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Abstract: Estimating sugarcane biomass is difficult to achieve when working with highly 

variable spatial distributions of growing conditions, like on Reunion Island. We used a 

dataset of in-farm fields with contrasted climatic conditions and farming practices to 

compare three methods of yield estimation based on remote sensing: (1) an empirical 

relationship method with a growing season-integrated Normalized Difference Vegetation 

Index NDVI, (2) the Kumar-Monteith efficiency model, and (3) a forced-coupling method 

with a sugarcane crop model (MOSICAS) and satellite-derived fraction of absorbed 

photosynthetically active radiation. These models were compared with the crop model 

alone and discussed to provide recommendations for a satellite-based system for the 

estimation of yield at the field scale. Results showed that the linear empirical model 

produced the best results (RMSE = 10.4 t·ha−1). Because this method is also the simplest to 

set up and requires less input data, it appears that it is the most suitable for performing 
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operational estimations and forecasts of sugarcane yield at the field scale. The main 

limitation is the acquisition of a minimum of five satellite images. The upcoming open-access 

Sentinel-2 Earth observation system should overcome this limitation because it will 

provide 10-m resolution satellite images with a 5-day frequency. 

Keywords: sugarcane; yield estimation; model; remote sensing 

 

1. Introduction 

Remote sensing is widely used to estimate the production of biomass of crops and natural 

vegetation systems in various climatic conditions [1–3], and it provides spatially exhaustive, objective 

and dynamic information on the vegetative development of a canopy. In addition to biomass 

estimation, remote sensing indices are used to estimate ecophysiological variables, such as the leaf 

area index [4] or fraction of intercepted photosynthetically active radiation (PAR) [5,6]. 

Remote sensing data may be related to the vegetation biomass in several ways: (1) empirical 

relationships between spectral vegetation indices (VI) and yield or biomass production, (2) radiation 

use efficiency [7] derived from the seasonal integration of intercepted PAR from spectral vegetation 

indices, and (3) spectral data coupled with dynamic crop growth models. 

On Reunion Island (Indian Ocean), sugarcane (Saccharum officinarum) is the primary crop in terms 

of cultivated area (25,000 ha) and agricultural income. To sustain profitability in this sector, the 

harvesting and processing of sugarcane must be optimally managed, and accurate estimations of the 

final biomass are required to reach this objective. The logistics of sugarcane mills (opening dates, 

inputs, distribution of harvesting machines, etc.) and farmers (daily delivery quotas, labor, etc.) depend 

on such estimations. 

The sugarcane fields on Reunion Island mainly belong to small growers and are characterized by 

their small size (approximately 0.9 ha) and highly variable climatic conditions, soil types and farming 

practices. Several methods are currently used to estimate the sugarcane biomass production across the 

island based on the farmers’ reports, ground sampling, and crop model simulations. Forecast results are 

consolidated 2 weeks prior to the beginning of the harvest campaign and determine the logistics to be 

implemented. Each method has advantages and drawbacks. The reporting method by farmers is simple 

to set up, but it provides subjective values of production. The ground sampling method performed in 

May and June by field officers on 62 reference fields all over the island is time consuming and can be 

biased by a poor representativeness of the reference fields. Simulations with the MOSICAS model [8] 

require delicate parameterization, and such methods generally lack an accounting of the diversity of 

the crop and climatic conditions over the island. This limitation can be overcome by using remote 

sensing data at high spatial resolution to provide information on the state of development of crops at 

any location within the territory. 

