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Abstract
Background: Insecticide resistance of the main malaria vector, Anopheles gambiae, has been
reported in south-western Burkina Faso, West Africa. Cross-resistance to DDT and pyrethroids
was conferred by alterations at site of action in the sodium channel, the Leu-Phe kdr mutation;
resistance to organophosphates and carbamates resulted from a single point mutation in the
oxyanion hole of the acetylcholinesterase enzyme designed as ace-1R.

Methods: An entomological survey was carried out during the rainy season of 2005 at Vallée du
Kou, a rice growing area in south-western Burkina Faso. At the Vallée du Kou, both insecticide
resistance mechanisms have been previously described in the M and S molecular forms of An.
gambiae. This survey aimed i) to update the temporal dynamics and the circumsporozoite infection
rate of the two molecular forms M and S of An. gambiae ii) to update the frequency of the Leu-Phe
kdr mutation within these forms and finally iii) to investigate the occurrence of the ace-1R mutation.

Mosquitoes collected by indoor residual collection and by human landing catches were counted and
morphologically identified. Species and molecular forms of An. gambiae, ace-1R and Leu-Phe kdr
mutations were determined using PCR techniques. The presence of the circumsporozoite protein
of Plasmodium falciparum was determined using ELISA.

Results: Anopheles gambiae populations were dominated by the M form. However the S form
occurred in relative important proportion towards the end of the rainy season with a maximum
peak in October at 51%. Sporozoite rates were similar in both forms. The frequency of the Leu-
Phe kdr mutation in the S form reached a fixation level while it is still spreading in the M form.
Furthermore, the ace-1R mutation prevailed predominately in the S form and has just started
spreading in the M form. The two mutations occurred concomitantly both in M and S populations.
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Conclusion: These results showed that the Vallée du Kou, a rice growing area formerly occupied
mainly by M susceptible populations, is progressively colonized by S resistant populations living in
sympatry with the former. As a result, the distribution pattern of insecticide resistance mutations
shows the occurrence of both resistance mechanisms concomitantly in the same populations. The
impact of multiple resistance mechanisms in M and S populations of An. gambiae on vector control
measures against malaria transmission, such as insecticide-treated nets (ITNs) and indoor residual
spraying (IRS), in this area is discussed.

Background
Malaria transmission in tropical Africa is mainly domi-
nated by Anopheles gambiae complex, including An. gam-
biae s.s., the most anthropophilic vector transmitting
malaria in sub-Saharan Africa [1]. Formerly considered as
a single species, it began early to accumulate genetic het-
erogeneity. In the 1980s, cytogenetic studies based on
chromosomal inversion arrangements found five incipi-
ent chromosomal forms. The suspected role of these
inversions was to restrict gene flow among the forms and
to provide adaptation to different ecological settings [2,3].
In Burkina Faso, Mopti and Savanna chromosomal forms
dominated An. gambiae population structure [4]. These
chromosomal forms appeared more or less genetically
isolated in the field, presumably through prezygotic barri-
ers since viable and fertile hybrids have been obtained in
the laboratory [5-7]. However, cytogenetic analysis is not
a precise way to evaluate the degree of hybridization
between forms because of the presence of cryptic 'heter-
okaryotypes'. Recent studies based on molecular markers
such as X-linked ribosomal DNA suggested the existence
of only two entities within An. gambiae, referred to as M
and S molecular forms [8]. So far, in Burkina Faso and
Mali, in savannah environments of West Africa, Mopti and
Savanna chromosomal forms coincide respectively with M
and S molecular forms [4]. As a main malaria major vector
with high level of polymorphism, An. gambiae has been a
subject of many investigations in West Africa, such as bio-
ecology and insecticide resistance studies [9-12].

In Burkina Faso, a study carried out in the mid-1980s in
Vallée du Kou [13], showed that the Mopti chromosomal
form was dominating. Molecular-based identification of
An. gambiae s.s. populations conducted in this area in
1999 and 2000 confirmed that the M molecular form pre-
dominated throughout the year [11,12,14], although with
some temporal variations.

The S molecular form occurred in low frequency until the
end of the rainy season (October/November), when it
peaked around 30% [12], as found previously by Robert
et al [13]. A similar pattern was found in the same envi-
ronment in Mali [7,9]. More recently, in 2004 the S form
was observed in Vallée du Kou towards the end of the
rainy season at a frequency of 50% [15]. This study gave

no results regarding the frequencies of the two forms
throughout the malaria transmission season.

