

BALANCE HÍDRICO SUPERFICIAL DE LA CUENCA ALTA DEL RÍO PILCOMAYO

INFORME FINAL
Parte I

JORGE MOLINA CARPIO

DANIEL ESPINOZA ROMERO

Instituto de Hidráulica e Hidrología, UMSA LA PAZ – BOLIVIA Noviembre de 2005

CONTENIDO

1. INTRODUCCIÓN	
1.1 ANTECEDENTES	
1.2 OBJETIVOS Y METAS	
2. CARACTERIZACIÓN DEL ÁREA DE ESTUDIO	3
2.1 EL MEDIO FÍSICO	3
2.2 Hidrografía	<i>6</i>
2.3 Geología	
2.4 DIVISIÓN EN SUBCUENCAS Y MORFOMETRIA	10
3. BALANCE HÍDRICO DE CUENCA	15
3.1 CONCEPTOS BÁSICOS	
3.2 METODOLOGÍA	
3.2 EL MODELO DE TÉMEZ	19
3.3 INFORMACIÓN HIDROMETEOROLÓGICA	
3.4 PERIODO CONSIDERADO PARA EL BALANCE HÍDRICO	29
4. ANÁLISIS DE LA PRECIPITACIÓN	31
4.1 CARACTERIZACIÓN REGIONAL	31
4.2 INFORMACIÓN PLUVIOMÉTRICA	
4.3 ANALISIS DE CALIDAD Y TRATAMIENTO DE LA INFORM	
4.3.1 Análisis de consistencia, homogenización y regionalización o	
4.3.2 Relleno y reconstitución estadística de datos pluviométricos	
4.4 EVALUACIÓN ESPACIAL DE LA PRECIPITACIÓN	50
5. EVAPOTRANSPIRACIÓN	53
5.1 MÉTODOS DE ESTIMACIÓN DE LA EVAPOTRANSPIRACIÓN POTENO	CIAL53
5.1.1 Evaporación en tanque	
5.1.2 Métodos indirectos	
5.2 VARIABLES METEOROLÓGICAS	
5.2.1 Temperatura media ambiente	
5.2.2 Humedad relativa	
5.2.3 <i>Vientos</i>	
5.2.4 Radiación e insolación	
5.3 CÁLCULO DE LA ETP CON EL MÉTODO DE PENMAN	
5.4 EVALUACIÓN ESPACIAL DE LA EVAPOTRANSPIRACIÓN POTENCIAL.	
REFERENCIAS	72
ANEXO	73

LISTA DE FIGURAS

- 2.1: Cuenca del río Pilcomayo
- 2.2: Cuenca Alta del río Pilcomayo
- 2.3: Relieve y altitud de la Cuenca Alta del Pilcomayo, Coordenadas UTM, PSAD 56, Zona 20
- 2.4: Red hidrográfica "Cuenca Alta Del Río Pilcomayo"
- 2.5: Mapa geológico de la Cuenca Alta según la litología
- 2.6: Subcuencas y estaciones hidrométricas de la Cuenca Alta del Pilcomayo
- 3.1: Ciclo hidrológico
- 3.2: Esquema metodológico del Balance Hídrico Microregional
- 3.3: Principio de continuidad en el modelo de Témez
- 3.4: Ubicación y tipo de estaciones meteorológicas
- 3.5: Número de estaciones pluviométricas en funcionamiento por año
- 4.1: Dirección de los vientos alisios en enero
- 4.2: Ubicación de estaciones pluviométricas
- 4.3: Ventana de entrada al Vector regional en Hydraccess
- 4.4: Índices anuales del Vector y de las estaciones Grupo 2, Datos originales
- 4.5: Índices anuales del Vector y de las estaciones Grupo 2, Datos reconstituidos
- 4.6: Isoyetas anuales en la Cuenca Alta del río Pilcomayo, periodo 1970-2000
- 4.7: Ventana de resultados del módulo Spatial de Hydraccess
- 4.8: Precipitación media mensual y anual por subcuenca
- 5.1: Perfiles térmicos Cuenca Alta del río Pilcomayo
- 5.2: Mapa de temperatura media anual Cuenca Alta del río Pilcomayo
- 5.3: ETP Penman vs Evaporación en tanque Estación Sucre
- 5.4: ETP Penman vs Evaporación en tanque Villamontes y región del Chaco
- 5.5: Estaciones usadas en el cálculo de ETP
- 5.6: Mapa de isolíneas de ETP y ubicación de estaciones, periodo 1970-2000 Cuenca Alta del río Pilcomayo
- 5.7: ETP media mensual y anual por subcuencas en (mm), periodo 1970-2000

