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Abstract

Background: Independence between observations is a standard prerequisite of traditional statistical tests of association.
This condition is, however, violated when autocorrelation is present within the data. In the case of variables that are
regularly sampled in space (i.e. lattice data or images), such as those provided by remote-sensing or geographical
databases, this problem is particularly acute. Because analytic derivation of the null probability distribution of the test
statistic (e.g. Pearson’s r) is not always possible when autocorrelation is present, we propose instead the use of a Monte
Carlo simulation with surrogate data.

Methodology/Principal Findings: The null hypothesis that two observed mapped variables are the result of independent
pattern generating processes is tested here by generating sets of random image data while preserving the autocorrelation
function of the original images. Surrogates are generated by matching the dual-tree complex wavelet spectra (and hence
the autocorrelation functions) of white noise images with the spectra of the original images. The generated images can then
be used to build the probability distribution function of any statistic of association under the null hypothesis. We
demonstrate the validity of a statistical test of association based on these surrogates with both actual and synthetic data
and compare it with a corrected parametric test and three existing methods that generate surrogates (randomization,
random rotations and shifts, and iterative amplitude adjusted Fourier transform). Type I error control was excellent, even
with strong and long-range autocorrelation, which is not the case for alternative methods.

Conclusions/Significance: The wavelet-based surrogates are particularly appropriate in cases where autocorrelation
appears at all scales or is direction-dependent (anisotropy). We explore the potential of the method for association tests
involving a lattice of binary data and discuss its potential for validation of species distribution models. An implementation of
the method in Java for the generation of wavelet-based surrogates is available online as supporting material.
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Introduction

A major goal in natural sciences is to uncover and quantify the

processes responsible for the spatial and temporal dynamics of

natural systems. Depending on the spatial and temporal scales at

which the processes act, manipulative experiments – that could

provide repeated realizations of the process under controlled

conditions – may be difficult if not impossible. As a consequence, a

common practice consists in applying appropriate analytical tools

to infer properties of the processes under study only from their

available realizations, i.e. the observed natural patterns. Such an

approach is all the more timely now that an impressive number of

physical and biological variables are measured and mapped at

global scales and at high resolutions (e.g. [1]). The increasing

availability of these large gridded datasets is due not only to the

advances in remote-sensing, geodesy, and information technolo-

gies, but also to numerous initiatives facilitating their accessibility.

Among others, these are, for optical and biophysical variables, the

Global Land Cover Facility (www.landcover.org) and the Google

Earth Engine� platform, and, for organisms’ occurrences, the

Global Biodiversity Information Facility (www.gbif.org). In

ecology, for instance, this broadens the use of spatial patterns or

spatial residuals to uncover unmeasured or unmeasurable

processes [2]. This approach has come to be used increasingly

in ecology for the delimitation of environmental niches of species

and the prediction of their geographic distributions [3]; in

epidemiology for the control and forecasting of disease risks (see

Hay et al. [4] for a dedicated volume) as well as in the social and

environmental sciences for the description and understanding of

processes that generate observable patterns [2,5].

However, the very general and long standing question of

determining whether two spatial patterns appear associated by
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chance or not still presents some unsettled problems. For instance,

association tests may compare a species’ abundance pattern or

disease prevalence with the pattern of abundance of another

species or of background environmental conditions, or with

specific outputs of mechanistic models [6–8]. These examples

are typical cases where the constraint on data collection does not

commonly allow for recording repeated realizations of the

hypothetical underlying process creating the association. We

therefore resort to the principles of statistics to determine, under

particular assumptions, the level of confidence we can grant to the

observed measure of association.

Independence between individual observations is a usual

assumption of traditional statistical tests, which is not guaranteed

for any dataset that is not the product of truly random sampling.

Because of the continuous nature of geographic variations

(Tobler’s ‘‘first law of geography’’ [9]), some correlation, positive

at the shortest distances and decreasing as distance increases, is

often present between spatialized observations. Other types of

structures, for instance displaying negative autocorrelation at short

range (inhibition), though less frequently reported, also exist.

Whatever the structure, ignoring this spatial autocorrelation (SA)

in statistical inferences means treating correlated observations as

independent replicates, and thus is a form of pseudoreplication

against which criticism has long been directed (for instance see

[10], in ecology).

SA may arise at a wide range of scales for a number of reasons.

