it is likely that the low bias with ET is due to the model
overestimating soil water stress. Studies focusing on simu-
lations of the soil moisture state have indeed shown nega-
tive biases, particularly in the lowest layer in the soil pro-
file, suggesting a weakness of the free gravity drainage as-
sumption (Bakopoulou et al., 2012; Finch and Haria, 2006).
This assumption prevents drawing up of soil moisture dur-
ing dry periods when the water table dips below the maxi-
mum soil depth. The JULES-TOPMODEL implementation
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Fig. 10. Parameter variations generated using temperate (left panel) and tropical (right panel) pedotransfer functions in the topsoil (top
35 cm). sathh: air entry pressure;b: Brooks and Corey exponent; smsat, smwilt, smcrit: volumetric soil moisture at saturation, wilting, and
critical points. The hydraulic conductivity (satcon, mm s−1) is unchanged.

is an attempt to address this limitation with an underlying
unconfined aquifer; however, the model is persistently satu-
rated and loses the effective rainfall to the routing (as evi-
dent in the larger contribution to surface runoff with JULES-
TOPMODEL), resulting in no observed improvement to the
ET.

This reconfirms the need to simulate better the movement
of lateral fluxes within the basin.Dadson et al.(2010) imple-
mented a 2-D routing scheme based on the kinematic wave
assumption that continuously estimates flood extents based
on the simulated water level of each grid cell. The land cover
tiles in JULES are updated in the subsequent timestep by
converting the flooded fraction into an open water surface.
The subsurface and consequently plant roots, however, do not
gain access to this available moisture, as open water tiles in
JULES do not infiltrate. Therefore, the improvement to ET
estimates is solely due to the increase in the open water ET,
which may not be sufficient for the flood forest system of
the Marãnón River basin. A more optimal model may be the
floodplain implementation with the ORCHIDEE land surface
model byd’Orgeval et al.(2008), who model the surface area
and volume of swamps and floodplain in order to calculate

the water retention time, allowing re-infiltration into the sub-
surface during this period. However, their model splits each
coarse LSM grid into smaller subbasins, likely requiring an
instantaneous redistribution of soil moisture over the entire
grid in the subsequent timestep. This assumption may un-
dermine the soil moisture accounting in flooded versus dry
sections of the grid, although it may be less problematic over
finer scale grids.

A final nonetheless important observation is that in the up-
land biome, ET is better simulated and because of errors in
the water balance, this corresponds to poor runoff genera-
tion. This is a clear contrast to the simulations in the lowland
forests, where the poor estimation of ET instead makes up for
the water balance errors, resulting in well-estimated runoff
and, consequently, streamflow. In the latter case, data errors
compensated for model and parameter errors and created a
false impression of good modelling.
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4 Conclusions

Our study has shown that hydrological predictions with the
JULES-LSM can be unreliable due to a large uncertainty
in the driving data and the poor simulation of the baseflow
component in the upper Andean basins. In the peneplain, the
model is unable to reproduce the well-regulated regime as
it neglected the hydrological functions of the flood forest.
Nevertheless, for a global model that is not purpose-built for
hydrological modelling, JULES is capable of producing rea-
sonable simulations of the flow regime at fine temporal scale.

In constructing a robust model for impact analysis of a
resilient system such as the Amazon, it is important to rep-
resent the hydrological system holistically in terms of the in-
ternal states and fluxes, perhaps more than it is to score a
near-perfect Nash–Sutcliffe efficiency. We further assessed
whether the model is capable of behaving as a mirror image
of real systems elsewhere in terms of the basin’s internal of
hydrological fluxes. We have identified the model weakness
in the estimation of ET and suspect this to be due to errors in
predicting soil water availability due to misrepresentation of
the inundated areas of the Andean wetlands and in the Ama-
zon floodplain. Future research will explore adaptation of the
model structure to better represent the hydrological functions
of these natural features.
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