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ABSTRACT. We present a Markov model of a land-use dynamic along a forest corridor of Madagas-
car. A first approach by the maximum likelihood approach leads to a model with an absorbing state.
We study the quasi-stationary distribution law of the model and the law of the hitting time of the ab-
sorbing state. According to experts, a transition not present in the data must be added to the model:
this is not possible by the maximum likelihood method and we make of the Bayesian approach. We
use a Markov chain Monte Carlo method to infer the transition matrix which in this case admits an
invariant distribution law. Finally we analyze the two identified dynamics.

RÉSUMÉ. Nous présentons un modèle de Markov d’une dynamique d’utilisation des sols le long d’un
corridor forestier de Madagascar. Une première approche par maximum de vraisemblance conduit à
un modèle avec un état absorbant. Nous étudions la loi de probabilité quasi-stationnaire du modèle et
la loi du temps d’atteinte de l’état absorbant. Selon les experts, une transition qui n’est pas présente
dans les données doit néanmoins être ajoutée au modèle: ceci n’est pas possible par la méthode
du maximum de vraisemblance et nous devons faire appel à une approche bayésienne. Nous faisons
appel à une technique d’approximation de Monte Carlo par chaîne de Markov pour identifier la matrice
de transition qui dans ce cas admet une loi de probabilité invariante. Enfin nous analysons les deux
dynamiques ainsi identifiés.

KEYWORDS : Bayesian inference; Jeffreys prior; Land use dynamics; Markov model; Markov chain
Monte Carlo; Quasi stationary distribution law.

MOTS-CLÉS : Inférence bayésienne; loi a priori de Jeffreys; dynamique d’usage des sols; modèles
de Markov; Monte Carlo par Chaînes de Markov; loi quasi-stationnaire.

ARIMA Journal, vol. 17 (2014), pp. 1-22.



2 A R I M A – Volume 17 – 2014

1. Introduction

Population pressure is one of the major causes of deforestation in tropical countries. In
the region of Fianarantsoa (Madagascar), two national parks Ranomafana and Andringitra
are connected by a forest corridor, which is of critical importance in maintaining the
regional biodiversity [1, 2, 5], see Figure 1. The need for cultivated land pushes people
to encroach on the corridor to look for lowlands to be converted into paddy fields, and
then to clear slope forested parcels for cultivation. Once lowlands are all converted in
paddy fields, the dynamic of slash and burn cultivation is clearly opposed to the dynamic
of forest conservation and regeneration. To reconcile forest conservation with agricultural
production, it is important to understand and model the dynamic of post-forest land use
of these parcels.

This specific region of Madagascar has already motivated studies in terms of mod-
eling. Notably, [1, 2] propose a hierarchical Bayesian model that relates demographic
data with satellite images in order to analyze the links between population pressure and
deforestation at the regional scale.

In contrast to previous models, we will work at the smaller scale of the township
with a land-use data set of 42 plots over 22 years; and our model will not capture spatial
dependencies. Indeed, the first treatment performed on such a dataset is to build the
empirical transition matrix, which is equivalent to assume first that the dynamics of the
plots are independent and second that the plot follows an homogeneous Markov dynamic
of order 1. We will adopt this simple Markov framework and in this preliminary work
we aim at inferring the time scale at which the dynamics of the agricultural producers
stabilizes.

We will use a data set developed by IRD, at the western edge of the corridor, consisting
of yearly transitions of 42 parcels initially in forest, these parcels have been cleared since.
This set of data is presented in Table 1. Each parcel can take three possible states: annual
crop (A), fallow (F), perennial crop (P).

The use of Markovian approaches to model land-use transitions and vegetation suc-
cessions is widespread [19, 20, 22]. The success of these approaches is explained by the
fact that agro-ecological dynamics may be represented as discrete-time successions on a
finite number of states, each one with its sojourn time. Both agronomists and ecologists,
in dialog, actually fail in predicting the future succession of these states, knowing the
previous land-use history. They ask the mathematicians for detailing the characteristics
of these dynamics and defining how to pilot them. The construction, manipulation and
simulation of such models are fairly easy. The transition probabilities of the Markovian
model are estimated from observed data. The classical reference [3] proposes the max-
imum likelihood method to estimate the transition probabilities of a Markov chain. An
alternative is to consider Bayesian estimators [18, 13]. In this paper we explore and test
several modeling tools, Markov chain, Bayesian estimation and MCMC procedure in or-
der to find a better fit with the data. These results can then be utilized by agro-ecologists
to model land-use dynamics at a parcel scale.

In Section 2, a first model is directly derived from the data with the help of the empir-
ical transition matrix which also corresponds to the maximum likelihood estimate. This
first model is not entirely satisfactory as one of the states is absorbing and does not cor-
respond to current knowledge gained by agronomists in the field. Hence, in Section 3, a
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Figure 1. The study area bordering the forest corridor between Ranomafana and Andringitra.

second model is proposed in a Bayesian context and we use a Monte Carlo Markov Chain
(MCMC) method to infer the transition matrix. This transition matrix appears to be more
realistic. The model is evaluated in Section 4 and discussed in Section 5. Conclusion and
perspectives are drawn in Section 6.

2. A first model derived from the maximum likelihood estimate

Consider the observation series of Table 1 of the annual states corresponding to 42
parcels over 22 years, from 1985 to 2006. The states are: annual crop (A), fallow (F),
perennial crop (P) and natural forest (f). The transition from forest, f state, to annual
crop, A state, is the slash and burn first forest clearing. The f state is systematically
followed by the A state and none of the parcel comes back to the f state. So we can omit
the f state from the series of observations and we assume that A is the initial state of each
parcel. Note that it is possible because the dynamics of parcels are assumed independent.

