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Abstract
Lepidopteran stem borers are among the most important pests of maize in East Africa. The

objective of the present study was to predict the impact of temperature change on the distri-

bution and abundance of the crambid Chilo partellus, the noctuid Busseola fusca, and their

larval parasitoids Cotesia flavipes and Cotesia sesamiae at local scale along Kilimanjaro

and Taita Hills gradients in Tanzania and Kenya, respectively. Temperature-dependent

phenology models of pests and parasitoids were used in a geographic information system

for mapping. The three risk indices namely establishment, generation, and activity indices

were computed using current temperature data record from local weather stations and

future (i.e., 2055) climatic condition based on downscaled climate change data from the

AFRICLIM database. The calculations were carried out using index interpolator, a sub-mod-

ule of the Insect Life Cycle Modeling (ILCYM) software. Thin plate algorithm was used for

interpolation of the indices. Our study confirmed that temperature was a key factor explain-

ing the distribution of stem borers and their natural enemies but other climatic factors and

factors related to the top-down regulation of pests by parasitoids (host-parasitoid syn-

chrony) also played a role. Results based on temperature only indicated a worsening of

stem borer impact on maize production along the two East African mountain gradients stud-

ied. This was attributed to three main changes occurring simultaneously: (1) range expan-

sion of the lowland species C. partellus in areas above 1200 m.a.s.l.; (2) increase of the

number of pest generations across all altitudes, thus by 2055 damage by both pests will

increase in the most productive maize zones of both transects; (3) disruption of the geo-

graphical distribution of pests and their larval parasitoids will cause an improvement of bio-

logical control at altitude below 1200 m.a.s.l. and a deterioration above 1200 m.a.s.l. The
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predicted increase in pest activity will significantly increase maize yield losses in all agro-

ecological zones across both transects but to a much greater extent in lower areas.

Introduction
The average global surface temperature has increased by about 0.6°C during the past century
[1,2,3,4,5], mainly as a result of human activities [2,3,4,6]. Continental and sea temperatures
are expected to continue to rise regardless of human interventions for at least the next decades
[2,3,4]. It is anticipated that the impact of climate change will be greater in the tropical regions
of the world. In addition, various socio-economic studies, and present demographic and policy
trends suggest that developing countries will be more at risk because of their low capacity to
adapt [3]. This will exacerbate the already serious challenges to food security, livelihoods and
economic prosperity [7,8].

Climatic predictions show that Eastern Afromontane Biodiversity Hotspot (EABH) regions
will be particularly affected by climatic changes [9,10,11,12,13]. The goods and services pro-
vided by these ecosystems are under significant threat [7,14,15], mostly due to land use changes
exacerbated through high population. The EABH have important ecosystem service values
arising from the water towers it provides for the low lying areas, food production from major
crops like maize, cabbages, and plantation crops like coffee and avocado, recreation and eco-
tourism, and nutrient recycling [10].

In EABH, agricultural productivity of crops grown for human consumption is at risk due to
the incidence of arthropod pests, which reduce crop production by up to 18% [16,17]. Because
insects are cold-blooded, they cannot regulate their own temperatures, and hence, temperature
is considered among the major abiotic factor affecting insect development, reproduction, sur-
vival and thereby their interaction with the environment (plant and natural enemies), and geo-
graphic distribution [18,19,20,21,22,23].

The responses of insects to temperature has been given much more attention in temperate
than in tropical regions [24,25,26]. In temperate regions, warmer winter and decreasing fre-
quencies of temperature extremes will enhance reproduction capacity and changes in distribu-
tion are expected for a variety of pest species [18] whereas abundance of some insect species
vulnerable to high temperatures may decrease as a result of climate change [27,28,29]. None-
theless, tropical regions are more predisposed to insect pest problems and outbreaks because of
favorable climatic conditions for pest reproduction and host availability throughout the year
[26]. One of the best approaches to predict the consequences of climate change and especially
temperature on insect distribution is the use of phenological models [30]. Different models
have been used to estimate the relationship between temperature and insect development
[26,31,32,33,34]. Nonlinear models simulate the variability in insect development time within
a population based on detailed laboratory assessment of the insect’s life history and, thus, can
provide good results on future pest activities [35,36]. Furthermore, they allow prediction of
pest population dynamics in different agro-ecological zones in response to climate change by
the use of spatial models [26,37].

Maize is the most important staple food in East African countries [38,39,40,41]. Maize pro-
duction is constrained by biotic (stem borers, gray leaf sport, maize streak virus) and abiotic
(drought, low soil fertility) factors. In East Africa, the most important insect pests associated
with maize are lepidopteran stem borers, among them the crambid Chilo partellus (Swinhoe)
and the noctuid Busseola fusca (Fuller) are the most detrimental. Yield losses are currently
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estimated between 12% to 40% of the total production depending on agro-climatic zone, maize
variety, cropping system, and soil fertility level [39,40,42,43].