Over the last thirty years, numerous studies have presented examples of empirical relationships 

between vegetation index (VI) values and aboveground total dry biomass. These relationships were 

developed either with point-in-time VI values (generally measured at the green vegetation peak) and 

vegetation canopy biomass [9] or between VI values integrated over the growing cycle and aboveground 
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biomass at the end of the growing season [10]. For sugarcane, Duveiller et al [11] compared the use of 

several metrics (e.g., integral, maximum, and slope) of the fraction of absorbed PAR derived from the 

VEGETATION sensor of SPOT-4 to estimate yield at the regional scale in Brazil. Mulianga et al [12] 

proposed temporally weighing the NDVI integration in consideration of the sugarcane cropping 

calendar in western Kenya. In [13], the authors compared the use of maximum NDVI values and 

integrated NDVI values to estimate yield at the field scale on Reunion and Guadeloupe islands. These 

authors also reported that the relationship between yield and the maximum NDVI is exponential, 

which is a major limitation for future extrapolation or geographic-scale changes, whereas the 

relationship with the time integral of NDVI is linear. 

The Monteith efficiency model [14] simulates the dry matter production of a homogeneous sugarcane 

crop from daily intercepted PAR and radiation use efficiency of the crop [7]. The Kumar-Monteith 

model is a simplification of the Monteith model [14] that can be used with remote sensing data,  

and it is based on the relationship between the PAR intercept efficiency and VIs [15]. For example, 

Asrar et al [16] and Liu et al [17] used this model to predict the aboveground biomass of wheat and the 

yield of corn, respectively. To our knowledge, this method has not yet been applied to the estimation 

of sugarcane yield. 

Crop models are dynamic models that simulate the growth of a crop at regular time steps (generally 

daily); such models rely on mechanistic and empirical equations that describe the various 

ecophysiological processes of the plant’s growth and compute the development of the crop based on 

several input variables, such as climatic data and parameters that include crop and soil characteristics 

and field management practices. However, crop models have limitations that are primarily caused by 

the simplification of complex natural phenomena. Moreover, the parameter values used in the model 

may not be representative of the actual values, and the lack of high spatial resolution input variables 

(such as climatic variables) may limit the accuracy of the model. Coupling methods that consist of data 

from remote sensing integrated into crop models provide a solution for crop development monitoring 

and biomass estimation. They combine actual and exhaustive observations with the mathematical 

conceptualization of the model. Different coupling methods have been reported [15,18,19] and can be 

summarized into recalibration methods and forcing methods. To our knowledge, few attempts have 

been made to use coupling methods with a sugarcane dedicated model. In [20], researchers used a 

forcing method with the MOSICAS sugarcane model to improve the accuracy of yield estimation. 

Although numerous studies have described how remote sensing data can be used to estimate  

a crop’s ecophysiological variables, including biomass production, to our knowledge, no attempt has 

been made to directly compare the remote sensing methods on a unique dataset. Therefore, the 

objective of this work is to compare remote sensing-based methods in the estimation of sugarcane 

biomass to provide a set of recommendations for a future sugarcane yield monitoring system for the 

sugarcane industry. We implemented and tested three methods based on the Normalized Difference 

Vegetation Index that was computed from SPOT-4 and SPOT-5 time series images and compared the 

methods to a direct estimation method of crop modeling. The ground data set was composed of 63 in-farm 

fields located in two contrasted sites on the island and spread over three growing seasons (2010, 2011 

and 2012). 

The models were then compared for their accuracy of estimation and simplicity of implementation 

(number of required satellite images and amount of required additional input information). Because the 
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optimization of harvest logistics depends on the early assessment of biomass production, we also tested 

methods for yield forecasting for different dates ranging from mid-May to early July, which 

corresponds to the beginning of the harvest period. 

The results were then discussed to produce recommendations for the construction of an operational 

method to estimate the biomass production of sugarcane on Reunion Island and other countries whose 

sugar industry is based on smallholder farms. 

2. Materials and Methods 

2.1. Coupling a Crop Model with Remote Sensing 

2.1.1. The Study Sites 

The ground data set was composed of 63 field observations collected over two study sites and three 

cropping seasons (2009–2010, 2010–2011, and 2011–2012). The study fields were situated in two 

farms located in the northern and southern parts of the island (Figure 1) with contrasting climatic 

conditions and agricultural practices. 

