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Abstract

Age estimates, typically determined by counting periodic growth increments in calcified structures of vertebrates, are the
basis of population dynamics models used for managing exploited or threatened species. In fisheries research, the use of
otolith growth rings as an indicator of fish age has increased considerably in recent decades. However, otolith readings
include various sources of uncertainty. Current ageing methods, which converts an average count of rings into age, only
provide periodic age estimates in which the range of uncertainty is fully ignored. In this study, we describe a hierarchical
model for estimating individual ages from repeated otolith readings. The model was developed within a Bayesian
framework to explicitly represent the sources of uncertainty associated with age estimation, to allow for individual
variations and to include knowledge on parameters from expertise. The performance of the proposed model was examined
through simulations, and then it was coupled to a two-stanza somatic growth model to evaluate the impact of the age
estimation method on the age composition of commercial fisheries catches. We illustrate our approach using the saggital
otoliths of yellowfin tuna of the Indian Ocean collected through large-scale mark-recapture experiments. The simulation
performance suggested that the ageing error model was able to estimate the ageing biases and provide accurate age
estimates, regardless of the age of the fish. Coupled with the growth model, this approach appeared suitable for modeling
the growth of Indian Ocean yellowfin and is consistent with findings of previous studies. The simulations showed that the
choice of the ageing method can strongly affect growth estimates with subsequent implications for age-structured data
used as inputs for population models. Finally, our modeling approach revealed particularly useful to reflect uncertainty
around age estimates into the process of growth estimation and it can be applied to any study relying on age estimation.
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Introduction

Estimating individual age of living beings is fundamental in

ecological studies. For some time, growth, survival and reproduc-

tive characteristics have been shown to be age-dependent as

ageing generally conducts to decreasing fertility and increasing

mortality with advancing age [1]. Age information currently forms

the basis of population dynamics models used for the management

of natural populations [2;3]. For example, quantitative stock

assessment models use age information to relate distinct demo-

graphic rates to age classes [4]. Although some stock assessment

models may link demographic processes to size or stage classes

rather than to age, the transition rates between such classes are

generally based on estimates of age-dependent growth.

Age estimates are generally based on counts of periodic growth

increments deposited in the hard and skeletal tissues of vertebrates

that are capable of recording some biological phenomena, e.g.

mammalian teeth, tortoise shell, bird feather, insect cuticle, bivalve

shell, and coral skeleton [5;6;7;8;9]. For bony fishes, different

calcified structures can be used for age determination, i.e. scales,

vertebrae, otoliths, and spines [10;11]. Over the last decades,

otoliths have become an invaluable tool for ageing fish. This is

because the otoliths of many temperate and tropical fish species

exhibit seasonal and daily growth marks and continue to grow

even when somatic growth is slowed or naturally stopped

[12;13;14]. Consequently, counts of otolith increments provide a

direct estimation of fish age.

However, otolith reading involves some interpretation by the

reader which can lead to imprecision and bias in age estimation
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[15;16]. This may subsequently affect estimates of demographic

and biological parameters of populations and eventually modify

the perception of stock status and the associated management

advice [17]. Errors in interpreting and counting daily increments

can initially be related to otolith preparation for reading. In

particular, some increments may be ‘‘lost’’ at the otolith nucleus,

i.e. the core, and edge [18]. Otoliths can also exhibit discontinu-

ities and zones of overlap that result in some increments being

omitted or counted more than once. Reading errors are generally

higher for older fish because they have more increments for

counting and increments tend to get narrower with the distance

from the nucleus when fish approach their asymptotic length

[19;20]. In addition, growth increments may not always have

consistent daily deposition, i.e., sub-daily increments and discon-

tinuities in the accretion rate may occur due to stress, reproduc-

tion, and environmental conditions, which may result in biased

age estimates [21;22].

Multiple independent readings of the same otolith have often

been used to estimate the consistency and reproducibility of

reading method, to compare the readers skill and to assess the

imprecision in age estimates [23;15]. In addition, validating the

frequency of increment formation is crucial to obtain an accurate

fish age. Mark-recapture experiments of fish that have been

chemically tagged with oxytetracycline (OTC) are considered to

be one of the best methods for validating age interpretation

[24;25]. After injection, the OTC is rapidly incorporated into the

otolith and results in a permanent mark at the increment that

formed at the time of tagging. This mark is visible under

fluorescent light. The number of growth increments formed after

the mark can then be compared to the time between tagging and

recapture, i.e. time-at-liberty, to test the hypothesis of periodic

increment formation.

Yellowfin tuna (Thunnus albacares, Bonnaterre 1788) is an

epipelagic species that is widely distributed in the tropical and

subtropical waters of the major oceans. It has been commercially

harvested since the early 1950s [26]. Over the last decades, global

catches of yellowfin have steadily increased to more than 1.4

million t in 2003 with a mean value of 1.2 million t:year{1 during

the 2000s [27]. In the Indian Ocean (IO), the stock of yellowfin is

exploited by diverse array of small-scale, semi-industrial, and

industrial fisheries and currently represents about 30% of the

global catch of yellowfin [28]. The management and conservation

of yellowfin in the IO is under the jurisdiction of the Indian Ocean

Tuna Commission (IOTC) and relies on the assessment of the

stock status through age-structured population dynamics models

[29]. Growth of the Indian Ocean yellowfin has been the focus of

several studies based on modal progression analysis [30;31;32;33]

and direct ageing of scales [34], vertebrae [35], and otoliths [20].

Nevertheless, much uncertainty currently remains on the growth

to be considered in yellowfin stock assessment due to the lack of

age validation in past studies and to the difficulties associated with

tracking yellowfin cohorts over time due to their extended

spawning periods (IOTC 2011). In addition, historical studies on

yellowfin growth have relied on the classical Von Bertalanffy

model (1938), which assumes a constant growth rate over the full

lifespan of the fish, while most recent studies support a two-stanza

growth curve that is characterized by a significant change in the

growth rate between juveniles and adults [36;37;32].