The observation series will be denoted (e
(p)
1:Np

)p=1:42 where e(p)
n belongs to the state

space:

E
def
= {A, F, P}

and Np is the length of the observation series of the parcel p. Here the notation n = n1 :
n2 stands for n = n1, . . . , n2 for n1 ≤ n2.

We make the following hypothesis:
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Table 1. Annual states corresponding to 42 parcels and 22 years. These data were collected by D.
Hervé between the years 1985 and 2006. The parcels are located on the slopes and lowlands on
the edge of the forest corridor of Ranomafana-Andringitra, Madagascar, see Figure 1. The states
are: annual crop (A), fallow (F), perennial crop (P) and natural forest (f). The f state, which will
be omitted, is systemically followed by the A state that will be considered as the first observation.
Hence the observation series (e(p)n=1:Np

)p=1:42 will be the sequence of states {A, F, P} and Np will
be the length of the observation series of the parcel p, e.g. N1 = 7, N2 = 6 etc.
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(H1)
The dynamics of the parcels are independent and identical, they are Markovian
and time-homogeneous.

This means that (e
(p)
1:Np

)p=1:42, are 42 independent realizations of a same process (Xn)n≥0

and that this process is Markovian and time-homogeneous.

This assumption is of course simplistic as the dynamics of a given parcel may depend
on: farmer decisions; exposition, slope and distance from the forest; neighboring parcels.
Assumption (H1) is rather restrictive and unrealistic, nevertheless in the present context
it permits us to infer some interesting results.

This hypothesis leads to a model X = (X
(p)
1:Np

)p=1:P , where (X
(p)
n )n=1:Np are P

independent Markov chains, with initial law δA and transition matrix Q of size 3× 3:

P(X
(p)
1:Np

= e
(p)
1:Np

, ∀p = 1, . . . , P ) =

P∏

p=1

P(X
(p)
1:Np

= e1:Np)

=
P∏

p=1

δA (e
(p)
0 ) Q(e

(p)
0 , e

(p)
1 ) · · ·Q(e

(p)
N−2, e

(p)
N−1) (1)

for all e(p)
n ∈ E, where Q = [Q(e, e′)]e,e′∈{A,F,P}.

2.1. Maximum likelihood estimate

We derive the maximum likelihood estimate of the transition matrix:

Q = [Q(i, j)]i,j∈E =




1− θ1 − θ2 θ1 θ2

θ3 1− θ3 − θ4 θ4

θ5 θ6 1− θ5 − θ6


 (2)

where θ = (θi)1≤i≤6 ∈ Θ with Θ
def
=
{
θ ∈ [0, 1]6 ; θ1 +θ2 ≤ 1, θ3 +θ4 ≤ 1, θ5 +θ6 ≤

1
}

. Let Pθ denote the probability under which the Markov chain admit Q with parameter
θ as a transition matrix. We applied the classical results of [3] to compute the MLE of
the matrix Q. We consider the likelihood function L(θ|(e(p)

1:Np
)p=1:P ) of θ given the data

(e
(p)
1:Np

)p=1:P , for the sake of simplicity we denote it L1(θ), hence:

L1(θ)
def
= Pθ(X(p)

1:Np
= e

(p)
1:Np

, ∀p = 1, . . . , P )

=
P∏

p=1

δA (e
(p)
1 ) Q(e

(p)
1 , e

(p)
2 ) · · ·Q(e

(p)
Np−1, e

(p)
Np

)

for any (e
(p)
1:Np

)p=1:P ∈ E =
∏P
p=1E

Np . Let n(p)
ee′ be the number of transitions from state

e to state e′ for a parcel p in X:

n
(p)
ee′

def
=
N−1∑

n=1

1{X(p)
n−1=e} 1{X(p)

n =e′} ∀e, e′ ∈ E (3)

A R I M A



6 A R I M A – Volume 17 – 2014

and nee′ be the total of number of transitions from state e to state e′ (e, e′ ∈ E):

nee′
def
=

P∑

p=1

n
(p)
ee′ . (4)

According to (2) and (4):

L1(θ) =
P∏

p=1

{
Q(1, 1)n

(p)
AA Q(1, 2)n

(p)
AF Q(1, 3)n

(p)
AP Q(2, 1)n

(p)
FA Q(2, 2)n

(p)
FF Q(2, 3)n

(p)
FP

Q(3, 1)n
(p)
PA Q(3, 2)n

(p)
PF Q(3, 3)n

(p)
PP

}

=
P∏

p=1

{
(1− θ1 − θ2)n

(p)
AA θ

n
(p)
AF

1 θ
n
(p)
AP

2 θ
n
(p)
FA

3 (1− θ3 − θ4)n
(p)
FF θ

n
(p)
FP

4

θ
n
(p)
PA

5 θ
n
(p)
PF

6 (1− θ5 − θ6)n
(p)
PP

}

= (1− θ1 − θ2)nAA θnAF

1 θnAP

2 θnFA

3 (1− θ3 − θ4)nFF θnFP

4 θnPA

5 θnPF

6 (1− θ5 − θ6)nPP

so that the log-likelihood function is:

l1(θ) = nAA log(1− θ1 − θ2) + nAF log(θ1) + nAP log(θ2)

+ nFA log(θ3) + nFF log(1− θ3 − θ4) + nFP log(θ4)

+ nPA log(θ5) + nPF log(θ6) + nPP log(1− θ5 − θ6) . (5)

The MLE θ̂ is solution of ∂l1(θ)/∂θ|θ=θ̂ = 0, that leads to:

θ̂1 = nAF/(nAA + nAF + nAP) , θ̂2 = nAP/(nAA + nAF + nAP) ,

θ̂3 = nFA/(nFA + nFF + nFP) , θ̂4 = nFP/(nFA + nFF + nFP) ,

θ̂5 = nPA/(nPA + nPF + nPP) , θ̂6 = nPF/(nPA + nPF + nPP) .