Figure 1. Location of the sugarcane fields and sugarcane mills on Reunion Island.  

The magnified insets show the two study sites (fields and weather and pluviometer stations). 

 

The farm located in the northern part of the island (hereafter referred to as FN) had a mean annual 

rainfall of 2420 mm. The 38 fields used in this study were located at altitudes between 60 m and 200 m, 

and all were rainfed. With the exception of three fields cultivated with the R582 cultivar, all of the 

fields were planted with the R579 sugarcane cultivar because this cultivar was specifically adapted to 

the climatic conditions of the area. The mean area of the studied fields was 6.2 ha, and their mean yield 

was 118 t·ha−1. 

The farm located in the southern part of the island (hereafter referred to as FS) had a mean annual 

rainfall of 940 mm. The 25 fields used in this study were located at altitudes between 170 m and 480 m, 
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and 15 fields were located lower than 300 m and irrigated. Five different sugarcane cultivars were 

used: R570, R577, R579, R582 and R584. The mean area of the studied fields was 13.1 ha, and the 

mean yield was 94 t·ha−1. 

Although the yields observed in these well-managed farms were higher than the 76 t·ha−1 island 

average, the farms were selected because (i) the farmers were able to provide agronomic data (cultivar, 

yield and harvest date) for each field and (ii) both farmers used unique agricultural practices for all of 

their respective fields, which simplified the error analysis of the methods. 

2.1.2. Climatic and Agronomic Data 

The climatic and agronomic data were collected over three growing cycles (2010, 2011 and 2012). 

The climatic data were acquired at daily a time step, and the rainfall, potential evapotranspiration, 

global radiation and mean temperature data were collected at two climatic and five rainfall stations 

located close to the studied fields (Figure 1). 

The soil characteristics were extracted from the Reunion soil map [21]. 

The cropping practices data were obtained from the farmers’ databases and included observed yield 

and harvest dates for each studied field and irrigation schedules. The observed yield was computed 

from the weighing of the harvested stalk fresh biomass of each field for the three study years. 

2.1.3. Remote Sensing Data 

A total of 56 SPOT images (14 SPOT-5 images and 42 SPOT-4 images) covering the entire island 

were acquired for dates between July 2009 and December 2012 through the KALIDEOS program 

conducted by the Centre National d’Études Spatiales (CNES). 

The number of available images for each field and for each season ranged between 5 and 20, the 

median number was 14 images per field and per growing cycle. 

The NDVI was computed for each available satellite image, and a cloud-free median value of the 

NDVI was calculated for each studied field (see Figure 2). 

Figure 2. Example of the NDVI time profile of a southern sugarcane field for three 

consecutive years. Shaded areas represent the harvest period. Bold dashed black lines 

represent the harvest dates. Open symbols represent the SPOT-4 images, and solid symbols 

represent the SPOT-5 images. 
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The images had a 10 m spatial resolution, included TOC (Top Of Canopy) reflectance and were 

orthorectified to ensure cross-comparison in time and space [22]. 

2.2. The Remote Sensing-Crop Yield Models 

A limited number of the well-known remote sensing-based techniques used to estimate crop 

biomass have been applied to sugarcane. We tested three of these methods in increasing complexity. 

2.2.1. A Prerequisite: The NDVI Interpolation Model 

The remote sensing methods for yield estimation presented in this paper are based on the NDVI 

temporal profile of each of the 63 studied sugarcane fields. 

To compute the NDVI temporal profile, we used an interpolation model based on two continuous 

logistic functions [23]. The first function (F1) was used to describe the field’s growth phase, whereas the 

second function (F2) was used to describe its senescent phase. NDVI dynamic is this computed as follows: 

 (1)

1⁄  (2)

1⁄  (3)

where t is the thermal age (in degree days) of the crop since the previous harvest, m is the maximum 

value of the logistic curve, a and b are the slope at the inflexion points of the F1 and F2 functions, 

respectively, and ti and tf are the degree day values at those inflexion points. The parameters were 

determined using an “nls” non-linear regression [24] that minimized the relative standard error.  

