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Abstract: The analysis of vegetation dynamics is essential in semi-arid regions, in 

particular because of the frequent occurrence of long periods of drought. In this paper, 

multi-temporal series of the Normalized Difference of Vegetation Index (NDVI), derived 

from SPOT-VEGETATION satellite data between September 1998 and June 2010, were 

used to analyze the vegetation dynamics over the semi-arid central region of Tunisia. A 

study of the persistence of three types of vegetation (pastures, annual agriculture and olive 

trees) is proposed using fractal analysis, in order to gain insight into the stability/instability 

of vegetation dynamics. In order to estimate the state of vegetation cover stress, we 

propose evaluating the properties of an index referred to as the Vegetation Anomaly Index 

(VAI). A positive VAI indicates high vegetation dynamics, whereas a negative VAI 

indicates the presence of vegetation stress. The VAI is tested for the above three types of 

vegetation, during the study period from 1998 to 2010, and is compared with other drought 

indices. The VAI is found to be strongly correlated with precipitation. 

Keywords: vegetation; SPOT-VEGETATION; NDVI index; drought; persistence; 

Vegetation Drought Index 
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1. Introduction 

Vegetation cover, which affects different processes, in particular the water cycle, absorption and 

reemission of solar radiation, carbon cycling, and latent and sensible heat fluxes, plays a key role in 

land surface processes [1,2]. Any change to the vegetation cover can thus have a strong influence on 

local, regional and even global scales. In the case of arid and semi-arid areas in particular, because of 

frequent drought events, it is essential to have an accurate description of the vegetation cover and its 

variation over time. In recent years, large-scale intensive droughts, affecting large areas, have been 

observed on all continents, and the high associated economic and social costs have drawn increasing 

attention to the importance of droughts [3]. It is important to note that a drought corresponds to a 

period of temporary dryness, in contrast to the permanent dryness found in arid areas. Drought is 

associated with below-normal precipitation, which lasts for a period of months or even years. 

Several studies have been carried out in an effort to improve the understanding of droughts. A 

number of different indices have been developed to quantify drought, each with its own strengths and 

weaknesses. They can be classified according to the following three types:  

- Drought indices based on precipitation measurements (e.g., Palmer Drought Severity Index 

(PDSI; [4]), rainfall anomaly index (RAI; [5]), deciles [6], crop moisture index (CMI; [7]), Bhalme 

and Mooly drought index (BMDI; [8]), surface water supply index (SWSI; [9]), national rainfall 

index (NRI; [10]), standardized precipitation index (SPI; [11,12]), and reclamation drought index 

(RDI; [13]). The PDSI is one of the most prominent indices used for meteorological drought, and 

can quantify long-term changes in aridity over global land masses [14]. It incorporates prior 

precipitation, moisture supply, and moisture demand into a hydrological accounting system. A 

multi-scalar drought index based on precipitation and evapotranspiration, called the Standard 

Precipitation and Evapotranspiration Index, has also been proposed by Vicento Serrano et al. 

(SPEI) [15]. 

- Drought indices based on soil moisture estimations (e.g., soil moisture drought index (SMDI; [16])  

- Drought indices based on optical satellite observations. In recent decades, optical remote sensing has 

demonstrated its strong potential for the monitoring of vegetation dynamics and its variations over 

time, mainly because it provides a wide spatial coverage and its internal data sets are consistent. In 

particular, the Normalized Difference Vegetation Index (NDVI) is an equation of contrasting 

reflectance between the red and near-infrared regions of a surface spectrum [17]. This equation is a 

readily usable quantity that can be related to the green vegetation cover or vegetation abundance, and is 

expressed by: NDVI = (RNIR − RRED)/(RNIR + RRED), where RNIR is the near-infrared (NIR) reflectance 

and RRED is the red reflectance. This index is sensitive to the presence of green vegetation [18]. It has 

been used for several regional and global applications, in studies concerning the distribution and 

potential photosynthetic activity of vegetation [19-24]. Due to its formulation, it robustly describes 

green vegetation in spite of varying atmospheric conditions in the red and NIR bands [25,26]. This 

index is also considered to be a reliable indicator for land cover variations [27-30], since its temporal 

variations are strongly related to changes in the earth‘s surface conditions. The NDVI is related to 

the photosynthetic activity of green vegetation [17], and a high NDVI indicates a strong level of 

photosynthetic activity [31]. Various drought studies have been proposed, using this type of index. 