Since the 1990s, Bayesian modeling approaches have attracted

growing interest in the fields of applied ecology and environmental

sciences [38]. The Bayesian framework offers the advantage of

incorporating expert judgment and supplementary information

into the statistical data analysis in a rigorous and consistent

manner [39;40]. This is particularly appropriate for fisheries

science where data are almost always partially observed and

include some measurement errors or uncertainties. Bayesian

models have been used to make inferences about fish growth

[41]and spatio-temporal population dynamics [42] and to provide

scientific advice for fisheries management [43;44;45]. Hierarchical

Bayesian modeling is particularly powerful as it can exploit of a

diverse range of information sources and draw inferences on large

numbers of latent variables and parameters that describe complex

relationships by decomposing the phenomenon in a series of

submodels [38;46]. Hierarchical models can make powerful

inferences because they account for both observation and process

errors, the latter being generally attributed to stochastic environ-

mental variations [40].

Using yellowfin as a case study, we describe an approach for

estimating the individual ages of fish from repeat readings of

otoliths that takes account of associated uncertainties. We apply

our model to an original age-length dataset collected through

large-scale mark-recapture experiments conducted in the IO

between 2005 and 2012. Firstly, an ageing error model was

developed to explicitly represent the sources of uncertainty

associated with age estimation. Developed in a hierarchical

Bayesian framework, expert judgment was included in the model

through the choice of stochastic error structure and informative

prior density functions. A simulation framework was developed to

evaluate the accuracy of the model, its limitations and its relevance

to the traditional ageing method that estimates age based on an

average increment count. Secondly, the ageing error model was

coupled to a two-stanza somatic growth model in order to

propagate age uncertainty into growth parameter estimates. The

use of Bayesian modeling allowed for the integration prior

understanding of growth parameters from expertise and historical

observations of length and growth for yellowfin. Finally, we

evaluated the impact of the age estimation method on the catch

age composition of the commercial fisheries targeting yellowfin in

the IO. With this case study, we provide a flexible statistical

framework that accounts for age-related uncertainty in growth

modeling and addresses an applied ecology problem.

Materials and Methods

Data collection
Otoliths and length data were collected throughout the

Regional Tuna Tagging Project (RTTP), a large scale mark-

recapture program, and the West Sumatra Tuna Tagging Project

(WSTTP), a simple capture program, that were carried out by the

IOTC. The tagging operations of RTTP were conducted between

2005–2007 on two pole-and-line vessels that were chartered to

operate in the Western Indian Ocean. Field operations consisted

in catching tunas, tagging them on a vinyl-covered cradle,

measuring their fork length (fish length from the front to the fork

in the center of the tail; FL) through marks printed directly on the

cradle and finally releasing them at sea [47]. The tagging

operations of RTTP were conducted between 2005–2007 on

two pole-and-line vessels that were chartered to operate in the

Western Indian Ocean. Field operations consisted in catching

tunas, tagging them on a vinyl-covered cradle, measuring their

fork length (fish length from the front to the fork in the center of

the tail; FL) through marks printed directly on the cradle and

finally releasing them at sea [47]. The fish were tagged with dart

tags inserted into the musculature, below the second dorsal fin.

The date and geographic location were recorded for each tag

event. Some fish received a OTC injection, an antibiotic that is

rapidly incorporated into calcified parts such as bones, scales, and

otoliths and leaves a permanent fluorescent mark in the growth
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increment being formed at the time of tagging. Depending on fish

size, between 1.5–3 mL of OTC were injected with a syringe in

the intramuscular region of the back [47].

Recovery operations took place across the entire IO basin

between 2005–2012. The majority of reported recoveries came

from fish caught by the European purse seiners (IOTC 2011). FL

of recovered fish was measured with calipers or a tape measure to

the nearest 0.5 cm. The accuracy in the date and location of

recaptures is dependent on the place and the process in which the

tag is recovered. About 20% of the recoveries were made during

purse seine fishing operations, which resulted in the recovered fish

being associated with only one position and date. In contrast,

tunas recovered during the unloading of purse seiners could be

associated with several dates and catch locations due to the process

of storing tunas in refrigerated wells that contain up to 5 sets

collected over an entire fishing trip. The recovery can also occur

downstream of the unloading process or in the canneries. The

range of dates associated with each recapture was derived from

logbook data and well maps and conducted in close collaboration

with the IOTC and the purse seine fishing industry.

The WSTTP program was conducted in August 2007 on a

pole-and-line vessel in the off western Indonesia. The fork length

of fish measured either in a marked cradle or using a calipers, and

the precisely date and geographic location were recorded for each

fish caught.

Otolith sampling, preparation and reading
Sagittal otoliths were collected from 128 yellowfin recovered in

the Western Indian Ocean through the RTTP, including 124

OTC-tagged fish, and measuring between 43 to 85 cm FL at

tagging and 47.9 to 146.5 cm FL at recapture. Otoliths were also

collected from 38 yellowfin captured during the WSTTP

measuring between 19 to 46.6 cm FL (Table S1, Fig. S1). Otoliths

were extracted, rinsed in water to remove tissue, and stored dry.

Yellowfin have fragile, thin and elliptical otoliths that require

particular care during their preparation and subsequent interpre-

tation of microstructural features [48]. All the otoliths collected

were analyzed at the "Laboratoire de Sclérochronologie des

Animaux Aquatiques" (LASAA) in Brest, France. Otoliths were

prepared for age analysis using the following method [49;20;14].

They were cleaned in sodium hypochlorite and rinsed with

distilled water before being embedded in resin blocks and

transversally cut on both sides of the nucleus. The sections

containing the nucleus were then fixed to a glass slide using

thermoplastic glue and sanded to the level of the nucleus using

different alumina grains (0.3 to 3 mm). The operation was

performed on each side of the section until a slice of about

100 mm thickness was decalcified with EDTA (tri-sodium-ethyl-

ene-diamine-tetra-acetic acid) to increase the contrast between

increments. The thin slides were examined under a microscope

(10006magnification) to count increments along the counting path

on the sagitta, i.e. from the primordium, original point of growth,

to the last increment deposited on the maximal growth axis.