LISTA DE TABLAS

- 2.1: Parámetros morfométricos de la Cuenca Alta del río Pilcomayo
- 3.1: Síntesis de variables y ecuaciones del modelo de Témez
- 3.2: Estaciones meteorológicas del Balance Hídrico de la Cuenca Alta del río Pilcomayo
- 3.3: Estaciones hidrométricas de la Cuenca Alta del río Pilcomayo
- 4.1: Diagrama de barras de registros pluviométricos
- 4.2 Grupos regionales de precipitación en la Cuenca Alta del río Pilcomayo
- 4.3: Precipitación media mensual y anual (mm) en la Cuenca del río Pilcomayo
- 4.4: Precipitación media mensual y anual por subcuenca
- 5.1: Evaporación media en tanque, a nivel mensual y anual (mm) Cuenca Alta del Río Pilcomayo
- 5.2: Evaporación media anual en tanque[mm]
- 5.3: Radiación Solar Ro en el límite superior de la atmósfera (cal/cm²-día)
- 5.4: Medias mensuales de la duración astronómica del día N (horas)
- 5.5: Albedo α en función al tipo de suelo
- 5.6: Temperatura media ambiente mensual y anual en (°C)
- 5.7: Temperatura media anual en (°C) en estaciones de apoyo
- 5.8: Humedad relativa media mensual y anual (%), Cuenca Alta del río Pilcomayo
- 5.9: Humedad relativa media anual en (%)
- 5.10: Velocidad media del viento, mensual y anual en (m/s) Cuenca Alta del río Pilcomayo
- 5.11: Velocidad media anual del viento en (m/s) Estaciones de apoyo
- 5.12: Insolación mensual y anual media (hr_{sol}/día), Cuenca Alta del río Pilcomayo
- 5.13: Insolación mensual y anual media (hr_{sol}/día) en estaciones de apoyo
- 5.14: Planilla electrónica de cálculo de ETP Método de Penman
- 5.15: Evapotranspiración potencial media mensual y anual (mm), método de Penman, Cuenca Alta del río Pilcomayo
- 5.16: Evapotranspiración potencial anual (mm), método de Penman Estaciones meteorológicas de apoyo
- 5.17: ETP media mensual y anual por subcuencas en (mm), periodo 1970-2000 Cuenca Alta del río Pilcomayo

Capítulo 1

INTRODUCCIÓN

1.1 ANTECEDENTES

El Balance Hídrico Superficial de Bolivia fue ejecutado en el marco de un convenio interinstitucional entre el Instituto Francés de Investigación Científica para el Desarrollo en Cooperación (ORSTOM, actualmente IRD), el Instituto de Hidráulica e Hidrología de la Universidad Mayor de San Andres (IHH-UMSA), el Servicio Nacional de Meteorología e Hidrología de Bolivia (SENAMHI) y el Programa Hidrológico Internacional de la UNESCO (PHI/UNESCO).

Este proyecto fue el primer balance hídrico que abarcó todo el territorio boliviano. Se consideraron ocho grandes cuencas hidrográficas. La publicación final y síntesis del proyecto fue coeditada en 1992 por ORSTOM y la UNESCO. El Balance Hídrico Superficial de Bolivia brinda información con carácter macroregional de los tres términos principales del balance: precipitación, evapotranspiración y escorrentía superficial, a nivel medio anual, en base a datos plurianuales de 1968-82, periodo seleccionado ante todo por la disponibilidad conjunta de información de la red administrada por el SENAMHI. Se aplicó la metodología propuesta en la Guía Metodológica para la elaboración del Balance Hídrico de América del Sur (1982).