In West Africa, the main mechanism involved in pyre-
throid-resistance in An. gambiae is caused by target site
insensitivity through a knockdown resistance (kdr)-like
mutation caused by a single point mutation (Leu-Phe) in
the para-sodium channel gene [16]. Preliminary surveys
done in Vallée du Kou in 1999 indicated that the Leu-Phe
kdr mutation has been found almost only in the S form at
high allelic frequency (0.95) compared to just 0.006 in
the M form [12]. However, the spread of the mutation in
the M population seemed an ongoing process in Vallée du
Kou as it increased to a frequency of 0.02 in 2000. Nowa-
days, the population structure of An.gambiae and their
pyrethroid resistance status are probably modified with
the changing in agricultural practices needing intensive
use of insecticides (cotton and vegetable cropping) and
also the increasing of man made breeding sites as puddles
throughout the village.

Furthermore, it has been recently noted in An. gambiae
from the same area the occurrence of a single point muta-
tion (glycine to serine at position 119) in the oxyanion
hole of the acetylcholinesterase enzyme [17]. This muta-
tion named ace-1R mutation was associated with insensi-
tivity of An. gambiae to organophosphates and carbamates
[18].

The objective of the present study was to gather recent
information on the dynamics of the two molecular forms
of An. gambiae throughout the malaria transmission sea-
son in this area with particular attention to resistance
mechanisms. This information is crucial for a proper eval-
uation of new insecticides or vector control tools expected
to be involved in malaria control and resistance manage-
ment.

Materials and methods
Study site
Vallée du Kou (4°25' W, 11°24' N) is a rice-growing valley
covering 1,200 ha and comprising seven villages, with a
total of 4,470 habitants surrounded by humid savannah.
The rainy season extends from June to October and the
dry season from November to May. The Kou River is a per-
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manent source of irrigation water and there are two rice
crops per year from July to November and from January to
May. Few insecticides are used on rice, but huge amounts
of insecticides are used extensively in cotton fields' located
on the outside of rice fields. During the last two years,
some producers started to grow vegetables involving
intensive use of insecticides. Mosquito collection had
been carried out in the village numbered as seven (VK7),
which is located at the end of the rice fields (Figure 1).
VK7 has about 600 inhabitants, mainly farmers. Sheep,
goats, pigs, and a few cows are also present. Cotton and
maize fields surrounded this village.

The irrigation system and rice fields provide year-round
mosquito breeding. Additional breeding sites are created
by rains in the depressions and ponds. High densities of
An. gambiae (up to 200 bites/person/night) are recorded
during the rainy season [14]. The two molecular forms M
and S of An. gambiae occur in sympatry notably at the end
of the rainy season [12,15]. The kdr-based mechanism

conferring resistance to pyrethroids and DDT and the ace-
1R mutation conferring resistance to organophosphates
and carbamates predominate in the S form [11,12,17].

Mosquito collections
Anopheline mosquitoes were sampled during the rainy
season from July to November 2005 mainly by indoor
manual collection for resting mosquitoes and, secondarily
by human landing catches.

Indoor resting mosquitoes were collected regularly in four
houses in the village early in the morning by manual aspi-
rators four times a month, on four consecutive days. These
indoor collections carried out monthly from July to
November were used to establish the temporal dynamics
of the two molecular forms of An. gambiae and their resist-
ance status by PCR.

Human landing catches were ensured only in August and
in October to evaluate the sporozoite infection rate of

Location of the study siteFigure 1
Location of the study site.
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each molecular form. These two periods correspond to the
peak of the M form in August and of the S form in Octo-
ber. Catches were carried out between 20.00 and 06.00,
during two consecutive nights for each period inside and
just outside of four houses of the village. They were per-
formed by informed volunteers who were provided free
and rapid treatment when suspected clinical signs of
malaria according to World Health Organization (WHO)-
recommended regimen on the basis of fever and detecta-
ble Plasmodium falciparum parasitemia.

Laboratory processing of mosquitoes
Anophelines were sorted and assigned to species based on
morphological characters using standard identification
keys [19]. Females referring to An. gambiae complex were
processed by PCR concomitantly for identification of spe-
cies and molecular forms of An. gambiae [20,8]. Detection
of Leu-Phe kdr and ace-1R mutations were performed on
indoor resting specimens by PCR from genomic DNA fol-
lowing Martinez-Torres et al [21] and Weill et al [22],
respectively.

The head-thoraces of anopheline females issued from
human landing catches were tested for the presence of the
circumsporozoite protein (CSP) of P. falciparum, the
major malarial parasite occurring in the study area, by
enzyme-linked immunosorbent analysis (ELISA) accord-
ing to Wirtz et al [23]. Samples of August were used for
ELISA process because this month corresponded to the
peak of the M form whereas no or few individuals of S
form were found in indoor collections.

