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Abstract

Background

Trypanosoma cruzi has been classified into six Discrete Typing Units (DTUs), designated

as TcI–TcVI. In order to effectively use this standardized nomenclature, a reproducible gen-

otyping strategy is imperative. Several typing schemes have been developed with variable

levels of complexity, selectivity and analytical sensitivity. Most of them can be only applied
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to cultured stocks. In this context, we aimed to develop a multiplex Real-Time PCRmethod

to identify the six T. cruzi DTUs using TaqMan probes (MTq-PCR).

Methods/Principal Findings

The MTq-PCR has been evaluated in 39 cultured stocks and 307 biological samples from

vectors, reservoirs and patients from different geographical regions and transmission cycles

in comparison with a multi-locus conventional PCR algorithm. The MTq-PCR was inclusive

for laboratory stocks and natural isolates and sensitive for direct typing of different biological

samples from vectors, reservoirs and patients with acute, congenital infection or Chagas re-

activation. The first round SL-IR MTq-PCR detected 1 fg DNA/reaction tube of TcI, TcII and

TcIII and 1 pg DNA/reaction tube of TcIV, TcV and TcVI reference strains. The MTq-PCR

was able to characterize DTUs in 83% of triatomine and 96% of reservoir samples that had

been typed by conventional PCR methods. Regarding clinical samples, 100% of those de-

rived from acute infected patients, 62.5% from congenitally infected children and 50% from

patients with clinical reactivation could be genotyped. Sensitivity for direct typing of blood

samples from chronic Chagas disease patients (32.8% from asymptomatic and 22.2% from

symptomatic patients) and mixed infections was lower than that of the conventional PCR

algorithm.

Conclusions/Significance

Typing is resolved after a single or a second round of Real-Time PCR, depending on the

DTU. This format reduces carryover contamination and is amenable to quantification, auto-

mation and kit production.

Author Summary

Chagas disease, caused by the protozoan Trypanosoma cruzi, represents a health and social
threat to an estimated number of eight million people, affecting mainly neglected popula-
tions in endemic areas and emerging in non endemic countries by migratory movements.
Parasite genetic diversity is related to geographical distribution and transmission cycles
and might play a role in clinical manifestations as well as in anti-parasitic chemotherapy
response. T. cruzi has been classified into six Discrete Typing Units (DTUs), after consen-
sus reached among experts in the field. In order to effectively use this standardized nomen-
clature, a reproducible genotyping strategy is needed. Available typing schemes are usually
applied to cultured parasite stocks, because they are not sensitive enough to be used in bio-
logical specimens. Only nested PCR procedures could directly type biological samples, but
are prompt to contamination and require a high number of reactions. Thus, we developed
a multiplex Real-Time PCR using TaqMan probes (MTq-PCR) for DTU typing in a single
or a second round of amplification. It proved useful to determine DTUs in cultured stocks,
vector and reservoir specimens, as well as in patients´samples, especially in those from in-
dividuals with acute, congenital infection or Chagas reactivation. It is amenable to quanti-
fication and automation for kit production.
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Introduction
Infection with Trypanosoma cruzi is a complex zoonosis, transmitted by more than 130 triato-
mine species and sustained by over 70 genera of mammalian reservoir hosts. T. cruzi has a
broad endemic range that extends from the Southern United States to Argentinean Patagonia.
The human infection, which may lead to Chagas disease, is the most important parasitic infec-
tion in Latin America with serious consequences for public health and national economies.

The diversity of the T. cruzi genome is well recognized [1–3]. Designation of ecologically
and epidemiologically relevant groups for T. cruzi has oscillated between a few discrete groups
[4] and many [5]. Currently, six Discrete Typing Units (DTUs) are defined [2]. In 2009, these
DTUs were renamed by consensus as TcI–TcVI [6]. Several reviews already describe how these
DTUs correspond with former nomenclatures and with prospective biological and host associ-
ations [6–8]. All six DTUs are known to be infective to humans and to cause Chagas disease.
Further, in patients infected with DTUmixtures, different tissue distribution has been detected
[9–11]. Recently a new genotype associated with anthropogenic bats (TcBat) has been detected
in Brazil, Panama and Colombia and awaits further characterization for definitive DTU assign-
ment [12–14].

The standardized nomenclature for T. cruzi DTUs should improve scientific communica-
tion and guide future research on comparative epidemiology and pathology. However, a
straightforward and reproducible DTU genotyping strategy is still required. Numerous ap-
proaches have been proposed to characterize the biochemical and genetic diversity of T. cruzi
isolates [15–23] with variable levels of complexity, selectivity and analytical sensitivity. Due to
sensitivity constraints, most of these strategies have been applied only to cultured stocks and
not directly to biological or clinical samples. Thus, their results may have underestimated para-
site diversity due to possible strain selection during culture expansion [24–25]. Some methods
require multiple sequential conventional PCR reactions, PCR-RFLP, hybridization or post-
PCR sequencing steps; these tests are cumbersome and time-consuming, and their results are
often difficult to interpret. Accordingly, we aimed to develop a novel multiplex Real-Time PCR
method using TaqMan probes, allowing distinction of the six DTUs in a few steps not only
from cultured stocks but also from a high proportion of biological and clinical samples.

