JEAN LOUP GUYOT

ORSTOM, CP 09747, CEP 70001-970, Brasília DF, Brazil

NAZIANO FILIZOLA

DNAEE-CGRH, SGAN 603, CEP 70830-030, Brasília DF, Brazil

JORGE QUINTANILLA

IIQ-UMSA, CP 303, La Paz, Bolivia

JOSE CORTEZ

SENAMHI, CP 10993, La Paz, Bolivia

Abstract The Rio Madeira is the main southern tributary of the Rio Amazonas, and the second Andean tributary of the Amazon drainage basin. Using Bolivian data from the PHICAB programme and Brazilian data from the DNAEE sediment measurement network, downstream trends in the dissolved solids and suspended sediment yields, from the Andes to the Rio Amazonas, have been investigated. The dissolved solids load (36×10^6 t year⁻¹ at Villabella on the Bolivia-Brazil frontier) increases progressively from upstream to downstream, in line with the discharge. Sediment loads decrease from the piedmont to Villabella ($250-300 \times 10^6$ t year⁻¹) because substantial deposition occurs on the flood plain. The significant differences observed in Brazil are probably linked with the sediment load sampling technique and calculation method.

INTRODUCTION

With a basin covering over 6 million km² and a mean discharge of 209 000 m³ s⁻¹ (Molinier *et al.*, 1994), the Amazon is the largest river on Earth. The Amazon's yield to the Atlantic Ocean is estimated at 270×10^6 t year⁻¹ for dissolved matter (Martinelli *et al.*, 1989) and from 1100 to 1300×10^6 t year⁻¹ for suspended sediment (Meade *et al.*, 1985; Richey *et al.*, 1986; Meade, 1994).

Beginning its course in the eastern Andean Range in Peru and Bolivia, the Rio Madeira drains a basin of 1.4×10^6 km² and has a mean discharge of 31 200 m³ s⁻¹ (Molinier *et al.*, 1993). The pioneering work of Gibbs (1967) reported dissolved solids and suspended sediment yields of 59×10^6 t year⁻¹ and 217×10^6 t year⁻¹, respectively, at the mouth of the Rio Madeira on the Amazon. Subsequent work from the ALPHA-HELIX, and the later CAMREX studies in the Brazilian Amazon region, showed that Gibbs' results greatly underestimated the suspended sediment load. The yield of the Rio Madeira to the Amazon has more recently been estimated at $37-45 \times 10^6$ t year⁻¹ for dissolved matter and 550×10^6 t year⁻¹ for suspended sediment (Ferreira *et al.*, 1988;

Martinelli *et al.*, 1989; 1993). In Bolivia, the results obtained by the Climatological and Hydrological Programme of the Bolivian Amazon basin (PHICAB) for the upper Rio Madeira basin at Villabella, from 1983 to 1990, show that the Rio Madeira transports a dissolved load of $35-40 \times 10^6$ t year⁻¹ and a suspended sediment yield of 223×10^6 t year⁻¹ (Roche & Fernandez, 1988; Guyot, 1993).

The dissolved solids results are consistent in all studies, but the same is not true for suspended sediment: the sediment load observed downstream (near the confluence with the Amazon) is twice that observed at Villabella. In order to address this apparent discrepancy, a critical study of the PHICAB data was carried out by updating the information from Bolivia (gauging station rating curves, 1990 data) and using DNAEE data for the Brazilian basin of the Rio Madeira.

Fig. 1 The Amazon drainage basin (\bigcirc PHICAB gauging stations in Bolivia, DNAEE sediment stations in Brazil; \bigcirc some sediment stations in the Bolivian Andes).