The Vegetation Condition Index (VCI) proposed by Kogan [32] is defined by: 
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   minmaxmin /100 NDVINDVINDVINDVIVCI     (1) 

where NDVI, NDVImin, NDVImax are the smoothed weekly NDVI, multi-year minimum NDVI, and 

multi-year maximum NDVI, respectively. The VCI varies between 0 and 100, corresponding to 

vegetation conditions ranging from extremely unfavorable to optimal. 

The Temperature Condition Index (TCI), also proposed by Kogan [32], is defined as: 

   minmaxmin /100 BTBTBTBTTCI      (2) 

where BT, BTmin, BTmax are the smoothed weekly brightness temperatures, multi-year minimum, and 

multi-year maximum, respectively. We note that the BT is estimated from observations made at 

thermal infrared wavelengths. 

The DEV.NDVI index is defined as: 

mii NDVINDVINDVIDEV ,.       (3) 

where NDVIi is the estimated value of NDVI for a given month i, NDVIi,m is the mean value of the 

NDVI during month i, with both of these parameters being derived from a NDVI time series. 

Indices based on satellite products have been applied to different regions in the world, and have 

demonstrated strong potential in the identification of periods of drought [33-42]. For example, Singh 

and Bhuiyan et al. [37,43] analyzed the complementarity of the VCI and TCI indices, applied to sites 

in India. Quiring et al. [38] evaluated the usefulness of the VCI index, by comparing it with frequently 

used meteorological indices. They showed that the VCI responds most strongly to conditions 

of prolonged moisture stress (6–9 months), and appears to be less sensitive to a short-term decrease 

in precipitation. It was demonstrated that the VCI is not a spatially invariant indicator of drought. 

Peters et al. [39] proposed the ―Standardized Vegetation Index‖, using biweekly NDVI data, derived 

from NOAA‘s Advanced Very High Resolution Radiometer (AVHRR) remote sensing instrument, to 

monitor areas of drought. Gouveia et al. [41] used the SPOT-VEGETATION data set to evaluate 

drought and vegetation stress in Portugal. 

Lanfredi et al. [29] proposed a procedure for the estimation of temporal persistence in the NDVI 

data derived from AVHRR observations over a Mediterranean test site. Multi-temporal series of  

SPOT-VEGETATION satellite NDVI data, recorded between 1998 and 2003, were exploited for the 

study of persistence using de-trended Fluctuation Analysis, which allows persistent properties in  

non-stationary signal fluctuations to be detected [44]. Multi-Resolution Analysis (MRA) based on the 

Wavelet Transform (WT) has also been used to study NDVI time series [45]. 

In our study area in Central Tunisia, which is characterized by a semi-arid climate with frequent 

drought periods, there is a need to identify the impact of drought on vegetation cover. In the present 

study, we thus propose an analysis of SPOT-VEGETATION NDVI data, acquired during the 13 year 

period from 1998 to 2010. Our main objective was to analyze the influence of drought on vegetation, 

and to address the following two needs: firstly, to provide an analysis of vegetation persistence during 

periods of drought; secondly, to propose a simple index for the quantification of vegetation stress 

during drought events. 

Our paper is organized as follows: Section 2 presents the studied site, together with a brief 

description of the satellite and ground data used in our analysis. Section 3 discusses our methodology 

for the estimation of persistence. An index used for drought quantification and vegetation stress is 
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evaluated. Section 4 presents the application and validation of this approach, for different types of 

vegetation over the studied site. Finally, our conclusions are presented in Section 5. 