For instance, in the distribution of organisms, SA may result from

environmental, physiographical and historical factors that limit the

mobility of organisms. Behavioural factors and other intrinsic

dispersal limitation factors may also cause the spatial aggregation

of populations and species in the landscape. The environment

itself, which constrains the survival and reproduction of organisms,

is also subject to SA. In addition to these intrinsic factors, SA can

artificially arise in distribution data if the sampling effort is not

constant over the studied area. We will not review here the

different methods to test for the presence and magnitude of SA in

data, but rather signal to the reader the large body of literature

concerned with this issue [11].

When dealing with the association between variables, it is well

known that the consequence of ignoring SA, and therefore

violating the assumption of independence between observations,

means an inflation in type I error rate (probability of falsely

rejecting the null hypothesis, usually denoted by a) that is an

increasing function of the degree of SA [12,13]. Several

alternatives to standard statistical approaches have been proposed

so as to provide unbiased coefficient estimation in regression

analysis [11,14–16] or for the study of scale-specific associations

[17–19]. There is, however, no general framework for the analysis

and statistical inference of association between autocorrelated

variables.

Our aim here is to propose an unbiased Monte-Carlo test for

lattice or image data based on the generation of sets of ‘‘surrogate’’

data that share the autocorrelation function of observed data. We

introduce a new generation method based on an image synthesis

technique using a particular class of wavelet transform, namely the

dual-tree complex wavelet transform [20,21] (see methods). In the

following section we use simulated and real world images to

compare the performance of this new method with more classical

ones. We show that, thanks to our method, a fairly unbiased test of

pairwise association is now achievable despite the presence of

strong and long-range autocorrelation within one or both of the

variables involved. We address not only the case of continuous

data but also of binary ones.

Results

The Monte-Carlo test consists in assessing the significance of an

observed test statistic by comparing it with a set of values of this

statistic obtained by generating random data, called ‘‘surrogates’’

in signal processing, using some assumed model [22,23]. Because

the surrogate generation process attempts to implement a null

hypothesis, we then refer to it as a ‘‘null model’’ [24]. In Figure 1,

examples are given for random realization of the four null models

considered here with respect to four simulated fractal images with

increasing degrees of autocorrelation (as controlled by the energy

spectrum exponent b, see methods).

The first null model is a complete random reassignment of pixel

values within the image (Fig. 1, row 2). This randomization not

only destroys the link between the paired observations of the two

variables (which is desirable to test association) but also destroys

the possible autocorrelation pattern in each variable. This non-

spatial null model has obvious drawbacks and is just included here

for comparison.

The second model is the random shift null model which consist

of random rotation, reflection, and translation in the X- and Y-

Cartesian axes [25,26] (Fig. 1, row 3). Values that are shifted

beyond the edge of the data grid are wrapped back on to the

opposite edge as if the data was actually mapped onto a torus.

While preserving the general autocorrelation structure of the

Figure 1. Examples of surrogates for images with increasing
degree of autocorrelation. The first row features particular
simulations of fractal patterns (fractional Brownian field) generated by
Fourier synthesis [27] for four degrees of autocorrelation (from short- to
long-ranged as indirectly quantified by the b parameter). The following
rows (2 to 5) display one particular random realization (i.e. re-
simulation) of each of these fractal patterns according to four surrogate
producing methods (random reassignments, random shifts, iterative
amplitude adjusted Fourier transform (IAAFT) and wavelet-based
energy synthesis, respectively).
doi:10.1371/journal.pone.0048766.g001

Wavelet-Based Surrogate for Hypothesis Testing
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pattern, this procedure however introduces artificial linear

frontiers by placing at adjacent locations values initially located

at opposite edges. In the case of highly autocorrelated data, the

shifting procedure therefore artificially introduces low autocorre-

lation values at short distances between the adjacent sides of the

shifted edges.

The third null model is known as the iterative amplitude

adjusted Fourier transform (IAAFT) (Fig. 1, row 4). The IAAFT

surrogates are widely used in hypothesis testing because they can

be efficiently generated and they preserve both the frequency

distributions and the power spectra (and hence the autocorrela-

tion) of the original data while at the same time being realizations

of random processes [23]. A detailed description of this method is

provided in the methods section. However, the Fourier transform

implicitly considers the signal as an infinite periodic sequence, and,

therefore, may underestimate the autocorrelation function at small

scales for similar reasons as the random shift procedure does.