THE RIO MADEIRA DRAINAGE BASIN

The Rio Madeira Basin extends over three countries (Bolivia, Brazil and Peru). It represents 23% of the overall Amazon basin, and 29% of the Amazon basin at Óbidos, and drains 35% of the Andean range within the Amazon basin (Fig. 1). The three large morpho-structural units observed in the Amazon region are present, but the Brazilian shield divides the Amazon plain into two different parts: the upstream plain and the downstream plain. While the downstream plain is an integral part of the vast Amazon lowlands, the upstream plain is isolated by the Precambrian outcrops of the Brazilian basal complex that act as a hydraulic threshold for the Andean tributaries of the Rio Madeira. One of the consequences is the existence of vast flooded areas at altitudes under 100 m, upstream from this threshold. From Guayaramerin (GM, Rio Mamore) or Cachuela Esperanza (CE, Rio Beni) to Porto Velho (PVL), the Rio Madeira crosses the Brazilian shield for a distance of more than 350 km, where it shoots over a dozen rapids (Cachuelas or Cachoeiras) for a 50 m drop.

In the Bolivian Andes, the basins studied present great contrasts. Their characteristics vary from semi-arid zone basins developed on the Quaternary sediments of the Altiplano (Rio La Paz valley) to the tropical forest hyper-humid basins on the Paleozoic rocks of the Cordillera Real. Rainfall varies from 500 to 5000 mm year¹ depending on the basin. In the lowlands, the rainfall distribution is more regular, and the mean annual rainfall values are 1800 mm in Bolivia (Roche *et al.*, 1992) and 1950 mm on the Brazilian side (DNAEE-ORSTOM, 1994).

Over the area that makes up the Rio Madeira basin at Villabella, the southern tropical rainfall regime prevails. It is characterized by a marked alternation of cold-weather drought periods and excess rainfall during the hot season. In the Andes and its foothills, the multiple-flood hydrographs come together downstream to form a large annual tropical flood, preceded or followed by small, well differentiated floods. The annual flood is much more regular and flattened on the Rio Mamore and Rio Itenez, because of the longer course and, particularly, the size of the extensive flood plain areas of the two basins (Bourges *et al.*, 1993).

SUSPENDED SEDIMENT YIELD

The data assembled for the 41 constituent basins (Table 1) were derived from several hydrometric networks, relate to various periods, and are based on different sampling methods. Thus, the comparison of such data is a delicate matter. The data for the Andean basins in Bolivia come from the ENDE, SENAMHI and SEARPI networks. They are based on sampling at several verticals in the measuring section, carried out using different integrating samplers according to the size of the rivers. The samples from the Rio Achumani basin (small, high-altitude Andean streams) were taken from the surface in the middle of the section, but also included some measurements of bottom transport. The sampling executed by the PHICAB programme was based on daily turbidity measurements and 10-day TSS determinations by surface sampling carried out by observers recruited for that purpose. The values obtained were corrected by means of a ([*TSS*]_{section} = $f([TSS]_{surface})$ relationship. After having examined the distribution of