Data analysis
The sporozoite rate was defined as the proportion of mos-
quitoes found positive for P. falciparum CS protein. The
entomological inoculation (EIR) was calculated as the
product of HBR and the sporozoite rate of mosquitoes
caught on landing collections.

Results
Dynamics of the M and S molecular forms
Overall, 330 mosquitoes were analysed for identification
of species and molecular forms of An. gambiae (Figure 2).
Anopheles arabiensis was absent. Both M and S molecular
forms occurred. The overall frequency of the molecular M
form was higher than that of the S form reaching respec-
tively 69% versus 31%, but the relative prevalence of these
forms throughout the collecting period showed some
monthly varying frequencies. During the first part of the
rainy season (July and August), the M form predomi-
nated, whereas the two forms are found in similar propor-
tion during the second part of the rainy season (from
September to November). Indeed in July all mosquitoes
analysed (n = 32) were only of the M form. The S form
started appearing toward the end of August at low fre-

quency of 4% (3/84) reaching a maximum peak of 51%
(38/75) in October equalling the frequency of the M
form.

Sporozoite rate
The sporozoite rate was determined in An. gambiae
females issued from indoor human landing catches car-
ried out in two sampling sets: August and October 2005
(Table 1). Because in August no specimens of the S form
were found, sporozoite rate was determined only by the M
form reaching 1.19%.

In October, the M and S forms were collected in equal
numbers. Results yielded an average sporozoite rate of
3.08% with no significant difference between the two
forms (Fisher's Exact test, P = 0.33).

Distribution of the kdr mutation
An average of 49 mosquitoes issued from indoor resting
fauna were analysed monthly for the Leu-Phe kdr muta-
tion (Table 2). The kdr mutation occurred in both M and
S forms with varying allelic frequencies in the M form. Kdr
frequency was higher in the S form irrespective of the
month (χ2 = 6.14, df = 2, P < 0.02) reaching 0.93 in mean
and ranged from 0.50 to 0.98 throughout its occurrence
period. None homozygous sensible individual was identi-
fied from the S form. The mean frequency of the kdr muta-
tion in the form M was 0.096 and ranged from 0 to 0.23
throughout the five months. Only 8 mosquitoes from the
M form were identified in September and November as
homozygous RR for this mutation vs. 15 hybrids RS over-
all among 161 specimens analysed. In the S form the
homozygous resistant predominated irrespective of the
month contributing thus to achieve the fixation process of
this allele in the S population.

Distribution of the ace-1R mutation
58 mosquitoes issued from indoor resting fauna were ana-
lysed for the ace-1R mutation from September and Octo-
ber 2005, corresponding to 29 specimens per month
(Table 3). The ace-1R mutation was detected at low fre-
quency in the M form with only one heterozygous RS per
month corresponding respectively to a mean allelic fre-
quency of 0.031. Conversely in the S form, this mutation
occurred in a relative higher frequency comparing to the
M form (χ2 = 6.75, df = 1, P < 0.01) with an equal mean
of 0.37 per month.

One individual from the S form was detected as a
homozygous resistant for this mutation in September. In
the S form, all specimens heterozygous for the ace-1R

mutation (17 females) had also the kdr mutation in heter-
ozygous status. The one individual homozygous ace-1R/
ace-1R was also homozygous kdrr/kdrr. Inversely in the M
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form, the two individual detected as heterozygous ace-1r/
ace-1s were homozygous kdrs/kdrs.

Discussion
In Burkina Faso, current chromosomal and molecular
forms of An. gambiae s.s. are tightly correlated [4,10]. For-
merly Robert et al. [13] studying the distribution of An.
gambiae s.s. cytotypes in the rice field area of Vallée du Kou
in 1984 showed a predominance of the Mopti chromo-
somal form. With the progress in molecular genetic, this
distribution has been updated in 1999 and 2000 by Dia-
bate et al [11,12], pointing out the predominance of the
M molecular form corresponding to the Mopti chromo-
somal form. However the occurrence of the S molecular
form (corresponding to the Savanna chromosomal form)

has been observed toward the end of the rainy season. The
results obtained in 2005 followed the same pattern of dis-
tribution, but the overall proportion of the S form has
increased further reaching a maximum of 51% vs. 24% at
the same period in 2000 [12]. Taking to account that both
studies were performed in the same place (VK7) and dur-
ing the same period (from July to November), it appears
that the relative frequency of the S form has increased.
Future studies to confirm this trend are encouraged.