Distribution and relative importance of C. partellus and B. fusca varies among different
regions and agroecological zone. C. partellus invaded Africa from Asia sometime before 1930
and was first reported fromMalawi [44]. Currently, it has spread to nearly all countries in East
and Southern Africa, and became the most serious pest of cereals in the hot lowlands and the
mid altitudes [45,46,47,48]. B. fusca is indigenous to Africa and the predominant pest in the
cooler highlands. However, its distribution varies between African regions; while in East and
Southern Africa it is a pest in the cooler zones above 600 m, in Central Africa it the predomi-
nant pest from sea level to over 2000 m, and in West Africa it is primarily a pest of sorghum in
the dry savannahs [48,49].

Both pests are attacked by natural enemies, among them the larval parasitoids Cotesia sesa-
miae (Cameron) and Cotesia flavipes Cameron (Hymenoptera: Braconidae) which attack B.
fusca and C. partellus, respectively [42]. Whereas, C. sesamiae is indigenous to Africa, C. fla-
vipes, a native of Asia, was released in Kenya in 1993 in a classical biological control program
against C. partellus [50]. The natural enemies are reported to cause 32–55% decrease in stem
borer densities in various cereal crops [42,47].

Temperature-driven phenology models for stem borers, which include a set of functions
describing temperature-dependency to determine the pests`life history, have been used to fore-
cast C. partellus development in Africa [51,52]. While pest models and risk mapping tools have
been shown to be useful for predictions on global and regional scales, there is a general lack of
information for predictions of maize stem borers at a smaller geographical scale. EABH
regions, characterized by a hilly relief with steep inclines, are particularly affected by this situa-
tion due to restricted computational facilities, inadequate human resources, problems associ-
ated with the insufficiency of regional climate data and reliable downscaling options [2,7,11].
As maize is the most important staple crop in EABH, more in-depth research is needed about
the likely effects that climate change will have on its predominant insect pests and their main
parasitoids.

The hypothesis of the present study is that the distribution and abundance of maize stem
borers will shift towards higher elevations and interactions with their natural enemies is
expected to change as a consequence of climate change along East African mountain gradients.
Therefore, the objective of this study was to predict the impact of climate changes on the distri-
bution and abundance of B. fusca, C. partellus, C. flavipes and C. sesamiae along two EABH gra-
dients through phenology modelling.

Material and Methods

Study sites
The study areas are localized in the Eastern Afromontane Biodiversity Hostspot (EABH) in
Kenya and Tanzania. In Kenya, the target area is situated in the Taita Hills in the Coast Prov-
ince to the south-east, at an elevation ranging from 700 to 2228 m.a.s.l., between latitude 3°25
´ and longitude 38°20´ (Fig 1). Mean annual rainfall ranges from 500 mm to over 1500 mm
and mean annual temperature from 16.5 to 23.5°C in, respectively, the low altitudes and
upper mountain zone. The area is characterized by a bimodal rainfall distribution, with a long
rainy season occurring fromMarch to May/June and a short one from September/October to
December. In Tanzania, the target area is situated in the Pangani river basin in the north east
with focus on the small catchment areas on the south-eastern slope of Mount Kilimanjaro, at
700–1800 m.a.s.l., between latitude 3°4´ and longitude 37°4´ (Fig 1). Mean annual tempera-
ture ranges from 18 to 23.6°C and mean annual rainfall between 1000mm to 1300mm. It
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experiences two distinct rainy seasons: a long season from March to May and a short one
between October and December. Permissions to carry research by CHIESA project were
granted by Kenya Forest Service under reference RESEA/1/KFS/5 for Taita Hills and by the
Regional Administrative Secretary Kilimanjaro under reference FA/191/228/01/61 for Kili-
manjaro mountains.

Stem borer data
Field surveys were carried out in maize fields along the two-altitudinal gradients for two years
in 2012 and 2013. No specific permissions were required for these maize fields; however per-
missions to conduct research were asked to the small-scale farmers owners of the maize plots.
The field studies did not involve endangered or protected species. A total of 6 localities along
each altitudinal transect were selected on the basis of the annual mean temperature, whereby
each locality differed from the closest one by 1°C. In addition these localities belong to some of
the maize agro-ecological zones defined by Hassan et al., [53]. The lowland tropical and dry
mid altitude zones situated mainly below 1300 m.a.s.l belong to low potential zones, whereas
the moist transitional and highland tropics located above 1300 m.a.s.l belong to high potential
zones for maize. Ten maize plots were selected in each locality. Twelve infested plants were
sampled every 5–6 weeks in each plot and dissected. All stem borers recovered were sorted
according to their developmental stage and species name if possible, counted and placed indi-
vidually in a glass vial containing artificial diet developed by Onyango and Ochieng’-Odero
[54]. Each vial was labeled according to the larval stage, species name, location, plot number
and date. The larvae were taken to the laboratory and kept until parasitism emergence or
pupae formation. Parasitoids cocoons recovered were recorded and the parasitoids identified.
Pupae were kept until adult emergence for confirmation of species identity.