Code	River	Altitude	Area	Period	Organization	Discharge	Numbe sample	er of s	TSS	QS	Ts	Numb sampl	er of es	TDS	QD	Td
		(m)	(km ²)			(m ³ s ⁻¹)	TSS	Turbi- dity	(mg l ⁻¹)	$(\times 10^3 \text{ t})$ year ⁻¹	(t km ⁻² year ⁻¹)	TDS	Conduc- tivity	(mg l ⁻¹)	$(\times 10^3 \text{ t})$ year ⁻¹)	(t km ⁻² year ⁻¹)
AQM SRC ACM UNV SIR TAM VBA HUL ACH LUR POR CAJ AIN	Mapiri at Angosto Quercano Coroico at Santa Rita Acero Marca at Unduavi Unduavi at Unduavi Unduavi at Sirupaya Tamampaya at Puente Villa Tamampaya at Villa Barrientos Huayllani at Achumani Achumani at Achumani Luribay at Luribay Porvenir at Porvenir La Paz at Cajetillas Alto Beni at Angosto Inicua	500 440 2960 2940 1640 1185 1050 3620 3580 2550 2500 2500 760 400	9400 4700 61 66 270 950 1900 17 38 810 240 6500 29900	75-79 76-77 87-88 80-86 75-85 75-85 75-84 88-92 90-92 87-88 87-88 73-75 75-83	SENAMHI SENAMHI ORSTOM ORSTOM SENAMHI/ENDE SENAMHI/PHICAB SENAMHI HAM/PHICAB HAM/PHICAB ORSTOM ORSTOM SENAMHI SENAMHI	420 260 2.8 3.0 12 52 67 0.11 0.19 10 3 99 840	351 49 36 38 194 320 353 554 130 39 36 332 157	1039	2960 870 11 21 5990 1270 3160 18460 22490 20300 8400 36340 4800	36800 7100 1 2 2120 2480 7820 61 140 6400 790 118600 115200	3920 1510 16 30 7850 2610 4120 3590 3680 7900 3300 18250 3850	36 38 8 9 39 36	986 807	39 33 39 91 920 420	3.4 3.1 64 0.3 290 40	22 21 35 12 270 90
AB PC MF CA CE	Beni at Angosto del Bala Beni at Portachuelo Madre de Dios at Miraflores Orthon at Caracoles Beni at Cachuela Esperanza	280 130 130 125 120	67500 119000 124200 32300 282500	69-90 83-90 83-90 83-90 83-90	SENAMHI/PHICAB PHICAB PHICAB PHICAB PHICAB	1990 3070 5210 470 8810	456 91 226 112 174	541 745 1085 483 1043	3380 1260 430 120 690	211700 121600 70900 1770 190600	3140 1020 570 55 680	60 48 71 35 63	1077 916 1850 1062 1937	83 84 66 57 71	5210 8150 10900 850 19700	41 34 40 15 34
LOC PPA PV BER ANG TAR ELV EPS LBE PEI AMO HUR ARC PNA MIZ PAZ AP SAN	Santa Isabel at Locotal Esperitu Santos at Palmar Ichilo at Puerto Villarroel Bermejo at Bermejo Piray at Angostura Piray at Taruma Elvira at Elvira Espejos at Espejos Piray at La Belgica Piray at Puente Eisenhover Caine at Angosto Molineros Chayanta at Huayrapata Grande at Puente Arce Grande at Puente Arce Grande at Puente Arce Grande at Puente Azero Grande at Abapo Parapeti at San Antonio	$\begin{array}{c} 1700\\ 600\\ 170\\ 900\\ 650\\ 650\\ 650\\ 350\\ 280\\ 1850\\ 1600\\ 1500\\ 950\\ 950\\ 950\\ 950\\ 1080\\ 450\\ 550 \end{array}$	200 160 7600 480 1420 1590 64 203 2880 4160 9200 11200 23700 31200 10800 4360 59800 7500	71-75 71-74 83-90 77-83 76-85 76-83 77-83 77-83 77-82 71-82 71-74 76-82 69-74 71-75 71-75 71-75 75-82 76-90 76-83	ENDE ENDE PHICAB SEARPI SEARPI SEARPI SEARPI SEARPI SENAMHI SENAMHI SENAMHI SENAMHI SENAMHI SENAMHI SENAMHI SENAMHI SENAMHI	$\begin{array}{c} 15\\ 22\\ 750\\ 4.2\\ 10\\ 7.6\\ 0.5\\ 2.6\\ 13\\ 20\\ 66\\ 112\\ 127\\ 250\\ 70\\ 33\\ 330\\ 91 \end{array}$	1000 970 118 2220 3027 2264 2162 2186 1684 1519 580 282 868 938 893 8938 897 557 851 642	857 876	1430 15450 370 4530 9360 5560 1880 5070 5560 11690 51390 6680 33840 25680 11970 2020 12910 6770	670 10700 8710 600 2950 1340 30 420 2280 1070 106300 20800 135700 203400 203400 203400 203400 135200 203400 138200 19400	3340 66600 1150 1250 2080 840 460 2070 790 260 11560 2110 5730 6520 2440 480 2310 2590	83	1211 1211	52 458	1220	110
PG PS PEL VG GM	Mamore at Puerto Varador Mamore at Puerto Siles Guapore at Pontes e Lacerda Itenez at Vuelta Grande Mamore at Guayaramerin	140 130 300 130 120	159100 216200 2500 354300 599400	83-90 83-90 79-93 83-90 83-90	PHICAB PHICAB DNAEE PHICAB PHICAB	2970 5080 54 2320 7550	120 148 30 241 219	643 883 696 1236	680 290 23 23 280	63600 47100 39 1700 66200	400 220 16 5 110	72 101 116 54	1059 1141 1357 2103	95 87 37 69	8940 13900 2740 16500	28 31 4
VB PVL JIP PRA FVA	Madeira at Villabella (CE+GM) Madeira at Porto Velho Jiparana at Jiparana Aripuana at Prainha Madeira at Fazenda Vista Alegre	115	881900 954300 33000 108600 1324700	83-90 78-93 81-93 84-94 84-94	PHICAB DNAEE DNAEE DNAEE DNAEE DNAEE	16360 20100 690 3460 26400	23 33 29 35		500 483 55 27 181	256800 306100 1190 2930 150800	290 320 36 27 110			70	36200	15

