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Abstract

Background: The question of sampling and spatial aggregation of malaria vectors is central to vector control efforts and
estimates of transmission. Spatial patterns of anopheline populations are complex because mosquitoes’ habitats and
behaviors are strongly heterogeneous. Analyses of spatially referenced counts provide a powerful approach to delineate
complex distribution patterns, and contributions of these methods in the study and control of malaria vectors must be
carefully evaluated.

Methodology/Principal Findings: We used correlograms, directional variograms, Local Indicators of Spatial Association
(LISA) and the Spatial Analysis by Distance IndicEs (SADIE) to examine spatial patterns of Indoor Resting Densities (IRD) in
two dominant malaria vectors sampled with a 565 km grid over a 2500 km2 area in the forest domain of Cameroon. SADIE
analyses revealed that the distribution of Anopheles gambiae was different from regular or random, whereas there was no
evidence of spatial pattern in Anopheles funestus (Ia = 1.644, Pa,0.05 and Ia = 1.464, Pa.0.05, respectively). Correlograms
and variograms showed significant spatial autocorrelations at small distance lags, and indicated the presence of large
clusters of similar values of abundance in An. gambiae while An. funestus was characterized by smaller clusters. The
examination of spatial patterns at a finer spatial scale with SADIE and LISA identified several patches of higher than average
IRD (hot spots) and clusters of lower than average IRD (cold spots) for the two species. Significant changes occurred in the
overall spatial pattern, spatial trends and clusters when IRDs were aggregated at the house level rather than the locality
level. All spatial analyses unveiled scale-dependent patterns that could not be identified by traditional aggregation indices.

Conclusions/Significance: Our study illustrates the importance of spatial analyses in unraveling the complex spatial
patterns of malaria vectors, and highlights the potential contributions of these methods in malaria control.
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Introduction

The question of sampling and spatial aggregation of malaria

vectors is central to vector control efforts and estimates of

transmission [1,2]. There is significant heterogeneity in the

diversity, the abundance and spatial distribution of malaria vectors

[3,4]. Consequently, a thorough knowledge of the spatial patterns

of anopheline populations is fundamental for optimal sampling

designs and consistent assessments of malaria risk [5,6,7,8].

Moreover, detailed information on the spatial aggregation of

malaria vectors has implications for the implementation of cost-

effective control strategies at the community level [9,10,11,12].

The analysis of the spatial structure of mosquito populations

presents some conceptual and statistical challenges. Numerous

methods have been implemented to distinguish among different

patterns in the spatial distribution of insects [13,14]. Traditional

methods for count data obtained from a set of locations examine

in various ways the relationship between the sample mean and

the sample variance [15,16,17,18]. The capacity of these methods

to disentangle the spatial patterns is limited because they make no

use of information concerning the spatial location of the sample

units, and they only infer a degree of non-randomness at an

unknown spatial scale [14,19]. In contrast, new methods were

designed in a variety of disciplines to describe and quantify

patterns in spatially-referenced count data [20,21,22,23]. Such

spatially explicit approaches have attracted growing attention

owing to the availability of simple computational tools that can be

implemented in Geographic Information Systems (GIS) and in

various free software packages [24,25]. Spatial statistics are

commonly used for mapping spatial clusters of diseases, including

vector-borne diseases such as malaria, trypanosomes, lymphatic

filariasis and arboviral diseases [1]. These methods also have

great potential to infer the spatial structure underlying the

distribution of a species at a given scale, especially when they are
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combined with interpretations provided by visualization tools in

GIS [22,26].

However, the implementation of a reliable spatial statistical

technique, tailored to suit both fundamental and operational

needs, is not always easy. This is due in part to the dearth of data

that may provide a framework for taking decisions concerning

analytical approaches and interpretations. Several studies have

examined distribution patterns in adults of Culex, Aedes and

Anopheles species with one to two spatially explicit tests

[27,28,29,30,31,32]. Nevertheless, spatial analysis methods and

interpretations are more diverse, making the selection complicat-

ed. Moreover, each spatial statistic has advantages and limits, and

more than one method is usually needed to validate results [33].

More comprehensive explorations of a wider spectrum of spatial

analysis tools are therefore necessary to provide cues in the choice

of relevant methods for studying patterns of point-referenced

counts in mosquitoes across spatial scales.

In this paper, we have used a panel of methods, i.e.

correlograms, variograms, Local Indicators of Spatial Association

(LISA) and the Spatial Analysis by Distance IndicEs (SADIE), to

explore the spatial structure of indoor resting density (hereafter

IRD) of two important African malaria vectors mapped across an

endemic region of the forest domain of Cameroon. We have

compared the distribution patterns provided by spatially-explicit

techniques to the dispersion profiles inferred from traditional non-

spatial methods. The community-scale entomologic data are

usually count data obtained from a number of sampled houses,

and aggregated at the locality or village level. This arbitrary

assignment of observation units to aggregates may potentially blur

some fine-scale structures as spatial analyses are greatly influenced

by the scale at which observations are made [34]. In our analyses,

we have therefore addressed the effect of scale by comparing

dispersion patterns at two aggregation levels: the house or the

locality from which mosquito counts were obtained.

Methods

Ethics statement
All necessary permits were obtained for the described field

studies.

Study area
Anopheline mosquito counts came from a 2500 km2 area (450–

1200 m above sea level), centred on Yaoundé (11u31E, 3u48N),

the capital of Cameroon (Figure 1). The region is mainly covered

with degraded secondary-growth forest surrounding this major

Figure 1. Map showing the study area in Cameroon. The base map is a subset of a Landsat Enhanced Thematic Mapper (ETM+) satellite image
with a color composite of red, near-infrared and green bands at 30 m resolution, on which a layer of main roads (in grey) and a 565 km grid (in
white) are overlaid. In this pseudo-natural image, vegetation appears in shades of green and purple represents deforested areas, bare soils or pixels
masked by clouds. The 100 surveyed localities are shown as red circles.
doi:10.1371/journal.pone.0031843.g001
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urban centre. The occurrence of many types of anopheline larval

habitats explains the presence in the area of several important

mosquito vectors maintaining malaria transmission year-round:

An. gambiae sensu stricto, An. funestus, An. moucheti and An. nili

[35,36,37].

Mosquito sampling
The sampling plan was implemented from a map created in

ArcGIS 9.2 (ESRI; http://www.esri.com) using a set of geographic

data comprising a Landsat Enhanced Thematic Mapper satellite

image (1:60,000) acquired on May 18, 2000; a road map

(1:200,000) and a database of georeferenced human settlements

from the National Institute of Cartography of Cameroon

(Figure 1). These data layers were chosen to provide regional-

scale details of the study area. All the spatial datasets were

projected in the UTM 32N zone. We overlaid a 565 km grid on

the GIS map to divide the study area into 100 isometric cells of

25 km2 each. We adopted a spatial resolution of 5 km in light of

previous studies on An. gambiae dispersal, which estimated a

maximum flight distance around 5 km for An. gambiae adults [38].