Fig 1. The study areas: (A) Mount Kilimanjaro transect, (B) Taita hills transect. The circles indicate the
locations where the data loggers for the climate data collection have been installed along the altitudinal
gradients.

doi:10.1371/journal.pone.0130427.g001
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Climate data
The temperature data required for carrying out spatial simulation under current climatic con-
ditions were obtained from local weather stations. At each study site across each transect, 24
automatic onsets HOBO data loggers were installed, within a minimum distance of 600m from
each others, to keep track of daily minimum and maximum temperatures, and monthly mean
minimum and maximum temperatures (°C). The following localities were considered: Kipusi,
Dembwa, Josa, Mbengonyi, Kighala and Vuria in the Taita Hills, and Miwaleni, Uparo Iwaleni,
Uparo, Kopachi, Nduoni and Marua in the Mount Kilimanjaro transect. At each locality, the
geographical coordinates (longitude and latitude) and altitudes were recorded using a Global
Positioning System (GPS).

For simulations under future climatic conditions, downscaled data of the Representative
Concentration Pathways Scenarios, Fifth Assessment Report (RCPs-AR5) [3] under future cli-
mate change scenarios were used. The RCPs provide spatially resolved data sets of land use
change and sector-based emissions of air pollutants, and it specifies annual greenhouse gas
concentrations and anthropogenic emissions up to 2100 [3]. The downscaling of the data was
obtained from regional climate models (RCMs). RCMs better capture local climate feedbacks,
especially in biologically rich and highly populous mountain and coastal regions. These grids
were bias-corrected and change-factor downscaled to 30” (1km) spatial resolution, using the
WorldClim grids as baselines. The data are well documented in Platts et al., [55], and are freely
accessible at http://www.york.ac.uk/environment/research/kite/resources/. For studying the
effect of future climate conditions on stem borers and their natural enemies, the year 2055 was
selected because of the time horizon of 30 years, which is more realistic than 2080 and beyond.

The phenology models
The temperature-driven phenology models for C. partellus, B. fusca, C. flavipes and C. sesamiae
were developed based on laboratory data at constant temperatures, and they were validated
with life table statistics collected at fluctuating temperatures under field conditions [51,52,56].
Daily minimum and maximum temperatures obtained during these experiments were used in
stochastic simulations [51,52]. A good agreement was observed between simulated and experi-
mental results, e.g. for B. fusca, the simulated development times were 8.86, 67.39 and 19.91
days when the observed development times were 8.92, 68.74 and 19.33 days for eggs, larvae
and pupae respectively; similarly for C. partellus, the simulated development times were 8.30,
46.23 and 13.81 days when the observed development times were 8.22, 48.36 and 14.86 days
for eggs, larvae and pupae, respectively [51,52]. These results show that the phenology models
developed by Khadioli et al. [51,52], can be applied to predict the insect population abundance
and demographic parameters in other agro-ecological zones, what justified their application in
the current study in both transects. The phenology models consisted of a set of functions that
described temperature-dependent development of the three immature life stages (egg, larva
and pupae). The Logit function was used to describe the variation of development time on
eggs, larvae and pupae, whereas the complementary ClogLog model was used for female and
male pupae [51,52,56,57]. The Logan model [31,51,55] was used to describe the development
rate of the stem borer species and their natural enemies. The effect of temperature on the mor-
tality of the immature life stages was described by a second order exponential polynomial func-
tion [51,52,55,57,58]. A three-parameter Stinner model [51,55,59] was applied to determine
the relationship between longevity of female adults and temperature for B. fusca, C. partellus
and C. sesamiae. Hilbert & Logan model [60] was used to describe the effect of temperature on
senescence rate for C. flavipes and Gamma and polynomial functions were chosen to describe
effect of temperature on the reproduction.
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Spatial Analysis
Simulations in ILCYM are based on daily minimum and maximum temperatures [26]. In
selected geographical coordinates, minimum and maximum temperature are inferred in the
phenology model through a cosine function, which was then applied for direct estimate of the
following life table parameters: generation time, net reproduction rate, intrinsic rate of
increase, finite rate of increase, and doubling time [26,58] From the expression of individual
life table parameter, three risk indices namely establishment index (ERI), this index identifies
the geographical areas in which the pest insect may survive; generation index (GI), this index is
an estimate of the mean number of generations that a given insect may produce within a given
year; and activity index (AI), indicates the decimal power of the estimated population increase
within a given year [37] were derived for assessing the potential distribution and abundance of
the species. This approach implemented the index interpolator in a sub-module of the Insect
Life Cycle Modeling (ILCYM) software [57], and is freely accessible at https://research.cip.
cgiar.org/confluence/display/ilcym/Home. Using an index interpolator module, the following
steps were considered: the digital elevation model (DEM), defined as co-variables, was inputted
into ILCYM; DEM was obtained from the Shuttle Radar Topography Mission (SRTM). Phe-
nology model and temperature data from each station for a year were also inputted into the
tool. The inbuilt thin plate algorithm was selected for the interpolation of the indices on the
surface of DEM. The indices were generated as ASCII files format and were transferred to Arc-
GIS software version 10.1 for enhancing the visualization. Furthermore, to understand the
effect of future climate, the difference between the current (2013) and future (2055) climate
condition were obtained by using ILCYM’s inbuilt raster calculator. The corresponding values
of absolute generation index changes were extracted using point sampling tool. The generation
index changes estimated were plotted against altitude to visualize the change along altitudinal
gradients.