We propose here a fourth null model inspired by the IAAFT,

yet benefitting from recent developments in image synthesis

techniques. It is based on the dual-tree complex wavelet transform

(DT-CWT) [20,21], which is an improvement on classical discrete

wavelet transform techniques (DWT) that is immune to shift

dependence, i.e., major variations in the distribution of DWT

coefficient energy over scales and orientations caused by small

integer displacements of the pattern. DT-CWT also has the

advantage of a better distinction and reproduction of possible

pattern directions. Lastly, like most wavelet approaches, it is

immune to the aforementioned IAAFT bias (Fig. 1, row 5). See the

methods section for a full description of the procedure.

In order to determine whether the above null models are able to

provide unbiased association tests between two autocorrelated

variables, we assessed the control of the type I error as described in

[8,15]. The first step is to generate one pair of independent

reference images to be tested for dependence. Both images are

generated with the same degree of autocorrelation using Fourier

synthesis (see methods and reference images in Fig. 1). This

Fourier synthesis generates self-similar, or fractal, spatial struc-

tures, which is a desirable property because these are common in

nature and especially in natural landscapes, as they often arise

when a single structuring process dominates over many scales [27–

29]. For each of the above null models, 499 pairs of Monte Carlo

replicates were then generated from the actual pair (see [22] for a

discussion about the adequate number of replications). Pearson’s

product-moment correlation coefficient (referred to as the r

statistic) was then computed for each of the 500 pairs, including

the actual one, so as to build the null probability distribution

function (PDF) of the test statistic. For a one sided-test, large values

of the observed test statistic provide evidence against the null

hypothesis. The statistic is declared significant at the level a if it is

one of the largest n a values (e.g. 25 if a= 5% and n = 500). In the

case of Pearson’s product-moment correlation coefficient, which

may vary between 21 to 1, the test is two-tailed and we consider

the proportion of simulations for which the correlation rsim falls

outside the interval ]- robs, robs[ where robs is the observed

correlation. This statistical test was repeated on 1000 pairs of

reference images. The proportion of reference pairs declared to be

significantly correlated (observed type I error rate) was assessed

over the full possible range of significance levels a [0,1] (expected

type I error) as to compute a type I error calibration curve

allowing the comparison between null models and/or reference

data. Note that we do not deal here with the power of statistical

tests (the probability of rejecting the null hypothesis when the null

hypothesis is not true) which is related to the type II error. Along

with the aforementioned null models, we also computed Dutilleul’s

modified t-test [18,19], which assesses the ‘‘effective’’ number of

degrees of freedom in autocorrelated data. This method assumes

the existence of a maximal range for the autocorrelation in order

to analytically derive the variance of the sample covariance

between the two variables.

Type I error calibration curves for four different degrees of

spatial autocorrelation and for the aforementioned null models are

presented in Figure 2. When spatial autocorrelation is absent

(b = 0, i.e. white noise) from both maps involved in the spatial

dependence test, all the four null models along with the corrected

test of Dutilleul generated type I error rates that were non-

significantly different from expected (Fig. 2.). This indicates that

when there is no spatial dependence within the data, any of the

above null models can be the basis of a valid statistical test.

With increasing spatial autocorrelation (b.0, i.e. colored noise),

the random reassignment null model shows an increasing inflation

of type I error rates at the classical critical significance level of 0.05

which is used in life and social sciences. This inflation means that a

significant association will be falsely concluded more often than

the nominal 5%. The inflation is confirmed by the high values and

strong significance of the associated Kolmogorov-Sminorv max-

imum difference statistic (dMAX). The inflation is very high even at

a fairly low degree of spatial autocorrelation (b = 1.5) for which we

found that an erroneous significant association would be

concluded over 36% of the time instead of the expected 5%. This

result is consistent with previous findings that the traditional

statistical tests, conceptually based on random reassignment,

generates unacceptably high rates of type I error in presence of

SA [12,13].

For the three other null models, good control of type I error

were obtained for the lower degrees of SA considered. However,

the inflation in type I error rates started to be substantial for b$3.

For the random shift and IAAFT null models, the inflation was

related to the loss of spatial autocorrelation between values on

both sides of the shifted edges. This loss results in the inability of

the null model to correctly account for the presence of high

degrees of spatial autocorrelation extending over distances far

larger than the image size, and therefore induces a marked type I

error rate inflation.

The Dutilleul’s modified t-test showed even stronger inflation of

type I error for b$3. It is indeed not suited for fractal or scale-

invariant patterns, that feature spatial dependence at every spatial

scale (also known as long-memory processes), and therefore

violates one of the central assumptions of this test, that postulates

vanishing SA beyond a certain range.