In each cell of the grid, one locality with no less than 100

inhabitants was selected based on accessibility from main roads.

Resting mosquitoes were collected in these selected localities

between May and July 2007. A few cells of the reference grid were

not sampled; a few others presented more than one sampled

locality, and six other localities were slightly beyond the borders of

the sampling grid (Figure 1). This was due to differences between

the initial coordinates provided by the ancillary dataset and the

final ground-based geographical coordinates.

As we had limited prior information about mosquito densities in

this area [39], we sampled one to six houses per locality with the

aim to attain at least 30 individuals per Anopheles species in each

locality. Female mosquitoes were collected inside human dwellings

by spray-sheet catches using aerosol with pyrethrum: a standard

procedure for sampling adult Anopheles mosquitoes [40]. The

geographic coordinates of each sampled house were recorded with

a Global Positioning System (GPS) field receiver, and the

coordinates of the approximate centroid of the sampled houses

were also taken to represent the geographic position of the selected

locality. Mosquito specimens were identified following reference

morphological identification keys [41,42]. The geographic and

entomologic information were aggregated as point features at two

hierarchical levels (house and locality) in an output GIS database

using field recorded coordinates. Indoor resting density at the

house level represents the number of female mosquitoes of a given

species collected in that house divided by the number of sleeping

rooms sprayed. At the locality level, indoor resting density of a

species is defined as the arithmetic mean of counts per room from

all the houses sampled in that locality. To address the effect of the

sampling effort (number of houses sampled per locality) on the

estimates of IRD, the association between the presence of a species

or the number of its specimens captured and the number of rooms

sampled was evaluated with correlation tests and logistic

regression.

Non-spatial statistical tests
First, we have examined the patchiness of mosquito counts with

two spatially implicit methods (variance-to-mean ratio and

Morisita’s index of dispersion). Morisita’s index is mostly a

count-based statistic. Consequently, we have assimilated IRD to

counts by rounding the values of densities up to the nearest integer

before implementing the two aggregation methods. The ratio (D)

between the variance, s2, and the mean, m, of a sampled

population provides a simple index for measuring the degree to

which individuals are clustered or aggregated within the

population [16,43]. Values of D close to 1 indicate a random

dispersion while values of D,1 indicate a uniform dispersion and

values of D.1 a clumped dispersion. A one-sided t-test (a~0:05),

with n{1 degree of freedom was used to test if D was significantly

different from 1 [44].

The Morisita’s Index of Dispersion (Id) is another statistic

commonly used to test if a distribution is random, regular or

clumped [15]. Values of Id~1 indicate a random dispersion while

values of Idv1 indicate a regular dispersion and values of Idw1 a

clumped dispersion. We have calculated the Morisita’s index on

counts, and tested significant deviations from 1 (random) with a

chi-square test (n{1 degree of freedom, a~0.05) [44].

Spatially explicit statistical tests
The choice of spatial statistics to use to infer the spatial patterns

with a satisfying degree of reliability in a given dataset is based

mainly on the objective of the study, the nature of the data

collected and the computational tools available [14,22,26]. In

exploratory spatial data analysis, statistical tests based on the

notion of spatial autocorrelation are the most commonly applied in

the examination of spatial patterns of species, but new methods

such as SADIE were designed recently in order to circumvent

some of the limitations and disadvantages encountered with

traditional geostatistical analyses [20]. We have assessed the spatial

patterns of IRD at two spatial levels (house and locality) with a set

of four spatial analysis tools selected to be representative of the

major classes of methods that are widely used to explore the spatial

patterns of species [14]. We have used two global methods

(correlograms and variograms) and two local methods (LISA and

SADIE). Global methods are those that summarize the spatial

pattern over the full extent of the study area while local methods

are used to detect, to further specify, and to map local patterns and

clusters at individual sampling units or at relatively finer spatial

scales.

Correlograms. The presence of spatial autocorrelation in

discrete samples of a continuous variable produces patterns

whereby contiguous spatial locations tend to have similar or

dissimilar values [13]. This principle has been used to design the

Moran’s I coefficient, an autocorrelation statistic used to study the

spatial structure in ecological data [45,46]:

I~
n

S0

Pn

i~1

Pn

j~1

wij(xi{x)(xj{x)

Pn

i~1

(xi{x)2

With

S0~
Xn

i~1

Xn

j~1

wij

Where n indicates the total number of samples; in our case,

depending on the geographic level at which the spatial structure

was assessed, n could be either the number of localities (100) or the

total number of houses sampled.

xi denotes the value of the variable of interest X (indoor resting

density) at location I; xj represents the value of the same variable at

the neighboring location j and x is the sample average of X. wij is a

matrix of spatial weights (connectivity matrix), which defines the

degree of spatial interaction across the study region. In general,

wij = 1 if location i and location j are neighbors; otherwise, wij = 0.
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Moran’s I takes values in the interval [21, +1]. Positive

autocorrelation in the data translates into positive values of I;

negative autocorrelation produces negative values, and values of I

close to zero denote absence of autocorrelation [26]. A

correlogram is a graph in which autocorrelation values are plotted

against the distance lag among sites.

The estimate of spatial autocorrelation can be biased when the

data are not normally distributed [22]. Accordingly, indoor resting

densities were transformed by a cubic root function to approach a

bell shape distribution. The Moran’s I statistic was calculated with

the package spdep of the R v.2.9.0 software using the moran.test

function [47,48]. Groups of neighboring locations were identified

for specified lag distance classes, and the Moran’s I coefficient

calculated for each distance class. Envelopes representing the 95%

confidence interval were created around Moran’s I values with

1000 Monte Carlo randomizations, and statistical significance

under the null hypothesis of no spatial autocorrelation was

assessed. The smallest lag distance and interclass distance were set

at 5 km according to the spatial resolution of the sampling grid we

used. We also standardized spatial weights so that all weights

summed to unity within a group of neighbors (row standardiza-

tion). The sum of the weights for a given distance class decreases

for large distance classes, and a bias may arise from the fact that

only observations at the edge of the sampled population can

contribute to the estimates for larger distances. It is therefore

customary to limit the description of the spatial structure to half

the maximum distance between sampling units [49]: around

35 km in our case.