Similar to [25], we used the thermal age of our plots instead of the calendar age to improve the 

relationship between the NDVI and yield. The thermal age was calculated considering the daily mean 

temperature and a base temperature of 12 °C [26]. 

2.2.2. Empirical NDVI Model 

We computed the cumulated NDVI values by integrals between two successive harvests for each 

field. A linear regression was then established between the integrated values and observed yield at the 

latter harvest. 

2.2.3. Kumar-Monteith Model 

The Kumar-Monteith efficiency model [7] is based on the relationship between the dry matter 

production and the sum of the incident global radiation as follows: 

	  (4)

where DM is the dry matter production (g·m−2), RUE is the radiation use efficiency (g·MJ−1), εb is the 

climatic efficiency, fAPAR is the fraction of absorbed photosynthetically active radiation and GR is the 

global radiation (MJ·m−2). 
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The radiation use efficiency represents the capacity of the plant to convert radiation into dry biomass. 

We used a radiation use efficiency value of 3.22 g·MJ−1 as estimated by [26], and this value was 

comparable to the value measured by [27]. εb corresponds to the ratio of photosynthetically active radiation 

and global radiation, and we used the generally accepted value of 0.5 for this parameter [26,28,29]. 

fAPAR represents the ability of a vegetation cover to intercept and absorb incident radiation and can 

be derived from satellite data [5,6,30]. Using field measured values of fAPAR and the NDVI 

interpolation model [31], we computed the following relationship: 

1.383 0.333 (5)

For mature sugarcane, the water content of the stalks is assumed to vary slightly [32]. Therefore, the 

cane yield (t·ha−1) can be directly computed from the aboveground dry biomass (g·m−2) by a linear 

regression. Based on the MOSICAS [26] outputs for dry matter production and final yield, we 

computed the following relationship: 

0.018 3.64 (6)

Using the previously established NDVI values (see Equations (1)–(3)), the yield can be modeled  

as follows: 

	 	 0.0279	 1.383 0.333 	 3.64 (7)

2.2.4. MOSICAS Sugarcane Crop Model 

MOSICAS is a semi-empirical sugarcane crop model [8], and it was used to simulate the daily 

growth of a uniform first ratoon sugarcane field planted with the cultivar R570 as a function of the 

climatic inputs and specific soil, cultivar and cropping practice parameters. 

This model relies on a water balance module and growth module (Figure 3). The water balance 

module was adapted by [33] from the CERES Maize model [34], and it computed a water satisfaction 

index based on the water inputs and outputs. The growth module was based on a big leaf model [35], 

and it computed the daily accumulated biomass production (dry and fresh) based on the water 

satisfaction index, global radiation and temperature and radiation use efficiency. Similar to the  

Kumar-Monteith model, the fAPAR is a major variable in the estimation of the biomass production. 

We used the forced-coupling method to input the fAPAR values derived from the NDVI into the 

MOSICAS model. Forcing a model consists of replacing the simulated values of a state variable by 

observed values. The model then considers the actual state of development of crop development of the 

studied fields. The daily values of the NDVI were derived from the NDVI temporal profiles computed 

with Equations (2)–(4). The fAPAR values were then computed based on Equation (5). 

Two MOSICAS methods were tested: simulations without forcing (referred to as the MOSICAS-RAW 

method) and with complete forcing (referred to as the MOSICAS-FORCED method) of MOSICAS. 
  



Remote Sens. 2014, 6 6627 

 

 

Figure 3. Simplified organization chart of MOSICAS. Adapted from [26]. 