The resulting empirical transition matrix is:

Q̂
def
=




0.7447699 0.2426778 0.0125523
0.3385827 0.6614173 0

0 0 1


 , (6)

it leads to the model depicted in Figure 8 (left). The main implication is that the state P
is absorbing and the other states are transient so that the limit distribution is δP. A first
question is to describe the behavior of the process before it reaches P and then to analyze
the time taken to reach the state P.

2.2. Quasi-stationary distribution

The answer to the first question is given by the so-called quasi-stationary distribution,
see Appendix C. The quasi-stationary distribution is roughly the “limit” distribution that
the system reaches before being absorbed by P. The quasi-stationary distribution σqs as-
sociated with the maximum likelihood estimator of Q is described in Appendix C. The
result is:

σqs = (σqs(A), σqs(F)) = (0.5794, 0.4206) . (7)

A R I M A
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Hence, conditionally on the fact that the process does not reach P, it will spend 58% of its
time in the A state and 42% of its time in the F state.

2.3. Distribution of the time to reach P

50 100 150 200 250 300
0

0.005

0.01

0.015

time n

Figure 2. Distribution of the time to reach state P. The mean time is 134 years and the
standard deviation is 130 years, this standard deviation is rather high as the time to reach
P is exponentially distributed.

Define the first time to reach a given state e by:

τe
def
= inf{n ≥ 1 : Xn = e} if ∃n ≥ 1 such that Xn = e, +∞ otherwise . (8)

We now compute the distribution law:

P(τP = n|X0 = A) = P(Xn = P, Xm 6= P, m = 1, . . . , n− 1|X0 = A)

of the first time to reach the absorbing state P. The derivation of this distribution is made
in Appendix B and leads to the recurrence formula (24). The result is plotted in Figure 2.
The mean time to reach P is 136 years with a standard deviation of 135 years, this rather
high standard deviation corresponds to the fact that the time to reach P is exponentially
distributed.

3. A second model

The model derived from the maximum likelihood estimate does not allow the transi-
tions PA, FP and PF. The transitions FP and PF are not realistic in the geographical context
of this study, but the transition PA can be observed on a time scale of several decades. So
we suppose that:

(H2) The transitions FP and PF are not possible, all other transitions are possible.

This hypothesis leads to the following transition matrix:

Q =




1− θ1 − θ2 θ1 θ2

θ3 1− θ3 0
θ4 0 1− θ4


 , (9)

with θ = (θ1, θ2, θ3, θ4) ∈ Θ = {θ ∈ [0, 1]4 ; θ1 + θ2 ≤ 1} that corresponds to the
model depicted in Figure 3 where the probability of the transition PA will be small but

A R I M A
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Figure 2. Distribution of the time to reach state P. The mean time is 134 years and the
standard deviation is 130 years, this standard deviation is rather high as the time to reach
P is exponentially distributed.

F

P

A q2

1�q1�q2

1�q3

fallow
perennial crop

1�q4q1 q3

q4

annual crop

Figure 3. Model 2. Three states regular Markov chain diagram: annual crop (A), fallow
(F), perennial crop (P); A is the initial state.

3 A SECOND MODEL
The model derived from the maximum likelihood estimate does not allow the

transitions PA, FP and PF. The transitions FP and PF are not realistic in the geo-
graphical context of this study, but the transition PA can be observed on a time scale
of several decades. So we suppose that:

(H2)
The transitions FP and PF are not possible, all other transitions are
possible.

This hypothesis leads to the following transition matrix:

Q =

0
B@

1�q1�q2 q1 q2

q3 1�q3 0
q4 0 1�q4

1
CA , (3.1)

with q = (q1,q2,q3,q4) 2 Q = {q 2 [0, 1]4 ; q1 + q2  1} that corresponds to the
model depicted in Figure ?? where the probability of the transition PA will be small
but positive. The maximum likelihood approach proposed in Section 2 will lead to

Figure 3. Model 2. Three states regular Markov chain diagram: annual crop (A), fallow (F),
perennial crop (P); A is the initial state.

positive. The maximum likelihood approach proposed in Section 2 will lead to the Model
1 of Figure 8 (left) where Q(P, A) = 0. We therefore have to make use of Bayesian
methods of estimation.

Given a prior distribution law π(θ) on the parameter θ, According to the Bayes rule,
the posterior distribution law π(θ) on θ given the observations X is:

πpost

(
θ
∣∣(e(p)

1:Np
)p=1:P

)
∝ L

(
θ
∣∣(e(p)

1:Np
)p=1:P

)
πprior(θ) (10)

where L(θ|(e(p)
1:Np

)p=1:P ) is the likelihood function of the parameter θ given the observa-

tion (e
(p)
1:Np

)p=1:P . For the sake of simplicity, in the following πpost(θ|(e(p)
1:Np

)p=1:P ) will

be denoted πpost(θ), and L(θ|(e(p)
1:Np

)p=1:P ) will be denoted L2(θ) to emphasis that it is
different from the previous likelihood function L1(θ). Hence:

L2(θ) =
∏P
p=1

{
Q(1, 1)n

(p)
AA Q(1, 2)n

(p)
AF Q(1, 3)n

(p)
AP Q(2, 1)n

(p)
FA

Q(2, 2)n
(p)
FF Q(3, 1)n

(p)
PA Q(3, 3)n

(p)
PP

}

=
∏P
p=1

{
(1− θ1 − θ2)n

(p)
AA θ

n
(p)
AF

1 θ
n
(p)
AP

2 (1− θ3)n
(p)
FF θ

n
(p)
FA

3 (1− θ4)n
(p)
PP θ

n
(p)
PA

4

}

= (1− θ1 − θ2)nAA θnAF

1 θnAP

2 (1− θ3)nFF θnFA

3 (1− θ4)nPP θnPA

4 ,

and the log-likelihood function is:

l2(θ) = nAA log(1− θ1 − θ2) + nAF log(θ1) + nAP log(θ2)

+ nFF log(1− θ3) + nFA log(θ3) + nPP log(1− θ4) + nPA log(θ4). (11)

The Bayes estimator θ̃ of the parameter θ is the mean of the a posteriori distribution:

θ̃
def
=

∫

Θ

θ πpost(θ) dθ =

∫
Θ
θ L2(θ)πprior(θ) dθ∫

Θ
L2(θ)πprior(θ) dθ

. (12)
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3.1. Jeffreys prior

Numerical tests that will be performed in Section 3.2.1 suggest that the Jeffreys prior is
well adapted to the present situation. This prior distribution (non-informative) is defined
by [12]:

πprior(θ) ∝
√

det[I(θ)] (13)

where I(θ) is the Fisher information matrix given by:

I(θ)
def
=

[
Eθ
(
− ∂2l2(θ)

∂θk ∂θl

)]

1≤k,l≤4

and l2(θ) is the log-likelihood function (11). Hence:

I(θ) =




A1,2 0 0
0 a3 0
0 0 a4




with

Ak,`
def
= −Eθ

(
∂2l2(θ)
∂2θk

∂2l2(θ)
∂θk∂θ`

∂2l2(θ)
∂θk∂θ`

∂2l2(θ)
∂2θ`

)
, ak

def
= −Eθ

(
∂2l2(θ)

∂2θk

)
.

So det I(θ) = detA1,2 × a3 × a4 and

πprior(θ) ∝
√

detA1,2 × a3 × a4 . (14a)

According to (11):

∂2l2(θ)

∂2θ1
= −

(
nAA

(1− θ1 − θ2)2
+
nAF
θ2

1

)
,

∂2l2(θ)

∂θ1 ∂θ2
= − nAA

(1− θ1 − θ2)2
,

∂2l2(θ)

∂2θ2
= −

(
nAA

(1− θ1 − θ2)2
+
nAP
θ2

2

)
,

∂2l2(θ)

∂θ2 ∂θ1
= − nAA

(1− θ1 − θ2)2
, ,

∂2l2(θ)

∂2θ3
= −

(
nFF

(1− θ3)2
+
nFA
θ2

3

)
,

∂2l2(θ)

∂2θ4
= −

(
nPP

(1− θ4)2
+
nPA
θ2

4

)

and

detA1,2 =
(

Eθ[nAA]
(1−θ1−θ2)2 + Eθ[nAF]

θ21

) (
Eθ[nAA]

(1−θ1−θ2)2 + Eθ[nAP]
θ22

)
−
(

Eθ[nAA]
(1−θ1−θ2)2

)2

, (14b)

a3 = Eθ[nFF]
(1−θ3)2 + Eθ[nFA]

θ23
, (14c)

a4 = Eθ[nPP]
(1−θ4)2 + Eθ[nPA]

θ24
. (14d)
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From (3) and (4):

Eθ[nee′ ] =
P∑

p=1

Np∑

n=2

Pθ(X(p)
n = e′, X

(p)
n−1 = e)

=
P∑

p=1

Np∑

n=2

Pθ(X(p)
n = e′|X(p)

n−1 = e)Pθ(Xn−1 = e)

= Q(e, e′)
P∑

p=1

Np∑

n=2

Pθ(X(p)
n−1 = e)

= Q(e, e′)
P∑

p=1

Np∑

n=2

(
δAQ

n−1
)
e

= Q(e, e′)
P∑

p=1

Np∑

n=2

[Qn−1](A, e) (14e)

for all e, e′ ∈ E. Note that [4] proposed a more complex method to compute the Jeffreys
prior distribution.

3.2. MCMC method

Although the Jeffreys prior distribution is explicit, we cannot compute analytically
the corresponding Bayes estimator (12). We propose to use a Monte Carlo Markov chain
(MCMC) method, namely a Metropolis-Hastings algorithm with a Gaussian proposal dis-
tribution, see the corresponding algorithm in Appendix D.

3.2.1. Simulation study

We consider the simpler two states case E = {0, 1}. It has no connection with the
Markov model considered in the present work but it allows us to easily compare the fol-
lowing different prior distributions: (i) the uniform distribution; (ii) the beta distribution
of parameter ( 1

2 ,
1
2 ); (iii) the non-informative Jeffreys distribution.

The Bayesian estimator is explicit for the two first priors, see Appendix A, the MCMC
method is used in the last case. We use a Monte Carlo method to compare the maximum
likelihood estimate and the Bayesian estimates: we compute the empirical distribution
of the norm of the error between the real transition matrix and its estimation. More pre-
cisely, we sample 1000 independent values θ(`) of the parameter according to a uniform
distribution on Θ = [0, 1]2, ` = 1, . . . , 1000, and we let:

Qθ` =

(
θ
(`)
1 1−θ(`)1

1−θ(`)2 θ
(`)
2

)
.