2. Study Area and Data Pre-Processing  

2.1. Study Area  

The studied area is located on the Kairouan plain in Central Tunisia (9°23′–10°17′E,  

35°1′–35°55′N) as shown in Figure 1. The climate in this region is semi-arid, with an average annual 

rainfall of approximately 300 mm per year, characterized by a rainy season lasting from October to 

May, with the two rainiest months being October and March. As is generally the case in semi-arid 

areas, the rainfall patterns in this area are highly variable in time and space: the rainfall extremes 

recorded in the Kairouan plain are: 108 mm in 1950/51, and 703 mm in 1969/70. Figure 2 shows the 

variability of annual precipitation over the last thirteen years. The mean temperature in Kairouan City 

is 19.2 °C (minimum of 10.7 °C in January and maximum of 28.6 °C in August). The winter is cool in 

the north-west of the site and moderate elsewhere. The relative humidity varies between 55% and 70% 

in winter, and between 40% and 55% in summer. The mean annual potential evapotranspiration is 

close to 1,600 mm. 

In the past, most of the surface flow feeding the Kairouan plain came from the three main 

catchments (Zeroud, Merguellil and Nebhana), which are presently cut-off by large dams (Figure 1). 

The aquifer of the Kairouan plain is the largest catchment basin in central Tunisia, and is fed by 

surface water infiltration (Zeroud and Merguellil) during floods in the natural regime, or, since the 

construction of the Sidi Saad and El Haouareb dams, by water runoff from dam releases [46,47]. 

Surface and groundwater discharges are drained into Sebkha Kelbia, a large salt lake. 

Figure 1. Location of the studied site and land-cover map during the 2009–2010 vegetation season. 
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Figure 1. Cont. 

 

The landscape is mainly flat. The crops are various and their rotation is typical of semi-arid regions. 

Figure 1 shows a typical land-cover map, produced from SPOT satellite high resolution data. Three 

land cover classes are dominant over the region of interest, and are analyzed in the present study: 

(i) Pasture cover: a mixed shrub-land cover, typical of semi-arid regions in North Africa, characterized 

by a single greenness peak in spring. (ii) Annual agriculture: mainly winter wheat and barley. These 

crops are sown around mid-November, and are harvested in late May or early June. This form of 

agriculture is characterised by single-peak greenness in mid March. (iii) Olive trees: these correspond 

to the most common class of land use in the studied area. There is a very high mean inter-tree spacing 

of approximately 20m, and the resulting land coverage is quite low (5%). 

2.2. NDVI Data 

The ten-day synthesis (S10) is a full resolution product (1 km resolution), providing 10-day NDVI 

data [48]. The quality of the S10-products is directly related to the quality of the P (physical) products. 

P products are given for top-of-atmosphere (TOA) conditions, for which atmospheric corrections have 

been applied. These are based on the use of the SMAC algorithm [49], which corrects for molecular 

and aerosol scattering, water vapor, ozone and other gas absorption effects. Data inputs for the 

atmospheric correction of SPOT VGT are the aerosol optical depth (AOD), atmospheric water vapor, 

ozone and a Digital Elevation Model for atmospheric pressure estimation [50]. Water vapor (6-hourly 

measurements) is obtained from Meteo-France with a 1.5° × 1.5° grid cell resolution. The AOD is 

derived from the B0 band, in combination with the NDVI [50], although prior to 2001 it was a static 

data set which varied only as a function of latitude. The P products are corrected for system errors 

(mis-registration of the different channels, calibration of the linear array detectors for each spectral 

band), and re-sampled to a Plate–Carrée geographic projection. High absolute location and  
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multi-temporal registration accuracies are obtained, with an estimated absolute location accuracy of 

330 m RMS [51]. The cloud flag information is based on thresholding of the TOA reflectance in each 

of the four bands, which are compared to reference reflectance maps for each band [52,53]. The 

SPOT-4 and SPOT-5 satellites have an equatorial crossing time of 10:30, and their sensor design 

provides an improvement over that provided by the AVHRR scanning array, in terms of spatial 

resolution distortion at off-nadir angles, since it acquires distortion free images at off-nadir angles up 

to about 50° [53]. Furthermore, the SPOT VGT instruments have other advantages with respect to the 

AVHRR sensors, including improved navigation and radiometric sensitivity [54]. The ten-day 

synthesis products (S10) are available at: http://free.vgt.vito.be/. 