 

2.2.5. Influence of the Number of Satellite Images 

The sensitivity of the four methods (empirical NDVI-based, Kumar-Monteith, MOSICAS-RAW 

and MOSICAS-FORCED) to the (i) number of satellite images used in the yield estimation process 

and (ii) date of the yield forecast (up to two months before the harvest with a 15-day time step) was 

tested so that recommendations could be provided for an operational yield forecasting method. 

To do so, we grouped the study fields into classes according to the number of available satellite 

images per field and performed an analysis of variance on the absolute error of the yield estimation to 

determine if the number of satellite images had a significant effect. 

To evaluate the sensitivity of the methods to the forecast date, we used Equation (7) to compute the 

yield of each field by comparing the previous harvest date and four calendar dates te set to 15 May,  

1 June, 15 June, and 1 July. 

The integrated values of the NDVI, Kumar-Monteith model and MOSICAS simulated yields were 

computed at date te and regressed against the final yields. The four yield forecasts and yield 

observations at harvest were evaluated and compared using RMSE values. The earlier yield forecasts 

induced a decreasing number of available satellite images. A linear regression was used instead of the 

logistic function described in Section 3.2.1 whenever there were fewer than four images to describe the 

NDVI dynamics of the field. 

3. Results 

3.1. NDVI Temporal Profile 

The evolution of the NDVI as a function of the thermal time and for different periods is illustrated 

in Figure 4. 
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The adjustments showed positive results, with the RMSE ranging from 0.0006 and 0.065 and mean 

value at 0.025. 

Figure 4. Measured (symbols) and interpolated (lines) NDVI values in a field. 

 

3.2. Comparison of the Methods 

We compared the yield estimation accuracy of each method, and linear regression was established 

between the outputs of the models and observed yield at the field scale (Figure 5). 

Figure 5. Comparison of the yield estimation accuracy of the methods: (a) empirical 

NDVI; (b) Kumar-Monteith model; (c) MOSICAS RAW; and (d) MOSICAS-FORCED.  

Blue circles represent the fields located in the northern site, green triangles represent the 

fields located in the southern site. 
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Computations were made using the NDVI values observed for the entire growing cycle. 

The best results were obtained with the integrated NDVI empirical model, which had a root  

mean square error of 10.4 t·ha−1, which was followed by the Kumar-Monteith model and the 

MOSICAS-FORCED method (RMSE of 11.9 t·ha−1 and 12.6 t·ha−1, respectively). The MOSICAS-RAW 

simulations were the least accurate (RMSE of 15.3 t·ha−1). An analysis of variance of the absolute 

estimation errors showed that the year did not have a significant effect on the linear regressions  

(p > 0.14). However, the location of the study sites (north and south regions) did have an effect on the 

linear regressions based on the MOSICAS-RAW and MOSICAS-FORCED methods (p = 0.04 and 

0.002, respectively). 

Finally, the MOSICAS-RAW method tended to overestimate the observed yield, whereas the 

MOSICAS-FORCED method tended to underestimate the yield, which is shown on Figure 5. 

3.3. Influence of the Number of Satellite Images 

We tested the influence of the number of satellite images in the methods on the estimated  

yield accuracy. 

We first compared the results of the MOSICAS-RAW simulations with those of the  

MOSICAS-FORCED simulations to determine if the use of remote sensing data improved the yield 

estimation. The analysis of variance performed on the absolute estimation errors showed that forcing 

the model with remote sensing data significantly increased the accuracy (p < 0.0001). 

The influence of the number of satellite images was then tested for all of the methods. Because we 

had a different number of available satellite images for each field, we aggregated the fields into three 

classes (Figure 6). 

Figure 6. Aggregation of the fields according to the number of images. 

 

The analysis of variance showed that the number of available satellite images did not have  

a significant effect on the accuracy of the estimation of the yield (p-value = 0.59, 0.63 and 0.18 for 

MOSICAS-FORCED, integrated-NDVI based and Kumar-Monteith methods, respectively). 
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3.4. Early Forecasts 

As previously stated, early yield forecasts are vitally important for the sugarcane industry.  