We simulated data (e
(p)
0:19)p=1:42 according to Qθ` . Then we compute the MLE θ̂(`) and

the three Bayes estimators θ̃(`)
U , θ̃(`)

B , θ̃(`)
J with the uniform, beta and Jeffreys priors re-

spectively. Next we compute the errors:

ε̂` = ‖Qθ(`) −Qθ̂(`)‖ , ε̃`U = ‖Q
θ
(`)
U
−Q

θ̃
(`)
U
‖ ,

ε̃`B = ‖Q
θ
(`)
B
−Q

θ̃
(`)
B
‖ , ε̃`J = ‖Q

θ
(`)
J
−Q

θ̃
(`)
J
‖ (15)

for the two different norms, the Frobenius norm:

‖A‖2F
def
= trace(A∗A) (16)
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Figure 4. Empirical PDF for the error terms (15) associated with the 2-norm (16) and the Frobe-
nius norm (17) based on 1000 simulation of the parameter θ.

and the 2-norm:

‖A‖2 def
=
√
λmax(A∗A) (17)

where λmax(A
∗A) is the largest eigenvalue of the matrix A∗A.

In Figure 4 we plotted the empirical distribution of the errors ε̂` and ε̃`, ` = 1, . . . , 1000,
for the two different norms. We see that the Bayes estimator with the Jeffreys prior give
slightly better results for the 2-norm case and better results for the Frobenius norm. Hence
the Jeffreys prior will be used with a MCMC method.

3.2.2. Application to the real data set

For the real data, the Bayes estimation of the transition matrix with the Jeffreys prior
and the MCMC method is:

Q̃ =




0.74216087 0.2410902 0.01674893
0.32459209 0.67540791 0
0.02460644 0 0.97539356


 . (18)

As [Q̃2]ij > 0 for all i, j, Q̃ is a regular transition matrix (i.e. irreducible and aperiodic)
and so there exists a unique invariant measure σ solution of:

σ = σ Q̃ (19)

indeed, according to the Perron–Frobenius theorem [16, p.3], the spectral radius of Q̃ is
1 and it is also an eigenvalue of Q̃ with multiplicity one, the corresponding eigenvector σ
is strictly positive and could be chosen such that

∑
i∈E σ(i) = 1. After computation:

σ = (0.4127 , 0.3065 , 0.2808) . (20)

We now study the rate of convergence toward the invariant measure σ following [10].
A first indication is given by the damping ratio α(Q̃) = λ1/|λ2|, where λ1 = 1 > λ2 are

A R I M A
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Figure 4. Empirical PDF for the error terms (3.7) associated with the 2-norm (3.8) and the
Frobenius norm (3.9) based on 1000 simulation of the parameter q .
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Figure 5. Maximum likelihood and Bayes estimators for the real data set: posterior em-
pirical distributions given by the MCMC iterations (—/green) and the associated mean (- -
-/red) and the maximum likelihood estimates (· · · /blue).

Figure 5. Maximum likelihood and Bayes estimators for the real data set: posterior empirical
distributions given by the MCMC iterations (—/green) and the associated mean (- - -/red) and the
maximum likelihood estimates (· · · /blue).

the two largest eigenvalues in modulus of Q̃, see [6] for details. The land-use dynamic
converges to the equilibrium, in the long run, at least as fast as exp(−n logα(Q̃)) =
exp(−0.036n) that is 3.6%/year.

An alternative to the damping ratio is the Dobrushin’s coefficient defined as δ(Q̃)
def
=

1
2 maxi,k∈E

∑
j∈E |P (i, j)−P (k, j)| for which we have the following inequality: ‖µ1 Q̃

n−
µ2 Q̃

n‖ ≤ ‖µ1 − µ2‖ δ(Q̃)n for any n and any initial states µ1 and µ2, where ‖ · ‖ is the
1-norm. As this last inequality is true for all n, the Dobrushin’s coefficient may be seen
as a short-term lower bound for convergence rate, comparable to logα(Q̃). In our case
δ(Q̃) = 0.975 that can be used as − log(δ(Q̃)) = 0.025 so 2.5%/year.
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4. Model evaluation

4.1. Sojourn time test

In this section we test the fit between the data and the model. The sojourn time S(e)
of a given state e ∈ E is the number of consecutive time periods the Markov chain Xn

remains in this state:

S(e)
def
= inf{n ∈ N; Xn 6= e}

conditionally on X0 = e. The distribution law of S(e) is given by:

P(S(e) = n|X0 = e) = P(X1 = · · · = Xn = e,Xn+1 6= e|X0 = e)

=
∑

e′ 6=e

P(X1 = · · · = Xn = e,Xn+1 = e′|X0 = e)

=
∑

e′ 6=e

Q(e, e) · · ·Q(e, e)︸ ︷︷ ︸
n − 1 times

Q(e, e′) = (Q(e, e))n−1 (1−Q(e, e))

for n ≥ 1 and 0 for n = 0, that is a geometric distribution of parameter 1−Q(e, e) = 1−
P(Xn+1 = e|Xn = e). Note that E(S(e)|X0 = e) = 1/(1−Q(e, e)) and var(S(e)|X0 =
e) = Q(e, e)/(1−Q(e, e))2.

As the transition PA is not present in the data set, we will consider only the sojourn
time on the states A and F: we now test if the sojourn time on states A and F in the
data set correspond to a geometric distribution of parameter 1−Q(A, A) and 1−Q(F, F)
respectively.

Goodness-of-fit test

In order to test if the distribution of the sojourn time S(e) on each state e ∈ E of the
data set (e

(p)
1:Np

)p=1:42 is geometric, we use a bootstrap technique for goodness-of-fit on
empirical distribution function proposed in [9].