Materials and Methods

Biological Samples
Reference strains: Genomic DNA from a panel of reference stocks representative of the 6 T.
cruzi DTUs, Trypanosoma rangeli and Leishmania spp. was used for analytical validation of
the assay (Table 1).

Clinical specimens: A total of 132 clinical samples were included in the study: one tissue
sample and 131 peripheral blood samples obtained from acute T. cruzi infected patients (AI,
n = 13), asymptomatic (ACD, n = 64) and symptomatic (SCD, n = 27, 19 cardiac, 5 digestive
and 3 mixed disease patients) chronic Chagas disease patients, congenitally infected children
(CI, n = 16), and from adult patients with clinical reactivation in the context of immunosup-
pression (RCD, n = 11) (S1 Table).

Triatomine samples: A total of 104 triatomine derived samples were included in the study:
16 culture isolates and 88 direct samples (38 abdomen/midgut samples and 50 feces/urine sam-
ples collected on filter paper) from infected bugs (S2 Table).

Mammalian reservoir samples: A total of 71 samples obtained from T. cruzi reservoirs were
included in the study: 27 culture isolates and 44 direct samples (38 peripheral blood samples
and 6 heart explants) from mammalian reservoirs (S3 Table).

TaqMan PCR for Identification of T. cruziDTUs
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Table 1. T. cruzi, T. rangeli and Leishmania spp. isolates used to evaluate the analytical performance of the multiplex real-time PCR genotyping
assays.

Strain DTU/Species Origin Vector/Host

K-98a TcI Argentina Homo sapiens

PalDa30b TcI Argentina Didelphis albiventris

SE9Vc TcI Argentina Homo sapiens

TCCd TcI Chile Homo sapiens

13379 cl7e TcI Bolivia Homo sapiens

Ga TcI Brazil Didelphis marsupialis

Sylvio X10a TcI Brazil Homo sapiens

Triatomaf TcI Mexico Triatoma sp.

Duranf TcI Mexico nd

Gammaf TcI Mexico nd

Colombianaa TcI Colombia Homo sapiens

Dm28ca TcI Venezuela Didelphis marsupialis

OPS21cl11g TcI Venezuela Homo sapiens

Tu18a TcII Bolivia Triatoma infestans

Basileuh TcII Brazil Homo sapiens

Ya TcII Brazil Homo sapiens

MAS cl1a TcII Brazil Homo sapiens

Ll51-P24-Roi TcIII Argentina Canis familiaris

M5631 cl5a TcIII Brazil Dasypus novemcinctus

M6241 cl6a TcIII Brazil Homo sapiens

3663a TcIII Brazil Panstrongylus geniculatus

X109/2a TcIII Paraguay Canis familiaris

CanIIIa TcIV Brazil Homo sapiens

4167a TcIV Brazil Rhodnius brethesi

Griffinj TcIV USA Canis familiaris

Dog Theisa TcIV USA Canis familiaris

92122102Ra TcIV USA Procyon lotor

PAH265k TcV Argentina Homo sapiens

PAH179k TcV Argentina Homo sapiens

LL014-1R1cl1l TcV Argentina nd

MN cl2a TcV Chile Homo sapiens

SO3 cl5a TcV Bolivia Triatoma infestans

RAa TcVI Argentina Homo sapiens

Tep7k TcVI Argentina Canis familiaris

Tep6 cl5k TcVI Argentina Canis familiaris

LL052m TcVI Argentina nd

Tulahuen cl2a TcVI Chile Homo sapiens

CL Brenera TcVI Brazil Triatoma infestans

Peruanan TcVI Perú nd

444o T. rangeli Colombia Rhodnius prolixus

SC-58p T. rangeli Brazil Echimys dasythrix

Treq T. rangeli Colombia nd

L1566r L. major Ecuador Homo sapiens

M2269s L. amazonensis Brazil Homo sapiens

L1569r L. brasiliensis Ecuador Homo sapiens

L1508r L. mexicana Belize Homo sapiens

References: a[6]; b[26]; c[27]; d[28]; e[29]; f[30]; g[31]; h[32]; i[33] j[34]; k[22]; l[23]; m[35]; n[36]; o[37]; p[38]; q[39]; r[40]; s[41]. DTU, Discrete Typing Unit; nd,

no data.

doi:10.1371/journal.pntd.0003765.t001
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Ethics Statement
The study with human samples was approved by the ethical committees of the participating in-
stitutions (Comité de Bioseguridad del INLASA, Ministerio de Salud de Bolivia; Comité de
Ética en Investigación de la Universidad de Granada; Comité de Ética de Investigación del
Instituto Nacional de Salud Pública de México; Comité de Ética del Hospital Italiano; Comité
de Bioética del Hospital Universitario Fundación Favaloro; Comité de Bioética del Instituto de
Medicina Regional de la Universidad Nacional del Nordeste; Comité de Bioética de la provincia
de Jujuy), following the principles expressed in the Declaration of Helsinki. Written informed
consents were obtained from the adult patients and from parents/guardians on behalf of all
children participants.

DNA Extraction
Preparation of DNA from biological specimens was done according to the type of sample and
the operating procedures followed by the laboratories from which DNA aliquots were obtained
(S1–S3 Tables). At our laboratory, peripheral blood and tissue samples were processed using
High Pure PCR Template Preparation Kit (Roche, Germany) following the recommendations
of the manufacturer. Triatomine feces impregnated on filter paper and abdomen samples were
processed as reported [42].