Directional variograms. The directional variogram is

another geostatistical tool based on the principle of spatial

autocorrelation between sampling units. The variogram or

semivariogram is a function relating the variance of a

continuous variable to the spatial location of discrete samples [13]:

c(h)~

PN(h)

i~1

½z(xi){z(xizh)�2

2N(h)

Where c(h) is the estimated variogram value for the distance h,

and N(h) is the number of pairs of points separated by h. z(x)
represents the value of the variable at location x and z(xzh) the

value of the same variable some h distance away.

Like correlograms, variograms are interpreted graphically, by

plotting the estimated variogram c(h) as a function of the distance

h. Typically, variogram values are small for low values of h, and

then increase with increasing distance up to a critical distance

where they level off or become constant. Thus, three indices can

be used to summarize and interpret the variogram. (1) The ‘sill’ is

the value at which the variogram levels off. (2) The ‘range’

represents the distance at which the variogram levels off, defining

the average distance below which samples are spatially correlated.

(3) The ‘nugget’ is the intercept of the variogram at h = 0. Large

values of the nugget relative to the sill reveal that most of the

spatial structure probably occurs at spatial lags smaller than that of

the sample variogram and/or the presence of significant systematic

and sampling errors [13,14]. When the autocorrelation function is

the same in all geographic directions considered, the underlying

phenomenon is said to be isotropic, whereas its opposite is

anisotropy [26]. The effect of anisotropy can be addressed by

using directional variograms [22,26].

Indoor resting densities were transformed with a cubic root

function, and directional variograms computed for four spatial

directions (0 degree, 45 degrees, 90 degrees and 135 degrees) in

the package geoR of R, using at least 30 pairs of points for each lag

distance class [48,50]. The maximum lag distance class was limited

to half the maximum dimension of the study area (around 35 km).

Therefore, variograms were calculated for a total of seven distance

classes with an interclass distance of 5 km for each spatial

direction. However, at lag 0 (0–5 km), the minimum of 30 pairs of

points was not reached for one spatial direction in a few cases. In

that circumstance, we did not represent the value of the variogram

in that direction at lag 0. Envelopes were created around

variograms by taking the maximum and minimum values from

1000 Monte Carlo permutations.

Local Indicators of Spatial Association. The Moran’s I

statistic calculated as described above is limited because it measures

the spatial clustering only at a global scale, and cannot detect

important clusters at local scales or spatial patterns at specific

locations. To further evaluate the local clustering, a local version of

Moran’s I can be computed for each spatial unit. The main purpose

of this method called ‘‘Local Indicators of Spatial Association

(LISA)’’ [23] is to calculate Moran’s I for each single sampling

location, and to generate p values in order to assess the statistical

significance of these individual indices with a permutation procedure

under the null hypothesis of no autocorrelation. To visualize the type

and strength of spatial autocorrelation in a data distribution, the local

values of Moran’s I are represented by cluster maps in two ways: a

map of p values in which the locations of significant spatial clusters

are highlighted (p,0.01) and a Moran scatter plot. This scatter plot is

built from a linear regression between a spatially lagged variable (a

variable obtained from the original variable (IRD), by averaging

values of observations at neighboring locations of each sampling unit

multiplied by their spatial weights) and the original variable. This

plot provides indications of the contribution of each sampling unit to

the global measure of spatial autocorrelation, and identifies the

sampling units that have the greatest influence on the global

autocorrelation, based on standard regression diagnostics [23,51].

The scatter plot also compares values of LISA of individual sampling

locations with that of neighboring points, and classifies sampling

units by four types of spatial association, each corresponding to one

quadrant of the scatter plot. High/High are sampling locations with

high IRD surrounded by locations that also show high IRD; High/

Low are locations with high IRD surrounded by locations that have

low IRD; Low/Low are locations with low IRD surrounded by

locations that also have low IRD; Low/High are locations with low

IRD surrounded by locations that have high IRD.

To create a neighborhood matrix of sampling units, we used the

Delaunay triangulation in R. This method is commonly applied to

construct neighbors on point features by creating Voronoi

triangles [21]. We then calculated the spatial weights for each

spatial location, with a row standardization option, in the spdep

package. Indoor resting densities were transformed by the cubic

root function and standardized as suggested in [51]. Local

Moran’s I values were computed on the standardized variable

using the localmoran function, and a Moran scatter plot was created

with the function moran.plot in spdep. A map displaying spatial

locations for which the LISA is significant (p,0.01) was generated

in ArcGIS.

Spatial Analysis by Distance IndicEs (SADIE). Spatial

autocorrelation statistics are not appropriate sensu stricto to

characterize the spatial patterns of species. The main reason is

that, the use of such methods is constrained by strict assumptions

of stationarity and normality that are hard to fulfill with species

distribution data [20,22,26]. These data are, most often, markedly

skewed and zero-inflated, and abundance has a non-stationary

covariance structure. Moreover, interpretations of Moran’s I

statistics and variograms are jeopardized by the dependence of

Spatially Explicit Analyses of Mosquito Density
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empirical values on the sampling design [52]. The SADIE

technique, by contrast, was designed specifically for clustered

ecological count data, and can be fully complementary to

traditional geostatistical methods in the exploration of spatial

structures of species [20].

This method assimilates the degree of spatial pattern in an

observed arrangement of counts to the minimum distance, D, that

the individuals in the population would need to cover to attain a

completely regular arrangement in which abundance is equal in

each sample unit [20]. The value of D is determined by a

transportation algorithm based on the transportation or ‘flow’ of

individuals from ‘donor’ sample units with greater than average

abundance to ‘receiver’ units with less than average abundance.

The value of D is calculated for the observed data and for

hundreds of simulated datasets generated from randomizations of

the observed data. Then, an index of aggregation (Ia) is computed

by dividing the distance to regularity (D) from the observed data to

the mean D over the randomizations. SADIE analyses derive this

aggregation index together with a probability Pa for formal

statistical tests of randomness under the null hypothesis of spatial

randomness. Pa denotes the proportion of permutations with

distance to regularity less than or equal to the observed value. For

a given dataset, values of Ia.1 usually indicate an aggregated

sample; Ia = 1 is expected for spatially random data, and Ia,1

denotes a regularly dispersed sample.