Considering a sample S1, . . . , Sk of size k from a discrete cumulative distribution
function (F (n))n∈N, we aim to test the following hypothesis:

H0 : F ∈ F def
= {Fp : p ∈ Θ} .

In our case, Fp is a geometric cumulative distribution function (CDF) with parameter
p ∈ [0 1]. Classically, we consider an estimator:

p̂ = T (S1:k)

of p and we compute the distance between the theoretical CDF Fp̂ and the empirical CDF:

F̂S1:k
(n)

def
=

1

k

k∑

`=1

1{S`≤n} .

We use the Kolmogorov-Smirnov distance defined by:

K∗ = K(S1:k)
def
= sup
n∈N

√
k |F̂S1:k

(n)− FT (S1:k)(n)| (21)
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A (annual crop) Sojourn time values 1 2 3 4 5 6
Number of occurrences 11 17 12 5 9 7

F (fallow) Sojourn time values 1 2 3 4 6 8 11
Number of occurrences 16 12 7 4 2 1 1

Table 2. Sojourn time values (year) on each state A, F in the data set.

To establish whether K∗ is significantly different from 0 or not, we simulate M samples
of size k:

Sm1 , . . . , S
m
k

iid∼ Fp̂, m = 1, . . . ,M

and we let:
Km def

= K(Sm1:k)

where K is the function defined in (21).

The p-value associated to that test is:

ρ
def
=

1

M

M∑

m=1

1{Km≥K∗} .

If ρ is less than a given threshold α, corresponding to the probability chance of rejecting
the null hypothesis H0 when it is true, then H0 is rejected.

Sojourn time goodness-of-fit test

In counting the sojourn time, states that appear at the end of the series of Table 1 are
not treated (they are considered as censored data). Then the sojourn time values on each
state A (annual crop), F (fallow) in the data set are given in Table 2.

To test the hypothesis H0 we use the MLE for the parameter p of the geometric PDF:

p̂
def
=

1

1 + 1
k

∑k
`=1 S`

. (22)

Indeed, the likelihood function is:

L(p) = (1− p)S1 p · · · (1− p)Sk p = (1− p)
∑k
`=1 S` pk

and L′(p) = 0 leads to k − p (
∑k
`=1 S` + k) = 0 and (22).

The complete test procedure is given in Appendix E.

Results

In Figure 6 we plotted the empirical PDFs of sojourn time of states “Annual crop” and
“Fallow”, associated with the data set of Table 1, and the geometric PDF corresponding
to the parameter p estimated by (22). In Figure 7 we plotted the empirical PDF of Km

for the two states states. For the “Annual crop” state A, we have K∗ = 1.086 and the
associated p-value is 0.224. For the “Fallow” state F, we have K∗ = 1.104 and the
associated p-value is 0.255.

In conclusion the data appear to be consistent with the null hypothesis for the two
states A and F.
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Figure 6. Empirical PDFs of sojourn time of states (A, F) associated with the data set of Table
1; and the geometric PDF, represented as continuous read lines, corresponding to the parameter p
estimated by (22).
4.2. Homogeneity test

We can observe in the data set (Table 1) an early clearing period and a late clearing
period, due to different authorized periods of slash and burn. The later clearing period,
corresponding to plots cultivated from the 12th year, is limited by the year 2000 conser-
vation measures. This explains why forest clearing is intensive just before conservation
measures: after year 2001 (n = 17) no fA transition occurs.

We now want to question the homogeneity of the dynamics, i.e. the homogene-
ity of the Markov model, between these two time periods. The first group is P1 =
{24, 25, . . . , 32, 42} and the second group is P2 = {1, . . . , 42} \ P1. Let Q̂(g) be the
MLE of the transition matrix obtained from the data set Pg , g = 1, 2. We want to test the
null hypothesis:

H0 : Q̂(1) = Q̂(2)

 Annual crop
0.5 1.0 1.5 2.0

Fallow
0.5 1.0 1.5 2.0

Figure 7. Empirical PDF ofKm (sampled fromK∗) for the two states (A, F) etK∗ value (vertical
line).
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F

P

A

1

fallow

annual crop

perennial crop

0.66

0.74

0.24

0.02

0.34

F

P

A

fallow
perennial crop

annual crop

0.98

0.68

0.32
0.02

0.74

0.24

0.02

Model 1 Model 2
Maximum likelihood estimation Bayesian estimation

Figure 8. Comparing two models: The Model 1 (left) is derived from the maximum likeli-
hood estimate; A is the initial state and P is an absorbing state, the transitions PA, FP and
PF do not appear in the data set of Table 1, so they are not integrated in the resulting model;
the model admits a quasi-stationary distribution. The Model 2 (right) is directly derived
from a Bayesian analysis with a prior that admits the transition PA; this model is regular
(i.e. it admits an invariant distribution).
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Figure 9. Evolution of the proportions of parcels in state A, F and P during 20, 100 and 500
years according to the Models 1 and 2.

5 DISCUSSION
We derived two Markovian models depicted in Figure 8. In Model 1, P is an

absorbing state and the limit distribution will charge this state only. Model 2 is
regular and admits a limit invariant measure which is strictly positive for the 3 states.
The difference being that for the first model the probability of the transition PA is
null and for the second model it is 0.02. Starting from the state A, the evolution of
the proportions of parcels in state A, F and P for the two models is depicted in Figure
9.

