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Abstract

Background: With the spread of pyrethroid resistance in mosquitoes, the combination of an
insecticide (carbamate or organophosphate) with a repellent (DEET) is considered as a promising
alternative strategy for the treatment of mosquito nets and other relevant materials. The efficacy
of these mixtures comes from the fact that they reproduce pyrethroid features and that positive
interactions occur between insecticides and repellent. To better understand the mechanisms
involved and assess the impact of detoxifying enzymes (oxidases and esterases) in these
interactions, bioassays were carried out in the laboratory against the main dengue vector Aedes
aegypti.

Methods: Topical applications of DEET and propoxur (carbamate), used alone or as a mixture,
were carried out on female mosquitoes, using inhibitors of the two main detoxification pathways
in the insect. PBO, an inhibitor of multi-function oxidases, and DEF, an inhibitor of esterases, were
applied one hour prior to the main treatment.

Results: Results showed that synergism between DEET and propoxur disappeared in the presence
of PBO but not with DEF. This suggests that oxidases, contrary to esterases, play a key role in the
interactions occurring between DEET and cholinesterase inhibitors in mosquitoes.

Conclusion: These findings are of great interest for the implementation of "combination nets" in
the field. They support the need to combine insecticide with repellent to overcome insecticide
resistance in mosquitoes of public health importance.
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Background

Pyrethroids are currently the only insecticides recom-
mended by the World Health Organization for the treat-
ment of insecticidal materials against mosquitoes of
public health importance [1]. The great success of pyre-
throids is related to their strong efficacy at low dose, fast
killing effect and relative low cost of production. Their
low toxicity to humans and stability over time ensure a
safe and effective personal protection against a wide range
of pests and vectors [2]. Since the 1980s, they have been
widely used for house spraying and impregnation of mos-
quito nets for malaria control [3].

Unfortunately, pyrethroid resistance is now widespread in
mosquitoes. Mechanisms of resistance involve target site
modification due to mutation within structural receptor
genes and metabolic resistance via increased detoxifica-
tion of insecticides [4]. Resistance represents a serious
obstacle for vector control as demonstrated recently with
insecticide-treated mosquito nets and indoor residual
sprayings in Benin [5], as well as control of Aedes aegypti
during space spraying in the Caribbean [6].

In this context, new molecules and strategies are urgently
needed to preserve the efficacy of insecticide-treated mate-
rials used in public health [7]. Among the different strate-
gies proposed, the combination of a repellent with a
carbamate or an organophosphate (OP) on treated mate-
rials showed promising results for malaria vector control
under simulated field conditions [8,9]. The strong killing
effect of cholinesterase inhibitors added to the high per-
sonal protection of repellents reproduced pyrethroid fea-
tures against several mosquito vectors. For example, a
mixture of DEET (the gold standard for synthetic repel-
lent) and propoxur (carbamate) showed equivalent toxic-
ity to deltamethrin at the dose that killed 100% (LD, ) of
susceptible Ae. Aegypti. Moreover, on the kdr homozygous
strain of the same species, the mixture performed signifi-
cantly better than deltamethrin [10]. This strong efficacy
was attributed to the synergistic interactions occurring
between propoxur and DEET. These interactions were also
observed between an organophosphate, pyrimiphos-
methyl and the two repellents DEET and picaridin® on bed
nets against Anopheles gambiae in both laboratory and field
experiments, confirming that this strategy may be promis-
ing for the control of pyrethroid resistant mosquitoes
[8,9].

However, the physiological mechanisms involved in these
interactions remain unclear. While carbamates and OPs
inhibit acetylcholinesterase in insects [11], controversies
remain over DEET mode of action [12,13] and toxicity in
insects [14-16]. Recent studies showed that DEET toxicity
may occur through a general perturbation of insect neuro-
nal transmission [17,18].
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As previously described by Corbel et al. [19] with pyre-
throid-carbamate combinations, synergistic interactions
between molecules having different modes of action may
result from a general physiological disruption, involving
different target sites in the central nervous system.
Another hypothesis is the involvement of detoxification
enzymes. Indeed, one component of the mixture may
interfere with the detoxification of the other, thereby
increasing the toxicity of both [20,21]. Such involvement
of esterases [22] or oxidases [23] has already been shown
in synergism between pyrethroids and OPs. The OP pre-
vents the degradation of the pyrethroid insecticide by
competing as enzyme substrates.