The SADIE method also describes the degree of clustering in

count data. The term ‘‘cluster’’ is used to mean a region of either

relatively large counts close to one another (i.e. a patch) or of

relatively small counts (i.e. a gap) in two-dimensional space

[20,53]. For each sampling unit, a clustering index is calculated,

measuring the degree to which the unit contributes to clustering as

a member of a group of donor units that constitute to a patch (vi,

positive values), or as a member of a group of receiver units that

contribute to a gap (vj, negative values). The mean of these

clustering indices (vi,vj) are computed from randomizations

together with associated probabilities (Pi and Pj) to test the

statistical significance of these clustering indices under the null

hypothesis of a random distribution. Values of clustering indices

around unity indicate that the data conform to the null hypothesis

of spatial randomness. A value of at least one index well above 1

indicates some form of spatial non-randomness. When plotted on a

map of the sampling units, the values of the indices, vi and vj,

indicate the location and extent of clusters in the data. For a

particular dataset, a patch cluster or a gap cluster is defined as a set

of neighboring units for which the value of the unit clustering

index is greater than an arbitrary threshold (generally +1.5 for vi

and 21.5 for vj). The values of the indices may also be displayed

on a map of sample units by a contour plot showing the exact

dimension and area covered by patch and gap clusters. SADIE is

designed specifically for count data. Accordingly, values of indoor

resting density were rounded up to the nearest integer before

SADIE analyses that were carried out in SADIEShell 1.22 (http://

www.rothamsted.ac.uk/pie/sadie/SADIE_downloads_software_

page_5_2.htm). Contour plots were generated in the package

SURFER 9.1.352 by spatial interpolation between sample units

with the kriging method. We used the highest number of

randomization (5957) and the non parametric approach to

account for the skewness in the species distribution data.

Results

Distribution and abundance of malaria vector species
A total of 310 houses and 780 sleeping rooms were sampled

during the study period. The mean 6 standard error was

3.160.90 for the number of houses and 7.862.99 for the number

of rooms sampled per locality. The total number of houses visited

per locality ranged from 1 to 5 while the total number of rooms

varied between 2 and 18. In three of the 100 sampled localities,

mosquito collections took place in only one house: Abom (2

rooms), Evian (5 rooms) and Mfou (4 rooms). Five malaria vectors

species (An. gambiae sensu lato, An. funestus, An. moucheti, An. nili and

An. hancocki) were found in human dwellings in this area. An.

gambiae was the most widespread species, present in 88 cells of the

sampling grid, followed by An. funestus which was found in 47

localities (Table 1 and Figure 2). The three other vectors (An.

moucheti, An. nili and An. hancocki) were distributed locally, and their

presence was observed respectively in 12, 8 and 4 localities of the

sampling grid (Figure 2). An. gambiae was also the most abundant

species with a total of 1313 specimens captured, accounting for

78% of Anopheles collected. The second most abundant species was

An. funestus with a total of 327 individuals captured, representing

19% of all Anopheles specimens sampled. Only 4 individuals of An.

hancocki were obtained in four different cells. The average number

of mosquitoes, resting in one room, varied between species as well:

the 10th and 90th percentiles of the average indoor resting densities

ranged from [0,0] for An. moucheti and An. nili to [0,5] for An.

gambiae (Table 1).

Non-spatial tests of spatial aggregation
We examined the spatial structure only in Anopheles species

present in more than 20% of the cells of the sampling grid (An.

gambiae and An. funestus). First, we have tested how far the uneven

sampling we have performed was confounding the estimate of

IRD. Pearson product-moment correlation coefficients between

the number of mosquitoes captured per locality and the number of

rooms sprayed showed that the two variables were either weakly

correlated negatively or not correlated (r = 20.23, df = 98,

p = 0.017 for An. gambiae and r = 20.09, df = 98, p = 0.360 for An.

funestus). Moreover, we fitted a binary logistic regression model

with a logit link and binomial error structure between the presence

of a species in one locality and the number of rooms sprayed. In

agreement with correlation tests, the explained deviance was

relatively low (17.23%, df = 98, p = 0.223 for An. gambiae and

4.94%, df = 98, p = 0.010 for An. funestus), implying that most of the

Table 1. Distribution and abundance of malaria vectors in the study area.

Species Total Cells occupied Average IRD 95% CI IRD 10th centile IRD 90th centile IRD

An. gambiae 1313 88 1.94 [1.45–2.43] 0 5.00

An. funestus 327 47 0.41 [0.18–0.64] 0 1.00

An. moucheti 22 12 0.01 [20.01–0.03] 0 0.00

An. nili 23 8 0.02 [20.01–0.05] 0 0.00

doi:10.1371/journal.pone.0031843.t001
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variation in the presence of species in one locality was not related

to the sampling effort.

Variance-to-mean ratio was significantly different from unity

when indoor resting counts were aggregated at the locality level

(An. gambiae: t = 69.66, df = 99, p,0.05; An. funestus: t = 75.37,

df = 99, p,0.05). Similarly, Morisita’s Id exceeded the expectation

for a random distribution at this spatial level (An. gambiae:

X2 = 1079.16, df = 99, p,0.05; An. funestus: X2 = 1159.60, df = 99,

p,0.05) (Table 2). More importantly, the two aggregation indices

were also significantly different from unity when mosquito counts

were aggregated at the house level, indicating that the distribution

of the two species remained patchy regardless of the scale of

aggregation (Table 2). These indices consistently suggested the

presence of some spatial aggregation in the distributions of An.

gambiae and An. funestus at a spatial extent below the 2500 km2

study area.

Spatially explicit tests
Four spatially explicit analyses were carried out and interpreted

in combination with visual assessments of abundance maps

(Figure 2) to identify spatial patterns of An. gambiae and An. funestus

at two levels of aggregation (locality and house).

Figure 2. Distribution of indoor resting densities of An. gambiae (A) and other malaria vectors (B).
doi:10.1371/journal.pone.0031843.g002

Table 2. Non-spatial tests of aggregation.

Locality level House level

Aggregation index Parameters An. gambiae An. funestus An. gambiae An. funestus

Variance-to-mean ratio Number of sites (n) 100 100 310 310

Sample mean (m) 1.94 0.41 1.93 0.42

Sample variance (s2) 6.15 1.36 12.66 1.31

Variance/mean ratio (I) 3.17* 3.31* 6.56* 3.15*

Distribution clumped clumped clumped clumped

Morisita’s Index Number of sites (n) 100 100 310 310

Sum of mean IRD (N) 194 41 598 129

Morisita’s Index (Id) 2.12* 6.71* 3.88* 6.2*

Distribution clumped clumped clumped clumped

*p,0.05.
doi:10.1371/journal.pone.0031843.t002
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Global methods. Moran’s I correlograms of both species had a

globally flat form (Figure 3A and 3B). There were positive and

statistically significant values of I at small distance lags, indicating

positive autocorrelation in indoor resting densities between

neighboring locations. At the locality level, the highest value of

Moran’s I was recorded at lag 0 (0–5 km) (I = 0.27, p,0.05 for An.

gambiae and I = 0.32, p,0.05 for An. funestus). Then, in An. gambiae, I

declined steadily and reached zero at a threshold distance of 20–

25 km. Beyond this threshold, autocorrelations were negative or near

zero. These results suggest that large clusters of similar values of IRD

with a diameter up to 25 km may be found in An. gambiae in this

region. In the case of An. funestus, however, there were only marginal

or negative spatial autocorrelations beyond 5 km of distance between

localities (Figure 3B), implying that the critical size for clusters of

similar values of abundance are considerably smaller in An. funestus.