These evolutions are almost identical over a 20 year time scale, and appear to be
different only after a few decades. Over centuries they are radically different: for
Model 1 almost all parcels are in the state P, Model 2 converges to an equilibrium

Figure 8. Comparing two models: The Model 1 (left) is derived from the maximum likeli-
hood estimate; A is the initial state and P is an absorbing state, the transitions PA, FP and PF

do not appear in the data set of Table 1, so they are not integrated in the resulting model;
the model admits a quasi-stationary distribution. The Model 2 (right) is directly derived
from a Bayesian analysis with a prior that admits the transition PA; this model is regular
(i.e. it admits an invariant distribution).

and are identical to Q̂. The associated likelihood ratio statistics is [3]:

T = 2
∑

e∈E

∑

e′∈E

2∑

g=1

n
(g)
ee′ log

( Q̂(g)(e, e′)

Q̂(e, e′)

)
(23)

is asymptocally distributed as χ2 with 6 degrees of freedom [3], and nee′ is the total of
number of transitions from state e to state e′ in the group Pg . The estimated matrices are:

Q̂(1) =
(

0.68181818 0.30681818 0.01136364
0.31168831 0.68831169 0

0 0 1

)
, Q̂(2) =

(
0.78145695 0.20529801 0.01324504

0.38 0.62 0
0 0 1

)
.

We obtain T = 3.687853 that corresponds to a probability of 0.1344684. The null hy-
pothesis cannot be rejected and the Markov model can be considered as homogenous over
the two groups.

5. Discussion

We derived two Markovian models depicted in Figure 8. In Model 1, P is an absorbing
state and the limit distribution will charge this state only. Model 2 is regular and admits
a limit invariant measure which is strictly positive for the 3 states. The difference being
that for the first model the probability of the transition PA is null and for the second model
it is 0.02. Starting from the state A, the evolution of the proportions of parcels in state A,
F and P for the two models is depicted in Figure 9.

These evolutions are almost identical over a 20 year time scale, and appear to be
different only after a few decades. Over centuries they are radically different: for Model
1 almost all parcels are in the state P, Model 2 converges to an equilibrium after 100
years. In the first model we saw that the mean time to reach the state P is 136 years. In
the second model, the equilibrium is reached after one century and it is 41% of parcels in
state A, 31% in state F, 28% in state P.
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Figure 9. Evolution of the proportions of parcels in state A, F and P during 20, 100 and 500
years according to the Models 1 and 2.

Model 1 presents a quasistationary behavior. Indeed if we consider the evolution of
the relative proportion of parcels in state A and in state F, Model 1 and Model 2 present
quasi identical profiles (see Figure 10).

Hence after less than 5 years, the relative proportion of parcels in state A and in state
F are close to 58% and 42%. This proportion may be interpreted as a state of agricultural
intensification without external fertilizers. In order to test the effect of intensification
(more frequent A and less frequent F) we would require further data.

6. Conclusion and perspectives

We proposed Markovian models of land use dynamics for parcels near the forest cor-
ridor of Ranomafana and Andringitra national parks in Madagascar. The first model is
derived directly from the data set from an empirical procedure that corresponds to the
maximum likelihood estimator. The resulting model features an absorbing state P and
the limit distribution of the model only charges that state. We studied the quasistationary
distribution of the model and the time to reach state P. The PA transition, even if it does
not appear in the data set, is realistic in the time scale considered here and we need to use
a Bayesian approach so that it can appear in the model. Among the priors, that of Jeffreys
gives the best results. As it was not possible to explicitly calculate the associated estima-
tor, a MCMC technique was used. The resulting Markov model is regular and admits a
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Figure 10. Evolution of the proportions of parcels in state A and F during 20, 100 and 500
years according to the Models 1 and 2.
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unique invariant measure that charges all the states. We studied the speed of convergence
to this limit distribution.

We assessed the adequacy of the model to real data. We focused on the sojourn times:
we tested if the empirical sojourn times correspond to a geometric distribution. We used a
parametric bootstrap goodness-of-fit on empirical distribution. We also tested the spatial
homogeneity of the model.

A new database is currently being developed by the IRD. It will cover a longer period
of time and a greater number of parcels, it will also allow us to consider a more detailed
state space comprising more than three states.

Part of the complexity of these agro-ecological temporal data comes from the fact
that some transitions are “natural”, due to ecological dynamics, while others come from
human decisions (annual cropping, crop abandonment, planting perennial crops, etc.). It
should also be interesting to study the dynamics of parcels conditionally on the dynamics
of the neighboring parcels. This model could be more realistic but would require a larger
number of unknown parameters that the present data set will not permit to infer and a
more in depth study of the farmers’ practices will hence be necessary.

In the case of retrospective studies and forest-agriculture transitions, we lack a long
term series of plot use histories, especially in tropical southern countries. The effect of a
limited database, either in size (number of plots) or in time (period), is poorly known. In
this context, the Bayesian approach is of interest in developing further conclusions based
on complementary knowledge from agronomists, ecologists and geographers.
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Appendices

A. Explicit Bayes estimators for the two states case

Let (Xn)0≤n≤N be a Markov chain with two states {0, 1} and transition matrix

Q
def
=
( p 1−p

1−q q

)
.

We suppose that the initial law is the invariant distribution µ = (q/p+ q, p/p+ q), that
is the solution of µQ = µ. The unknown parameter is θ = (p, q) ∈ [0, 1]2 and the
associated likelihood function is

LN (θ)
def
= Pθ(X0:N = x0:N ) = (1− p)n00 pn01 qn10 (1− q)n11

where nij
def
= nij(x0:N ) =

∑N−1
n=0 1{Xn=i} 1{Xn+1=j} is the number of transition i → j

in x0:N .