The variations of finite rate of increase within the year due to seasonal weather fluctuations
were analyzed in detail through plotting the simulated finite rate of increase against calendar
days of the year. Two locations per transect were selected to represent the local weather condi-
tions as follows: Miwale (low altitude) and Marua (high altitude) in the Mount Kilimanjaro
transect, and Kipusi (low altitude) and Vuria (high altitude) in the Taita hills. The choice of
these locations was based on the fact that C. partellus is the dominant species at low altitudes,
whereas B. fusca is the dominant species at high altitudes [48].

Predicting maize yield losses
Based on reports by Hassan et al., [53], De Groote [61], Ong’amo et al., [48] a relationship was
established between estimated activity indices of the two stem borer species and estimated aver-
age maize yield losses associated with stem borer infestations under current climatic conditions
in Kenya. Each transect was split into four agro-climatic zones according to altitude as defined
by Hassan et al. [53]. From the bottom to the top they included the lowland tropics below 1000
m.a.s.l., a dry mid altitude between 1000–1300 m.a.s.l., a moist transitional zone between
1300–1600 m.a.s.l., and the highland tropics above 1600 m.a.s.l. Using the geographical coordi-
nates of these zones, the corresponding values for activity indices for current and future cli-
matic conditions were extracted as ASCII files. Since the activity index was continuous in the
study area, an average activity index for current and future climatic conditions was calculated
for each agro-climatic zone where maize is grown. The relationship between estimated yield
losses and activity indices for current climate conditions was estimated by a linear equation:

Y ¼ b0 þ b1A ð1Þ
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where Y is the estimated yield loss (%) under current climatic conditions, A is the activity
index representing the potential damage, and β0 and β1 are intercept and slope of the equation,
respectively. Using the parameter values for β0 and β1 and activity index values for the current
climate, the predicted yield losses were estimated for current climatic conditions. With the
assumption that future yield losses will follow the same relationship as current ones, the linear
equation was used to estimate yield losses in study areas under future climatic conditions.
Thus, the values for A in the above equation were replaced with activity index values for the
year 2055 as defined below:

Y1 ¼ b0 þ b1A1 ð2Þ

where Y1 is the estimated yield loss (%) during 2055, and A1 is the activity index representing
the potential damage under future climatic conditions.

Results

Change in species distribution
Under the current climate scenario of the year 2013, the establishment risk index (ERI) ranged
from 0.81 to 0.92, 0.65 to 0.77, 0.78 to 0.88 and 0.71 to 0.85 for C. partellus, B. fusca, C. flavipes
and C. sesamiae, respectively in the Mount Kilimanjaro region (Figs 2A,3A,2D and 3D), and
from 0.76 to 0.94, 0.64 to 0.81, 0.74 to 0.90 and 0.73 to 0.89 for C. partellus, B. fusca, C. flavipes
and C. sesamiae, respectively in the Taita Hills (Figs 4A, 5A, 4D and 5D). This reflects well the
current distribution of C. partellus with higher values at low altitudes and lower values at high
altitudes, and B. fusca with higher values at high altitudes and lower values at low altitudes.
Above 1100 m.a.s.l the likelihood of establishment of C. partellus is lower but it does occur.
Presently, C. partellus is already distributed below 1600 m.a.s.l and presents a severe risk of
establishment (ERI>0.81) in the higher altitudes of the gradient. Under the year 2055 tempera-
ture scenario, the boundaries of the four species are indicated to shift to higher altitude with an
absolute change in establishment index of up to 0.05 at the top of the gradient in the Mount
Kilimanjaro region (Figs 2G, 2H, 3G, and 3H), and up to 0.09, 0.07, 0.07 and 0.03 at the top of
the gradient in the Taita Hills for C. partellus, B. fusca, C. flavipes and C. sesamiae, respectively
(Figs 4G, 4H, 5G and 5H).

Change in species abundance
Under the current climate of the year 2013, the generation index (GI) (abundance) of C. partel-
lus fluctuates between 3 in areas around 1400–1600 m.a.s.l and 8 at the bottom of both tran-
sects (Figs 2B and 4B). For C. flavipes, GI ranges from 14–16 in low altitude areas around 700–
900 m.a.s.l, and 9–11, respectively at the top of both transect (Figs 2E and 4E). For B. fusca, GI
ranges from 4–5 in low altitude areas around 700–900 m.a.s.l, and 1–2, respectively at the top
of both transect (Figs 3B and 5B). C. sesamiae GI fluctuates between 12–14 in low altitude and
3–7 at the high altitude in the Kilimanjaro transect (Fig 3E); it ranges between 14–15 and 8–10
in the Taita Hills transect at the bottom and the top, respectively (Fig 5E). Under the tear 2055
scenario, the generation index is expected to increase by 0.7–0.8, 0.1–0.5,1.2–1.6, and 1.0–1.4
per year in Mount Kilimanjaro for C. partellus, B. fusca, C. flavipes and C. sesamiae, respectively
(Fig 6A and 6B), and by 0.6–0.7, 0.2–0.7, 1.2–1.5 and 0.7–1.4 per year in the Taita Hills, respec-
tively (Fig 6C and 6D).