Table 1 Suspended sediment	(TSS) and dissolved solids	(TDS) load results in th	ne Rio Madeira drainage basin	(Bolivia-Brazil).
----------------------------	----------------------------	--------------------------	-------------------------------	-------------------

the TSS contents in the section on the basis of 61 gaugings undertaken from 1986 to 1988, this equation became $[TSS]_{section} = 1.10 * [TSS]_{surface}$. The data from the Brazilian basin (DNAEE network) comprise the samples collected by Brazilian companies (CPRM and/or HIDROLOGIA/SA) using integrating USD-49 samplers.

For the Bolivian rivers, the suspended sediment yield (QS) was calculated as follows:

(a) (for month *i*)

$$QS_{mi} = 1/k * \Sigma Q_i * [TSS]_i$$

where k = number of daily measurements (*j*) in month *i*;

(b)
$$QS_{monthly} = 1/n * \Sigma QS_{mi}$$

where n = number of years with QS_{mi} values; and

(c)
$$QS_{mean} = 1/12 * \Sigma QS_{monthly}$$

This simple method was applied to the Brazilian set of data (Bordas *et al.*, 1988) using the data from the DNAEE stations with enough samples. It is better than the QS = f(Q) curves because of the strong scatter of the points in this relationship (Fig. 2). Nevertheless, use of such rating curves was necessary in order to calculate the sediment loads for the DNAEE stations on the Rio Madeira in Brazil (PVL, JIP, PRA, FVA), taking into account the small number (<40) of samples (Fig. 3). This method was also used by Martinelli *et al.* (1993) with the CAMREX data. In the case of the PHICAB network stations in Bolivia, the turbidity data enabled researchers to extend the TSS observations after having established the relationship [*TSS*] = f(Turbidity) for each hydrometric station. The TSS concentration indicated in Table 1 corresponds to a mean value weighted by the discharge: [*TSS*] = QS/Q.

Fig. 2 The relationship between suspended sediment load and discharge for the Rio Grande at Abapo, Bolivia.

Fig. 3 Use of the relationship QS = f(Q) to calculate sediment yield in Brazil (Rio Madeira at Vista Alegre, Brazil).