Conventional PCR Based Discrete Typing Unit Genotyping
Identification of T. cruziDTUs was assessed using a conventional PCR algorithm for DTU gen-
otyping, based on the amplification of three nuclear loci, the spliced leader intergenic region
(SL-IR), the 24Sα-ribosomal DNA (24Sα-rDNA) and the A10 fragment, as reported [11,17].
Analytical sensitivity for these methods was described in Burgos et al. (2007) [17]: SL-IRac
PCR: 1 pg, SL-IR I PCR: 5 pg, SL-IR II PCR: 5 pg, 24Sα-rDNA PCR: 100 fg, and A10 PCR:
1–10 pg DNA per reaction tube.

TaqMan Probes and Primer Design
Multiple sequence alignments of the T. cruzi SL-IR, cytochrome oxidase subunit II (COII), 18S
ribosomal DNA (18S rDNA) and 24Sα-rDNA genes were performed using the ClustalW algo-
rithm in MEGA 5.2 software [43]. Reference sequences were retrieved from the GenBank data-
base. The PrimerQuest and OligoAnalyzer tools (provided online at the website http://www.
idtdna.com) were used for the final design of specific primers and probes (Table 2). To mini-
mize nonspecific detection, the oligonucleotides were compared with all relevant sequences
using the BLAST database search program (provided online from the National Center for Bio-
technology Information [NCBI]).

Multiplex Real-Time PCR Assays
A Real-Time PCR flowchart for identification of T. cruzi DTUs in biological samples using
TaqMan probes (MTq-PCR) is shown in Fig 1. Oligonucleotide concentration and sequence
information is detailed in Table 2. TaqMan probes were purchased from Integrated DNA
Technologies, Inc. (USA). SL-IR and 18S-COII MTq-PCR assays were carried out using 1X
QIAGENMultiplex PCR Kit (QIAGEN, USA), while the 24Sα-III/IV MTq-PCR used 1X Fas-
tStart Universal Probe Master (Roche, Germany). All PCR reactions were carried out with 2 μL
of resuspended DNA in a final volume of 20 μL. Optimal cycling conditions for the SL-IR and
18S-COII MTq-PCR assays were initially 15 min at 95°C followed by 40 cycles at 95°C for 30
sec and 60°C for 1 min in an Applied Biosystems (ABI 7500, USA) device. In turn, optimal

TaqMan PCR for Identification of T. cruziDTUs
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Table 2. Sequences and concentrations of primers and probes used in the multiplex real-time PCR assays.

PCR assay Oligonucleotide Sequence (5'- 3') Final concentration (μM)

SL-IR MTq UTCC-Fw CAGTTTCTGTACTATATTGGTACG 0.5

TcI-Rv CGATCAGCGCCACAGAAAGT 0.5

TcII/V/VI-Rv GGAAAACACAGGAAGAAGC 0.5

TcIII-Rv CATTTTTATGAGGGGTTGTTCG 0.5

TcIV-Rv CATTTTTATTAGGGGTTGTACG 0.5

TcI (probe) FAM-CTC+CTTC+AT+GTT+TGT+GTCG-BHQ1 0.1

TcII/V/VI (probe) HEX-TATA+CC+CATATA+TATA+TA+GC-BHQ1 0.05

TcIII (probe) Quasar670-AATCGCG+TGTATGCACCGT-BHQ3 0.05

TcIV (probe) CAL Fluor Red610-GCCCCCGACGCCGTCCGTG-BHQ2 0.1

18S-COII MTq 18S-Fw ATGGGATAACAAAGGAGCAGCCTC 0.2

18S-Rv CTTCATTCCTGGATGCCGTGAGTT 0.2

COII-Fw ACACCTACCYGGTTCTCTACCT 0.2

COII-Rv CTYGARAGTGATTAYTTGGTGGGWG 0.2

18S-TcII/VI (probe) FAM-CAGACTTCGGTCTTACCCTTCGCATCTCACA-BHQ1 0.05

18S-TcV (probe) HEX-TCTT+GCC+T+C+CGCATATTTTCACA-BHQ1 0.05

COII-TcII (probe) Cy5-AATGGATTACATCTACGGCTGACACCCA-BHQ3 0.1

24Sα-III/IV MTq D71a AAGGTGCGTCGACAGTGTGG 0.4

D76b GGTTCTCTGTTGCCCCTTTT 0.4

TcIII (probe) FAM-CTTTTCC+C+C+TCTCTTTTATTA+GG-BHQ1 0.2

TcIV (probe) HEX-+T+G+CTCTCTTTCCTTCTCTT+TACG-BHQ1 0.2

a[44]; b[45]; SL-IR, spliced leader intergenic region; 18S, 18S-ribosomal ADN; COII, cytochrome oxidase II; 24Sα, 24Sα-ribosomal ADN; MTq, multiplex

Real-Time PCR; BHQ, Black Hole Quencher. The + in front of the nucleotide indicates an LNA (Locked Nucleic Acid) monomer substitution.

doi:10.1371/journal.pntd.0003765.t002

Fig 1. Multiplex real-time PCR flowchart for identification of Trypanosoma cruziDTUs in biological samples. SL-IR, spliced leader intergenic region;
18S, 18S-ribosomal ADN; COII, cytochrome oxidase II; 24Sα, 24Sα-ribosomal DNA; MTq, multiplex TaqMan Real-Time PCR.

doi:10.1371/journal.pntd.0003765.g001

TaqMan PCR for Identification of T. cruziDTUs

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0003765 May 19, 2015 6 / 18



cycling condition for the 24Sα-III/IV reaction was an initial cycle of 10 min at 95°C followed
by 40 cycles at 95°C for 30 sec and 57°C for 1 min in a Rotor-Gene 6000 (Corbett, UK) device.