Otoliths collected from OTC-tagged fishes, an increment count

was made for different otolith sections: (i) between the nucleus and

the OTC mark (It), (ii) between the OTC mark and the edge (Im)

and (iii) between the nucleus and the edge (Ir) (Fig. 1). For fish that

were not chemically tagged were read in full (Ir). All otolith

readings were performed by the same reader. Each otolith was

read two to five times without prior knowledge on length or time-

at-liberty of the individuals sampled so as to maintain certain

independence between the multiple readings.

Ageing error model
In this section, a hierarchical model was developed to estimate

the age of each fish. The stochastic processes associated with

otolith preparation and reading were modeled with the choice of

an error structure and informative prior density functions based on

expert judgment (Tables 1 and 2). In a first step, the hypothesis of

daily increment deposition in otoliths, that has been observed in

eastern Pacific yellowfin tuna [48;50], was tested using a subset of

OTC-tagged otolith data. Information on the increment deposi-

tion process was subsequently used for estimating yellowfin age

based on counts of otolith increments.

Modeling observation errors. We assumed that the

discrepancies between repeated readings of the same otolith

mainly resulted from errors in interpreting missing increments

and, to a lesser extent, from errors in counting, i.e. increment

omission or multiple counts. The counting errors were considered

to be equiprobable. Each increment has the same independent

probability of misinterpretation, so errors tend to increase with

age. In addition, the identification and interpretation of incre-

ments become increasingly difficult with increasing distance from

the nucleus. Therefore, the relative reading error was considered

to be dependent on true fish age and a multiplicative error was

used. The relative percentage of misread increments, p, was

assumed to be a constant factor uniformly distributed between 0

and 0.5 (Table 2, Eq. P4). For each reading of the same otolith, the

reader was assumed to have the same probability of underesti-

mating or overestimating the number of increments. The number

of increments counted for reading l of otolith i (I�i,l ) was assumed to

be distributed around the expected number of increments

according to a Poisson process. Here, a normal distribution was

chosen to offer more flexibility in modeling uncertainty in readings

and because it closely approximates the Poisson distribution for

large values of the Poisson parameter according to the central limit

theorem (Table 2, Eq. S1–S3).

Identifying the first growth increment is an important step in

defining the starting point of ageing and accurately estimating fish

age. The otolith nucleus is an opaque spot formed during

embryonic development. The first increment is formed at hatching

and appears as a discontinuity surrounding the nucleus of the

otolith [22]. During preparation, excessive sanding of the otolith

can result in the ‘‘disappearance’’ of the nucleus as well as the

removal of some increments. Technical experts considered that up

to 15 of the first otolith increments may be lost during preparation.

The lost increments are then estimated with a bias of 2–3

increments (yn, Table 2, Eq. P2).

Similar difficulties can be associated with distinguishing the

marginal increment at the edge of the otolith. In this region,

increments are often more difficult to read because they are

narrower and can appear laterally compressed [18] In addition,

the otolith must be cut perpendicularly to the daily growth axis

passing by the nucleus, otherwise some increments can disappear.

Here, technical experts considered that up to 20 increments may

be lost at the otolith edge and an estimation bias of 3–4 increments

can occur (ye, Table 2, Eq. P3).

Determining of the deposition periodicity. In a first step,

the counts of Im were modeled as a function of the time-at-liberty

(TL), to determine the periodicity of increment deposition

estimated by the reader. A subsample of 27 OTC-tagged fishes

of 49.7–131 cm FL was selected to maximize reliability, i.e.

individuals for which the accurate date of recapture was known

and for which the coefficient of variation (CV ) of the repeat

readings of a given otolith was less than or equal to 10% [15] A

Bayesian linear regression model was fitted to the data to estimate

the rate of increment deposition (R) and the error at the otolith

Accounting for Age Uncertainty
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edge (ye) (Table 2, Eq. S1 and D1). We used a dilated beta

distribution as prior for R so as to provide information on the limit

values without a particular trend in the distribution shape. Based

on expert knowledge, an informative prior was considered for the

marginal error ye (Table 2, Eq. P3).

Estimating age from multiple readings. In a second step,

the uncertainty associated with multiple otolith readings was

modeled to estimate the true number of increments for each fish

otolith. This number was then converted to age by taking into

account R. When the date of recapture was known with precision

(CVƒ5%), the age-at-tagging (At) was derived from It and the

age-at-recapture (Ar) was deduced from It and the time-at-liberty

so as to decrease the reading-associated uncertainty (Table 2, Eq.

D2 and D3). When the number of increments at tagging was

unknown, the age-at-recapture was derived from Ir and the age-

at-tagging was derived by subtracting the time-at-liberty to this

number of increments (Table 2 Eq. D4 and D5). For yellowfin

collected through the RTTP with low accuracy in time-at-liberty

(CVw5%) and for those from WSTTP, only the age-at-recapture

was estimated from It. To account for uncertainty associated with

the recapture dates (see Section), the time-at-liberty was consid-

ered to be a random variable with a uniform distribution between

its minimal and maximal value. The posterior distributions of R
and ye, that were estimated in the previous step, were used to

estimate fish age. An informative prior was considered for the

nucleus bias yn. In the absence of information in the data, these

distributions were not updated.

Evaluating model performance through simulations
Different simulations were performed to test and validate the

ageing error model (Fig. S2). The first simulation aimed to assess

the accuracy of the model in estimating R. For this simulation, two

alternative runs with and without individual variability in

increment formation were considered, i.e. R fixed to 0.95 and R
varying according to a normal distribution around 0.95. This

simulation was repeated three times using datasets of 25

individuals whose time-at-liberty were generated according to a

uniform distribution between 30 and 970 days. Four noisy

readings of the number of Im increments were then generated

according to Eq. D1 and S1 (2).