In the present study, we investigated through toxicological
bioassays (topical applications) the mechanisms involved
in DEET and propoxur interactions by using two enzyme
inhibitors (PBO and DEF) against the dengue and yellow
fever vector, Aedes aegypti.

Methods

Mosquitoes

The susceptible strain, Bora, of Ae. aegypti, originating
from French Polynesia, was used for this study. This strain
has been colonized in the laboratory for many years and
is free of any detectable resistance mechanisms.

Insecticide, repellent and enzyme inhibitors

Bioassays were carried out with technical grades of active
ingredients diluted in acetone. Propoxur (2-isopropoxy-
phenylmethylcarbamate) 99.6% was provided by Bayer
CropScience (Monheim, Germany). DEET (N,N-diethyl-
m-toluamide) 97% was provided by Sigma-Aldrich (Saint
Quentin Fallavier, France). Enzyme inhibitors, piperonyl
butoxide (5-((2-(2-butoxyethoxy)ethoxy)methyl)-6-pro-
pyl-1,3-benzodioxole) 90% and S,S,S-tributyl phosphoro-
trithioate 98.1% were purchased from Fluka (Buchs,
Switzerland) and Chem Service (West Chester, PA, USA).
Piperonyl butoxide (PBO) is a well known inhibitor of
cytochrome-P450 monooxygenases (multi-function oxi-
dases), widely used as a synergist for insecticide treat-
ments [24]. S,S,S-tributyl phosphorotrithioate (DEF) is a
specific inhibitor of esterases.

Topical applications

Topical applications were used to measure the interac-
tions occurring between technical insecticide and repel-
lent on Ae. aegypti. This method allows estimating the
intrinsic toxicity of a product excluding all other effects
linked to mosquito's behaviour, especially when exposed
to an irritating or repellent compound. For each product
alone or in a mixture, five to eight doses were tested to
provide a range of mortality from nil to 100%. Non-
blood-fed females of Ae. aegypti, aged 2-5 days, were first
anaesthetised by extended contact with carbon dioxide
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and deposited on a chilled plate (4°C) maintaining
anaesthesia during manipulation. Fifty females were used
for each dose tested. A volume of 0.1 ul of acetone solu-
tion (containing the product(s) at the required concentra-
tion(s)) was applied on the upper part of female's
pronotum using a micro-capillary tube. Fifty females that
received 0.1 pl of pure acetone served as control. Enzyme
inhibitors were applied at the maximal sub-lethal dose
(1000 ng/female for PBO and 500 ng/female for DEF) 1
hour before the main treatment using the same protocol.
Females were preserved at 4°C on the chilled plate during
this interval of time, to ensure the diffusion of enzyme
inhibitor through mosquito body prior to insecticide
treatment. After manipulation, females were transferred
into plastic cups, provided with sugar solution and held
for 24 hours at 27°C and 80% RH. Mortality rates were
recorded 24 hours after testing and corrected according to
the formula of Abbott [25] in the case of a control mortal-
ity > 5%. Data were expressed in nanograms of active
ingredient per milligram of mosquito body weight. Three
replicates were done for each test using different batches
and generations of mosquitoes.

Analysis of interactions

Dose-effect regression lines of each product (insecticide
and repellent) and their mixture were drawn using Probit
software [26]. Data were analyzed according to the
median-effect method of Chou and Talalay [27] using
CalcuSyn software [28]. This software provides an estima-
tion of the median-effect doses (Dm analogous to LDg)
with their 95% confidence intervals for each product and
mixture. The median-effect equation states that:

Log(Fa | Fu) = m x Log(Dx |/ Dm)

where Fa and Fu are the fractions of mosquitoes affected
and unaffected respectively by the dose Dx of insecti-
cide(s). m represents the slope of the regression line and
Dm the dose required to produce the median effect.