We consider the following priori distributions: the uniform distribution πU on [0, 1]2

and the beta distribution πB with parameters (a, b), that is

πB(θ) =
1

β(a, b)
θa−1 (1− θ)b−1
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where β(a, b) is the beta function:

β(a, b)
def
=

∫ 1

0

xa−1 (1− x)b−1 dx =
Γ(a) Γ(b)

Γ(a+ b)

with Γ(z)
def
=
∫ +∞

0
tz−1 e−t dt. Here we will choose a = b = 1/2, note that Γ(1) = 1

and Γ( 1
2 ) =

√
π. For these two priors we can explicitly compute the posterior distriution

and the associated Bayes estimators. Indeed the posterior distribution πpost is given by the
Bayes formula: πpost(θ) ∝ LN (θ)π(θ), that is:

πU
post(θ) ∝ LN (θ) = (1− p)n00 pn01 qn10 (1− q)n11 ,

πB
post(θ) ∝ LN (θ)πB(θ) = (1− p)n00− 1

2 pn01− 1
2 qn10− 1

2 (1− q)n11− 1
2

and the corresponding Bayes estimator are:

θ̃U =

∫

[0,1]2
θ πU

post(θ) dθ , θ̃B =

∫

[0,1]2
θ πB

post(θ) dθ .

We can easily check that the estimators of p and q for the uniform prior:

p̃U =
n01 + 1

n01 + n00 + 2
, q̃U =

n10 + 1

n10 + n11 + 2

and for the beta prior:

p̃B =
n01 + 1

2

n01 + n00 + 1
, q̃B =

n10 + 1
2

n10 + n11 + 1
.

Note that in this case the MLEs are:

p̂MLE =
n01

n00 + n01
, q̂EMV =

n10

n11 + n10
.

B. Distribution law of the time to reach a given state

Let Xn be an homogeneous Markov chain with finite state space E and transition
matrix Q. We aim to get an explicit expression of the distribution law:

fee′(n)
def
= P(τe′ = n|X0 = e)

of the first passage time τe′ defined by (8). Note that for n > 1:

Qn(e, e′) = P(Xn = e′|X0 = e)

= P(Xn = e′, τe′ = 1|X0 = e) + P(Xn = e′, τe′ = 2|X0 = e) + · · ·
· · ·+ P(Xn = e′, τe′ = n− 1|X0 = e) + P(Xn = e′, τe′ = n|X0 = e)

= P(τe′ = 1|X0 = e)P(Xn = e′|X1 = e′)

+ P(τe′ = 2|X0 = e)P(Xn = e′|X2 = e′) + · · ·
· · ·+ P(τe′ = n− 1|X0 = e)P(Xn = e′|Xn−1 = e′) + P(τe′ = n|X0 = e)

= fee′(1)Qn−1(e′, e′) + fee′(2)Qn−2(e′, e′) + · · ·
· · ·+ fee′(n− 1)Q1(e′, e′) + fee′(n)
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hence fee′(n) could be computed recursively according to

fee′(n) = Qn(e, e′)−
n−1∑

k=1

fee′(k)Qn−k(e′, e′) (24)

with fee′(1) = Q(e, e′); for the mean we can use E(τee′′ |X0 = e) =
∑∞
n=1 n fee′(n).

C. Quasi-stationary distribution

We consider the probability to be in e ∈ {A, F} before reaching P and starting from A,
i.e. µn(e) = P(Xn = e|τP > n, X0 = A) where τP is the first time to reach P, see (8).
When

µn(e) −−−−→
n→∞

σqs(e) , e ∈ {A, F}

the probability distribution (σqs(e))e∈{A,F} is called quasi-stationary probability distribu-
tion. This problem was originally solved in [7] (see [21]): σqs = [σqs(A), σqs(F)] exists and
is solution of

σqs Qqs = λσqs

with σqs(e) ≥ 0 and σqs(A) + σqs(F) = 1, where Qqs is the 2× 2 submatrix defined by

Q =

(
Qqs q
0 1

)
,

and λ is the spectral radius of Qqs.

D. Metropolis-Hastings algorithm

For the MCMC method of Section 3.2, we propose a Metropolis-Hastings algorithm
with a Gaussian proposal distribution:

choose θ
θ̄ ← θ
for k = 2, 3, 4, . . . do
ε ∼ N (0, σ2)
θprop ← θ + ε
u ∼ U [0, 1]

α← min
{

1,
πpost(θ

prop) g(θ − θprop)

πpost(θ) g(θprop − θ)
}

% g PDF of N (0, σ2)

if u ≤ α then
θ ← θprop % acceptation

end if
θ̄ ← k − 1

k
θ̄ +

1

k
θ

end for

The target distribution is πpost(θ) defined by (10), the Gaussian proposal PDF (probability
density function) is g(· − θ) (g PDF of the N (0, σ2) distribution) where θ is the current
value of the parameter.
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D. Parametric bootstrap for goodness-of-fit

The algorithm for the parametric bootstrap for goodness-of-fit test of Section 4.1 with
the geometric distribution of parameter p is:

p̂← T (S1:k)
n̄← sup(S1, . . . , Sk)
K∗ ← sup{

√
k|FS1:k(n)− FT (S1:k)(n)| , 0 ≤ n ≤ n̄}

for m = 1, 2, . . . ,M do
Sm1 , . . . , S

m
k

iid∼ Fp̂
n̄← sup(Sm1 , . . . , S

m
k )

Km ← sup{
√
k|FSm1:k(n)− FT (Sm1:k)(n)| , 0 ≤ n ≤ n̄}

ρ← 1
M

∑M
m=1 1{Km≥K∗}

end for
if ρ ≤ α then

accept H0

else
reject H0

end if
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