This difference is not surprising given the strong divergence of habitat

types between the two species: An. funestus depends on the presence of

much localized permanent breeding sites, whereas An. gambiae is a

ubiquitous species exploiting collections of water that are widespread

spatially. The correlograms of both species displayed the same trends

at the house level and at the locality level with statistically significant

positive autocorrelations at short spatial lags until the same threshold

distances (Figure 3).The curves were similar at the two spatial levels in

the case of An. funestus, but we noted a certain asymmetry in An.

gambiae where positives values of I were higher while negative values

were lower at the locality level compared to the house level.

Directional variograms confirmed the occurrence of spatial

autocorrelation at short spatial lags (Figure 4). On the variograms

of An. gambiae (Figure 4A and 4B), the nugget effect was high,

especially at the house level, implying that an important fraction of

information (variability) was not captured with the 565 km

sampling grid we used, and that there were presumably some

other cryptic systematic errors in our data collection and our

analytical process. Values of the semivariance varied between 0.1

and 0.5 at the locality level, but no leveling was observed at any

distance lag, indicating that the average distance below which the

samples are spatially correlated (the range of spatial dependence)

could not be identified. There was no anisotropy in the

distribution of An. gambiae at this spatial level. Each of the four

variograms displayed only a very weak spatial trend. Moreover, no

trend could be clearly identified in the raw data (Figure 2), and

randomization envelopes of variograms overlapped almost entirely

in all the four spatial directions (Figure 4A). Plots of the

semivariance with values of indoor resting densities aggregated

at the house level (Figure 4B) differed from variograms of the

locality level. The nugget effect increased considerably, and the

slope was reduced at the house level compared to the locality level.

At the house level as well, no leveling was observed. Though

variograms seemed to display two mild spatial trends at this level

of aggregation (one trend following the directions 45u and 90u, and

another following the directions 0u and 135u), the randomization

envelope also overlapped perfectly, and there was no apparent

anisotropy in the distribution of An. gambiae at the house level.

On the variograms of An. funestus (Figure 4C and 4D), the nugget

effect was also high at the house level, and the same conclusion

could be drawn from the fact that, most of the fine-scale spatial

structure was not captured with the 565 km sampling grid we

used, especially when mosquito counts were aggregated at the

house level. However, contrary to the house level, the semivar-

iance seemed to level off at 5–10 km at the locality level,

confirming that the critical size of clusters of similar abundance of

An. funestus is about 5 km as previously observed with correlo-

grams. At both spatial levels, randomization envelopes overlapped

almost perfectly, and there were no apparent trends and no

anisotropy in the spatial distribution of An. funestus (Figure 2B).

Overall, the two global methods (correlograms and variograms)

showed that there was a spatial structure in the distribution of An.

gambiae and An. funestus, and indicated different boundaries for

critical distances of aggregation for the two species. As a result, the

use of local spatial statistics should further identify important local

patterns in the distribution of the two species.

Local methods. Table 3 summarizes the results of SADIE

analyses, and more detailed information on characteristics of

spatial clusters is mentioned in Table 4. A strong aggregation of

An. gambiae counts at the locality level was confirmed by a large and

significant value of Ia (Ia = 1.644, Pa,0.0007). The clustering

indices of this species at this spatial level was characterized by a

non significant clustering into a single large gap (vj = 21.448,

Pj.0.05) comprising twenty-two sample units and extending about

25 km from the center towards the eastern side of the study area,

as well as a significant clustering into three big and seven small

patches (vi = 1.704, Pi = 0.022) (Figure 5A). All these patch clusters

encompassed 20 localities with IRD varying from 1.67 to 10.6

(mean 6 standard error: 3.5662.37). At the house level, the

pattern of aggregation of An. gambiae was stronger, with a higher

and statistically significant value of Ia (Ia = 1.966, Pa,0.0002). At

this level, the spatial pattern was characterized by three large and

four small gaps (vj = 21.904, Pj = 0.0002) adjacent to three large

and four small patches (vi = 1.783, Pi = 0.0008) (Figure 5B). The

mean 6 standard error of IRD was 3.0763.91 and 0.0860.26 in

all patches and all gap clusters, respectively.

Concerning An. funestus whose abundance in the study area was

notably less than that of An. gambiae, the index Ia showed no

Figure 3. Moran’s I correlograms of An. gambiae (A) and An.
funestus (B). Circles and squares represent Moran’s I values at the
house level and at the locality level, respectively. Filled symbols indicate
statistically significant individual lags (p,0.05). Envelopes of 95%
confidence intervals are shown in light grey (locality level) and dark
grey (house level).
doi:10.1371/journal.pone.0031843.g003
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evidence of aggregation at the locality level (Ia = 1.464, Pa.0.05).

However, there was significant clustering in patches and gaps

(vi = 1.506, Pi = 0.0060; vj = 21.495, Pj = 0.0069). The clustering

pattern was characterized mainly by four big gaps among which a

dominant gap cluster comprising about 22 sampling sites and only

one patch cluster located in the North-West of the area (vi = 1.981,

Pi,0.05; vj = 21.972, Pj,0.05) (Figure 5C). Consistently, average

IRD within patches and gap clusters were also significantly less

than those observed in An. gambiae clusters (Table 4). The global

spatial pattern of An. funestus was different at the house level: there

was strong evidence of spatial non-randomness as shown by the

large and significant value of Ia (Ia = 1. 980, Pa,0.0002).

Clustering indices further supported the presence of four big

gaps; particularly, a dominant gap cluster spanning almost 40 km

from the center towards the south-east of the study area

(Figure 5D). This gap comprised about 40 sampling sites, and

was by far the largest recorded in the study area. By contrast, the

significant average patch clustering index was associated with the

presence of about twelve very small patches scattered in the

northern part of the area. IRD varied from 0.5 to 7 within patch

clusters and from 0 to 0.4 in gap clusters (Table 4). In general, as

previously revealed by the correlograms and variograms, large

clusters of locations with greater than average IRD with a

diameter around 25 km could be found in An. gambiae, but

clustering of An. funestus occurred in the form of small patches with

a diameter lower than 5 km. The indices vi and vj encapsulate

spatial and not numeric information; hence, a lack of relationship

between the magnitude of counts and the degree of clustering can

be observed. Yet, maps of clustering indices and abundances were

very consistent. The region of low abundance of An. gambiae in the

center of the abundance map (Figure 2) overlapped with the big

gap clusters on contour maps (Figure 5). Similarly, large counts of

An. gambiae were recorded mostly in sample sites situated in the

upper part of the study area, overlapping with the three big patch

clusters of the grid. Likewise, the few small patches identified in An.

funestus distribution coincided approximately with sample sites with

considerably high counts of this species.