A second set of simulations was performed using 2 to 5 readings

of the same otolith to evaluate the model’s ability to accurately

estimate fish age and its relevance relative to the traditional

method which is based on averaging individual-specific increment

counts. An intermediate method was also considered that based on

averaging individual increment counts, but also account for

potential bias in the increment deposition. For these simulations, R

was fixed to 0.95. The approach consisted of simulating realistic

ages-at-recapture from which increment counts were derived with

respect to R, ye, and yn (2 Eq. D4). Noise was then added to the

increment counts by randomly generating repeated readings (Eq.

S3). Five age classes were considered, from 6 months to 5 years.

Three simulations were performed using datasets composed of 500

individuals, i.e. 100 individuals for each age class whose ages were

generated according to a uniform distribution between the

minimum and the maximum values of the class. The accuracy

of age estimates was assessed with the relative root mean square

error (RMSE), a normalized indicator that measures the

discrepancy between simulated and estimated ages. For each

individual, the RMSE was calculated as follows:

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(A�{As)

2
q

A�

where A� is the estimated age and As is the simulated age.

Coupling the ageing error and the growth models
In this section, we implemented a hierarchical model that allows

for growth variations according to an individual’s specific

stochastic process. For IO yellowfin, modal progression analysis

[30;32;33] and the preliminary analysis of the RTTP data [51]

indicated a succession of phases of growth deceleration and

acceleration, supporting the use of a two-stanza growth model.

Accordingly, we used the Von Bertalanffy logK model (VB-logK)

developed for southern bluefin tuna (Thunnus maccoyii), which

allows for a smooth transition between two different growth rate

coefficients (k1 and k2) by modeling changes in growth using a

logistic function [52;53]. The fork length of fish i at the

opportunity of capture j, j~t at tagging and j~r at recapture,

was then modeled as:

Lj�i ~L?(1{exp({k2(Aji{t0))|

1zexp({b(Aji{t0{a))

1zexp(ba)

� �(k1{k2)

b
zei,j

Figure 1. Otoliths of yellowfin tuna (external right and internal left; a) and the different sections used for reading the number of
increments. OTC: Oxytetracycline; It: section from the nucleus to the OTC mark; Im: section from the OTC mark to the edge; Ir: section from the
nucleus to the edge; TL: Time-at-Liberty.
doi:10.1371/journal.pone.0060886.g001
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where errors in length measurements, ei,j , were assumed to be

independent and normally distributed around zero with a

common variance s2
e .

The somatic VB-logK growth model was coupled to the ageing

error model and fitted to the data using Bayesian inference

(Table 2, Eq. D6 and D7). Consider the vector of growth

parameters, hg = {L?, k1, k2, t0, a, b, se}, the vector of ageing

parameters ha = {R, ye, yn}, and the relative percentage of

misread otolith increments, p. p½hgjLj�i ,Aji�, p½hajIji�, p½p,IjijIj�i,l �
denote the posterior distributions of these parameters and p½hg�,
p½ha�, p½p� denote their prior distributions. Here, Aji and Iji are

not directly observable latent variables. The full model corre-

sponds to the joint distribution of parameters and latent variables.

As Lj�i and Ij�i,l are independent, this joint posterior distribution

can be written as:

p½hg,ha,pjLj�i ,Ij�i,l �!p½Lj�i ,Ajijhg�|p½IjijAji,ha�|p½Ij�i,l jIji,p�
|p½hg�|p½ha�|p½p�

ðL1Þ

where p½Lj�i ,Ajijhg� represents the conditional Gaussian likelihood

of the observed lengths. Thus, the length values were predicted

from the marginal posterior distribution:

f (Lj�i jIj�i,l ,hg)~

ð
p½Lj�i jAji,hg�|

p½AjijIji,ha�|p½IjijIj�i,l ,p� :dAji :dIji

ðL2Þ

The growth rate coefficients k1 and k2 are partly model-specific,

thus weakly informative priors were assigned to them. k1 was

assumed to vary according to a gamma prior distribution with a

mean and coefficient of variation determined from the literature.

k2 was set equal to k1zk with k following a uniform distribution

(Table 2 Eq. P6 and P7). The transition rate between k1 and k2, b,

which is specific to the VB-logK model, and the theoretical age of

zero length, t0, which depends on the data, were assigned uniform

distributions (Eq.P9 and P10). The parameter a is the mean age

relative to t0 at which the change in growth occurs. This was

assigned a weakly informative prior gamma distribution with a

mean defined from the literature (Eq. P8; [36;37;32;33]). The

standard deviation of size measurement errors, se, was determined

from the differences in the fork length of RTTP-IO fish released

and recaptured several times with time-at-liberty less than or equal

to seven days. These individuals were not included in subsequent

analyses and therefore constitute an independent data set (Eq.

P11).

The asymptotic length, L?, is a particularly important

parameter because it determines the shape of the second part of

Table 1. Parameters and variables used in the ageing error and somatic growth models.

Variable Definition Equations

Ageing error model

L�i Observed fork length, i.e. length from the front to the fork in the center of the tail, for fish i (cm)

L(Ai) Expected fork length for fish i (cm)

TLi Number of days between tagging and recapture for fish i (d) D1, D3, D5

Ati Age-at-tagging for fish i (d) D2, D5

Ari Age-at-recapture for fish i (d) D3, D4

Imi Number of increments between OTC mark and edge for otolith of fish i S1, D1

Im�i,l Number of increments counted between OTC mark and edge for reading l of otolith for fish i S1

Iti Number of increments between nucleus and OTC mark for otolith of fish i S2, D2

It�i,l Number of increments counted between nucleus and OTC mark for reading l of otolith for fish i S2