The activity index (AI), which is strongly correlated with GI, indicates population growth
throughout the year for C. partellus, varying from 7 to 14 at the bottom and the top of the Kili-
manjaro region, respectively (Fig 2C), and, from 6 to 13 at the bottom and the top of the Taita
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Fig 2. Change in the establishment, abundance and activity indices ofC. partellus andC. flavipes along the Mount Kilimanjaro transect;C.
partellus current distribution, (A) (ERI), (B) (GI), (C) (AI);C. flavipes current distribution (D) (ERI), (E) (GI), (F) (AI); absolute establishment index
change between 2013 and 2055, (G)C. partellus, (H)C. flavipes; (K)C. partellus andC. flavipes synchrony under future climate for the
establishment index between 2013 and 2055. ERI = Establishment Index, GI = Generation Index, AI = Activity Index.

doi:10.1371/journal.pone.0130427.g002
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Fig 3. Change in the establishment, abundance and activity indices of B. fusca andC. sesamiae along the Mount Kilimanjaro transect; B. fusca
current distribution, (A) ERI, (B) GI, (C) AI; C. sesamiae current distribution (D) ERI, (E) GI, (F) AI; absolute establishment index change between
2013 and 2055, (G) B. fusca, (H)C. sesamiae; (K) B. fusca andC. sesamiae synchrony under future climate for the establishment index between
2013 and 2055. ERI = Establishment Index, GI = Generation Index, AI = Activity Index.

doi:10.1371/journal.pone.0130427.g003
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Fig 4. Change in the establishment, abundance and activity indices ofC. partellus andC. flavipes study along the Taita hills transect; C. partellus
current distribution, (A) (ERI), (B) (GI), (C) (AI);C. flavipes current distribution (D) (ERI), (E) (GI), (F) (AI); absolute establishment index change
between 2013 and 2055, (G)C. partellus, (H)C. flavipes; (K)C. partellus andC. flavipes synchrony under future climate for the establishment index
between 2013 and 2055. ERI = Establishment Index, GI = Generation Index, AI = Activity Index.

doi:10.1371/journal.pone.0130427.g004
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Fig 5. Changes in the establishment, abundance and activity indices of B. fusca andC. sesamiae study along the Taita hills transect;B. fusca
current distribution, (A) ERI, (B) GI, (C) AI; C. sesamiae current distribution (D) ERI, (E) GI, (F) AI; absolute establishment index change between
2013 and 2055, (G) B. fusca, (H)C. sesamiae; (K) B. fusca andC. sesamiae synchrony under future climate for the establishment index between
2013 and 2055. ERI = Establishment Index, GI = Generation Index, AI = Activity Index.

doi:10.1371/journal.pone.0130427.g005
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Hills, respectively (Fig 4C). For B. fusca, AI varies from 4 to 8 at the bottom and the top of both
transects (Figs 3C and 5C). AI varies from 23–26 at the bottom to 12–14 at the top on both
transects (Figs 2F and 4F) for C. flavipes; for C. sesamiae it varies from 16–17 at the bottom to
13–14 at the top of the Kilimanjaro transect (Fig 3F), and between 18–20 and 11–14 at the bot-
tom and the top of the Taita Hills, respectively (Fig 5F).

Change in species finite rate of increase
In both low and high altitudes of the two transects the temperature is predicted to increase by
1–1.9°C throughout the year due to the climate change (Fig 7). This will lead to an increase in
the finite rate of increase of C. partellus and B. fusca by 0.01–0.02 depending on the time of the
year, and by 0.05 for both C. flavipes and C. sesamiae (Figs 8A, 8B, 8C, 8D,9A, 9B, 9C and 9D)
However in both transects (Figs 8A and 9A) the change is more constant throughout the year
at low than at high altitudes where the prediction suggests a weak change during the long dry
season between May-September (Figs 8C and 9C); the prediction suggests no change of C. par-
tellus activity at the tasseling stage of the maize. In the Kilimanjaro transect at lower altitudes,
the change is more pronounced during the colder season (May-September) while almost no
change is predicted during the warmer season (November-February) of B. fusca (Fig 8B). In
the Taita Hills the changes are almost constant throughout the year along the entire transect,
and there is a small increase during the colder season (July-September), when maize is grown

Fig 6. Absolute generation index changes between 2013 and 2055; Mount Kilimanjaro transect. (A) C. partellus andC. flavipes; (B) B. fusca andC.
sesamiae; Taita hills transect, (C) C. partellus andC. flavipes, (D) B. fusca andC. sesamiae.

doi:10.1371/journal.pone.0130427.g006
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during the long rainy season in lower altitudes, and during the long dry season in high altitudes
(Fig 9A and 9C). Except at low altitudes in the Taita Hills, where B. fusca activity is predicted
to increase at the beginning of the maize cycle, the predictions suggest very small changes in B.
fusca activity at the beginning of the maize cycle in other localities when the maize is more vul-
nerable to stem borer attacks.