Insecticide, repellent and their mixture were evaluated in
three conditions, i.e. first in absence of enzyme inhibitors,
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then following a pre-treatment of PBO or DEF. Three dif-
ferent binary mixtures of propoxur and DEET were pre-
pared for each experimental situation (without synergist/
with PBO/with DEF). The ratio of the mixture was deter-
mined by the ratio of the median effect doses of propoxur
and DEET obtained in the situation considered. At the
ratio chosen, both compounds are expected to make an
equal contribution in killing mosquitoes.

The isobologram method of Chou and Talalay [27] was
used to assess whether the interactions occurring between
DEET and propoxur were synergistic, antagonistic or sim-
ply additive in the presence or absence of synergists (PBO
and DEF). In this study, the use of isobologram was done
as follows: diagonal lines connect doses of propoxur on
the x-axis to doses of DEET on the y-axis where each prod-
uct is in theory equally efficient at killing mosquitoes
when applied alone (e.g. isoboles ED;,, ED,; and EDy,
correspond to a dosage causing 50%, 75% and 90% mor-
tality, respectively). The points relative to each line indi-
cate how much of each product is required to achieve the
same effect when applied in a mixture at the ratio chosen.
Points below relative line indicate synergism, points close
to relative line indicate additive effect, and points above
relative line indicate antagonism between the com-
pounds.

Results

The dose-effect regression lines for DEET, propoxur and
their mixtures were fitted by straight lines (goodness of fit,
P > 0.05). The highest mortality value in control batches
was 13%. The median-effect doses (Dm) for these rela-
tionships are listed in Table 1.

The median-lethal doses on Ae. aegypti were 1.97 (1.78-
2.19) ng a.i. per mg female for propoxur and 1 189
(1088-1299) ng a.i. per mg female for DEET (Table 1).
This result shows the toxicity at high dose of DEET against
mosquitoes. According to these values, a binary mixture
of propoxur and DEET was prepared at the ratio 1:600.
The mixture was more potent at killing mosquitoes than
one would expect in the case of a simple additive effect

Table I: Median-lethal doses of propoxur, DEET and their mixture on susceptible Ae. aegypti.

Chemicals Dm without synergists Dm with PBO Dm with DEF
propoxur 1.97 (1.78-2.19) 0.27 (0.17-0.42) 1.01 (0.83-1.24)
DEET 1189 (1088-1299) 611 (596-629) 1078 (1005—1155)
mixture 319 (296-343) 406 (385-428) 128 (119-136)
mixture ratio P:D 1:600 1:2000 1:1000
Slope of the regression lines (+ s.e.)
propoxur 2.83 (0.19) 2.16 (0.18) 1.95 (0.22)
DEET 4.16 (0.42) 3.98 (0.12) 3.18 (0.20)
mixture 3.32(0.18) 3.76 (0.20) 2.96 (0.14)
Data are expressed in ng of active ingredient per mg of mosquito body weight (+ 95% confidence intervals).
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(Figure 1A). This observation confirmed the occurrence of
synergistic interactions between DEET and propoxur,
regardless the dosage considered (EDs,, ED,s and EDyy).

In the presence of PBO (1000 ng/female applied 1 hour
before the treatment), the toxicity of propoxur and DEET
significantly increased (Table 1). The median-lethal doses
of propoxur [0.27 (0.17-0.42)] and DEET [611 (596-
629)] were about 7 and 2 times lower than that obtained
without synergists. This indicates that cytochrome-P450
monooxygenases played a role in the detoxification of
these two compounds. According to the values of median-
lethal doses obtained with PBO, a second mixture of pro-
poxur and DEET was prepared (ratio 1:2000). In presence
of PBO, the mixture did not show any synergistic interac-
tions in Ae. aegypti (Figure 1B). Conversely, slight antago-
nism was observed, the mixture being less efficacious at
killing mosquitoes than expected in the case of a simple
additive effect (Figure 1B).

Applying DEF at 500 ng/female 1 hour prior to treatment
with propoxur and DEET had little effect on toxicity of
both compounds (Table 1). The median-lethal dose of
propoxur [1.01 (0.83-1.24)] was only 2 times lower than
that observed without synergist whereas toxicity of DEET
[1078 (1005-1155)] was unchanged. According to the
values of median-lethal doses obtained with DEF, a third
mixture of propoxur and DEET was prepared (ratio
1:1000). In presence of DEF, the synergistic interactions
between the compounds were maintained regardless of
the dosage considered (Figure 1C).