El Balance Hídrico es un documento de referencia importante cuando se desean considerar variables hidrológicas a nivel de macrocuencas, por lo que ha sido y es utilizado en estudios relacionados a la planificación de los recursos hídricos del país. Sin embargo, en 2001 las instituciones miembros del CONAPHI (Comité Nacional del Programa Hidrológico Internacional) identificaron la necesidad de iniciar una segunda fase que incluyese tres cambios significativos: análisis a nivel mensual, mayor discretización espacial (subcuencas) y ampliación del periodo de estudio. Se espera de esta manera definir la oferta de agua y ampliar el conocimiento del régimen hidrológico de las cuencas bolivianas, brindando información esencial para el aprovechamiento y gestión de los recursos hídricos del país

Esta nueva fase, que se denominó Balance Hídrico Microregional de Bolivia, quedó bajo responsabilidad de las mismas instituciones que habían llevado a cabo el primer Balance. Después de una primera etapa en que se desarrolló la metodología del estudio y se aplicó a una cuenca piloto, se dio inicio a la etapa operativa en tres de las once grandes cuencas en que se había subdividido el país: las de los ríos Beni y Mamoré y la del lago Titicaca.

Por su parte, el Proyecto de Gestión Integrada y Plan Maestro de la Cuenca del Río Pilcomayo inició sus actividades en el marco del Convenio de Financiación n° ASR/B7-3100/99/136 entre la Comunidad Europea y la Comisión Trinacional para el Desarrollo de la Cuenca del río Pilcomayo. Tiene como uno de sus objetivos específicos "Profundizar los conocimientos sobre las características hidrológicas y ambientales de la cuenca, y definir las condiciones para una utilización racional de los recursos hídricos y de los suelos de la cuenca". Una de las actividades relacionadas con el mencionado objetivo y que está prevista en el Plan Operativo Anual enmendado 2, es la actividad A.1.2, Balance Hídrico, relacionada con la actualización de los Balances Hídricos de la cuenca.

El CONAPHI planificó iniciar el Balance Hídrico de esta cuenca el año 2004, lo que coincidió con las actividades previstas por el Proyecto. Bajo estas condiciones, se suscribió un Convenio de cooperación técnica. La primera actividad a realizar en el marco de este convenio es el Balance Hídrico de la Cuenca del río Pilcomayo. Se decidió realizar primero el Balance de la Cuenca Alta del río, aguas arriba de Misión La Paz.

1.2 OBJETIVOS Y METAS

El objetivo general es la evaluación de los recursos hídricos de la cuenca alta del río Pilcomayo por medio del Balance hídrico de cuenca.

Los objetivos específicos son:

- Actualizar el Balance Hídrico de la cuenca, mejorando la resolución temporal hasta el nivel mensual y la discretización espacial hasta el nivel de subcuenca.
- Establecer la base de información para toda la cuenca alta en términos de los tres componentes principales del balance: precipitación, evapotranspiración y escurrimiento.
- Extender el periodo del Balance Hídrico existente.

Los objetivos se traducirán en el logro de los siguientes resultados:

- Base de datos meteorológicos con series mensuales completas de las principales variables climatológicas (precipitación, temperatura, evapotranspiración potencial, etc.) que cubra toda la cuenca alta del río Pilcomayo, hasta la estación hidrométrica de Misión La Paz en territorio argentino.
- Base de datos hidrológicos con series de caudales mensuales para cada una de las estaciones hidrométricas ubicadas en la cuenca alta, de al menos 15 años de duración.
- Base de datos geográficos que incluya toda la cartografía temática, la ubicación de estaciones de medición y resultados.
- Modelo precipitación-escurrimiento calibrado y validado, que permita la extensión de las series de caudales de todas las subcuencas con información incompleta.
- Mapas temáticos digitales e impresos que muestren gráficamente los resultados principales: isolíneas de variables climáticas, mapas de coeficientes de escorrentía y caudales específicos, etc.
- Informe con los resultados por subcuencas y la síntesis para toda la cuenca alta del río Pilcomayo.

Capítulo 2

CARACTERIZACIÓN DEL ÁREA DE ESTUDIO

2.1 EL MEDIO FÍSICO

La cuenca del río Pilcomayo cubre una área estimada de 272 000 km², que se extiende sobre los territorios nacionales de Argentina, Bolivia y Paraguay (figura 2.1). Forma parte del sistema fluvial de la cuenca del Plata. Las nacientes del río se encuentran en la Cordillera de los Frailes en Bolivia, a más de 5,000 metros de altura y su desembocadura en el río Paraguay se encuentra próxima a la ciudad de Asunción. La cuenca incluye una gran variedad de climas, desde el de alta montaña hasta el de las zonas subandinas y el Chaco, en parte seco y en parte húmedo. Solamente la cuenca alta, situada casi enteramente en territorio boliviano, puede ser definida según los criterios usualmente admitidos (Proyecto Pilcomayo, 2003). El área de estudio corresponde a este sector.