The wavelet-based synthesis null model gave very good type I

error control for every considered degree of autocorrelation.

Varying image sizes from 4 to 128 pixels (results not shown here)

did not affect the type I error calibration curves, thus suggesting

that the validity of this method is not affected by image size.

Natural systems are generally not truly fractals because multiple

structuring processes that induce different spatial patterns at

different scales may occur. We therefore also tested the validity of

the wavelet-based image synthesis null model against actual

patterns. In order to get a large number of independent real-world

lattice data to assess the relevance of the null models, we

subdivided a world-wide lattice dataset of altitude above mean sea

level into non-overlapping grids of 32632 cells. This dataset comes

from the Shuttle Radar Topography Mission (SRTM), which

obtains elevation data using a radar system flown onboard a space

shuttle [30]. Each value in the lattice is averaged over a square

area of 2.5 arc-minutes. We applied the same procedure on a

global map of net primary production (NPP, carbon m22 year21)

which is derived from the Advanced Very High Resolution

Wavelet-Based Surrogate for Hypothesis Testing
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Radiometer satellite images [31]. In our case, the meaning of the

values is less important than the spatial structure occurring within

the datasets. The altitude dataset is characterized by rather smooth

variations in space and near self-similarity. The productivity

dataset differs from the SRTM by frequent abrupt transitions

often linked to changes in land covers. Figure 3 indicates that the

wavelet-based synthesis null model performs well not only on

stochastic fractal maps but also on real-world patterns with either

smooth (SRTM) or abrupt variations (NPP). In order to evaluate

the efficiency of the direction selectivity property (anisotropy) of

the wavelet-based image synthesis, we implemented an alternative

version of the null model where direction selectivity is disabled.

This modification is achieved by computing and matching the

energies at the scale level rather than separately for each of the six

direction subbands (see methods). The resulting direction inde-

pendence (isotropy) leads to a doubling of type I error rates at

a= 0.05 (Fig. 3), which shows that direction selectivity is a decisive

property of the surrogate generation process to achieve an

unbiased test.

We finally tested the methods against binary images (Fig. 4)

generated by thresholding the simulated continuous-valued fractal

patterns (see methods). In this case, a classical statistic of

association between two binary patterns is Pearson’s chi-square,

which ranges between [0+‘] so that a one-tailed test of association

is required. We also used the modified Pearson’s chi-square

statistic proposed by Cerioli [32,33] for autocorrelated discrete-

valued spatial processes in lieu of Dutilleul’s. Here also, increasing

inflation of type I error with increasing spatial autocorrelation

were found for the random reassignment and IAAFT null models

as reported by [8] for the former. The random shift null model was

able to handle a degree of autocorrelation as high as b = 1.5, but

failed in face of higher degrees of spatial autocorrelation. The

modified test of Cerioli and the wavelet-based null model showed

acceptable results for b up to 3. But; although the inflation was

about two times lower than observed for the random shift null

model, both formed a quite liberal test for strong SA (type I error

of about 0.13 instead of 5% with b = 4.5). For the wavelet-based

null model, these inaccuracies are the consequence of the

supplementary constraint of matching frequency distribution

which inevitably weakens the matching of energies (SA function).

Figure 2. Type I error calibration curves for continuous fractal patterns generated through Fourier synthesis of 32632 pixels
images [27] (see Fig. 1 for examples). Observed versus expected type I error probabilities resulting from independence tests on 1000 pairs of
simulated images, are plotted for every combination of method (colour curves) and degree of spatial autocorrelation (panels) as measured by the
energy spectrum exponent, b. Methods compared are random reassignments, random shifts, corrected t-test of Dutilleul (ModT), iterative amplitude
adjusted Fourier transform (IAAFT), and wavelet-based image synthesis. Each bin is 0.05 wide. The Kolmogorov-Smirnov (K.-S.) maximum difference
statistic which measures the departure from the line of identity (dashed line) is indicated for each curve along with results of the derived test of the
departure: *** = p-value,0.001; * = 0.01#p-value,0.05; NS = not significant.
doi:10.1371/journal.pone.0048766.g002