Discussion

In the present study, topical applications of insecticide(s)
were carried out on Ae. aegypti to better understand the
physiological mechanisms involved in synergism between
DEET and propoxur.

First, the Isobologram method of Chou and Talalay [27]
confirmed the previous observations of Pennetier et al.
[10] who demonstrated that the insecticidal activity of
DEET and propoxur was enhanced when they are applied
together. Our findings also showed that oxidases are able
to metabolize the carbamate propoxur but also the repel-
lent DEET, thus confirming previous works of Constan-
tino et al. [29,30]. Conversely, esterases had little impact
on toxicity of the two molecules. This can be explained by
the absence of an ester bond in DEET which prevents any
hydrolytic metabolism by esterases [30].

Most interestingly, pre-treatment with PBO suppressed
the synergism previously observed between DEET and
propoxur. According to these data, we suggest that cyto-
chrome-P450 monooxygenases are responsible for the
enhanced toxicity observed between the repellent and the
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carbamate. We assume that the competition between
DEET and propoxur for the multi-function oxidases
increased the toxicity of the mixture. Electrophysiological
experiments are now in progress to identify the physiolog-
ical events underlying DEET and carbamate toxicity in the
insect central nervous system [31].

Cytochrome-P450 monooxygenases have been identified
as being involved in strong pyrethroid resistance because
they are over-expressed in wild resistant mosquitoes [32-
34]. Our results suggest that the activity of these enzymes
is essential for the synergistic interactions between DEET
and propoxur. Now, we can consider whether the overex-
pression of monooxygenases will enhance the toxicity of
repellent and insecticide mixtures against mosquitoes. If
yes, this suggests that these mixtures should be an effective
tool to manage pyrethroid-resistance based on overex-
pression of multi-function oxidases. The next step should
be to study the interactions between carbamates/OPs and
repellents on mosquitoes in which oxidases are overex-
pressed.

Conclusion

As shown by Pennetier et al [10], the association of non-
pyrethroid insecticide and repellent exhibited pyrethroid
features, especially a fast killing effect and excito-repel-
lency properties. The existence of positive interactions
between the compounds is a major argument in favour of
their possible use in public health. Reduced amounts of
active ingredient would provide an effective protection for
the treatment of mosquito nets and other relevant materi-
als. The fact that multi-function oxidases are involved in
these interactions (and not insecticide-target sites) is of
great interest for the implementation of "combination
nets" in the field and the management of insecticide
resistance in mosquitoes.

In areas where resistance to pyrethroids can no longer be
controlled, the use of carbamate (or organophosphate)
combined to repellents appears as an effective alternative
to pyrethroids, as they show efficacy equivalent to these
insecticides in simulated field situations [8,9]. In other sit-
uations, such combinations might also be used as a sup-
plement to pyrethroids to retard the spread of resistance.
Further investigations in live situations are certainly nec-
essary prior to the use of insecticide and repellent combi-
nations for vector control. The efficacy of these mixtures
against mosquitoes has to be assessed in the field on a sig-
nificant period of time, as well as its cost and safety to
human. However, we think that they offer significant
advantages for public health intervention. First, as no
pyrethroid insecticides are used, their efficacy would not
be altered by kdr mutation widespread in mosquito pop-
ulations [35-37]. Using such combinations may also be of
great interest in areas where mosquito populations show
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Isobolograms of insecticidal activity for propoxur, DEET and their mixtures on Ae. aegypti. In absence of synergist
(A), with PBO (B) and with DEF (C). Diagonal lines connect doses of equipotent activity for each product applied alone. Rela-
tive symbols indicate the amount of each product required to induce the same effect in a mixture (at the ratio based on
median-effect doses of each product). Points below relative line indicate synergism, points close to relative line indicate addi-
tive effect, and points above relative line indicate antagonism between the compounds.
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resistance based on oxidase metabolism [32-34]. As
observed in the laboratory, metabolic-based resistance
may facilitate synergism between carbamate and repellent
when using "two in one" treated materials. In this per-
spective, these mixtures should be evaluated in areas
where mosquitoes show a high and broad range of meta-
bolic-based resistance.
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