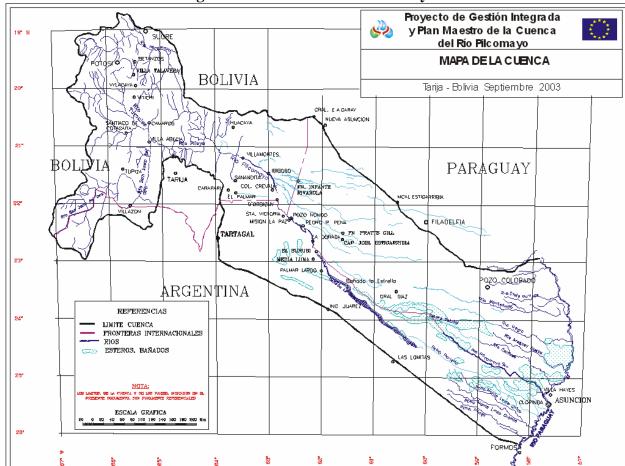


Figura 2.1: Cuenca del río Pilcomayo

La Cuenca Alta del río Pilcomayo se encuentra ubicada entre las coordenadas 18° 42` y 22° 55` de latitud sur y 62° 20´ y 67° 05´ de longitud oeste. Limita al norte con la cuenca del Río

Grande, al Oeste con la cuenca endorreica del Altiplano, al sur con la República Argentina y la cuenca del Río Bermejo (Tarija), al Este con las cuencas del río Itenéz y el sistema del Chaco. La cuenca alta se extiende sobre los departamentos bolivianos de Oruro, Potosí, Chuquisaca y Tarija (Ver figura 2.2) y un área relativamente pequeña de la República Argentina. Cubre una superficie de 80710 km² hasta Villamontes y 91820 km² hasta Misión La Paz.



Figura 2.2: Cuenca Alta del río Pilcomayo

Fuente: Elaboración Propia

El relieve (ver figura 2.3, elaborada en base al modelo digital de elevaciones) está constituido por la cordillera de Los Andes al oeste, el Subandino y la llanura del Chaco al este. Morfológicamente la cadena andina presenta tres zonas: la Cordillera Occidental sector meridional, donde nace el río San Juan, la Cordillera Oriental Central y la Sur. El Subandino se halla constituido por un conjunto de paisajes, tales como, serranías, colinas, piedemontes y terrazas aluviales. Puntualmente está formada por un conjunto de serranías de dirección predominante Norte-Sur, adyacentes por su sector Este a la cordillera oriental y por valles intermontanos. Al este de la serranía del Aguaragüe, la última del Subandino, se extiende la llanura del Chaco, que presenta un declive hacia el sureste. La cuenca se extiende desde más de 5500 msnm hasta 392 msnm en la ciudad de Villamontes, donde se terminan las serranías del Subandino.

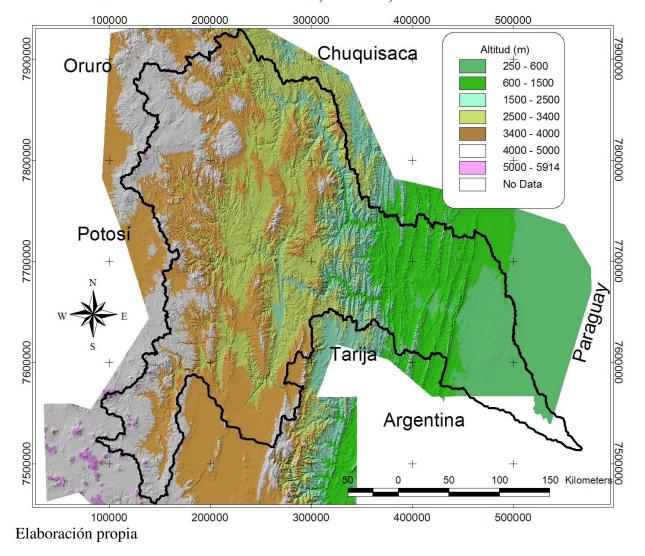


Figura 2.3: Relieve y altitud de la Cuenca Alta del Pilcomayo Coordenadas UTM, PSAD 56, Zona 20

Debido a la orografía, el clima de la región varia de semiárido (sector oeste) hasta subhúmedo y subhúmedo seco en el resto de la cuenca. Las precipitaciones anuales varían entre 300 mm/año en el suroeste, hasta valores por encima de 1000 mm/año al noreste de la cuenca (ver capítulo 4). El régimen hidrológico esta caracterizado por una estación seca de mayo a octubre y una estación húmeda de diciembre a marzo. Noviembre y abril se consideran meses de transición.