Analytical Performance of the Multiplex Real-Time PCR Assays
In order to characterize the performance of the MTq-PCR, several analytical parameters were
determined [40].

The inclusivity of the assays was evaluated using 0.05–5 ng/μL of genomic DNA obtained
from a panel of 39 T. cruzi stocks belonging to the six DTUs from different geographic origins
(Table 1). On the other hand, 1–5 ng/μL of genomic DNA obtained from T. rangeli, L.major,
L. amazonensis, L. brasiliensis and L.mexicana, was used to assess the specificity of the assays.
Specificity was also tested using human DNA from a seronegative patient as template.

Analytical sensitivity and reaction efficiency were evaluated using 2-fold, 10-fold and
100-fold serial dilutions spanning 1 μg to 1 fg of genomic DNA per reaction tube obtained
from T. cruzi stocks belonging to different DTUs, depending on the assay. Moreover, in the
case of TcI, four stocks representing TcIa, TcIb, TcId and TcIe genotypes based on the poly-
morphism of the SL-IR gene were analyzed [30]. In addition, in the case of TcIV, DNA from
strains representing populations from South America (TcIV-SA) and North America
(TcIV-NA) were used [46]. Each concentration was tested in duplicate.

Results

Analytical Performance of the Multiplex Real-Time PCR Assays
Fig 1 illustrates the MTq-PCR flowchart designed to distinguish among the six T. cruzi DTUs.

Inclusivity and specificity results are shown in Table 3. T. cruzi I, including stocks represent-
ing SL-IR genotypes TcIa, TcIb, TcId and TcIe, were detected by the FAM fluorescence signal
in the SL-IR MTq-PCR assay and did not amplify in the downstream reactions of the flowchart.
The TcII/V/VI group was detected with the HEX-labeled probe in the SL-IR MTq-PCR. The
18S-COII MTq-PCR assay distinguished TcII (FAM + Cy5 signals) from TcV (HEX signal)
and TcVI (FAM signal only). There were two groups of TcIII strains, one group reacted only
with the SL-IR TcIII-Quasar670 probe, and the other one composed by three strains (from Bra-
zil, Paraguay and Argentina), reacted with both TcIII-Quasar670 and TcIV-CAL Fluor Red610
SL-IR probes. Thus, the latter group of strains was identified as TcIII after a second round of
amplification using the 24Sα-FAM probe. CAL Fluor Red610 and HEX fluorescence signals
were detected when the assay contained DNA from TcIV-SA and TcIV-NA strains in the
SL-IR and the 24Sα-III/IV MTq-PCR assays, respectively.

TcV was amplified and detected with the FAM probe in the 24Sα-III/IV MTq-PCR assay.
Besides, TcIII and TcIV were also detected with the 18S-HEX probe in the 18S-COII MTq-
PCR. Specificity of the MTq-PCR was not affected since all these DTUs are confirmed in a
previous stage.

On the other hand, MTq-PCR was tested with purified DNA from T. rangeli, L. amazonen-
sis, L.major and L.mexicana stocks and from a seronegative patient. No detectable fluores-
cence signals were obtained for any of them, indicating the specificity of the assays (Table 3).

Analytical sensitivity and reaction efficiency were estimated separately for each of the three
MTq-PCR reactions using genomic DNA from reference stocks representing the six T. cruzi
DTUs: TcIa (K98), TcIb (Cas16), TcId (G), TcIe (PALV1 cl1), TcII (Tu18), TcIII (M5631),
TcIV-SA (CanIII), TcIV-NA (Griffin), TcV (PAH265) and TcVI (CL-Brener). The SL-IR
MTq-PCR yielded a positive result starting from 1 fg DNA/reaction tube of TcI reference
strains with an efficiency (Eff) of 108% (TcIa), 104% (TcIb), 99% (TcId) and 98% (TcIe). Simi-
lar sensitivity was obtained for strains representing TcII (Eff: 90%) and TcIII (Eff: 97%). In the

TaqMan PCR for Identification of T. cruziDTUs
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Table 3. Inclusivity and specificity assays for the multiplex real-time PCR genotyping algorithm.