2.3. Precipitation Data 

The precipitation estimations for the studied site are based on a network of 30 rain gauges 

distributed over the entire site. A standard kriging approach is used to derive daily precipitation maps. 

One of the most commonly used techniques for interpolation between stations is the ―inverse distance 

weighted‖ (IDW) method, which is based on the assumption that the interpolating surface is influenced 

mainly by nearby stations, and less by the more distant stations. As the landscape is mainly flat, there 

is no mountainous terrain influencing the spatial distribution of rainfall. The interpolated surface is 

determined from a weighted average of the scatter points, and the weight assigned to each scatter point 

diminishes inversely with its distance from a given interpolation point [55].  

This can be written as: 

𝑃 𝑥, 𝑦 =  𝑊𝑖𝑃𝑖𝑛
𝑖=1       (4) 

where Pi is the precipitation at the i
th

 station, Wi the weighting factor of the i
th

 station, n the total 

number of stations used to compute the rainfall at the interpolated point and x,y are the coordinates of 

the specific point. The precipitation time series is thus available at the same 1 km scale as the NDVI 

data set. 

Figure 2. (a) Rainfall variations during the 13-year study period; (b) Annual cycle of 

monthly precipitation. 

 

(a) 
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Figure 2. Cont. 

 

(b) 

Figure 2(a) illustrates the high temporal variability of the estimated annual precipitation of the 

studied site (with a mean value of 252 mm and a standard deviation of 86 mm). In this figure we have 

used the hydrological years, which span from September to August. 2000–2001 was the driest 

hydrological year, with a total of 100 mm of precipitation. The wettest hydrological year was  

2003–2004, with 380 mm of annual precipitation. The mean monthly precipitations are shown in 

Figure 2(b). The rainy season is considered to be the period between September and May. 

3. Methodology 

3.1. Analysis of Persistent Behavior: Method  

To quantitatively characterize NDVI dynamics, a technique is needed to extract robust features 

hidden in the complex NDVI fluctuations. Fractal geometry can be used to describe this complex 

variability of vegetation dynamics [29,56,57]. Fractals have the property of self-similarity, i.e., the 

behaviour of a system is temporally scale-independent, such that measurements made at different 

scales remain comparable. In the present study, our fractal characterization is based on the power 

spectrum dependence of fractional Brownian motion; we determine the power spectrum of the NDVI 

time series by computing its Fourier transform. The scaling behaviour of the data is revealed by a 

power-law dependence of the spectrum as a function of frequency [58,59]: 

𝑆(𝑓) ≈ 1 𝑓𝛽        (5) 

The fractal dimension is derived from the slope β of a least-squares regression linear fit to the data 

points in the log-log plot of the power spectrum, leading to Df = 7/2 − β/2. 

The slope  allows the time-correlation structures, corresponding to the temporal variability of the 

signals, to be analysed [35]. We consider three cases: β = 0, β > 0, and β < 0. 

When (β = 0) the signal is purely random, with uncorrelated samples. We refer to such a process as 

being ‗memoryless‘: there is no relationship between the fluctuations occurring at different time-scales. 

When (β > 0) the temporal variability is persistent. This means that a positive (negative) signal 

variability will probably produce a positive (negative) variation in vegetation dynamics. This 
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corresponds to the case of positive feedback in a vegetation system. 

When (β < 0) the temporal variability is non-persistent. This means that a positive (negative) signal 

variability will probably lead to negative (positive) variations in the vegetation‘s behavior. This is 

equivalent to a negative feedback mechanism. 

3.2. Development of a Vegetation Anomaly Index (VAI) 

Periods of drought have a strong influence on vegetation dynamics, with persistence effects over 

long periods. We clearly observe differences between dry and wet years, for the three principal types 

of vegetation present on our studied site. 