The results for the 41 stations in the basin are shown in Table 1. The results are provisional for the Brazilian part of the basin, since the DNAEE database is being restructured and some information has not vet been compiled (Filizola & Guyot, 1994). The data for the Andean basins in Bolivia may differ from those of earlier publications, because the rating curves for those streams were recently reviewed. The data from the PHICAB network in the Amazonian plain have been updated (addition of 1990 data) and the discharges corrected. In the Bolivian Andes, the suspended sediment yields (Ts) vary considerably from one basin to another, from less than 50 t km⁻² year-¹ in the high altitude basins of the Real Cordillera (ACM, UNV) to 50 000 t km⁻² vear⁻¹ in the hyperhumid region of Chapare (PPA). Such variability is linked to the bio-geographical characteristics of these mountainous basins. Despite the variations in observation period and methodology, the results are consistent throughout the basin (from upstream to downstream). Comparison of the SENAMHI (1969-1982) and PHICAB (1983-1990) data for the two Andean foothill stations shows similar results for Abapo, while for Angosto del Bala the PHICAB values are clearly lower. The sampling technique, or the reliability of the observer, may account for this difference. There is evidence of sedimentation along the valleys, as well as on the Rio Grande between PNA and AP (Guyot et al. 1994). The total TSS flow exported by the Andean basins in Bolivia has been estimated at 500-600 \times 10⁶ t year⁻¹, which corresponds to a mean sediment yield for the Andean chain close to 3200 t km² year⁻¹. During the crossing of the Amazon lowlands in Bolivia (Llanos) suspended sediment yields tend to progressively decrease (43% in the Rio Beni between AB and PC, 54% in the Rio Mamore between AP and PG), reflecting substantial sedimentation on the flood plain (Guyot et al., 1988). In the Llanos, the data on the contribution of the various tributaries are consistent with the downstream observations (PC + MF + CA \approx CE, PG + VG \approx GM). Nevertheless, an anomalous situation was observed on the Rio Mamore between PG and PS. The data for the Rio Orthon at CA provide an estimate of the sediment yield (55 t km⁻² year⁻¹) that reflect the Tertiary sedimentary series in the Amazon plain. For the Brazilian shield, such rates vary from 16 to 36 t km⁻² year⁻¹ depending on the station (PEL, JIP, PRA), and are

similar to earlier observations (Bordas et al., 1988; Mortatti et al., 1989, 1992). The very low value measured at the outlet (VG) of the Rio Itenez-Guapore (5 t km⁻² year⁻¹) reflects major depositional losses of the material exported from the shield throughout the course of the main river. This phenomenon is clearly visible along the lower courses of the Negro, Tapajós and Xingu rivers in the Brazilian Amazon (Sioli, 1984). According to the PHICAB data, the suspended sediment yield for the Rio Madeira at Villabella (VB = CE + GM) is about 250-300 \times 10⁶ t year⁻¹. This value is consistent with the observation made slightly downstream at Porto Velho (PVL, DNAEE), although they involve different periods, sampling techniques and methods of calculation. Close to the confluence with the Amazon, the suspended sediment load of the Rio Madeira at FVA is estimated to be half that value. This raises the question as to whether this difference is due to sedimentation phenomena in the lower course of the Rio Madeira, or whether it simply reflects estimation errors associated with the small number of samples. Finally, the results obtained for the Brazilian side using DNAEE data are significantly lower than those published by CAMREX (Ferreira et al., 1988; Martinelli et al., 1993). The reason for this discrepancy is uncertain. It could reflect differences in the techniques used for sampling or calculating the sediment discharge.

DISSOLVED SOLIDS YIELD

In the case of dissolved solids yield, data are only available for six Andean stations in Bolivia (ACM, UNV, TAM, HUL, LUR, POR) and 11 stations in the PHICAB network on the Amazon plain (Table 1). All samples were taken from the surface, since the distribution of dissolved material in the measurement section was very homogeneous.

The calculation of the dissolved solids yields was carried out following the same methodology used for suspended sediment (see previous section). The relationship *Salinity* = f(Conductivity) was established for each of the 11 stations on the Amazon plain, and the resulting formula was used for the calculation of the dissolved loads. The concentration of dissolved matter (*TDS*) indicated in Table 1 corresponds to the mean value weighted by the discharge: [*TDS*] = QD/Q. The dissolved solids yield (*Td*), or "chemical erosion", has been calculated taking into account atmospheric contributions.