Figures 6 and 7 show the Moran scatter plots and maps of

spatial locations with statistically significant clustering (p,0.01), as

well as sampling units that have a great influence on the global

autocorrelation in LISA analyses. Characteristics of local clusters

are summarized in Table 4. Significant local clustering of indoor

resting density was detected in 11 localities in An. gambiae and in

only six localities in An. funestus. The number of significant clusters

increased, of course, at the house level (20 in An. gambiae and 11 in

An. funestus), but this rise was not strictly proportional to the

increase in the number of sampling units between the two scales of

aggregation. On the Moran scatter plot of An. gambiae, at the

locality level, sampling units were well distributed in the four

Figure 4. Directional variograms. An. gambiae: (A) locality level and (B) house level. An. funestus: (C) locality level and (D) house level. Envelopes
of minimum and maximum values over 1000 randomizations are shown in grey scale from light (0u) to dark (135u).
doi:10.1371/journal.pone.0031843.g004

Table 3. Summary of SADIE analyses.

Species
Spatial
level Ia Pa Pj Pi

An. gambiae locality 1.644 ,0.0007 21.448 0.0900 1.704 0.0220

house 1.966 ,0.0002 21.904 0.0002 1.783 0.0008

An. funestus locality 1.464 ,0.0800 21.495 0.0069 1.506 0.0060

house 1.980 ,0.0002 21.972 0.0002 1.981 0.0002

doi:10.1371/journal.pone.0031843.t003
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quadrants of the scatter plot, and the four regimes of spatial

association between spatial units (High-High, High-Low, Low-High,

Low-Low) were represented (Figure 6A). Among sampling units

that have high influence on the global autocorrelation at the

locality level, Low-Low (cold spots) and High-High (hot spots)

represented the two dominant types of association, with 8 and 4

sampling units respectively (Table 4). At the house level, in

contrast, the dominant types of interaction among spatial units

were High-High (5 units) and High-Low (7 units), highlighting the

fact that there are important variations among houses and a fine-

scale spatial structure that occur below the locality level. This idea

is strengthened by the fact that certain houses belonging to the

same locality appear in different quadrants of the Moran scatter

plot (Figure 6B). In hot spots of An. gambiae, IRD varied from 8.25–

10.75 at the locality level and from 1 to 33 at the house level

(Table 4).

In An. funestus, at both aggregation levels, there were mainly

High-High and High-Low associations between neighboring spatial

locations (Figure 7A and 7C), confirming that the distribution of

adults of this species is characterized by very small local clusters of

individuals that occur around characteristic breeding sites.

Though the two aggregation levels presented the same types of

association between spatial locations, sub-locality structure could

be observed as a few houses of the same locality appeared in

different quadrants of the scatter plot at the house level. Hot spots

of this species comprised 4 spatial units at the locality level and 20

at the house level, and the mean 6 standard error of IRD within

these hot spots were 2.4261.97 at the locality level and 3.3261.85

at the house level, respectively (Table 4).

When comparing LISA and SADIE clusters, by a visual

examination and quantitative assessment, there were substantial

differences in the number, the size and the spatial distribution of

clusters detected by each of the two methods (Table 4). For

instance, the number of SADIE patches (spatial points with

vi.1.5) was two to sixteen times greater than the number of sites

classified as hot spot by LISA analyses. Nevertheless, despite this

significant inter-method variation, it is interesting to notice that

almost all the sampling units that were considered hot spot or cold

spot clusters by the Local Moran’s I were geographically

embedded respectively in patch and gap clusters identified by

SADIE analyses (Figure 5, 6 and 7). The parameterization of the

two methods is not strictly analogous due to unique characteristics

of both methodologies. Moreover, we have applied LISA in a

manner that could detect clusters only at point locations while

SADIE enables to map spatial extents of clusters in two-

dimensional space. However, the combination of these two local

tests provides a useful comparison and potentially greater evidence

for clustering patterns.

Discussion

Recent methodological advances in spatial statistics combined

with the ready availability of inexpensive and powerful desktop

geographic information systems have strongly promoted the use of

spatially explicit methods in exploring spatial patterns of point-

referenced counts in epidemiology and ecology [24,25]. In the

present study, we have conducted a methodological and

comparative evaluation to assess the benefits of using a variety

of techniques for geographic pattern detection in Anopheles

mosquito counts, with the variable ‘‘indoor resting density’’ as

an example. In general, regarding the pattern of spatial

distribution of a species, the main question is to know whether

individuals or populations are arranged in a random, regular or

aggregated manner in space. When the distribution exhibits a

spatial structure (non-random distribution) in a study area, it is

essential to be able to map and characterize the spatial clusters of

individuals. We have first applied two non-spatial methods, the

Morisita’s index and the variance-to-mean ratio, to test the spatial

aggregation of the two numerically dominant malaria vectors in

our study area. The two methods indicated that the distribution of

An. gambiae an An. funestus was patchy in this area, regardless of the

scale at which mosquito counts were aggregated. We have also

used several spatial analysis tools to assess the spatial structure and

analyze the spatial clusters of individuals of the two Anopheles

species. Our results showed that these combined analyses provided

a more comprehensive diagnostic, with more consistent interpre-

tations than could have otherwise been obtained with any one

statistical approach alone. Correlograms and variograms suggested

the existence of spatial structure in the distribution of An. gambiae

and An. funestus in the study area, which resulted in the occurrence

Table 4. Characteristics of SADIE and LISA clusters.

Spatial
level Species

Characteristics of
clusters SADIE clusters LISA clusters

Patch Gap High-High High-Low Low-High Low-Low

Locality An. gambiae Range IRD 1.67–10.6 0–1.36 8.25–10.75 5.2 0.4 0–0.25

Average6SE IRD 3.5662.37 0.3460.37 9.8361.42 5.2 0.4 0.0360.09

Sampling units 20 23 4 1 1 8

An. funestus Range IRD 0.71–5 0–0.45 0.14–1.8 2.7–6.5 / /

Average6SE IRD 2.3461.73 0.0760.13 2.4261.97 461.69 / /

Sampling units 8 37 4 5 / /

House An. gambiae Range IRD 0.5–27 0–2 1–33 1–27 0–0.5 0.33

Average6SE IRD 3.0763.91 0.0860.26 13.42613.65 12.8368.4 0.1760.29 0.33

Sampling units 83 67 5 7 3 1

An. funestus Range IRD 0.5–7 0–0.4 0–7 1.67–6.5 0 /

Average6SE IRD 2.1661.88 0.0260.08 3.3261.85 4.2962.03 060 /

Sampling units 32 136 20 4 4 /

/ No cluster; SE standard error.
doi:10.1371/journal.pone.0031843.t004
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of spatial autocorrelation between neighboring spatial locations at

certain distance lags. These two global methods also estimated the

threshold distance for the spatial extent of major clusters of similar

values of abundance. Variograms revealed that the resolution of

the sampling grid we used was not fine enough to capture an

important part of the variability of indoor resting densities. SADIE

and LISA indicators identified hot spots and cold spots of

abundance that were mapped and characterized. Our analyses

also showed that a spatial structure may occur at the sub-locality

level, and underscored the benefits of multi-scalar approaches in

assessing geographic patterns of Anopheles distribution [54].