Strain Species DTU SL-IR MTq PCR assay 18S-COII MTq PCR assay 24Sα-III/IV MTq
PCR assay

TaqMan probe TaqMan probe TaqMan probe

TcI
FAM

TcII/V/VI
HEX

TcIII
Quas670

TcIV
Cal610

18S-TcII/VI
FAM

18S-TcV
HEX

COII-TcII
Cy5

TcIII
FAM

TcIV
HEX

G T. cruzi TcI 14.11 neg neg neg neg neg neg neg neg

K-98 T. cruzi TcI 17.98 neg neg nd nd nd nd nd nd

PalDa30 T. cruzi TcI 22.97 neg neg nd nd nd nd nd nd

SE9V T. cruzi TcI 21.04 neg neg nd nd nd nd nd nd

TCC T. cruzi TcI 22.52 neg neg nd nd nd nd nd nd

13379 cl7 T. cruzi TcI 38.68 neg neg nd nd nd nd nd nd

Sylvio X10 T. cruzi TcI 12.53 neg neg nd nd nd nd nd nd

Triatoma T. cruzi TcI 13.93 neg neg nd nd nd nd nd nd

Duran T. cruzi TcI 11.10 neg neg nd nd nd nd nd nd

Gamma T. cruzi TcI 11.42 neg neg nd nd nd nd nd nd

Colombiana T. cruzi TcI 23.35 neg neg nd nd nd nd nd nd

Dm28c T. cruzi TcI 16.69 neg neg nd nd nd nd nd nd

OPS21cl11 T. cruzi TcI 35.52 neg neg nd nd nd nd nd nd

Tu18 T. cruzi TcII neg 15.16 neg neg 19.79 neg 19.24 neg neg

Basileu T. cruzi TcII neg 29.05 neg neg 23.38 neg 26.15 nd nd

Y T. cruzi TcII neg 26.14 neg neg 20.92 neg 20,71 nd nd

MAS cl1 T. cruzi TcII neg 16.31 neg neg 20.15 neg 19,13 nd nd

M5631 T. cruzi TcIII neg neg 18.55 neg neg 17.07 neg 20.32 neg

Ll51-P24-Ro T. cruzi TcIII neg neg 33.67 32.59 nd nd nd 25.96 neg

M6241 cl6 T. cruzi TcIII neg neg 20.17 neg nd nd nd 18.34 neg

3663 T. cruzi TcIII neg neg 38.75 34.21 nd nd nd 25.14 neg

X109/2 T. cruzi TcIII neg neg 31.26 23.34 nd nd nd 17.96 neg

CanIII T. cruzi TcIV neg neg neg 17.62 neg 38.19 neg neg 24.42

4167 T. cruzi TcIV neg neg neg 15.44 nd nd nd neg 23.15

Griffin T. cruzi TcIV neg neg neg 33.57 nd nd nd neg 31.98

Dog Theis T. cruzi TcIV neg neg neg 14.12 nd nd nd neg 23.84

92122102R T. cruzi TcIV neg neg neg 13.92 nd nd nd neg 25.57

PAH265 T. cruzi TcV neg 24.09 neg neg neg 24.11 neg 27.39 neg

PAH179 T. cruzi TcV neg 20.46 neg neg neg 20.39 neg nd nd

LL014-
1R1cl1

T. cruzi TcV neg 33.15 neg neg neg 34.64 neg nd nd

MN cl2 T. cruzi TcV neg 20.83 neg neg neg 18.67 neg nd nd

SO3 cl5 T. cruzi TcV neg 26.06 neg neg neg 26.32 neg nd nd

CL Brener T. cruzi TcVI neg 16.49 neg neg 21.92 neg neg neg neg

RA T. cruzi TcVI neg 27.88 neg neg 27.56 neg neg nd nd

Tep7 T. cruzi TcVI neg 20.20 neg neg 19.24 neg neg nd nd

Tep6 cl5 T. cruzi TcVI neg 20.31 neg neg 21.63 neg neg nd nd

LL052 T. cruzi TcVI neg 28.01 neg neg 30.82 neg neg nd nd

Tulahuen cl2 T. cruzi TcVI neg 35.15 neg neg 36.16 neg neg nd nd

Peruana T. cruzi TcVI neg 29.6 neg neg 29.23 neg neg nd nd

444 T. rangeli - neg neg neg neg neg neg neg neg neg

SC-58 T. rangeli - neg neg neg neg neg neg neg neg neg

Tre T. rangeli - neg neg neg neg neg neg neg neg neg

(Continued)
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cases of TcIV-SA, TcV and TcVI, sensitivity was lower (1 pg DNA/reaction tube) with Eff of
80%, 88% and 86%, respectively (Fig 2). The 18S-COII MTq-PCR reaction rendered a sensitivi-
ty of 100 fg DNA/reaction tube for strains representing TcV (Eff: 82%) and TcVI (Eff: 83%)
and 1 pg DNA/reaction tube for TcII (Eff: 77% and 70% using the 18S-FAM and the COII-Cy5,
respectively) (Fig 3A). The 24Sα-III/IV MTq-PCR method was capable of detecting 100 fg
DNA/reaction tube of the TcIII (Eff: 92%) and TcIV-SA (Eff: 81%) stocks, whereas TcIV-NA
was detected at concentrations� 1 ng/reaction tube (Eff: 78%) (Fig 3B).

Evaluation of the Multiplex Real-Time PCR Assays in Biological
Samples
A total of 307 biological specimens, including clinical samples (n = 132) as well as samples ob-
tained from different species of vectors (n = 104) and mammal reservoirs (n = 71) from differ-
ent endemic regions were evaluated using MTq-PCR and a conventional PCR based strategy
[11, 17].