The results presented in Table 1 again differ from those in earlier publications because of changes in the discharge data and also the fact that the TDS concentration corresponds to the discharge-weighted mean. In the Bolivian Andes, the dissolved solids yield (*Td*) documented in the Alto-Beni basin varies from 12 to 270 t km⁻² year⁻¹ (HUL, LUR) as a function of the lithology of the basins. The two main Andean streams, the Rio Alto-Beni at Angosto del Bala (AB) and the Rio Grande at Abapo (AP) export the same amount of TDS (5×10^6 t year⁻¹) from the Andes, but the concentrations are much higher in the Rio Grande. The lower rainfall observed in this basin is compensated by the higher solubility of the rocks. The TDS load exported from the Bolivian Andes was estimated at 14×10^6 t year⁻¹ using the results from these two stations (AB and AP), which drain 74% of the Andean area of the basin. After correction for the atmospheric contribution, this dissolved load corresponds to a mean dissolved solids yield (*Td*) of 40 t km⁻² year⁻¹, which is 80 times smaller than the suspended sediment yield (Guyot, 1993). The Rio Itenez-Guapore (VG) data suggest that the dissolved solids yield from the Brazilian shield is about 4 t km⁻² year⁻¹, which is slightly lower than the results

obtained for the small basins in Rondonia, namely, 10 t km⁻² year⁻¹ for the Rio Jiparana and 8 t km⁻² year⁻¹ for the Rio Jamari (Mortatti *et al.*, 1992). The results obtained in Bolivia are consistent throughout the length of the basin (PC + MF + CA \approx CE, PS + VG \approx GM). The dissolved solids yield calculated for the Rio Madeira at Villabella (36 × 10⁶ t year⁻¹) is compatible with the observations made in Brazil, close to the confluence of the Rio Madeira with the Amazon (Martinelli *et al.*, 1989).

CONCLUSION

The results obtained from the Bolivian Andes demonstrate the existence of a strong regional heterogeneity as regards the production of both suspended sediment and dissolved load. Along the two main transects (Beni and Mamore rivers), the dissolved load is conservative, with a progressive increase from upstream to downstream, which is linked to the increasing discharge. However, consideration of the same upstream-downstream trend for the suspended sediment load demonstrates the existence of deposition in the downstream part of the Andean valleys, and particularly in the Llanos. While the dissolved loads observed in Bolivia and Brazil are in agreement, the same is not true for the suspended sediment load. The two-fold decrease can easily be explained by the sampling methods and frequency, or by the method of load calculation. A common methodology would allow researchers to compare results and be able to determine the upstream-downstream sediment yield variability.

REFERENCES

- Bordas, M. P., Lanna, A. E. & Semmelmann, F. R. (1988) Evaluation des risques d'érosion et de sédimentation au Brésil à partir de bilans sédimentologiques rudimentaires. In: Sediment Budgets (ed. by M. P. Bordas & D. E. Walling) (Proc. Porto Alegre Symp., December 1988), 359-368. IAHS Publ. no. 174.
- Bourges, J., Hoorelbecke, R., Cortez, J. & Carrasco, L. M. (1993) Los regimenes hidrológicos de la cuenca amazonica de Bolivia. In: Seminario Sobre el PHICAB (ed. by M. A. Roche, J. Bourges, E. Salas & C. Diaz) (Proc. La Paz Symp., November 1992), 125-134. ORSTOM/SENAMHI/UMSA Publ., La Paz.
- DNAEE-CGRH/ORSTOM (1994) Mapa de disponibilidade hídrica da Bacia Amazônica do Brasil. DNAEE-CGRH Publ., Brasília.
- Ferreira, J. R., Devol, A. H., Martinelli, L. A., Forsberg, B. R., Victoria, R. L., Richey, J. E. & Mortatti, J. (1988) Chemical composition of the Madeira river: seasonal trends and total transport. *Mitt. Geol. Paläont. Inst. Univ. Hamburg*, Scope/Unep Sonderband 66, 63-75.
- Filizola, N. & Guyot, J. L. (1994) The DNAEE sedimentometric network, Amazon region, Brazil. In: Sediment Quality Monitoring and Assessment (ed. by O. E. Natale) (Proc. Buenos Aires Workshop, June 1994), 26-31. GEMS Publ.
- Gibbs, R. J. (1967) The geochemistry of the Amazon River system. Part I. The factors that control the salinity and the composition and concentration of the suspended solids. Geol. Soc. Am. Bull. 78, 1203-1232.
- Guyot, J. L. (1993) Hydrogéochimie des fleuves de l'Amazonie bolivienne. Collection Etudes & Thèses, ORSTOM, Paris.
- Guyot, J. L., Bourges, J. & Cortez, J. (1994) Sediment transport in the Rio Grande, an Andean river of the Bolivian Amazon drainage basin. In: Variability in Stream Erosion and Sediment Transport (ed. by L. J. Olive, R. J. Loughran & J. A. Kesby) (Proc. Canberra Symp., December 1994), 223-231. IAHS Publ. no. 224.
- Guyot, J. L., Bourges, J., Hoorelbecke, R., Roche, M. A., Calle, H., Cortes, J. & Barragan, M. C. (1988) Exportation de matières en suspension des Andes vers l'Amazonie par le Rio Béni, Bolivie. In: Sediment Budgets (ed. by M. P. Bordas & D. E. Walling) (Proc. Porto Alegre Symp., December 1988), 443-451. IAHS Publ. no. 174.
- Martinelli, L. A., Devol, A. H., Forsberg, B. R., Victoria, R. L., Richey, J. E. & Ribeiro, M. N. (1989) Descarga de sólidos dissolvidos totais do Rio Amazonas e seus principais tributários. *Geochim. Brasil.* 3(2), 141-148.
- Martinelli, L. A., Forsberg, B. R., Victoria, R. L., Devol, A. H., Mortatti, J., Ferreira, J. R., Bonassi, J. & De Oliveira, E. (1993) Suspended sediment load in the Madeira river. *Mitt. Geol.-Paläont. Inst. Univ. Hamburg*, Sonderband 74, 41-54.
- Meade, R. H. (1994) Suspended sediments of the modern Amazon and Orinoco rivers. Quaternary Int. 21, 29-39.