Figure 3. Type I error calibration curves for real data pertaining
to earth relief or biomass production. Observed versus expected
type I error probabilities resulting from an independence tests on 1000
pairs of simulated images, are plotted for every combination of method
(colour curves) and dataset (panels). Methods compared are the
corrected t-test of Dutilleul (ModT) and wavelet-based image synthesis
method, with direction selectivity feature disabled (isotropic) and
enabled (anisotropic). Data are non-overlapping windows extracted
either from digital elevation models (SRTM 1.3u61.3u windows) or net
primary production map (NPP 2.3u62.3u windows). The first row of the
figure features particular extracts exemplifying the kind of patterns
characteristic of each dataset. Each bin is 0.05 wide. The Kolmogorov-
Smirnov (K.-S.) maximum difference statistic which measures the
departure from the line of identity (dashed line) is indicated for each
curve along with results of the derived test of the departure: *** = p-
value,0.001; ** = 0.001#p-value,0.01.
doi:10.1371/journal.pone.0048766.g003

Wavelet-Based Surrogate for Hypothesis Testing
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Discussion

Null models are tools for determining how strongly associated

two variables would be if associations were only caused by

coincidental similarity. If the observations are not the result of

independent experimental treatments, but rather sequential

observations in space, the null model should incorporate the

autocorrelation likely to be present within the variables because it

is a major source of coincidental covariations.

Our result underscores the need to verify prior to any analysis

that the data are in agreement with the particular assumptions of

each null model. The random reassignments null model, which

assumes complete spatial randomness, is generally inappropriate

and yields biased results as already noted by many authors. For the

random shifts null model, complete spatial randomness is not

assumed, but there is an assumption of periodical boundaries,

which is highly unrealistic for geographical observations, and

becomes a source of type I error rate inflation if autocorrelation is

long-ranged. The modified t-test of Dutilleul and the modified chi-

square test of Cerioli both make the assumption of long-range

independence of observations. As signalled by the increased type I

error rate we observed on real images, this assumption is limiting

for the use of these corrected tests regarding a wide class of real-

world data of ‘smooth’ aspect.

For this reason, we propose a wavelet-based null model aiming

to synthesize image data while conserving the observed autocor-

relation function in the form of the wavelet energy spectrum. Here

we show that this null model, that makes no assumptions regarding

the shape of the autocorrelation function, is far less sensitive to the

presence of long range dependence than other methods. Since no

serious bias was noted with both synthetic and actual data we

conclude that the method is a sound basis for association tests

involving any kind of continuous-valued lattice data (maps,

images).

As shown by the present results the wavelet image synthesis null

model is also relevant to gridded binary data. Indeed, bias in the

type I error distribution remains absent or acceptable as long as

the pattern does not tend too much towards the ‘‘red-spectrum’’

type, i.e., fractal patterns with very high degree of autocorrelation,

say b values above four. For values under that threshold, it appears

that the method can be safely applied to test the association

between two binary images or between a binary and a continuous

variable (result not shown).

The method is however limited to lattice data and cannot be

applied to data resulting from a sampling design, for which case we

have verified here that Dutilleul’s or Cerioli’s methods remain

good options as long as the risk of bias due to long range

correlations is borne in mind.

We presented here an application of our wavelet-based image

synthesis null model for the study of multi-scale pairwise

association. The functioning of the null model is however not

limited to the use of Pearson’s r and analogous chi-square statistics

but can be ported to any test statistic derived from two or more

lattice data. For instance, inferences on scale-specific correlation or

‘‘causality’’ [17–19] imply the use of surrogate data. Association

tests are also promising tools for the validation of species

distribution models (SDMs, also known as ecological niche

modeling), which combine observed species’ occurrences with

mapped environmental data to predict species probability of

occurrence at unsampled locations [3]. A common practice for

evaluating SDMs predictive ability involves the computation of

accuracy statistics on an independent set of occurrences [34].

However, the production of truly independent additional obser-

vations is highly challenging due to the autocorrelated nature of

both species’ distributions and environmental drivers, thus leading

frequently to over-optimistic estimates of models’ predictive ability

[35–37]. Moreover, even if an independent sample is available,

correspondence between predictions of the model and additional

occurrences may arise by chance for the very reasons already

mentioned for association tests and, thus, this does not prove the

validity of the model but merely our failure to disprove it. The

Figure 4. Type I error calibration curves for fractal binary data generated through Fourier synthesis and thresholding of
32632 pixels images [27]. Observed versus expected type I error probabilities resulting from an independence tests on 1000 pairs of simulated
images, are plotted for every combination of method (colour curves) and degree of spatial autocorrelation (panels) as measured by the energy
spectrum exponent, b. Methods compared are random reassignments, random shifts, modified chi-square test of Cerioli (ModChi2), iterative
amplitude adjusted Fourier transform (IAAFT), and wavelet-based image synthesis. Each bin is 0.05 wide. The Kolmogorov-Smirnov (K.-S.) maximum
difference statistic which measures the departure from the line of identity (dashed line) is indicated for each curve along with results of the derived
test of the departure: *** = p-value,0.001; * = 0.01#p-value,0.05; NS = not significant.
doi:10.1371/journal.pone.0048766.g004