Iri Total number of increments for otolith of fish i S3, D4

Ir�i,l Total number of increments counted for reading l of otolith for fish i S3

R Ratio between number of increments after OTC mark and time-at-liberty D1, D2, D4

yn Bias at the nucleus D1, D4

ye Bias at otolith edge D2, D4

p Relative percentage of misread otolith increments S1, S2, S3

Somatic growth model

t0 Theoretical age at fork length 0 (y) D6, D7

k1 Juvenile growth rate coefficient (y{1) D6, D7

k2 Adult growth rate coefficient (y{1) D6, D7

a Inflection point between the 2 stanzas (y) D6, D7

b Transition rate between k1 and k2 D6, D7

L? Asymptotic fork length (cm) D7

e Length measurement error (cm) S4, S5

doi:10.1371/journal.pone.0060886.t001
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the growth curve. As the dataset included limited information on

the asymptotic part of the growth curve, auxiliary information was

provided for this parameter consistently with the available

knowledge on the biology of the species. An informative prior

distribution was defined for L? using a generalized extreme value

distribution (GEV). This allows for the extrapolation of the

behavior of distribution tails from the greatest values of a sample

and thus estimates the probability of the occurrence of extreme

events [54]. The choice of this distribution is motivated by the fact

that yellowfin grow throughout their life, such that the largest

observed sizes should correspond to the oldest fish. The

distribution was fit based on size measurement data from fresh

fish that were collected during 1952–2011 from the European and

Seychelles purse seine fisheries, Maldivian pole and line vessels,

and Taiwanese and Japanese longliners. The observed maximum

fork length from each measurement platform, i.e. either on vessels

board or in cannery, fishery, and year was considered to represent

n independent random variables (L1,...,Ln) with common contin-

uous distribution function F . Asymptotic length L? was then

estimated from the approximation of the upper tail of F (‘) by

using the GEV(m,s,j) distribution:

GEV(m,s,j)(‘)~exp {(1zj ‘{m
s )

� �{1
j

� �

where m is a location parameter, s is the scale parameter (sw0)

and j is a tail index (shape parameter). These parameters were

estimated using the maximum likelihood method [55].

The estimates of ages and growth parameters were evaluated

based on 350,000 samples, thinned to one draw every 1000th

sample, from Markov Chain Monte Carlo (MCMC) simulations of

the joint posterior distribution. A burn-in period of 5,000 iterations

was rejected. Three MCMCs were produced using a Gibbs

sampler as implemented in OpenBugs version 3.2.1 [56]. The

convergence of the MCMC to a stationary posterior distribution

was visually evaluated from the Gelman-Rubin diagnostic, which

was based on the ratio of inter-chain variance on intra-chain

variance, i.e. it must be close to one in order to converge [57].

Testing the influence of the ageing technique on growth
modeling

Simulations were performed to evaluate the contribution of the

error model on growth parameter estimates and resulting age

classification of commercial catches. To illustrate, a simple tagging

dataset was simulated and the relationship specified from posterior

marginal mode that was obtained with the growth model coupled

with the ageing error model (section and Table 3) was used as

reference growth curve. In this approach, four fork lengths for

each 2 cm class, from 20 to 146 cm, were simulated to obtain a

data set of 252 fishes. As the VB-logK curve is irreversible,

corresponding ages were deduced by minimizing the difference

between the simulated and expected length (E1). These ages were

converted into numbers of increments from which noisy repeated

readings were generated as per the approach previously developed

(section and Fig. S2). The growth parameters were then re-

estimated using the coupled VB-logK model and a classical VB-

logK model, which estimates age using the traditional method. As

the parameter b is difficult to estimate from a tagging dataset, its

value was fixed using the value obtained by fitting the otolith data

to the coupled growth model.

arg min L�{L?(1{exp({k2(A{t0))|ð

1zexp({b(A{t0{a))

1zexp(ba)

� �(k1{k2)

b

1
A

2

ðE1Þ

The mean squared error (MSE) was used to compare the

marginal posterior distributions of each parameter with its actual

value and evaluate the accuracy of models fits. Accuracy is related

to the similarity between the marginal modes and the true values,

while precision refers to the uncertainty around the modal value,

i.e. the discrepancies between the samples generated by the

MCMC simulation. The MSE is a measure of the average of the

square of errors and was calculated as follows:

MSE(h)~
1

N

XN

i~1

(h�i {ha)2

where N is the size of the MCMC sample, h�i is the parameter

estimate at iteration i and ha is the actual value of the parameter.

Table 2. Deterministic and stochastic processes used in the
ageing error and growth models. All variables are defined in
table*#146;1.

Process functions

Imi~R|TLi{ye (D1)

Iti~R|Ati{yn (D2)

Ari~AtizTLi (D3)

Iri~R|Ari{yn{ye (D4)

Ati~Ari{TLi (D5)

L(Ati)~L?(1{exp({k2(Ati{t0))|
1zexp({b(Ati{t0{a))

1zexp(ba)

� �(k1 {k2 )

b
(D6)

L(Ari)~L?(1{exp({k2(Ari{t0))|
1zexp({b(Ari{t0{a))

1zexp(ba)

� �(k1 {k2 )

b
(D7)

Observation functions

Im�i,l*N (Imi ,(p|Imi)
2) (S1)

It�i,l*N (Iti ,(p|Iti)
2) (S2)

Ir�i,l*N (Iri ,(p|Iri)
2) (S3)

Lt�i *N (L(Ati)),s
2
e ) (S4)

Lr�i *N (L(Ari)),s
2
e ) (S5)

Prior probability distributions

R~2|R0; R0*Beta(1,1) (P1)

yn*N (0,32) (P2)

ye*N (0,42) (P3)

p*U(0,0:5) (P4)

L?*GEV (173:141,11:067,{0:3474) (P5)

k1*C(2:778,0:211) (P6)

k2~k1zk with k*U(0,3) (P7)

a*C(25,1) (P8)

b*U(0,20) (P9)

t0*U({2,0) (P10)

e*N (0,s2
e ); se*U(1:7,3) (P11)

doi:10.1371/journal.pone.0060886.t002
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In addition, the mean relative error (MRE) was used to give

information on the bias in parameter estimates:

MRE(h)~
1

N

XN

i~1

h�i {ha

ha

parameterunderestimate if MRE(h)v0

parameter overestimate if MRE(h)w0

�

Finally, an age-length key was derived from both the coupled

model and the classical model and was used to convert the catch-

at-size into catch-at-age. The two conversions were then

compared. For this example, we used 2010 IOTC catch data

from French purse seiners in the Western Indian Ocean.