In this section, we propose to use a simple index, which can provide a quantitative illustration of 

vegetation stress and the influence of drought on the vegetation cover. This index is based on statistics 

derived from the NDVI time series, and is referred to as the ―Vegetation Anomaly Index‖ (VAI), written as: 

 

i

meanii
i

NDVINDVI
VAI




       (6) 

Where NDVIi is the NDVI estimate for a given month i, (NDVIi)mean is the mean value of the NDVI 

during month i, derived from the previously described 13 years of NDVI time series, and σi 

corresponds to the standard deviation of the NDVI values estimated for month i, over the same 13 year 

period. 

When the VAI is greater than zero, a high NDVI value, corresponding to the absence of vegetation 

stress or drought, is indicated. 

When the VAI is negative, a low NDVI value, which is probably the result of drought or a period 

with a lack of precipitation, is indicated. We have computed this index for the three types of vegetation 

cover described in Section 2.1. 

4. Results and Discussions 

4.1. NDVI Temporal Series 

Figure 3(a–c) shows the NDVI time series and monthly precipitations recorded over the last 13 

years (September 1998–June 2010), for three types of vegetation: pastures, annual agricultural areas, 

and olive trees. For each case, the NDVI and precipitation data correspond to an average over a 

selected area, with one type of homogenous vegetation cover. Figure 3(d–f) are photographs, 

illustrating the corresponding types of vegetation cover. In all cases, qualitative differences can be 

observed in the NDVI series, between the wet and dry seasons. Indeed, the NDVI maximum, for 

example, reaches only 0.25 over the pastures in 2001, a very dry year, as compared to the value of 0.55 

in 2007, the wettest of the last 13 years. 

4.2. Application of Persistence Analysis to Various Types of Vegetation  

The power spectral density of each NDVI series was computed in order to analyze the persistence 

behavior of the three corresponding types of vegetation cover. 
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Figure 3. Temporal variations of the spatially averaged NDVI for three types of vegetation 

cover, from September 1998 to June 2010: (a) pasture, (b) annual agriculture and (c) olive 

groves. The scale of the abscissa is in units of 1 ―decade‖ (= 10 days). 

  

(a) 

  

(b) 

  

(c) 
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4.2.1. Pastoral Cover 

Figure 4(a) shows the computed power spectral density. For this type of vegetation, the slope  is 

found to be equal to 0.86. A high power peak can also be observed, corresponding to the annual 

periodicity of the vegetation cycle. The influence of the annual periodicity was not eliminated directly 

from the temporal signal before computing the power density, as proposed by [40]. In fact, it is 

possible to extract the high frequency signal only, provided there are no extreme events, which is not 

the case on our site. The peak corresponding to the annual frequency is not taken into account in the 

computation of the slope. The latter indicates the presence of persistent dynamics, with positive 

feedback mechanisms. The linear relationship for the log-log plot is valid for scales ranging between 

approximately two decades and 2 years. This result indicates, in particular, a drought persistence effect 

with this type of vegetation, which can last for more than one year. In the field, this outcome can be 

explained by the fact that a high percentage of the pasture has no annual vegetation, but is covered 

instead by short vegetation, which grows over a period of several years. Following a major drought 

event, and the disappearance of part of the vegetation cover, the latter may require more than one year 

to retrieve the degree of coverage it represented prior to the drought. 

4.2.2. Annual Agricultural Cover 

The results shown in Figure 4(b) indicate two different types of behavior: the first is highlighted by 

the clearly positive slope in the range between two decades and one year, and the second trend is 

shown by the slope close to zero, at frequencies corresponding to a period of more than one year. The 

peak which occurs at the break between these two trends indicates the annual periodicity of the 

vegetation‘s NDVI index. The first trend (positive slope = 1.82) indicates persistent behavior, 

corresponding to the scale of one agricultural season. In practice, the effects of any period of drought 

can be felt throughout the full season. Following this season, there is no memory of what happened 

one year previously. In fact, at the beginning of the autumn, the quantity of water in the soil is always 

very close to zero, independently of whether the preceding season was wet or dry. For this reason, the 

second trend (frequencies less than 1/year) corresponds to a memoryless process. 