Wavelet-Based Surrogate for Hypothesis Testing
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rejection of the null hypothesis, that the species presence is

indifferent to the environmental factors considered, requires the

construction of a null model. By generating the probability

distribution of any accuracy statistic expected for random

association between environmental drivers and species presence,

one can then decide whether or not to reject the null hypothesis.

For this aim, several statistical approaches have been proposed

[38–40] but none of them consider the spatial location of samples

and the probable autocorrelation. More recently, Raes and ter

Steege [7] addressed the autocorrelation within a species’

occurrence map created by a heterogeneous sampling effort. To

account for it, they proposed a null model approach based on the

random reassignment of the occurrence map. SA was incorporat-

ed by restricting the randomly drawn occurrences to localities

known to be part of the sampling scheme of the study area (i.e. the

entire set of sampled occurrences irrespective of the species label).

Regarding this issue, the wavelet-based image synthesis null model

for the simulation of binary occurrence maps has the advantage of

reproducing the autocorrelation patterns either linked to sampling

or to species’ dynamics. At no other expense than an increase in

processing time, this null model could be incorporated into a

significance test for any test statistic (e.g. the widely used area

under the curve or AOC [34]) without the need to gather data on

sampling effort across the study area that are most often

unavailable.

Considering the realm of applications that rely on lattice data,

there are two main directions in which to develop the approach of

wavelet-synthesis null model. First, it seems quite straightforward

to extend the method to assessing the relative influence of

explanatory variables on a response variable through coefficients

of partial correlations. Second, there is a need to consider lattice

data which are partially censured, for example maps or regions or

borders of a continent along a shoreline. Particular algorithms for

the estimation of the power spectrum from irregularly sampled

data might provide an answer but this remains an open field of

investigation.

Methods

1. Replicating image autocorrelation function using
Fourier transform

The properties of the discrete Fourier transform (DFT), have

widely been used for the generation of surrogates which preserve

the ‘‘linear properties’’ of the data (the first and the second

moments, i.e. mean, variance and auto-correlation functions)

[23,41,42]. Fourier analysis consists in representing any function

in terms of the sum of its projections onto a set of sinusoid

functions of discrete frequencies and directions. The decomposed

function in frequencies i and j, in X and Y Cartesian directions,

can be expressed as aij exp(i Wij) with a magnitude aij and a phase

Wij (the displacement of each sine wave from an arbitrary common

origin). From the magnitude and phase coefficients the original

signal can be exactly reconstructed by the inverse discrete Fourier

transform (IDFT). The squared values of the magnitude coeffi-

cients make the power spectrum or energy spectral density of the

original signal, and corresponds to the decomposition of the

variance (or ‘‘energy’’) of the signal into harmonic frequencies. In

order to generate random maps that all match the autocorrelation

structure of a given map, a straightforward way is to take

advantage of the Wiener–Khinchin theorem [43] which states that

the energy spectral density of a stationary random process is the

Fourier transform of the corresponding autocorrelation function.

This means that any set of maps sharing the same energy spectral

density also shares an identical autocorrelation function and vice-

versa. A simple phase randomized surrogate will therefore achieve

our goal of preserving the autocorrelation function. However, the

data generated this way will have a normal distribution. Because

the normality assumption is rarely met by actual data, a method

was proposed in [44] that preserve both the sample probability

distribution of values and the power spectrum (hence autocorre-

lation function). This method is known as iterative amplitude

adjusted Fourier transform (IAAFT):

1. Randomly shuffle the values in the empirical data.

2. Convert the data into the frequency domain by computing its

two-dimensional discrete Fourier transform.

3. Conserve the phases Wij of the Fourier coefficients and replace

the magnitudes aij with those of the original data.

4. Form the complex coefficients that encodes both the

magnitude and the phase component aij exp(i Wij) ; aij cos

Wij+i aij sin Wij;

5. Convert back to the spatial domain by taking the inverse

Fourier transform of the coefficients and drop the imaginary

part to convert the complex-valued result to real values.