Results

Simulation evaluation
The fit of the ageing model to the simulated data showed good

agreement between the estimated and simulated age, as well as a

strong ability to estimate the increment deposition rate R. From

the simulations conducted in the first model step, the marginal

posterior distribution of R, derived from MCMC outputs, followed

a normal distribution with a mode and variance very close to the

simulated distribution. The fixed simulated values were well within

the 95% credibility interval of the posterior distributions (Fig. S3).

The model showed difficulties in estimating the edge bias ye by

systematically underestimating its variability.

Simulations that focus on the number of readings showed that

the ageing error model provided accurate age estimates, with

accuracy increasing with the number of readings (Fig. S4). The

RMSE values were significantly lower when there were more

readings of the same otolith (Wilcoxon: p-valuev0.05; Table S2).

From five to three readings, the loss of accuracy was generally low,

i.e. an average loss of 1%. However, the loss of accuracy became

more important between three to two readings, suggesting that

three readings was a good compromise between accuracy of

estimates and reading cost.

Regardless of the number of readings, the ageing error model

estimated age more accurately than the traditional method. The

RMSE values obtained with the ageing error model were

significantly lower than those obtained with the traditional method

(Wilcoxon: p-valuev0.01; Fig. S5 and Table S3). The ageing

error model and the intermediate ageing method provided age

estimates as accurate. The RMSE values obtained with the ageing

error model and the intermediate method did not differ

significantly (Table S3), with the exception of second simulation

dataset where the RMSE values significantly lower with the ageing

error model (Wilcoxon: p-valuev0.01).

Testing the hypothesis of daily increment deposition
The ratio R and the mean edge bias ye were precisely estimated

in the regression model (Fig. S3). R was normally distributed

around 0.94 with little variability (Table 3). The value of one was

not included in the Bayesian 95% credibility interval which

resulted in a significant failure of the hypothesis of daily increment

deposition. The reader tended to underestimate the fish ages. The

edge bias was close to zero, with a lower variability than expected

from the prior distribution, resulting in error values ranging from

1.6% for a six month-old fish to 0.16% for a five year-old fish

(Table 3).

Yellowfin tuna growth
The model supported a two-stanza growth for the IO yellowfin

with two distinct phases over the fish lifespan of the fish (Figure 2).

The first stanza was characterized by relatively slow growth, which

decreased gradually to a minimum of 1.75 cm.month{1 for fish

up to 1.85 years of age (63 cm FL). In the second stanza, growth

accelerated up to a maximum of 3.54 cm.month{1 for fish up to

2.38 years of age (79 cm FL) and then progressively decreased with

size, becoming very slow when the size approached the asymptotic

length.

The fit of the coupled growth model revealed strong correla-

tions among some parameters. A positive correlation was found

between k1 and k2 (0.8) and a negative correlation was found

between these growth rate coefficients and the asymptotic length

(20.93 and 20.8 with k1 and k2 respectively; Table S4). These

correlations resulted in some model instability and difficulty fitting

the posterior distributions of the parameters, particularly in the

absence of information from the prior distribution (Fig. S6). The

expected asymptotic length was estimated at 151.8 cm FL, which

was close to the maximum fork length of the data, 146.5 cm FL,

but comparatively low to the mean asymptotic fork length

estimated at about 173 cm from the catch of the purse seiners

and longliners and to the maximum lengths of 200 cm that has

been observed for yellowfin in the Indian Ocean. In contrast, the

data provided more information for the first part of the growth

curve (v3 years), where the model fit was good. The uncertainty

Table 3. Attributes of marginal posterior distributions from VB log K growth model coupled with ageing error model fit to
yellowfin otolith data.

Parameters Mode Mean Std.deva Posterior quantiles 2.5% 97.5%

R (days) 0.939 0.94 0.029 0.8834 0.9983

ye 20.54 20.549 2.469 25.404 4.263

L? (cm) 146.243 151.809 15.963 126.6 188.4

k1 0.246 0.249 0.04 0.1745 0.3283

k2 0.664 0.878 0.434 0.371 2.114

a (years) 2.61 2.625 0.162 2.353 2.951

b 12.583 11.663 4.807 3.718 19.58

t0 (years) 20.43 20.446 0.088 20.642 20.3022

se (cm) 8.809 8.876 0.557 7.864 10.05

aStandard deviation
doi:10.1371/journal.pone.0060886.t003
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associated with the mean growth curve that was derived from

marginal posterior modes increased as the fish aged.

Sensitivity of growth parameters to biased age estimates
Except for k2, the MRE values derived from the simulations

indicated that estimates were more accurate for the coupled model

than for the classical model (Table 4). For both models, k2 was

estimated with a negative bias of an average value of 19% and

10% for the coupled and classical models respectively. t0 was

estimated with a positive bias for the classical model. For the other

parameters, the mean biases were less than 10%. The MSE values

were high for the asymptotic length L?. The influence of the GEV

prior distribution was greater for the asymptotic part of the curve

than for the fit to the real data as this part had very few data

points. This resulted in the asymptotic lengths being overestimat-

ed. For the other parameters, the MSE values were low (Table 4).

The MSE values for the estimates of k1, k2 and t0 were higher for

the coupled model than for the classical model indicating a greater

variability in the estimates of the coupled model. These results

suggested that the coupled model provided more accurate, but less

precise, estimates than the classical model because it accounted for

uncertainties associated with age estimates while the ages were

fixed in the classical model.

The growth curve obtained from the coupled model fit

coincided with the simulated data in the first stanza but tended

to underestimate the growth between 3.5 and 6.5 years. The

growth curve of the classical model consistently overestimated the

simulated growth (Figure 3). Such deviations in growth patterns

led to a significant divergence in the age-length key that was

derived from both models. This divergence resulted in potentially

major differences when converting catch-at-size into catch-at-age.

As illustrated by the 2010 yellowfin catch data, the proportions-at-

age by 10 cm class lengths were significantly different according to

the age-length key, particularly for lengths of less than 100 cm

(Figure 3).