4.2.3. Non Irrigated Olive Grove 

For the case of a non irrigated olive grove, Figure 4(c) is characterized by a low slope of 0.50, and 

therefore a small degree of persistence, when compared to that of the pastures, present at all scales 

between two decades and two years. The low persistence effect indicates the olive trees‘ resistance to 

drought. Indeed, in these semi-arid areas, olive trees are highly resistant to frequent periods of drought, 

in particular because of the large distance between trees (approximately 20 m), which allows their 

roots to search for water stock over a large area. 
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Figure 4. Power spectral density plots for: (a) pasture; (b) annual agriculture; (c) olive trees. 

 

(a)       (b) 

 

(c) 

4.3. Evaluation of the VAI  

In this section, following the analysis of drought persistence for the three types of vegetation cover 

on the studied site, we discuss the VAI variations for each month during the rainy season. We firstly 

validate the correlation between this index and both precipitation, and the other proposed indices.  

For each month i, we compute the Cumulative Precipitation CPn,i written as: 
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1
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30
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jininiin

j
PdPPPCP      (7) 

where Pi−n is the total precipitation in month i−n,…, Pi−1 is the total precipitation in month i−1, and 

Pdj is the precipitation on day j, during the month i. 

For a given month i, we assigned a weight to the precipitation of the previous month, because the 

vegetation NDVI index for the month i is influenced mainly by the precipitation which fell during the 

preceding months. In practice, the precipitation measured during the last days of any given month can 
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only have a very limited effect on the vegetation index estimated during that same month. For 

example, for n = 3, this corresponds to the total rainfall of 4 months which is called CP3.  

4.3.1. Correlation of the VAI with Precipitation 

In order to validate the proposed index, we studied the correlation of the VAI with the recorded 

levels of precipitation, given by the cumulative precipitation CPn,i (for n less than 6). The strongest 

correlation is found for n equal to 3. Table 1 illustrates the correlation coefficients, between the VAI 

and the CP3 cumulative precipitation, for the three types of vegetation cover. In general, a high degree 

of correlation is observed between VAI and precipitation, for the pastoral and annual agricultural types 

of cover. A positive VAI generally corresponds to a high level of precipitation, whereas a decrease in 

precipitation generally leads to a decrease in the VAI. In the case of the olive grove cover, the 

correlation coefficient is lower, which, as previously discussed, can be attributed to the limited 

influence of drought on this highly resistant type of vegetation, and also to its limited vegetation 

fraction (about 5%). Table 1 indicates that precipitation does not have an immediate impact on 

vegetation, but rather a cumulative effect. In most cases, the precipitation recorded in any given month 

does not strongly affect the vegetation in that same month, but leads to a notable response over a 

longer period of time. Previous studies have determined the peak NDVI response to precipitation in 

many different zones. Yang et al. [60] found that the NDVI‘s response to precipitation lagged by  

5–7 weeks, for all types of vegetation in Nebraska. A recent study by Wang et al. [61] indicates a lag 

of 4–8 weeks. For periods between 6 and 12 months, the correlations do not improve [60]; this is due 

to the fact that the longer scale of precipitation tends to diminish the variance of the latter. The 

correlation analysis illustrates the robustness of the proposed index. The highest correlations occurred 

during the middle of the growing season (R
2
 around 0.64), whereas lower correlations are noted at the 

beginning and end of the growing season. For example, in March and April high positive correlations 

are noted between the vegetation index and precipitation. March and April are the peak greenness 

months for annual agriculture. This implies that the vegetation expresses its strongest response to 

water availability during the peak greenness period. In June, July and August, there is no significant 

correlation, at the time when most types of vegetation in this region are approaching full senescence. 

4.3.2. Comparison between the VAI and VCI Indices 

Figure 5 provides a graphical comparison of the VAI and VCI indices, as defined in the introduction. 

These two indices are computed on a monthly basis, using all observations recorded in the database 

corresponding to the rainy season between December and May. For the three types of vegetation, these 

two indices are seen to correlated, either for the full range of values, or for a limited range of values. 