- Meade, R. H., Dunne, T., Richey, J. E., Santos, U. M. & Salati, E. (1985) Storage and remobilization of suspended sediment in the lower Amazon River of Brazil. Science 228, 488-490.
- Molinier, M., Guyot, J. L., Callède, J., Oliveira, E. de, Guimarães, V., Cudo, K. J. & Aquino, M. de (1993) Hidrologia de la cuenca amazónica brasilera: HIBAM. Primeros resultados sobre la cuenca del Río Madeira. In: Seminario Sobre el PHICAB (ed. by M. A. Roche, J. Bourges, E. Salas & C. Diaz) (Proc. La Paz Symp., November 1992), 155-164. ORSTOM/SENAMHI/UMSA Publ., La Paz.
- Molinier, M., Guyot, J. L., Oliveira, E. de, Guimarães, V. & Chaves, A. (1994) Hidrologia da Bacia do Rio Amazonas. A Água em Revista 2(3), 31-36.
- Mortatti, J., Ferreira, J. R., Martinelli, L. A., Victoria, R. L. & Tancredi, A. C. F. (1989) Biogeochemistry of the Madeira river basin. GeoJournal 19(4), 391-397.
- Mortatti, J., Probst, J. L. & Ferreira, J. R. (1992) Hydrological and geochemical characteristics of the Jamari and Jiparana river basins (Rondonia, Brazil). GeoJournal 26(3), 287-296.
- Richey, J. E., Meade, R. H., Salati, E., Devol, A. H., Nordin, C. F. & Dos Santos, U. (1986) Water discharge and suspended sediment concentrations in the Amazon River. Wat. Resour. Res. 22(5), 756-764.
- Roche, M. A., Fernandez, C., Aliaga, A., Peña, J., Salas, E. & Montaño, J. L. (1992) Balance hídrico de Bolivia. PHICAB Publ., La Paz.
- Roche, M. A. & Fernandez, C. (1988) Water resources, salinity and salt yields of the rivers of the Bolivian Amazon. J. Hydrol. 101, 305-331.
- Sioli, H. (1984) The Amazon and its main affluents: hydrography, morphology of the river courses, and river types. In: The Amazon (ed. by H. Sioli), 127-165. Junk, Dordrecht.