Discussion

Otoliths have been widely used to study fish species that

consistently deposit growth increments over time [13;58;59;11].

However, estimating fish age by counting of otolith increments can

result in large biases and uncertainties due to the combination of

processing and interpretation errors [18]. Both error types affect

the estimates of growth, mortality and other demographic rates

required for population dynamics models, e.g growth, mortality.

To our knowledge, only a few studies have previously attempted to

quantify errors in age estimates. In this study, we have developed

an ageing error model that explicitly accounts for these potential

errors, thus improving age estimation and propagating the

uncertainty that arises from otolith reading into the estimation

of fish growth. We applied our model to Indian Ocean yellowfin

tuna, drawing on a dataset of repeat otolith readings that were

collected during large mark-recapture experiments. To illustrate

the interest of our method and assess the potential consequences

for input data used in fish stock assessment models, we completed

a series of simulations. Through Bayesian analysis, the uncertainty

associated with age estimates derived from hard structures can be

combined with supplementary information, e.g., observations of

the maximum size, or growth estimates for the same species in

other areas, and expert knowledge to estimate growth.

Figure 2. Yellowfin growth curve as estimated from the VB log K model coupled with the ageing error model. The solid line correspond
to the mean growth curve, the dashe to the uncertainty around the mean curve and the points to observation data.
doi:10.1371/journal.pone.0060886.g002
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Table 4. Features of both growth models fit to simulated data.

Parameters Coupled growth model Classical growth model

Mode Mean
Std.
dev a

Posterior
quantiles
2.5% 97.5% MSE MRE Mode Mean Std.dev

Posterior
quantiles
2.5% 97.5% MSE MRE

L? (cm) 148.288 149.433 4.940 141.3 160.9 35.517 0.022 149.15 150.465 6.952 146 185.3 64.900 0.029

k1 0.252 0.247 0.029 0.2042 0.2831 0.0008 0.005 0.264 0.262 0.009 0.2374 0.2777 0.0003 0.065

k2 0.535 0.539 0.084 0.3815 0.7136 0.023 20.190 0.604 0.596 0.072 0.2463 0.6827 0.009 20.101

a (years) 2.482 2.481 0.153 2.161 2.774 0.040 20.051 2.438 2.538 0.579 2.338 5.228 0.308 20.029

t0 (years) 20.398 20.438 0.223 20.5863 20.3146 0.0461 0.015 20.376 20.374 0.028 20.4183 20.2746 0.004 20.127

*Standard deviation.
doi:10.1371/journal.pone.0060886.t004

Figure 3. Growth curves obtained from the fit to simulated data with the coupled growth model (A) and the classical growth model
(B; up) and their use to convert the size frequencies from fishing catches into age frequencies (down). Gray levels correspond to the age
classes (quarter).
doi:10.1371/journal.pone.0060886.g003
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Age estimation method
The traditional ageing method, which converts an average

count of increments into age, depends on the assumption that each

increment corresponds to one day [60]. Otherwise, the use of this

method will lead to systematically biased age estimates. In the case

of the European hake (Merlucccius merluccius), it has recently been

demonstrated that the assumption of a daily deposition rate is not

met. As such, although the use of the traditional method for this

species is internationally accepted, its use has resulted in a

significant overestimation of fish age with important implications

for estimates of key biological parameters [61]. This example

highlights that validation of the increment deposition rate for the

entire age range of interest should be major prerequisite for any

ageing study. Various age validation techniques exist including the

release of tagged fish of a known age, nuclear or radiochemical

dating, modal progression of catch-at-size data over time, and

captive rearing [25]. For yellowfin, the assumption of daily

deposition was tested through a mark-recapture experiment of

wild fish with oxytetracycline (OTC) in the length interval from

49.7–131 cm FL. The result of this experiment suggested that the

deposition rate estimated by the reader within this length interval

is significantly different than the assumed single increment per

day, with an increment-over-day ratio of 1:0.939. The marginal

posterior distribution revealed little variation in this ratio,

suggesting that the reading method tended to systematically

underestimate the actual fish ages. However, additionnal readings

performed by new readers for some of the otolith data used in the

present study however indicate a 1:0.997 ratio consistent with a

daily deposition rate as shown for the Pacific Ocean yellowfin [48].

As tuna otoliths are structurally complex, a high degree of

interpretation is required reading when them, which can lead to a

reading bias and may account for the differences in estimated

deposition rates [62;63]. This highlights the need for inter-

comparison exercises between research institutes, using reference

otolith collections, so as to harmonise reading methods [23]. This

first step of the model can be adapted to other species or to other

age validation techniques.

It is also necessary to assess the precision of the ageing technique

[25]. The main uncertainty in age estimates arises from

discrepancies between repeated readings. The magnitude of this

uncertainty is partly dependent on the proficiency of the reader

[16]. Thus, when a calcified structure is read by various readers,

our model must be adapted to take account of the probability of

misinterpretation of each reader. In addition, for some otoliths, the

interpretations of the first and marginal growth increments can

generate further uncertainty, particularly as these rings may

obliterate during a poor otolith preparation. These additional

uncertainties were relfected in the model through the choice of

stochastic error structures and informative prior distributions

based on the expertise to compensate for the lack of information in

the data. In this context, Bayesian analysis appears particularly

adapted to include such information into the statistical inference

procedure.

The model evaluation by simulation suggested that it was

capable of estimating both the ageing biases and an accurate age

regardless of the age of the fish. The mean and variance of the

deposit bias were consistently well-estimated. The model per-

formed less well in estimating the bias linked to the misinterpre-

tation of the marginal rings. However, edge level errors are partly

estimated by the overall reading error. For yellowfin, expert

judgement suggests that the nucleus and edge biases could be very

low, i.e. less than five increments, resulting in error ranging from

4% for a six month-old fish to 0.4% for a five year-old fish. As

such, these biases would become negligible when the age in days

values are converted to age in year values. Thus, the intermediate

method in which the average number of increments is corrected

for the actual deposit frequency provided age estimates as

accurately as the ageing error model. However, the range of

uncertainty is fully ignored which may have serious implications

on the final outcome of the analysis [43].