Synchrony between the host borers and their respective parasitoids
The difference of ERI between C. partellus and C. flavipes (i.e. synchrony) (Figs 2K and 4K)
ranges from -0.02 to 0.03 and -0.03 to 0.08 and between B. fusca and C. sesamiae (Figs 3K and
5K) and from -0.04 to 0.02 and -0.23 to 0.09 in Kilimanjaro and Taita Hills transects, respec-
tively. These results suggest a disruption between the two pests and their respective parasitoid,
which is more pronounced in Taita hills than in the Kilimanjaro transect, with a general trend
indicating that in the future the two pests will be under better control by the parasitoids at low
than high altitude.

Fig 7. Minimum andmaximum temperatures curves for current (2013) and future (2055); (A) Miwaleni (764 m.a.s.l); (B) Marua (1683m.a.s.l) along
Mount Kilimanjaro transect; (C) Kipusi (832m.a.s.l); (D) Vuria (1800m.a.s.l) along Taita hills transect. Bars above the x-axis indicate the maize-
cropping season and oval indicates the starting of rainy season.

doi:10.1371/journal.pone.0130427.g007
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Predicting future maize losses
The proposed linear equation was found satisfactory for estimating the relationship between
maize yield losses and the activity index of C. partellus (Table 1) and of B. fusca (Table 2).
Under current temperature conditions, estimated average maize yield losses caused by C. par-
tellus range from less than 2% in highland tropics to 23% on lowland tropics; the trend and
range of variations are similar along both transects (Table 3). By 2055, the losses will increase
by 5–7% along both transects in the four maize agro-ecological zones, but with a slightly
greater increase in the Taita hills (Table 3). Under current temperature conditions estimated
average maize yield losses caused by B. fusca range from less than 1% in the lowland tropics to
more than 13% in the highland areas. Like for C. partellus the trend and range of variations are
similar along both transects (Table 4). By 2055, the losses will increase by 13% in low altitudes
(lowland tropic and dry mid-altitude) and by 21–23% in high altitudes (moist mid-altitude and
highland tropics). The predicted increase in average yield loss due to B. fusca is much higher in
the Taita Hills than in Kilimanjaro, i.e. almost 2 times in lower altitudes and between 4.3 and
17.1 times in higher altitudes (Table 4). If we consider both species together, the average

Fig 8. Finite rate of increase for current (2013) and future (2055) throughout the year, at two local weather stations along Mount Kilimanjaro transects; (A) C.
partellus andC. flavipes; (B) B. fusca andC. sesamiae at Miwaleni (764 m.a.s.l); (C) C. partellus andC. flavipes; (D) B. fusca andC. sesamiae at Marua (1683
m.a.s.l).

doi:10.1371/journal.pone.0130427.g008
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increase in losses range between 7% in the highland tropics and more than 13% in the lowland
tropics in the Kilimanjaro transect, and between 20% in the lowland tropics and almost 30% in
the highland tropics in the Taita Hills. By 2055, the estimated increase in losses will overall be
2.5 times higher in Taita hills than in the Kilimanjaro region, as a result of the predicted tem-
perature increase.

Fig 9. Finite rate of increase for current (2013) and future (2055) throughout the year, at two local weather stations along Taita hills transects; (A) C. partellus
andC. flavipes; (B) B. fusca andC. sesamiae at Kipusi (832 m.a.s.l); (C) C. partellus andC. flavipes; (D) B. fusca andC. sesamiae at Vuria (1800 m.a.s.l).

doi:10.1371/journal.pone.0130427.g009

Table 1. Parameters of regression equations fitted to estimate the relationship betweenmaize yield loss and activity index ofC. partellus.

Transects Intercept (β0) Slope(β1) df F-stat t-stat P R2

Mount Kilimanjaro -20.893(8.051)* 3.087(0.753)* 1 16.798 4.099 0.055 0.894

Taita hills -27.961(10.998)* 3.844(1.059)* 1 13.155 3.627 0.068 0.868

*Figures in parentheses are standard errors.

doi:10.1371/journal.pone.0130427.t001
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Discussion
The predictive mapping of future maize stem borer pest risks at small scale generated through
point-by-point analysis, using climatic data obtained from data logger dispatched along the
two altitudinal gradients, confirm and complete results recorded at country scale generated
from temperature extrapolated from available historical records by Khadioli et al., [51]. It con-
firms the precision of the temperature process based phenology model achieved with ILCYM
software compared to other methods like rule based methods [62] and multivariate statistical
techniques [63]. The results indicate a worsening of the impact of the two stem borer pests on
maize production along the two East African mountain gradients studied. The aggravation can
be attributed to three main changes occurring simultaneously: range expansion in higher alti-
tude areas; increase of the abundance, thus damage potential, of the pests at all altitudes; dis-
ruption of the biological control due to a mismatch of the geographical distribution between
the pests and their main larval parasitoids.