Spatially explicit tests of spatial aggregation corroborated the

results provided by the two non-spatial methods we used, with the

exception of An. funestus data aggregated at the locality level. In this

dataset, Morisita’s index and variance-to-mean ratio showed a

clumped distribution, whereas SADIE analyses indicated that

there was no evidence of spatial aggregation. This disagreement

between the two sets of methods is often observed, leading to a

certain controversy in the interpretation of spatial aggregation

[55]. However, although non-spatial methods are simpler to

implement, in our study, using them did not provide any

additional useful information than using spatially explicit methods

alone.

A variety of spatial statistical techniques are designed for

uncovering spatial clusters of disease prevalence in epidemiology.

Most of these methods are now readily included in common

Geographic Information System software packages, as well as in

various standalone programs. These programs include, for

Figure 5. Maps of SADIE clustering indices. An. gambiae: (A) locality level and (B) house level. An. funestus: (C) locality level and (D) house level.
Each sample unit is characterized by a positive (red circles) or a negative (blue circles) clustering index. Small open circles: absolute value of clustering
below expectation (1); small filled circles: sample units with clustering that exceeds expectation (,21 or .1); large filled circles: sample unit with
high clustering indices (,21.5 or .1.5).
doi:10.1371/journal.pone.0031843.g005
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Figure 6. LISA results for An. gambiae. (A) and (C) are Moran scatter plots at the locality and at the house level, respectively. The name of the
locality and the house number (in brackets) with large contributions to autocorrelation are displayed. (B) and (D) depict the locations of significant
local Moran’s I statistics and the type of spatial association between neighboring locations in sampling units with large contributions to the global
autocorrelation. (A): locality level and (B): house level. ‘ significant (p,0.01); bright red: High-High; light red: High-Low; deep blue: Low-Low; light blue:
Low-High.
doi:10.1371/journal.pone.0031843.g006
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instance, GeoDa, SaTScan, Crimestat, Clusterseer and many

packages of the open source statistical program R [23,25,51,56].

There is an important literature that introduces, classifies and

compares some of the most common methods implemented in

these computational tools and provides insights into the tradeoffs

among different approaches [25,56,57]. The majority of these

Figure 7. LISA results for An. funestus. (A) and (C) are Moran scatter plots at the locality and at the house level, respectively. The name of the
locality and the house number (in brackets) with large contributions to autocorrelation are displayed. (B) and (D) depict the locations of significant
local Moran’s I statistics and the type of spatial association between neighboring locations in sampling units with large contributions to the global
autocorrelation. (A): locality level and (B): house level. ‘ significant (p,0.01); bright red: High-High; light red: High-Low; deep blue: Low-Low; light blue:
Low-High.
doi:10.1371/journal.pone.0031843.g007
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spatial statistical techniques can also be applied to any count data,

including spatially referenced censuses of species. Nevertheless,

Perry et al. [14] have tested and compared an important array of

techniques encompassing the correlogram, the variogram, spatial

interpolation, SADIE and Ripley’s K, that can be used specifically

for spatial analyses of species distribution. The main recommen-

dation that emerges from all these comparative investigations on

spatial analysis tools is that the use of several global and local

methods at the same time should provide the greatest reliability. It

is also advised to use simple visualization techniques for initial

analysis, before selecting the methods that are appropriate for the

data type, and that answer the specific questions of interest.

On the other hand, the interpretation of spatial statistical

analyses requires a lot of caution because there are several caveats

that apply to many, if not all such analyses. The ignorance of these

caveats can sometimes lead to weakened or erroneous conclusions

[25]. First, each type of approach requires the use and the

specification of spatial relationships among the spatial units. This

relationship is usually specified in the form of spatial weights that

are designed in very diverse manners, and the results of analyses

can thus differ strongly depending on how the spatial weights have

been specified [47,51,57]. Moreover, all techniques for spatial

pattern analysis are founded on assumptions that are sensitive to

the data types, the scales of observation and sampling designs

[34,52]. These caveats make it difficult to standardize a relevant

methodological framework, from different empirical observations,

in a given operational context. There are also limitations

pertaining to each individual method that should be taken into

account when interpreting the results [14,33]. While employing a

variety of techniques doesn’t remove individual flaw of each

method, it does illuminate different aspects of spatial patterns,

thereby providing a more accurate description of spatial

heterogeneity [26,33,57]. Spatial statistical analyses have been

used in several studies to infer the spatial patterns of mosquitoes

from point count collections of a set of sampling locations. Ribeiro

et al. [58] used the kriging to estimate the spatial and temporal

variation of Anopheles species densities at the level of one village in

Ethiopia. Moran’s I was applied by Jacob et al. [30] to analyze the

spatial structure of the field-sampled count data of Aedes albopictus

and Culex quinquefasciatus in ten locations within three adjacent

neighborhoods of an 8 km2 grid. Li et al. [29] also employed this

global test to identify the extent of spatial autocorrelation between

nearby samples in a 464 km study area in Kenya. Ryan et al. [27]

used both Moran’s I and kriging to examine the spatial patterns of

four different mosquito species in Australia. In Kenya, Kelly-Hope

et al. [31] investigated on the spatial distribution of the relative

contribution of three malaria vectors (An. gambiae sensu stricto, An.

arabiensis and An. funestus) to annual malaria transmission with the

global Moran I test and the Getis-Ord Gi* statistic. de Souza et al.

[32] also used the two statistics for spatial analysis of An. gambiae

distribution across the country in Ghana. Finally, in Zhou et al.

[28], correlography was used to determine the spatial autocorre-

lation in adult mosquito abundance and Getis-Ord Gi* index

employed to define focal abundance clusters. Though these studies

provided relevant descriptions of spatial attributes, using only one

or two spatial analysis tools may be insufficient to effectively

describe the spatial structure, given the flaws pertaining to each

method, the error linked with the specification of spatial weights

and the sensitivity to sampling design as we mentioned earlier. For

example, significant local clustering may occur where global

statistics do not provide evidence of spatial autocorrelation. By

contrast, there may be a strong and significant indication of global

autocorrelation where local patterns are totally random, especially

in large datasets [23].