For the pastures and olive trees, an approximately linear relationship can be observed. In the case of 

annual agricultural cover, two different tendencies can be seen, with an onset of saturation for positive 

values of the VAI occurring when the VCI reaches a value of approximately 40. This is due to the fact 

that only minimum and maximum NDVI values are taken into account in the computation of the VCI, 

and also to a strong difference between the wet and dry season NDVIs determined for annual 

agriculture, as compared to those computed for the other two types of cover. These two factors lead 

firstly to a high discrepancy between the statistically mean value of the NDVI, and the mean level 
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computed for the VCI index, and secondly to a high standard deviation used for the VAI computation 

(Equation (3)), which tends to prevent the VAI from increasing beyond a value of about 2. For the 

same reasons, it can be seen that a zero value for the VAI does not correspond to a value of exactly 50 

for the VCI index. The difference between the statistical mean values, and the mean value computed 

from the minimum and maximum NDVI levels only, could vary from one region to another and from 

one type of vegetation cover to another. On the basis of the observed differences between these two 

indices, the VAI is found to have a better performance in terms of the measurement of drought 

intensity. 

Table 1. VAI to CP3 precipitation correlation coefficients, computed for each month, for 

annual agriculture, pastures and olive groves. 

 Annual Agriculture Pastures Olives 

Month Correlation Coefficient R
2
 

September 0.006 0.238 0.032 

October 0.131 0.678 0.218 

November 0.035 0.245 0.004 

December 0.349 0.185 0.084 

January 0.444 0.497 0.020 

February 0.326 0.119 0.000 

March 0.681 0.572 0.028 

April  0.573 0.544 0.115 

May 0.333 0.222 0.013 

June  0.078 0.054 0.011 

July 0.105 0.126 0.032 

August 0.115 0.019 0.004 

Figure 5. Intercomparison of VAI and VCI indexes, estimated from the full set of 

recordings corresponding to the rainy season months (December–May). 
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Figure 5. Cont. 

 

 

4.3.3. Comparison between the VAI and DEV.NDVI Indices 

Figure 6 provides a graphical comparison between the VAI and DEV.NDVI indices, as defined in 

the introduction. Comparatively small differences are observed between the two indices. The VAI is 

simply the product of DEV.NDVI and the standard deviation computed for each month, thus explaining 

that these figures contain index data points whose mean value is equal to zero. A high degree of 

coherency can be observed between the two indices for each month. Dry seasons lead to negative 

values for both indices, and rainy seasons lead to positive values for both indices. However, from one 

month to another, variations in the linear relationship between the two indices can be observed, as a 

consequence of variations in the value of standard deviation computed from one month to another. 

This outcome highlights limitations in the DEV.NDVI index for the month-by-month estimation of 

drought intensity. This is particularly noticeable in the case of olive tree land cover, for which there are 

only small variations in NDVI. In fact, division by the monthly standard deviation, used in the 

determination of the VAI (Equation (3)), allows a normalized value to be computed, which is 

independent of the selected time period or type of vegetation. For this reason, the VAI could provide a 

more detailed description of the vegetation cover dynamics, with no need for other complementary or 

auxiliary forms of data. 
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Figure 6. Intercomparison between VAI and DEV.NDVI indexes, estimated from the full 

set of database recordings corresponding to the rainy season months (December–May). 
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4.4. VAI Applications  

4.4.1. Application of the VAI to Pasture Cover 

Figure 7 shows the VAI variations determined for the case of pasture cover. A good degree of 

coherence can be seen between the VAI and the cumulative precipitation CP3. In the month of March, 

the minimum values, close to −1.3, are observed for the driest years, 2001 and 2002, which also 

correspond to the period with the lowest level of precipitation, from the full time series. These results 

also correspond with those observed for annual agriculture, as discussed in the previous section. 

Figure 7. Variations in the VAI for each month between December and May, for the case 

of a ―pastoral‖ vegetation cover.  

 

4.4.2. Application of VAI over Annual Agriculture Cover 

Figure 8 shows, for each month from December to May, as a function of the 13 processed years in 

our database, the VAI together with the CP3 ―cumulative four month precipitation‖. Depending on the 

month of the year, the VAI can be seen to range between approximately −3 and 2. As an example, 

during the month of December the VAI ranges between a minimum of −2.75 in 2000, the driest year, 

and a maximum of 0.5 in 2008. In general, limited periods of drought, or a lack of precipitation lasting 

for a period of several weeks, were observed every year. This leads to a local decrease in the VAI. 