In both transects, C. partellus is the dominant species in areas belonging mostly to dry mid-
altitude and dry transitional maize agro-climatic zones below 1200 m.a.s.l, reported as a zone
with a low yield potential [53] while B. fusca is the dominant species in areas belonging mostly
to moist mid-altitude and highlands tropic maize agro-climatic zones above 1200 m.a.s.l.
reported as zones with a high yield potential [53]. The predicted increase in climatic suitability
for establishment and survival will allow range expansion of both pests in altitudes above 1200
m.a.s.l. and suggests a future increase in the proportion of C. partellus in moist mid-altitude
and moist transitional areas in both gradients. Our results are consistent with expansion of C.

Table 2. Parameters of regression equations fitted to estimate the relationship betweenmaize yield loss and activity index ofB. fusca.

Transects Intercept (β0) Slope(β1) df F-stat t-stat P R2

Mount Kilimanjaro -39.554(16.468)* 6.855(2.370)* 1 8.364 2.892 0.102 0.807

Taita hills -71.386(27.876)* 12.272(4.311)* 1 8.104 2.847 0.104 0.802

*Figures in parentheses are standard errors.

doi:10.1371/journal.pone.0130427.t002

Table 3. Predicted losses in maize yield in Mount Kilimanjaro and Taita hills transects due toC. partellus infestation at current and future climatic
conditions based on relationship between estimated yield loss and activity index.

Mount Kilimanjaro Taita hills

Predicted yield loss (%) Predicted yield loss (%)

ACZ Altitude
(masl)

Observed yield
loss (%)*

Current
(2013)

Future
(2055)

Difference 2055–
2013

Current
(2013)

Future
(2055)

Difference 2055–
2013

Highland
tropics

>1600 0.01 2.84 8.34 5.50 1.74 7.74 6.00

Moist
transitional

1300–1600 11.1 6.86 12.41 5.55 7.04 13.26 6.22

Dry mid
altitude

1000–1300 11.09 12.14 17.85 5.71 14.66 21.19 6.53

Lowland
tropical

<1000 22.69 23.06 28.10 5.04 21.42 28.11 6.69

Average 11.22 11.23 16.68 5.45 11.22 17.58 6.36

ACZ are the agro-climatic zones, m.a.s.l. = metres above sea level.

* Estimated maize yield loss from Ong’amo et al. (2006).

doi:10.1371/journal.pone.0130427.t003
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partellus to cooler zones reported in the last two decades in South Africa [45,46,47,48], and
Ethiopia [64]. Similar range expansion to high altitude areas in East Africa have been reported
recently for the coffee berry borer (Hypothenemus hampei) [65] and of the fruit fly Bactrocera
invadens [66]. As for stem borers, several factors related to the competitive superiority of C.
partellus against B. fusca were put forward to explain its expansion, among them a shorter gen-
eration time [42] and faster termination of diapause [42,45], but none of these studies pointed
out the potential influence of the temperature change. However, over the past 40 years, Kenya’s
average annual temperatures increased by 1°C with an increase of 0.5°C in western Kenya and
1.5°C in the drier parts in the East of Kenya [67]. The present findings suggest that temperature
increase was a key factor responsible for the expansion of C. partellus to higher altitudes during
the past 50 years.

According to our predictions of the change in abundance and finite rate of increase of both
stem borers, which are based on life history traits generated in laboratory experiments [51,52],
stem borer densities will increase in all maize agro-climatic zones along the two altitudinal gra-
dients. More importantly, by 2055, maize agro-climatic zones above 1200m.a.s.l. such as the
moist mid-altitude, moist transitional and highland tropics considered as unfavourable for C.
partellus, and the highland tropics, which are not very favourable to B. fusca, will become more
suitable.

Predicted change in the distribution of the two pests largely coincided with that of their par-
asitoid. However a slight disruption of the biological control is predicted with an improvement
of the biological control of the two pests at altitudes below 1200 m.a.s.l. and a deterioration
above 1200 m.a.s.l. This should lead to more frequent and severe stem borer outbreaks with
potential aggravation of the already predicted aggravation of damages above 1200 m.a.s.l. in
the most productive maize areas. The lower performance of C. flavipes in areas above 1200 m.a.
s.l has already been reported by Zhou et al., [47] and was speculated to be due to lower occur-
rence of C. partellus. More recently, Mailafiya et al., [68] showed that the occurrence of both
parasitoid species was influenced by geographic range of their respective host suggesting their
distribution may be largely driven by the distribution of their old host association. Considering
the predicted future changes in stem borer composition with a higher proportion of C. partellus
in moist mid-altitude and moist transitional areas of both gradients, we could reasonably

Table 4. Predicted losses in maize yield in Mount Kilimanjaro and Taita hills transects due toB. fusca infestation at current and future climatic con-
ditions based on relationship between estimated yield loss and activity index.