Clinical samples. Chagas disease patients were classified into five groups according to
their infection phase or infection route: AI, ACD, SCD, CI and RCD (see Materials and Meth-
ods). From one RCD patient, more than one sample (blood and skin biopsy samples) was avail-
able for analysis. The AI group included 10 peripheral blood samples from people who
acquired the infection in oral outbreaks in the Amazon region of Bolivia, Venezuela, Colombia
and French Guiana; one sample from a vector-transmitted acute patient from Chiapas, Mexico;
and two samples from patients who acquired T. cruzi infection due to organ transplantation.
The MTq-PCR was able to characterize DTUs in all AI samples, in total agreement with the
conventional techniques, confirming 5 TcI and 6 TcIV cases (Table 4 and S1 Table). In two
samples, conventional PCR was not able to discriminate between pure TcV infections or a mix-
ture of TcV plus TcVI. However, the MTq-PCR confirmed TcV, allowing exclusion of TcVI
(Table 4 and S1 Table).

The DTUs present in 10 out of 16 (62.5%) peripheral blood samples analyzed from CI chil-
dren could be identified by the MTq-PCR. Results were clearly consistent with those obtained
by the conventional strategies, confirming 1 TcI and 4 TcV infections (Table 4 and S1 Table).

Table 3. (Continued)

Strain Species DTU SL-IR MTq PCR assay 18S-COII MTq PCR assay 24Sα-III/IV MTq
PCR assay

TaqMan probe TaqMan probe TaqMan probe

TcI
FAM

TcII/V/VI
HEX

TcIII
Quas670

TcIV
Cal610

18S-TcII/VI
FAM

18S-TcV
HEX

COII-TcII
Cy5

TcIII
FAM

TcIV
HEX

Lmex Leishmania
mexicana

- neg neg neg neg neg neg neg neg neg

La Leishmania
amazonensis

- neg neg neg neg neg neg neg neg neg

Lm Leishmania major - neg neg neg neg neg neg neg neg neg

Lb Leishmania
brasiliensis

- neg neg neg neg neg neg neg neg neg

Human DNA Homo sapiens - neg neg neg neg neg neg neg neg neg

Cycle threshold (Ct) values obtained for each TaqMan probe in the analysis of T. cruzi, T. rangeli and Leishmania sp. stocks and human DNA. 0.1–10 ng

of each T. cruzi strain and 2–10 ng of T. rangeli and Leishmania spp. stocks were used in the reaction tube.

DTU, Discrete Typing Unit; neg, negative; nd, not done.

doi:10.1371/journal.pntd.0003765.t003
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In 4 samples, conventional PCR was not able to discriminate between pure TcV infections or a
mixture of TcV plus TcVI. However, the MTq-PCR confirmed TcV in two cases, classified one
as an indeterminate TcII/V/VI sample, and classified the remaining one as a mixed infection of
TcV plus TcVI. Furthermore, one sample that was classified as indeterminate TcII/V/VI using

Fig 2. Linear range and analytical sensitivity of the first round SL-IR MTq PCR for T. cruziDTUs and TcI SL-IR genotypes. X-axis represents serial
dilutions of whole genomic DNA from each stock and Y-axis represents the obtained Ct value. Linear regression analysis, equation and R2 are shown for
each graph. Inserts inside plots represent the Ct values obtained for the complete DNA concentration range tested (1 fg—10 ng/ reaction tube). TcIa, strain
K98; TcIb, strain Cas16; TcId, strain G; TcIe, strain PALV1 cl1; TcII, strain Tu18; TcIII, strain M5631; TcIV, strain CanIII; TcV, strain PAH265; and TcVI, strain
CL Brener.

doi:10.1371/journal.pntd.0003765.g002
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the conventional PCR algorithm was classified as TcVI using the MTq-PCR (Table 4 and S1
Table).

Eleven peripheral blood samples and one skin biopsy sample from RCD patients were ana-
lyzed and six (50%) could be genotyped by MTq-PCR, confirming three as infected with TcI
populations (Table 4 and S1 Table). In one sample, conventional PCR was not able to discrimi-
nate between pure TcV or a mixture of TcV plus TcVI. However, MTq-PCR confirmed TcV
and excluded TcVI. Additionally, the skin biopsy sample was classified as doubtful TcII/VI by
the conventional PCR, but MTq-PCR confirmed the presence of TcII DNA. On the other

Fig 3. Linear range and analytical sensitivity of the second roundmultiplex real-time PCR tests. A. 18S-COII MTq PCR assay for reference stocks
representing T. cruzi DTUs TcII, TcV and TcVI. Detection of TcII stock is shown for both TaqMan probes 18S-FAM and COII-Cy5. B. 24SαMTq PCR for
reference stocks representing T. cruziDTUs TcIII, TcIV-SA and TcIV-NA. X-axis represents serial dilutions of whole genomic DNA from each stock and Y-
axis represents the obtained Ct value. Linear regression analysis, equation and R2 are shown for each graph. TcII, strain Tu18; TcV, strain PAH265; TcVI,
strain CL Brener; TcIII, strain M5631; TcIV-SA (TcIV from South America), strain CanIII; TcIV-NA (TcIV from North America), strain Griffin.

doi:10.1371/journal.pntd.0003765.g003
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hand, T. cruzi populations in the peripheral blood sample of the above mentioned patient were
confirmed as belonging to TcII by the conventional method and classified as indeterminate
TcII/VI by MTq-PCR (Table 4 and S1 Table).