Qualitatively, a strong correlation can be observed between the VAI and the cumulative precipitation, 

CP3: a strong decrease in the cumulative precipitation is generally associated with a negative VAI. This 

can be seen for example in 2001 and 2002, for almost all months (values between −1.3 and −2). On the 
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other hand, a strong increase in CP3 leads to a positive VAI, as can be seen in several different cases, 

for example in the month of March 2003 or 2004.  

Figure 8. Variations in the VAI, for each month between December and May, for the case 

of an ―annual agriculture‖ vegetation cover. 

 

4.4.3. Application of the VAI to Olive Tree Land Cover 

Figure 9 shows the VAI variations determined for the Kairouan plain olive groves. As a result of the 

small variations in NDVI for the case of olive tree coverage, due to the highly dispersed nature of this 

vegetation and its high resistance to periods of drought, the VAI is less sensitive to drought and long 

periods of rain. This is the reason for which a weaker degree of correlation can be seen with 

precipitation (CP3), as compared to the other types of vegetation cover. 

4.4.4. Analysis of VAI Indices for the Driest and Wettest Years 

Figure 10 shows the VAI variations and corresponding CP3 estimations for two different periods; 

2000–2001, the driest period with a total precipitation equal to 100 mm, and 2003–2004, the wettest 

period with a total precipitation equal to 380mm. For the first of these, we observe a consistently 

negative index, for all months, in the case of the pastoral and annual agriculture vegetation covers, 

which indicates high vegetation stress and drought for the full duration of the season. In the case of 

olive tree cover, as mentioned in the previous section, the correlation with drought periods is less 

significant, and the VAI is not consistently negative. During the 2003–2004 season, the index is 

positive for the first three months starting in December, because of the occurrence of high levels of 
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precipitation during this period. During the other years, both positive and negative VAI can be 

observed, which appear to be strongly correlated with the presence (or absence) of precipitation. 

Figure 9. Variations in the VAI for each month between December and May, for Olive groves. 

 

Figure 10. Variations in the monthly VAI for each type of vegetation cover, with data 

points at 10-day (decade) intervals from December to the end of May, for two different 

periods: (a) the drought year 2000–2001, (b) the wet year 2003–2004. 

 

(a) 
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Figure 10. Cont. 

 
(b) 

5. Conclusions 

This paper proposes to analyze the behavior of vegetation as a consequence of drought, using 

SPOT-VEGETATION NDVI data. Analysis of the power spectral density of the NDVI corresponding 

to three forms of land cover (pasture, annual agriculture, olive trees) reveals persistent temporal 

fluctuations, for time scales ranging between three decades and approximately two years, with the 

greatest persistence being observed for annual agriculture.  

An index based on the statistics of NDVI time series, which we refer to as the Vegetation Anomaly 

Index (VAI), is proposed for the monitoring and analysis of drought intensity. A positive VAI indicates 

satisfactory vegetation dynamics, whereas a negative VAI indicates the presence of vegetation stress. 

The performance of the VAI is firstly compared with the other two well-known remote sensing indices 

(VCI and DEV. NDVI) found in scientific literature. This comparison confirms the VAI’s ability to 

more accurately detect drought and analyze its intensity. The VAI is also compared with precipitation, 

with which it is found to be well correlated: the correlation is strongest for 4-month cumulative 

precipitation (CP3). This is a consequence of the time lag between the vegetation‘s response to 

precipitation, and the fact that water deficits have a cumulative impact on vegetation, especially in arid 

regions. Despite its strong potential, the VAI may be affected by some limitations, as a consequence of 

its potential sensitivity to effects other than drought, such as evolutions in land use from one year to 

another, the strong influence of irrigation in agricultural areas, and also land use heterogeneities over 

the studied area. 

In future studies, we plan to analyze potential applications of the VAI index at the spatial scale of a 

single pixel. An analysis of the various limitations of this index, in particular the influence of surface 

heterogeneities, will also be investigated.  
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