Mount Kilimanjaro Taita hills

Predicted yield loss (%) Predicted yield loss (%)

ACZ Altitude
(masl)

Observed yield
loss (%)*

Current
(2013)

Future
(2055)

Difference 2055–
2013

Current
(2013)

Future
(2055)

Difference 2055–
2013

Highland
tropics

>1600 10.70 13.51 14.88 1.37 13.40 36.85 23.45

Moist
transitional

1300–1600 14.60 10.97 15.77 4.80 10.77 31.67 20.90

Dry mid
altitude

1000–1300 5.54 5.69 12.27 6.58 6.91 20.65 13.74

Lowland
tropical

<1000 0.48 1.17 9.46 8.29 0.53 13.78 13.25

Average 7.83 7.84 13.10 5.26 7.90 25.74 17.84

ACZ are the agro-climatic zones, m.a.s.l. = metres above sea level.

* Estimated maize yield loss from Ong’amo et al. (2006).

doi:10.1371/journal.pone.0130427.t004
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expect a distribution shift of C. flavipes to higher altitudes. However, the duration of the dry
season has a strong influence on the availability of the two Cotesia species across seasons in
Kenya [68]. Predicted climate change indicates that large parts of Kenya will experienced a 100
millimeter (mm) decline in the long-season rainfall by 2025 [69] with an increased frequency
of dry years suggesting Cotesia spp. activities will be significantly affected in the future.

Based on the relationship between activity index of both stem borer pests and estimated
maize yield losses in Kenya from De Groote [61] and Ong’amo et al., [48], maize losses will sig-
nificantly increase in all agro-ecological zones where maize is grown along both transects but
much more in lower areas of Kilimanjaro and across the entire Taita Hills transects. However,
these predictions based on pests only do not consider the influence of temperature increase on
the natural enemies. Our predictions show a small decoupling between both stem borer pests
and their respective larval parasitoids suggesting higher pest numbers and more serious out-
breaks than predicted with stem borers only. In addition, they do not take into account yield
responses due to the climate change (changing rainfall amounts and patterns, temperature
increase). Predictions made by Thornton et al., [70] suggest that by 2050, maize yields in East
Africa will increase in highland areas of many parts while it will decrease in most lower
elevations.

The predicted distribution trends for both stem borers are very similar for both transects.
However B. fusca is recorded at all altitudes in the Taita Hills while in the Kilimanjaro transect
it occurs at altitudes ranging from 1100–1600 m.a.s.l. The difference between the two transects
suggests that other factors play a role in the establishment of stem borer pests. Our phenologi-
cal model is purely based on temperature and does not take into consideration other climatic
factors such as rainfall and relative humidity and, non climatic factors such as planting pattern
and frequency, diapauses or other physiological factors that enable escape of harsh abiotic con-
ditions. In addition, these models assumed no immigration and no emigration influencing
population dynamics Thus, Sithole [71] argued that temperature, rainfall and relative humidity
were the main factors affecting C. partellus distribution, with temperature being the most
important. Abraham et al., [72], through correlation analyses, found that there was a combined
influence of rainfall, relative humidity and mean minimum temperature. Due to the duration
of the maize-cropping seasons ranging from 3 to 6 months depending on the altitude and the
transect, the maize off-season never exceeds three months in Taita Hills whereas in Kiliman-
jaro it reaches almost nine months. Perennation of the stem borer pests during the dry season
occurs mainly through diapause in crop residues and most likely depends also on the presence
of suitable wild host plants such as wild sorghum (Sorghum arundinaceum L.), and guinea
grass (Megathyrsus maximus (Jacq.) B.K.Simon & S.W.L.Jacobs) commonly found in the fallow
surrounding maize plots. The duration of the diapause affects the survival rate of the larvae
[73,74]. Thus predictions generated by the model should be interpreted with caution, always be
coupled with field observations for a better understanding of the field dynamics of the pest.

In conclusion, altitudinal gradients are optimal spatial analogues, providing at small scale a
range of different ecological conditions with variations of abiotic and biotic factors [18,75,76].
Our predictive mapping at small scale corroborates and completes results generated at country
and even continental scale [51]. It confirms that temperature is a key factor explaining the dis-
tribution of insect pests and demonstrates the impact the predicted increase of temperature
will have on the maize yields at all altitude but particularly in the most productive maize areas
in the mid and high altitudes of the Eastern Afromontane Biodiversity Hotspot regions.

However, our results point out the likely role played by other climatic factors and by factors
related to the top-down regulation of pests by parasitoids (host-parasitoid synchrony). During
the past three decades, a general trend of decrease in rainfall was observed in East Africa during
the long rainy season [69,77]. Despite uncertainty of the projections [4], if confirms, the future
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drought spells will become more frequent. In view of the high susceptibility of maize to
droughts, the projected changes will most likeky exarcerbate maize yield reductions. Therefore,
drought-tolerant maize varieties could play an important role in the adaptation to climate
change in the next decades [78]. Other management changes of maize cropping systems like
date of planting and cultural association should also be considered [16]. In addition, compared
to maize, sorghum, pear millet or cassava are better adapted to higher temperatures and spo-
radic rainfall; they could be alternative crops to maize as an adaptation response to climate
change in lowland areas [70,79,80,81].
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