The increase in the S form could probably be due to
human activities creating new habitats for the S popula-
tion in this area, such as house building using bricks of
banco and muddles taken out from the soil. Such activi-
ties increase the number of temporary rain-filled breeding

Monthly variation of the relative prevalence of the molecular M and S forms of Anopheles gambiae s.sFigure 2
Monthly variation of the relative prevalence of the molecular M and S forms of Anopheles gambiae s.s.

Table 1: Circumsporozoite infection rate for Plasmodium falciparum determined by ELISA in specimens issued from indoor/outdoor 
human landing catches carried out in VK7 in August and October 2005

August October

Molecular form of An. gambiae Nb tested CSPR Nb tested CSPR

M 84 (1) 1.19 [0.03–6.46] 54 (1) 1.85 [0.05–9.89]
S 0 - 11 (1) 9.09 [0.23–41.28]

() number of CSP-positive mosquitoes
[]: 95% confidence interval.
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sites like pits, ponds and puddles that are favourable to S
form development throughout the village.

In general, in West Africa, the S form is not well adapted
to rice paddies, whilst the M form develops rather well
[24,25]. However, some of the rice paddies used to grow
vegetables and some irrigation canals not well managed
could constitute during the rainy season, suitable habitats
for the S larvae.

The changing in the vector population structure may pre-
sumably increase the malaria transmission level. Even
though the malaria vector population was dominated by
the M form throughout the year, this form had a low spo-
rozoite rate because of the low parity rate observed within
its population [14]. During the sympatry period (Octo-
ber), the sporozoite index in the S form was not statisti-
cally different to that of the M form, but these are
preliminary results that would need to be confirmed on a
bigger sample and during different periods of the year.

The main mechanism conferring resistance of An. gambiae
to pyrethroids in West Africa, the Leu-Phe kdr mutation,
did not vary in the S form (93%) compared to its fre-
quency in 1999 and 2000 [12], as expected.

The spread of the kdr mutation is an ongoing process in
the M form as its allelic frequency in 2005 was five fold
higher than in 2000. Indeed six years ago, the kdr muta-
tion was found occurring only in the S form and some
investigations conducted in VK7 during the rainy season
1999 failed to identify this mutation in the M one [11].

This difference persisted because of the strong reproduc-
tive barriers between the two forms relevantly pointed out
by some authors [4,26,27]. In November 1999, the kdr
mutation was identified for the first time in the M form at
a very low frequency (0.006) with only one heterozygous
RS among 161 specimens tested [12]. The following year,
the frequency in the M form increased to 0.02 and all indi-
viduals kdr-positive were only heterozygous (RS). Now,
the proportion of homozygous resistant in the M form is
increasing which enhances the overall frequency of this
mutation.

The high frequency of the kdr mutation in the S form is
presumably due to the long-term and extensive use of
insecticide for cotton crop protection, DDT in the 1960–
1970s replaced by pyrethroids in the 1980s [11]. Then, its
spreading from the S to the M form through introgression
[28] is a recent and ongoing process, limited in savannah
environments of West Africa to the place where An. gam-

Table 2: Monthly variation in the frequency of the kdr mutation and the relative prevalence of the two molecular forms of Anopheles 
gambiae ss in VK7 from July to November 2005

S forma Kdrb F(R)c M forma Kdrb F(R)c

July 0- - - 32 100% 31SS + 1ND 0
August 3 11.5% 3RS 0.50 23 88.5% 3RS+20SS 0.065
September 23 39.0% 22RR+1RS 0.98 36 61.0% 3RR+3RS+30SS 0.125
October 29 46.8% 25RR+3RS+1SS 0.91 33 53.2% 2RS+31SS 0.03
November 28 43.1% 24RR+3RS 0.94 37 56.9% 5RR+7RS+25SS 0.23
Total 83 34.0% 71RR+10RS +2ND 0.93 161 66.0% 8RR+15RS+137SS +1ND 0.097

a Number of mosquitoes analysed, relative prevalence of molecular forms of An. gambiae (in percentage)
b Genotype of the kdr mutation. c Allelic frequency of the kdr mutation in mosquitoes analysed
ND: undetermined
[the global prevalence of the M form is more higher than that of the S form, χ2 = 84.92, df = 1, P < 0.001].