La dinámica natural del río Pilcomayo está dominada por la estacionalidad del clima, con alternancia de estaciones secas y húmedas que causan una gran variabilidad de los caudales. Se combinan características regionales semiáridas con materiales muy erosionables en la alta cuenca, en tanto la cuenca baja presenta una pendiente muy débil, con tendencia a la sedimentación. La producción de sedimentos, que provoca concentraciones muy altas, es básicamente producto de estos fenómenos naturales que se explican por el carácter geológicamente joven de esta región. Además, la lixiviación natural de rocas presentes en la

alta cuenca causa una contaminación importante de los ríos, en particular por arsénico y boro, con las consecuencias correspondientes para la salud de los ribereños (Proyecto Pilcomayo, 2003).

2.2 HIDROGRAFÍA

La figura 2.4 muestra la red hidrográfica de la cuenca en coordenadas UTM, zona 20. El río Pilcomayo nace en la Cordillera de los Frailes, a 4600 msnm, en territorio de la provincia Avaroa del departamento de Oruro. En sus nacientes (66°20'W y 19°20'S) recibe el nombre de Jachcha Jokho, que cambia luego a Kollpa Jahuira. Más abajo recibe sucesivamente los nombres de Aguas Calientes, Cachimayu y a partir de la confluencia con el río Chillahua, ya en el departamento de Potosí, el de Pilcomayo. El río toma un rumbo predominante este al inicio. Cruza la localidad de Yocalla-Potosí (3380 msnm) a los 55 km de recorrido y por la estación hidrométrica de Talula a los 140 km. En este punto el río toma una dirección sureste que se mantiene hasta Misión La Paz. El río cruza Puente Méndez a 184 km de sus nacientes e Icla a los 234 km y una altitud de 2010 msnm. Hasta este punto los principales tributarios son los ríos Tinguipaya y Ravelo-Cachimayu por la margen izquierda y Tarapaya y Mataca por la derecha. El río continua por 215 km hasta la confluencia con el río Pilaya, su tributario más importante. En este tramo recibe a los ríos Turuchipa y Ajchilla/Santa Elena.

El río Camblaya-Pilaya se forma por la unión de los ríos San Juan del Oro y Tumusla. El primero recibe las aguas de varios afluentes provenientes de las Cordilleras de Lípez y Chichas, y el río Tumusla recibe las aguas provenientes de la Cordillera de los Frailes y Chichas. El río San Juan del Oro, que se denomina Grande de San Juan aguas arriba de la confluencia con el río San Antonio, tiene como tributarios importantes a los ríos Tupiza y Tomayapu. Por su parte, el río Tumusla, que aguas arriba recibe los nombres de Yura y Toropalca, tiene como principal tributario al río Cotagaita.

La mayor parte del tramo Camblaya-Pilaya, de 217 km de longitud, transcurre encañonado. Por su parte, el río San Juan del Oro, que nace a 4050 msnm en la provincia de Jujuy Argentina, tiene una longitud total de 400 km. El río Tumusla mide 234 km desde sus nacientes. Por tanto, siguiendo el curso más largo, el río Pilaya tiene una longitud de 617 km.

Desde la confluencia con el río Pilaya hasta Villamontes, el río Pilcomayo recorre 126 km, con lo que la longitud desde sus nacientes hasta esa localidad es de 575 km. En este tramo, recibe algunos afluentes, como el Ingre y el Ñacamiri, que le aportan agua de uno de los sectores más húmedos de toda la cuenca. En Villamontes (390 msnm) el río abandona la última serranía del Subandino e ingresa a la llanura chaqueña. La pendiente disminuye, la sedimentación del lecho se acelera y un cono de deyección se forma a partir del puesto militar de Ibibobo. El río cruza la localidad de La Vertiente a 355 msnm (+29 km), Palo Marcado a 330 msnm (+19 km), Ibibobo a 310 msnm (+20 km), Creveaux a 295 msnm (+35 km), D'Orbigny a 281 msnm (+24 km), Esmeralda a 265 msnm. (+40 km), donde se encuentra el hito trinacional, hasta llegar a Misión La Paz (+43 km) a 230 msnm, punto de control de toda la Cuenca Alta. La longitud acumulada del tramo Villamontes-Misión La Paz es de 210 Km.