A low proportion of chronic Chagas disease patients’ samples (32.8% ACD and 22.2% SCD)
could be characterized by the MTq-PCR, and most of them were typed as TcI (n = 25), in full
accordance with conventional typing (Table 4 and S1 Table). In one sample, conventional PCR
was not able to discriminate between pure TcV infection or a mixture of TcV plus TcVI. How-
ever, TaqMan PCR confirmed TcV and eliminated TcVI. On the other hand, another sample
was confirmed as TcVI by the conventional PCR method and classified as indeterminate TcII/
VI by the MTq-PCR (Table 4 and S1 Table).

Triatomine samples. A total of 104 samples (88 direct samples and 16 culture isolates) ob-
tained from urine, feces and tissue (midgut/abdomen) specimens from triatomines were pro-
cessed. The MTq-PCR gave positive results in 80.7% and 93.8% of direct samples and isolated
cultures, respectively, confirming 54 TcI, 1 TcII, 2 TcIII and 8 TcIV (Tables 4 and S2). Overall
typed vector samples, two indeterminate TcIII (or TcIII plus TcI) and one TcV (or TcV plus
TcVI) specimens by the conventional methods were confirmed as TcIII, TcI and TcV, respec-
tively, by the MTq-PCR (Tables 4 and S2).

Reservoir samples. The study included 71 samples (44 direct samples and 27 culture iso-
lates) obtained from peripheral blood and tissue specimens from mammal reservoirs of T.
cruzi, most of which were successfully typified by MTq-PCR (100% of culture isolates and
93.2% of direct samples), confirming 28 TcI, 16 TcIII and 1 TcIV (Tables 4 and S3). Six TcVI
samples obtained from peripheral blood of Canis familiaris were classified as indeterminate
TcII/VI by MTq-PCR (Tables 4 and S3).

Table 4. Multiplex real-time PCR genotyping algorithm validation with biological samples.

Samples Conventional PCR
pos

MTq PCR
pos

TcI TcII/V/
VI

TcII/
VI

TcII TcIII TcIV TcV TcVI Mixed
infections

Human AI 13 13 5 0 0 0 0 6 2 0 0

ACD 64 21 19 0 1 0 0 0 1 0 0

SCD 27 6 6 0 0 0 0 0 0 0 0

CI 16 10 1 1 1 0 0 0 6 0 1d

RCDa 12 6 3 0 1 1 0 0 1 0 0

Vectors Direct
sampleb

88 71 47 0 0 1 5 8 1 0 9e

Culture 16 15 11 0 0 0 0 4 0 0 0

Animal
reservoirs

Direct
samplec

44 41 40 0 0 0 0 0 0 0 1f

Culture 27 27 3 0 6 0 16 2 0 0 0

Total 307 210 135 1 0 3 21 20 11 8 11

Positive results obtained with the Real-Time and conventional PCR assays for the DTU characterization of biological samples were compared. The

number of samples belonging to each DTU group corresponds to the Real-Time PCR algorithm results.
aEleven peripheral blood samples and one skin biopsy sample
bSixty three urine/feces samples on filter paper and 25 abdomen/tissue samples
cForty peripheral blood and 4 heart explant samples; pos, positive results. Mixed infections were characterized as dTcV plus TcVI,
e6 TcI plus TcIV, 1 TcI plus TcIII/IV and 2 TcIII plus TcIV,
fTcI plus TcII. AI, acute T. cruzi infection; ACD, asymptomatic chronic Chagas disease; SCD, symptomatic chronic Chagas disease; CI, congenitally

infected children; and RCD, patients with reactivation in the context of immunosuppression.

doi:10.1371/journal.pntd.0003765.t004
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Analysis of mixed infections. In clinical samples, a mixed infection by TcI plus TcII/V/VI
found in a SCD patient gave no amplification after SL-IR MTq-PCR, probably because of its
very low parasitic load [47].

Detection of DTU-mixed infections in vector samples revealed a complex situation, in
which MTq-PCR succeeded in resolving six out of 16 mixtures previously characterized by the
conventional PCR tests; nine were characterized as single infections and one gave negative re-
sults (Tables 4 and S2). On the other hand, three samples that were classified as inconclusive
TcIII (or TcIII plus TcI) using conventional PCR were classified as mixed infections using
MTq-PCR (2 TcIII plus TcIV and 1 TcI plus TcIII/IV) (Tables 4 and S2).

In the case of reservoir samples, MTq-PCR confirmed one case of TcI plus TcII mixed infec-
tion but failed to resolve 17 other mixed infections previously characterized in Didelphis vir-
giniana,Macaca fascicularis, Canis familiaris and Felis catus by conventional PCR (Tables 4
and S3).

Discussion
As a consequence of the standardized nomenclature for the six T. cruzi DTUs having been rati-
fied by a committee of experts [6], it became imperative to develop a reliable genotyping strate-
gy that could be adopted by the research community [8]. Throughout the past years, several
typing schemes have been developed. A PCR assay system based on the amplification of partic-
ular regions of the SL gene and 24Sα-rDNA [44] and 18S rDNA [48] was first proposed [15] in
which the size polymorphisms of the amplification products were suitable for T. cruzi assign-
ment into each of the six DTUs. A multilocus PCR-RFLP analysis of genetic polymorphism of
12 loci also was proposed for DTU genotyping [16]. Additionally, a three-marker sequential
typing strategy was proposed consisting of PCR amplification of the 24Sα-rDNA and
PCR-RFLP of the heat shock protein 60 and glucose-6-phosphate isomerase loci [18]. Yeo et al.
(2011) and Lauthier et al. (2012) designed Multilocus Sequence Typing (MLST) schemes in
which sequence information of 4 to 10 single copy housekeeping genes allowed the resolution
of the six DTUs [21–22]. A recent assay that uses a single copy gene (TcSC5D) followed by two
RFLP reactions has been reported [23]. However, most of the above mentioned assays are com-
plex to perform and have been applied only to cultured parasites. Another scheme using
nested-hot-start PCR assays allows direct DTU typing in biological [25, 49] and clinical [11,
17] samples but requires between 3 and 9 sequential PCR reactions.