Table 3: Variation in the frequency of the ace-1R mutation and the relative prevalence of the two molecular forms of Anopheles gambiae 
ss in VK7 in September and October 2005

S forma ace-1Rb F(R)c M forma ace-1Rb F(R)c

September 11 38% 1RR+6RS+4SS 0.36 18 62% 0RR+1RS+17SS 0.028
October 15 52% 0RR+11RS+4SS 0.37 14 48% 0RR+1RS+13SS 0.036

Total 26 45% 1RR+17RS+8SS 0.37 32 55% 0RR+2RS+30SS 0.031

a Number of mosquitoes analysed, relative prevalence of molecular forms of An. gambiae (in percentage)
b Genotype of the ace-1R mutation
c Allelic frequency of the ace-1R mutation in mosquitoes analysed
[the relative prevalence between the M and S forms did not differ significantly during the two months, χ2 = 1.06, df = 1, P > 0.05].
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biae M/Mopti and S/Savanna forms are found in sympatry
at high densities [29].

Cotton crops are located just on the outside of rice fields.
Insecticides applied on cotton during the rainy season
may drift or be washed to the rice field during heavy rains
conferring a selection pressure even for the M form. More-
over, during the last decade some rice producers also
started to grow vegetables in the paddies using the same
cotton's insecticides.

These agricultural uses of insecticides, mainly pyrethroids,
exert the main selective pressure on the mosquito popula-
tions because of the quantity applied (e.g. six rounds of
treatment each two weeks on cotton crop during the rainy
season) and its action on the larval stage on large popula-
tion of both sex. The domestic use of pyrethroids, through
coils and ITNs, is more selective (it acts only on the
anthrophilic fraction of biting females) and probably
plays a secondary role on resistance selection in this rural
area.

The present results showed that the ace-1R mutation is
mostly present in the S form and less frequently in the M
one. This finding suggests that the ace-1R resistance allele
is evolving along the same pathway like the kdr mutation
in this area. As for kdr, it occurred probably prior in the S
form and may acquire by the M form through introgres-
sive hybridization [30]. The selection of the ace-1R muta-
tion in the S form could be related to the increasing use of
organophosphates in cotton treatment in mixture with
pyrethroids since the end of the 1990s. This insecticide
resistance management (IRM) strategy was implemented
at a large scale in West Africa to manage the pyrethroid
resistance of the main cotton pest, Helicoverpa armigera
[31].

With the exposure of the M populations to insecticide
pressure, the ace-1R mutation began to spread within this
form. Similarly to the kdr mutation, it will probably
increases in frequency within the M populations in the
coming years. Additional studies are crucial to determine
precisely the origin of this gene among the M form and
gene flow pattern between the two forms in natural pop-
ulations. Alternatively the reproductive fitness associated
with this mutation in An. gambiae both S and M popula-
tion remains to be evaluated [32].

The reported change in malaria vectors population struc-
ture is mainly driven by human activities and will call for
modified malaria control strategies. The increasing of the
S form proportion and the emergence of the ace-1R muta-
tion concomitantly with the Leu-Phe kdr mutation among
the same populations of An. gambiae s.s. is an atypical eco-
logical pattern in an irrigated rice growing area. With the

expansion of agricultural practices such as vegetable grow-
ing, the application of pesticides with different mecha-
nisms of action is rising. This may favour the development
of multiple resistance mechanisms in An. gambiae [33,34],
which is a dynamic process that needs to be carefully
monitored at the molecular form level and through
designed spatial and seasonal surveys.

Further studies are needed to determine: (i) the pheno-
typic effects, particularly when the two mutations occur
concomitantly and taking into account if metabolic-based
resistance is present and (ii) the operational impact of
both mutations on the efficacy of pyrethroid or organo-
phosphate/carbamate based vector control.

Until recently, several studies conducted in savannah
environment of Ivory Coast (West Africa) showed that
pyrethroids treated nets still achieved a good control of
kdr resistant An. gambiae either in experimental huts [35]
or in field trials [36]. Indeed recent paper from N'Guessan
et al. in southern Benin [37] indicated that the kdr target
insensitivity present at high frequency in M/Forest popula-
tion of An. gambiae is associated with the decreased effi-
cacy of ITNs and pyrethroid based IRS. Some alternatives
to pyrethroids on ITNs are therefore necessary. Prelimi-
nary studies using organophosphate and carbamate
treated nets in experimental huts have already shown
good results in areas of kdr resistance [38,39].

The presence of multiple resistance mechanism in An.
gambiae in south-west Burkina Faso may constitute an
obstacle for the future success of malaria control pro-
grammes based on ITNs or IRS with pyrethroids or organ-
ophosphates/carbamates. The present study should
provide useful information for small and large-scale field
trials on insecticide efficacy in this study area.
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