To evaluate the effect of the forecast date on the yield accuracy, we compared the actual yield 

measured at harvest with the simulated yield obtained from each method at five different dates (Figure 7): 

four forecast dates from mid-May to early July (at the beginning of the harvest) with a two-week time 

step and the actual harvest date of the field. 

Figure 7. Influence of the yield forecast date on the accuracy of the forecasted yield. 

 

For the earliest yield forecasts (mid-May), the RMSE ranged between 13.1 and 14.8 t·ha−1. The best 

results were obtained with the empirical NDVI and MOSICAS-FORCED models. There was little 

variation in the accuracy of the forecasted yield for simulation dates between mid-May and early July. 

The mean RMSE values were 13.0, 14.2, 14.9 and 13.4 t·ha−1 for the empirical NDVI, Kumar-Monteith, 

MOSICAS-RAW and MOSICAS-FORCED methods, respectively. 

According to the RMSE, the loss of accuracy between the early yield forecasts and harvest date 

yield estimations was higher for the integrated NDVI and Kumar-Monteith models than for the 

MOSICAS methods, and there was almost no influence from the forecast date on the accuracy of the 

MOSICAS-RAW method. 

4. Discussion 

4.1. Model’s Relevance 

We tested the ability of three remote sensing-based methods to estimate the yield of sugarcane at 

the field scale under a wide range of climatic conditions and cropping practices. The accuracy of 

methods in estimating and providing early forecasts of sugarcane yield were evaluated for two 

contrasting regions of Reunion Island. 

The results showed that the integrated NDVI empirical model provided the best yield estimation 

with an RMSE of 10.4 t·ha−1, whereas the conventionally used MOSICAS-RAW method estimated the 

yield with an RMSE of 15.3 t·ha−1. An analysis of variance showed that the cropping year (3 years in 

the data set) had no effect on the linear regressions between the simulated and observed yields.  

Our dataset did not include the exceptional climatic years (i.e., cyclonic years our drought years); 
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therefore, the results should be confirmed by comparing yield estimations for two climatically contrasted 

cropping years, or on a longer period. Yet inter-annual climatic variability on yield estimation 

accuracy has not been directly tested, the highly contrasted climatic conditions from one field to 

another tend to show that the model is robust. We showed that the linear regression was significantly 

different for MOSICAS-RAW and MOSICAS-FORCED simulations depending on the study site. 

Certain fields located in the southern study site were irrigated, and because we used approximations of 

the actual volume of irrigated water, we may have introduced errors to the computations that could 

have resulted in a significant difference between the northern rainfed fields and southern irrigated 

fields. The comparison of the methods showed that the increased complexity of the processes 

simulated by the model did not result in an increase of yield estimation accuracy (see Table 1). The use 

of global radiation with the Kumar-Monteith model reduced the quality of the estimation compared to 

the integrated NDVI method, and integrating the water input data with the MOSICAS models resulted 

in a reduced accuracy of the results compared to the Kumar-Monteith’s method. In both cases, the 

uncertainty linked to the measurements may explain this reduction of accuracy, as there is a high 

spatial heterogeneity of climatic conditions. 

Table 1. Comparison of the requirements and accuracy of each model. 

Model Integrated NDVI Kumar-Monteith MOSICAS-RAW MOSICAS-FORCED 

Sugarcane GIS x x x x 

Satellite images ≥5 ≥5 0 ≥5 

Harvest dates x x x x 

Daily temperature x x x x 

NDVI-degree day model x x  x 

Global radiation  x x x 

Rainfall   x x 

Irrigation   x x 

Number of inputs 5 6 6 8 

RMSE, in t·ha−1 10.4 11.9 15.3 12.6 

The analysis of variance showed that forcing the model with remote sensing data resulted in  

a significantly increased accuracy of yield estimation, and it also showed that the number of satellite 

images used in the model had no influence on this accuracy. This result might be explained by the fact 

that the minimum number of satellite images of our studied fields was high, with at least 5 available 

images, which was sufficient to describe the dynamics of NDVI during crop growth. 