Growth of Indian Ocean yellowfin
The method developed in this study appears suitable for

modeling the growth of Indian Ocean yellowfin. The fit of the

growth model appeared to be adequate in the first stanza. In this

first phase, the expected first growth rate, 2.11 cm.month{1 for

fish from 22 to 63 cm FL, and length from which growth

accelerates, 63 cm FL, were consistent with several growth studies

for the same population. Growth rates of small yellowfin have

been estimated to be between 1.3 and 2.9 cm.month{1

[30;63;31;65;32] with growth acceleration occurring around 62

to 66 cm FL [31], 70 cm FL [65], 56 to 66 cm FL [32] and from

60 cm FL [33]. However, in the absence of older fish, the model

seemed to underestimate the expected asymptotic length leading

to an apparent underestimation of yellowfin growth over 2.7 years

of age (95.72 cm FL). Increasing the uncertainty in the second

stanza reflected greater individual variability in growth. A primary

source of variability in growth rates may arise from sexual

dimorphism, characterized by faster growth and a larger

asymptotic length for males than females [66;36]. According to

Wild [60], in the eastern Pacific, yellowfin females grow faster than

males until 94.9 cm FL, i.e. at about 2 years old, and then the

trend reverses. Several authors have also shown that in IO

yellowfin, males are largely dominant above 145 cm FL [67;68]

which is close to the modal value of the asymptotic length

estimated in this study at 146.5 cm FL.

Estimating the growth parameters with the growth model

coupled with the ageing error model was more accurate, but less

precise, than with the classical growth model. This latter used the

traditional ageing method which underestimated the ‘‘actual’’ age

of fish and resulted in a consistent overestimation in the growth

curve. In contrast, taking into account uncertainties associated

with age estimates led to a growth curve that fitted very closely to

the simulated data in the first stanza. Such differences greatly

influenced the age distributions of the fisheries catches. In

addition, by disregarding the ageing errors, the classical model

was overconfident in determining uncertainties of growth

estimates. It is critical to represent the full range of uncertainty

to adequately evaluate management alternatives and the expected

consequences of decision-making [69;70]. Developed within a

hierarchical Bayesian framework, our method appears particularly

suited to quantifying the uncertainties resulting from otolith

reading or observational errors and their propagating in the

estimates of biological parameters.

However, there are some technical difficulties associated with

the use of Bayesian inferences. One of the main criticisms is the

need to specify prior distributions, which can have some influence

on the parameter posterior distributions [71; 38]. Commonly,

sensitivity analyses are performed to evaluate the effect of prior

change on the posterior. As increasing data quality and quantity

reduces the prior influence. Therefore, these sensitivity analyses

are above all an assessment tool for appreciate the amount of

information in the data [40]. In this study, extensive work was

undertaken on prior specification and weakly informative distri-

butions were assigned to the parameters for which there was no

established scientific understanding. This was done to obtain

estimates that were more consistent with the biology of yellowfin.
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The general approach developed in this study can be applied to

other species and can be adapted to any structure that produces

periodic growth increments in response to various ecological

issues.
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Figure S2 Simulation framework for testing the ageing
error model. Different sources of uncertainty are added to

simulated ages to randomly generate noisy increments that were

then used as inputs in the model.
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Figure S3 Marginal posterior distributions of the
ageing error model parameters (black) compared with
the simulated values (grey). Two alternatives were consid-

ered, with (right) and without (left) individual variability in

increment formation; A, B and C represents the first, second
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Figure S4 Boxplot of the RMSE values obtained with the ageing

error model for different number of otolith readings. a, b and c

represents the first, second and third simulated data set

respectively.
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Figure S5 Boxplot of RMSE values obtained with the ageing

error model, the traditional method and the intermediate method

for different number of otolith readings. a, b and c represents the

first, second and third simulated data set respectively.
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Figure S6 Marginal posterior distributions of the parameters of

the growth model coupled with the ageing error model (black).

The grey curves correspond to the prior distributions.
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Table S1 Summarize of data used in ageing error
model. A: fish for which the time-at-liberty is known, B: fish

for which the time-at-liberty is unknown, It: section between

nucleus and OTC mark, Im: section between OTC mark and

edge, Ir: section between nucleus and edge.
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Table S2 Comparison of RMSE values obtained with
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correspond to the number of readings of the same otolith; a, b and

c represents the first, second and third simulated data set
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of the same otolith; a, b and c represents the first, second and third

simulated data set respectively.

(DOC)
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15. Marriott RJ, Mapstone BD (2006) Consequences of inappropriate criteria for

accepting age estimates from otoliths, with a case study for a long-lived tropical

reef fish. Canadian Journal of Fisheries and Aquatic Sciences 63: 2259–2274.

16. Punt AE, Smith DC, KrusicGolub K, Robertson S (2008) Quantifying age-

reading error for use in fisheries stock assessments, with application to species in

Australia’s southern and eastern scalefish and shark fishery. Canadian Journal of

Fisheries and Aquatic Sciences 65: 1991–2005.

17. Bertignac M, De Pontual H (2007) Consequences of bias in age estimation on

assessment of the northern stock of European hake (Merluccius merluccius) and

on management advice. ICES Journal of Marine Science 64: 981–988.

Accounting for Age Uncertainty

PLOS ONE | www.plosone.org 11 April 2013 | Volume 8 | Issue 4 | e60886



18. Neilson J (1992) Sources of error in otolith microstructure examination In D.K.

Stevenson and S.E. Campana, Otolith microstructure examination and analysis.
Canadian Special Publication Fisheries Aquatic Science 117: 115–126.

19. Uchiyama J, Struhsaker P (1981) Age and growth of skipjack tuna, Katsuwonus
pelamis, and yellowfin tuna, Thunnus albacares as indicated by daily growth

increments of sagittae. Fishery Bulletin 79: 151–162.
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