6. Because the probability distribution will no longer be correct,

transform the data to the initial probability distribution by rank

ordering and replacing each value with the value in the original

data having the same rank.

7. Repeat steps 2 to 6 until the power spectrum adjustment step

no longer alters the rank order.

The procedure could be terminated with either step 5 or 6,

depending on whether the residual biases are more tolerable in the

power spectrum or in the probability distribution, respectively

[44]. Here we choose the probability distribution matching as the

final step. However, choosing the alternative has no substantial

influence on our results (not shown). Besides its wide availability in

software packages, the Fourier transform has several important

properties including rapid computation time, shift invariance (a

translation of the signal does not affect the energy of the Fourier

coefficients), and directional selectivity. However, the Fourier

analysis implicitly treats the signal as an infinite periodic sequence

(known as periodic extension), as if the map were wrapped around

a torus. The eventual abrupt transitions that occur between

opposite edges are translated in the frequency domain into

undesirable aliasing frequencies. This undesirable noise in the

spectral estimates can be reduced by either windowing or

detrending the data prior to decomposition. However, the low

frequency content of the windowing or trend functions will

introduce an additional bias. As a consequence, to be valid as a

null model, the Fourier transform procedure requires assuming an

infinite periodic signal, as does the random shift null mode, which

is unrealistic in many situations.

2. Replicating image autocorrelation function using
wavelet transform

Also appropriate for the estimation of the power spectrum, are

the locally oscillating basis functions known as wavelets. They have

widely been used for the generation of surrogate data in one

dimension [45–47]. An intuitive way to understand the wavelet

transform is to imagine that we shift a given wave template

contained in a window so as to center it on top of every value

along the X- and Y-axis of the image. The transform produces a

grid of coefficients, known as a subband in the wavelet jargon, with

higher amplitude when the portion of the image in the gliding

window matches the wave template in form and dimension, and

lower amplitude when it does not. The image is then down-
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sampled by a factor of two and this convolution with the wave

template is performed again to get the subband corresponding to

the next coarser scale. The wavelet transform thus provides a

space-frequency analysis of the signal by measuring its frequency

content at every point in space. When processing coefficients near

the edges of the image data, the transform will require samples

outside the defined range. Unlike with the DFT which demands a

periodic infinite extension of the signal (as if the image is wrapped

on a torus), the wavelet transforms can be implemented with so

called symmetric extension, which adds values following a mirror

symmetry around the edges of the original data. In this way, the

signal is extended without any artificial abrupt transition.

Unfortunately, in spite of its efficient computational algorithm,

the traditional discrete wavelet transform (DWT) suffers from

three interrelated shortcomings that are not present in the Fourier

analysis [48]. First, the transform exhibits shift dependence, i.e.,

small integer displacements of the pattern can cause major

variations in distribution of DWT coefficient energy over scales

and orientations. Second, the inverse transform achieves imperfect

reconstruction of the original image and the shift dependence leads

to artifacts (aliasing) if some coefficient processing is applied.

Finally, it has poor directional selectivity in two or more

dimensions, i.e., it cannot distinguish frequencies on opposing

diagonals (645u).
A common way to overcome these shortcomings is to use Gabor

filters. However, the transformation to the Gabor space is

computationally expensive and the high redundancy in the output

coefficients increases the complexity of subsequent processing.

Fortunately, the Q-shift dual-tree complex wavelet transform (DT-

CWT), a recent enhancement to the DWT [20,21], overcomes

these shortcomings. Thanks to a moderate increase in redundancy

(26D redundancy for D-dimensional signals) and computational

load, this complex wavelet transform inspired by the Fourier

representation comes very close to mirroring the attractive

properties of the Fourier analysis [48]: a nearly shift-invariant

magnitude; a substantially reduced aliasing; and directional

selectivity in two or more dimensions. In practice, a 2D CWT

produces six complex-valued subbands at each scale, which are

oriented at angles of 615u, 645u, 675u. For a good tutorial

overview on the DT-CWT we refer the reader to Selesnick et al.

[48].

We propose the use of the following procedure, first given by de

Rivaz ([49] p. 60–65) as an image synthesis technique, in order to

generate images sharing a given energy spectrum, and hence a 2D

autocorrelation function:

1. Center and normalize the reference image A.

2. Generate a normal white noise B of mean 0 and variance 1 of

the same size as A;

3. Use the DT-CWT with symmetric extension (we choose half-

point) to generate the multi-scale and multi-orientation

decompositions of both A and B. We chose the (13,19)-tap

near-orthogonal filters at scale 1 and the 14-tap Q-Shift filters

at scales $2 because it is a good compromise between

computational complexity and aliasing energy [50].