We previously found that early forecasts of the yield, which are usually at one and a half months 

before the beginning of the harvest campaign, are required at the field level; however, the four 

methods performed poorly and had accuracies ranging between 13.0 and 13.4 t·ha−1. There was  

a significant increase in accuracy, however, for the empirical NDVI model, Kumar-Monteith model 

and MOSICAS-FORCED method when the simulations were run until the date of harvest.  

Remote sensing data provide representative information on the vegetative development of the field, 

and using this information over the complete growth cycle incorporates any phenomena that might 

affect the crop’s growth. However, stresses that affect the crop after the last satellite image has been 
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acquired are not integrated in the computations. Consequently, earlier estimations of the yield include 

more unquantifiable errors. 

4.2. Sources of Errors and Operational Considerations 

Models that estimate yield must be able to perform an accurate forecast of biomass production at 

the field scale, and models should also be easy to set up and contain all required input data.  

The empirical NDVI model appears to be the easiest to set up, and it requires the least amount of input 

data for processing (see Table 1). 

Considering the results presented in this paper, the most suitable method for sugarcane yield 

estimation at the field scale appears to be the empirical NDVI model because it is the simplest model 

to set up and provides the most accurate yield estimation over a complete cycle of the crop. For early 

forecasts (before the harvest period), its accuracy is lower, which was expected, but it is still equivalent 

to the accuracy of crop growth models run without remote sensing data. This method requires five 

different inputs as stated in Table 1. 

As previously stated, a minimum of 5 satellites images per field should be used to estimate the yield 

of sugarcane fields. A number of radiometric corrections must be applied before image processing, and 

to be comparable, those images must be converted for the top of canopy reflectance or at least be 

intercalibrated, such as in [36,37]. Although several methods have been developed to automatically 

remove clouds from satellite images [38], there are always residual clouds and shadows that should be 

manually removed. 

In addition, harvest dates are required to compute the thermal age of the fields; these dates cannot 

be systematically acquired at the field scale because of the number of smallholders with various 

harvest dates, but must be available before the beginning of the simulations. Several methods based on 

remote sensing are available to acquire harvest dates: El Hajj et al [39] used a fuzzy logic-based 

process to estimate the harvest date of sugarcane fields based on a SPOT-5 image time series, and 

Baghdadi et al [40] investigated the use of radar images from Terra SAR-X images to monitor the 

harvest of sugarcane fields. 

5. Conclusions 

We compared three methods of estimation of the sugarcane yield based on remote sensing:  

(1) an empirical relationship with a growing season-integrated Normalized Difference Vegetation 

Index NDVI, (2) the Kumar-Monteith efficiency model, and (3) a forced-coupling method with the 

sugarcane model MOSICAS and satellite-derived fAPAR. 

Our results showed that the method based on the empirical relationship gave the most accurate 

estimation of crop yields. All methods show a loss of accuracy for early predictions. It has also been 

shown that a minimum of 5 satellite images has to be acquired in order to correctly describe the 

dynamic of the NDVI, and that a more important number of images will not result in a significant 

enhancement of the accuracy of the crop yield estimation. Finally, considering that the integrated 

NDVI method (i) was the most accurate to estimate the crop yield and (ii) that it is the easiest method 

to set up, we recommend its use for the estimation of the yield of sugarcane fields. 
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The method based on the empirical NDVI model should be implemented and tested at the island 

scale. Additional ground data are required for further method evaluation in environmental and 

cropping conditions that were not tested in this study. This approach should take advantage of the 

upcoming open access Sentinel-2 Earth observation system that will provide 10-m resolution satellite 

images on a 10-day (then 5-day) frequency. 
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