There are some limitations to our study that are worth noting.

First, our analyses did not address the temporal aspect of spatial

heterogeneity. The data collection took place only in one year, and

we were unable to gauge the persistence of the spatial structure

and clusters in time. As a result, our approach is appropriate to

provide mostly a first detailed snapshot rather than to uncover

consistent patterns with long-term stability. We underscore the

need for spatial analyses such as those presented here to be

repeated during subsequent years so as to address both spatial and

temporal dynamics. Secondly, variograms, in particular, indicated

that the 5 km sampling resolution we used was probably coarse.

Ideally, a spatial sampling design should be based on clear criteria

tailored for the particular application. We chose our sampling

resolution based on the maximum dispersal distance of adult

Anopheles mosquitoes and the necessity to have at least one locality

to survey within each cell of our sampling grid. However, the

maximum flight distance of African Anopheles mosquitoes is not

very clear, and many distances ranging from 1 to 5 km have been

estimated [9,38]. Ideally, we should have quantitatively analyzed

the impact of changing the cell size of the sampling grid on our

results in order to propose a more accurate window size for field

mosquito collections. In addition, the sampling resolution required

for studying spatial patterns of Anopheles mosquitoes in operational

activities should probably target spatial resolutions below what we

used here. Another potential source of bias may arise from the

uneven allocation of sampling effort caused by the variation of the

number of houses sampled per locality, but correlations tests

showed that this has little confounding effect on the estimates of

indoor resting densities. Nevertheless, rather than an attempt to

establish rigid guidelines for spatial analyses, we mostly underlined

some key issues in sampling and spatial aggregation of Anopheles

mosquitoes, with the hope that our study can contribute to the

design of approaches that are based on a better understanding of

methodological and analytical techniques.

The practical application of spatially explicit analyses of

anopheline mosquitoes is to support evidence-based decisions in

malaria control activities. Indeed, spatial and temporal analyses of

indicators like local epidemiological data, vector distribution and

behavior, insecticide resistance status and sporozoite rates are

pivotal prerequisite to successful malaria control strategies.

Overall, malaria control campaigns implemented in many African

countries are based on integrated strategies encompassing several

intervention methods at the community level. The control

operations are usually clustered in space, especially when allocated

resources are limited [2,9]. Targeted malaria control has been

successfully implemented to reduce malaria transmission in several

countries across the continent [10,11,12]. In this intervention

procedure, treatments are provided in priority to limited areas that

are identified based on thresholds of transmission (high risk areas).

Although the relationship between the transmission intensity and

vector abundance is not linear, the study of the spatial structure of

vector species and their habitats can provide relevant additional

key variables in the selection of rate-limiting or priority areas, and

the design vector control methods that integrate both transmission

levels and threshold of other entomologic parameters among

decision tools [10,12]. Prior knowledge of the spatial and temporal

dynamics of the abundance of Anopheles adults is particularly useful

for malaria control measures such as indoor residual insecticide

spraying, the distribution of long-lasting insecticide-treated nets or

environmental management [2,59,60]. For instance, in indoor

residual spraying which is a well-established control method for

malaria mosquitoes integrated in malaria control programs in

many African countries, the size of the operational area depends

on local circumstances and is influenced by the distribution of
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malaria vectors, the distance from important breeding sites, the

flight range of vectors and demographic factors [12,61,62].

Regular mass spraying of all human dwellings is technically

unfeasible, especially when the treatment area is large, and the

effectiveness of this method is closely linked to the capacity to

optimally delimit target houses or areas within an operational

region. Spatial patterns of relevant local attributes that are

necessary to take such decisions can be effectively addressed with

applied spatial statistics used in conjunction with geographic

information systems. Significant efforts are already being under-

taken to integrate geographic information systems in the planning

and implementation of indoor residual spraying in national

malaria control programs [63]. We have shown in this study that

spatial analysis tools are effective to infer point and surface

patterns of entomologic parameters from point collections at

selected sampling locations. They can also help identify how many

villages or how many houses lie within significant clusters of

abundance of a particular vector species. Therefore, spatial

analyses of indicator variables like species diversity and distribu-

tion, vector abundance, insecticide resistance rate and entomo-

logical inoculation rate can ultimately help guide strategic

decisions to more efficiently target vector control activities.

The characterization of spatial patterns can also assist in

identifying species-habitat relationships and associations between

vectors occurrence or abundance and key environmental vari-

ables. Recent efforts have been made to model habitats of the most

important African malaria vectors [3,39,64,65]. The spatial

statistical tests can be integrated into these efforts to explore in

more detail the species-environment relationships of Anopheles

species. Biological factors underlying the spatial distribution of

species are numerous, but the variation between the spatial

structure of An. gambiae and An. funestus demonstrated by our

analyses is at least partially driven by the strong difference between

larval habitats of the two species. An. gambiae has more

opportunistic breeding habits while An. funestus adults show a

strong tendency to be aggregated in houses located on the edges of

their typical breeding sites [54]. In our study, it was difficult to

relate patches and gap clusters of An. gambiae to precise

environmental features, but we found for instance that the urban

neighborhoods of Yaoundé were embedded in the most important

gap cluster of An. funestus which is less adapted to urban areas than

An. gambiae [3]. Another benefit of spatially explicit analyses may

be to assist in sampling designs of mosquito collections. The

observed patterns of species abundance affect the sampling design

[5,66]. Diversities and densities of malaria vectors vary widely in

space and time, making it particularly difficult to predict the

sampling effort necessary for accurate estimates of mosquito

abundance. Most often, statistical methods used to calculate the

sampling effort required to attain pre-established levels of precision

rely on prior knowledge of the degree of spatial aggregation in one

population. In practical conditions, this aggregation is usually

examined by non-spatial tests such as the negative-binomial

distribution or the Taylor’s power law whose limitations have been

discussed [6,7,8,14]. Moreover, studies on estimates of entomolo-

gic parameters most frequently assumed mosquito densities for a

limited number of houses within a village to be representative of

the whole village. This may introduce some errors into the

estimates, given the level of variation among houses within one

village highlighted by our study and previous investigations [54].

However, how precisely the sampling schemes can be accommo-

dated to account for spatial heterogeneity of populations is a great

problem for classical statistical tests which cannot be solved even

by employing spatial statistical tools. Nevertheless, spatially explicit

analyses provide a more detailed description of spatial patterns

and a more credible identification of dispersion profiles. As a

result, models integrating sampling precision and sampling effort

could be adapted to spatially explicit tests of spatial aggregation to

improve the accuracy in estimates of population parameters of

Anopheles mosquitoes.
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