4. Scale the magnitude of the detail coefficients of each subband

of B so that the subband energy (the summed squared

magnitude of all subband coefficients) is equal to the

corresponding energy of the A subbands. If the original energy

is EA and the desired energy is EB then the correct scaling factor

is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EB=EA

p
. Leave the coarsest scale coefficients (approxima-

tion subband) unchanged.

5. Transform the scaled coefficients of B back into the spatial

domain.

6. Repeat steps 3 to 5 a sufficient number of times for good

correspondence of the subbands energy (we find 25 iterations

to be sufficient for a 32632 pixels map).

Iteration is needed because the value taken by the DT-CWT

coefficients are not independent through scales and directions, i.e.

there is some redundancy in the information. The DT-CWT is

performed up to the maximum possible level of decomposition

(log2 of image size) in order to reproduce the autocorrelation

occurring at every scale. In this way, we construct surrogates

images and a null model devoid of any assumption regarding the

shape of the autocorrelation function and the existence of

particular orientations in the pattern (anisotropy). Examples of

wavelet-based image synthesis from continuous fractal patterns

(see below) of varying degrees of autocorrelation are presented in

Fig. 1.

Ecological variables often consist of discrete data such as in the

analysis of species co-occurrence patterns. The wavelet-based

image synthesis is able to generate discrete data by adding to the

energy matching procedure the supplementary constraint of

conserving the frequency distribution of gray levels of the

reference image A which, in the case of discrete binary images,

simply reflects the relative abundances of one and zero values.

With this aim, we match the frequency distribution of B to the

frequency distribution of the centered and normalized reference

image A in the spatial domain (before step three and after step five

in the above algorithm). The matching of the frequency

distribution is computed by means of two tables. The first table

is computed at each iteration and gives the correspondence

between the values in B and their rank order. The second table is

computed once for all iterations, and gives the correspondence

between rank order and value of the reference image. In order to

avoid local minima in the convergence process, we add some

random white noise in the wavelet domain before step 4.

3. Generating reference images with fractal pattern
through Fourier synthesis

A subclass of two dimensional self-similar random processes

which is easy to generate is the fractional Brownian field (fBf) that

was introduced by Mandelbrot and Van Ness [51].

True fBf is a normally distributed, zero mean, non-stationary

isotropic stochastic process with stationary increments and energy

spectral density, S, that is a power function of the frequency, f:

S fð Þ!f {b ð1Þ

The energy spectrum exponent b is directly related to the fractal

dimension of the map [27] and controls its degree of autocorre-

lation. A large b introduces relatively smooth, correlated,

variations into the map, known as colored noise, whereas b = 0

(flat spectrum) results in a rough uncorrelated sequence known as

white noise. With b.0, as the energy of spectral components

increases monotonically with frequency, there is no range beyond

which the autocorrelation vanishes.

An infinite number of fBf maps may be generated for a given b
by constructing a frequency space complying with eq. 1 and

randomly choosing the phase of each sine wave before applying

the IDFT [27,52]. It is related to the IAAFT described above but

directly based on eq.1 instead of the spectrum of a reference

image. Yet this efficient procedure actually generates an approx-
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imated fBf because it yields stationary processes that have periodic

boundaries (i.e. the fBf is mapped onto a torus) and are therefore

not fully self-similar [53]. We circumvented the undesirable high

correlations between observations at opposite edges despite the

long distance by producing fBf lattices of 1286128 values, and

only retaining a 32632 section. Examples generated in this way

are presented in Fig. 1 for different b. Note that the computation

of true fBf could have been achieved via a Cholesky-Levinson

factorization [54]. However, this method requires an immense

computational and memory load [53], and exact self-similarity is

not necessary for this work since our purpose is simply to obtain

simulated maps with a pre-defined autocorrelation function.

In order to generate binary maps, we merely converted the

above-described continuous fBf into 0 and 1 by taking the median

as a cutoff value. Examples of binary maps with increasing degree

of SA are presented in Fig. 4.

The implementation of the method for the generation of

surrogates is available online as Java archive S1.

Supporting Information

Java archive S1 Implementation in Java 1.7 of the
wavelet-based method described in this paper for the
generation of two dimensional surrogates.
(JAR)
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