To overcome these difficulties we developed a novel MTq-PCR approach that identifies the
six T. cruzi DTUs in a single or two sequential reactions with adequate sensitivity to analyze
different types of biological samples, such as those derived from triatomine vectors and differ-
ent type of wildlife, livestock, pets and human tissues. The Real-Time format reduces PCR as-
sociated contamination and is amenable to quantification, automation and kit production. A
first round allows distinction of TcI strains from those belonging to TcIII/IV or TcII/V/VI
groups, which are discriminated after a second MTq-PCR round. The method was inclusive
for a panel of 39 T. cruzi stocks. In particular, the TcI primer/probe set was inclusive for all TcI
SL-IR genotypes [30], and the TcIV primer/probe set was inclusive for TcIV strains from
South and North America [46]. Besides, the test did not recognize human, T. rangeli and Leish-
mania spp. DNAs.

MTq-PCR methods showed an analytical sensitivity ranging from 1 fg to 1 pg DNA per re-
action tube depending on the DTU being analyzed. As an exception, TcIV-NA was detected at
concentrations� 1 ng/reaction tube by the 24Sα-III/IV MTq-PCR. The analytical sensitivity
for the conventional PCR scheme used in this study was reported in Burgos et al. (2007) [17]
and ranged from 100 fg to 10 pg DNA per reaction tube depending on the reaction and the
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DTU under analysis. Thus, both PCR algorithms used in the present study showed similar
ranges of sensitivity when compared at analytical levels.Out of 210 biological samples that
could be typed by both algorithms, 24 (11.4%) gave inconclusive TcII/V/VI, TcII/VI, TcV (or
TcV plus TcVI) and TcIII (or TcIII plus TcI) results by either conventional or MTq-PCR. In
nine samples, conventional PCR was not able to discriminate between single TcV infection and
a mixture of TcV plus TcVI. However, MTq-PCR confirmed TcV in seven of these samples
thanks to specific detection of the 18S-HEX probe. One sample, typed as TcII/V/VI by conven-
tional PCR, could be resolved as TcII/VI by MTq-PCR. Furthermore, an indeterminate TcII/
VI and 2 TcIII (or TcIII plus TcI) samples were confirmed as TcII, TcI and TcIII, respectively,
by MTq-PCR (S1–S3 Tables). On the other hand, 7 TcVI and one TcII samples typed by the
conventional PCR algorithm were classified as indeterminate TcII/VI by the MTq-PCR (S1–S3
Tables).

Finally, both algorithms confirmed mixed infections in one patient from Jujuy, Argentina
(TcV plus TcVI), in one cat fromMexico (TcI plus TcII) and in several sylvatic vector species,
such as TcI plus TcIII, TcI plus TcIV and TcIII plus TcIV (S1–S3 Tables). In general the MTq-
PCR detected mixed infections in a lesser extent than the conventional PCR scheme. Oligonu-
cleotide interactions, competition for reagents, different amplification efficiency of the targets,
and accumulation of amplicons of the predominant target that inhibit Taq polymerase are fac-
tors that might be involved.

The MTq-PCR test was less sensitive than conventional PCR algorithm for direct typing of
peripheral blood samples of a proportion of chronic Chagas disease patients harboring low par-
asite loads. We have evaluated the analytical sensitivity of the assay using mixtures of T. cruzi
DNA with DNA extracted from human blood from non-infected subjects and no differences in
analytical sensitivity were found (S1 Fig). This suggests that the lower clinical sensitivity of the
assay in blood samples would not be due to inhibitory substances present in the samples. In
some human cases tested in this study, we can not discard some DNA degradation with respect
to the period where the extracts were analyzed using conventional PCR algorithm [50].

The findings herein obtained, promote MTq-PCR as a valuable laboratory tool for distinc-
tion of T. cruzi DTUs. It appears adequate in surveillance and identification of outbreaks
sources [51] or to follow-up acute infections of seronegative recipients that receive infected or-
gans from seropositive donors [52].

Supporting Information
S1 Table. DTU characterization of clinical samples using conventional PCR and the multi-
plex real-time PCR genotyping algorithms.
(DOCX)

S2 Table. DTU characterization of triatomine samples using conventional PCR and the
multiplex real-time PCR genotyping algorithms.
(DOCX)

S3 Table. DTU characterization of reservoir samples using conventional PCR and the mul-
tiplex real-time PCR genotyping algorithms.
(DOCX)

S1 Fig. Linear range and analytical sensitivity of the first round SL-IR MTq PCR for a TcIa
representative stock in both presence and absence of 38 ng DNA extracted from human
blood from non-infected subjects. X-axis represents serial dilutions of whole genomic DNA
and Y-axis represents the obtained Ct value. TcIa, strain K98.
(TIF)
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