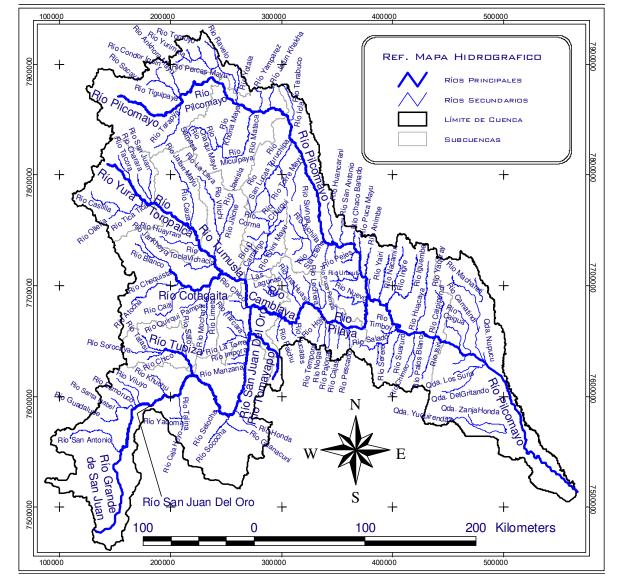


Figura 2.4: Red hidrográfica de la Cuenca Alta Del Río Pilcomayo

El río no tiene tributarios importantes en la llanura chaqueña y pierde parte de sus aguas por infiltración y evaporación en los paleo-cauces del cono, alimentando acuíferos que parecen tener un gradiente sureste. En resumen, el río Pilcomayo recorre 785 km desde sus nacientes hasta el punto de control en Misión La Paz. Una descripción detallada de toda la red hidrográfica de la cuenca del Pilcomayo y las longitudes de sus tributarios se encuentra en el trabajo de Espinoza (en preparación).

El río continúa su flujo en la misma dirección unos 600 km, sirviendo de límite nacional entre las Repúblicas de Argentina (Provincia Formosa) y Paraguay (Provincias Boquerón y Presidente Hayes), hasta llegar a Clorinda (Paraguay, cerca de Asunción), que es el punto de confluencia con el río Paraguay.

2.3 GEOLOGÍA

La Cuenca en estudio tiene sus nacientes en las estructuras de la Cordillera Oriental, que ha estado sujeta a diversos efectos geodinámicos. Gran parte de la cuenca esta constituida por materiales muy erosionables: en la región Subandina principalmente arcillas, areniscas, arcillitas y limonitas y en las serranías del este de la cuenca por depósitos aluviales, fluviolacustres y coluviales (gravas, arenas, limos, arcillas, calizas y tills). Esta geología implica un transporte sólido importante en toda la cuenca, sedimentación o erosión importante del lecho de los ríos de la cuenca y por tanto, frecuentes cambios de sección (IGM, 2001).

La profundización/incisión del lecho del río principal y muchos afluentes indica un estado juvenil dentro del ciclo de erosión, creando formas abruptas, fuertes pendientes y abundante carga gruesa. Sólo en limitados espacios, donde el curso del río adquiere una gradiente baja, se encuentran llanuras aluviales, abanicos aluviales y depósitos lacustres formados por la deposición de los sedimentos fluviales.

La figura 2.5 muestra la litología de la Cuenca Alta según Zonisig (2001). Según la estructura hidrogeológica y capacidad de infiltración/percolación, existen tres tipos básicos:

- Terrenos permeables constituidos por arena y grava sueltas.
- Terrenos semipermeables formados por arena, limo y arcilla poco consolidados como la llanura chaco-beniana
- Terrenos impermeables constituidos por afloramientos de rocas macizas ya sean de origen ígneo, sedimentario o metamórfico como es la Cordillera Oriental

El sector de la Cordillera Oriental, donde nace el río Pilcomayo (parte alta), presenta una estructura impermeable y semi-impermeable, que causa que el escurrimiento superficial sea más importante que la infiltración y que los valles estén expuestos a inundaciones. Sin embargo, los eventos tectónicos que afectaron a la región, la deformaron, plegaron y fracturaron intensamente, y han dado origen a una permeabilidad secundaria, que facilita, en cierto modo, la circulación de aguas subterráneas y su afloramiento respectivo. Como consecuencia de ello, la disminución de los caudales de manantiales es sensible en los años menos lluviosos. Se deduce que las zonas potenciales de aguas subterráneas en la Cordillera Oriental son reducidas. En la zona de Nor y Sur Chichas se distinguen manantiales que afloran de rocas ordovícicas, cretácicas y terciarias. En la región de Ravelo afloran aguas de calidad aceptable, las mismas después se unen y forman el río Ravelo que es el principal abastecedor de agua potable a la ciudad de Sucre. También en la cuenca de Culpina se presentan acuíferos confinados, con capas gravo-arenosos de buen rendimiento.

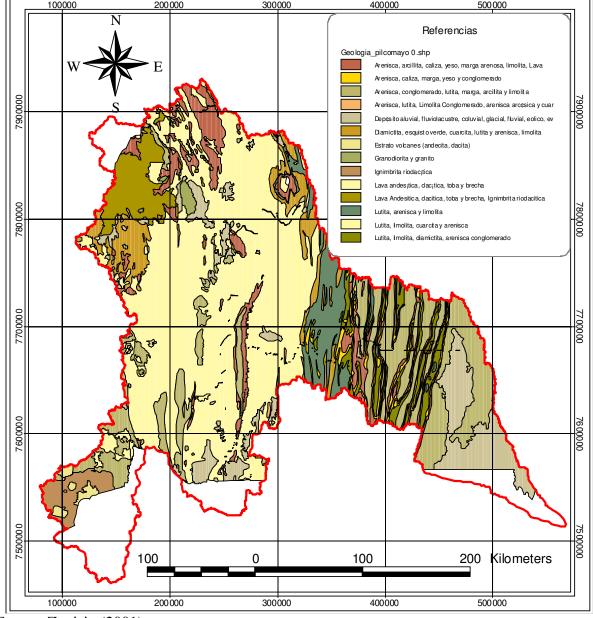


Figura 2.5: Mapa geológico de la Cuenca Alta según la litología

Fuente: Zonisig (2001)

El sector Sur tiene la misma estructura pero con una franja permeable a lo largo de los cursos de los ríos San Juan del Oro y Chico de Camargo, que va desde Villazón hasta Camargo aproximadamente. En general, los acuíferos son libres y en algunos casos, muy próximos a la superficie. Sobre los lineamientos paleozoicos de menor extensión, se sobreponen sedimentos mesozoicos y terciarios con permeabilidades relativas un poco más altas.

Por último la parte baja (llanura Chaco-Beniana) tiende a ser semi-impermeable a permeable y se caracteriza por tener una mayor continuidad y homogeneidad en las estructuras del subsuelo. Como consecuencia, la disposición de las curvas izopiésicas permiten determinar que el curso de los flujos subterráneos tenga como base el sudeste de la cuenca chauqeña,

donde cerca a la frontera con el Paraguay, la red de drenaje prácticamente ha desaparecido. Sin embargo, los rendimientos de los pozos subterráneos son moderados, debido a la limitada recarga a los acuíferos, que sólo reciben tres cursos de agua de poco caudal desde el Aguaragüe (los ríos Macharetí, Tiguipa y Camatindi) y a la precipitación media anual de 400 a 800 mm. Como consecuencia, el nivel estático fluctuante es continuo y muy profundo, que en algunos casos llega hasta los 230 m, y está estrechamente relacionado con la cercanía o lejanía del abanico aluvial de río Pilcomayo.

2.4 DIVISIÓN EN SUBCUENCAS Y MORFOMETRIA

Con apoyo de extensiones ArcView y un modelo digital de elevaciones elaborado para el presente estudio, se delimitaron las subcuencas en función de las estaciones hidrométricas que disponían de datos de caudal. La figura 2.6 muestra las subcuencas y las estaciones hidrométricas, incluyendo varias que no disponen de datos de caudal. Las estaciones más importantes se describen a continuación:

SALTO LEÓN. Con control fluviométrico sobre el río Yura. Ubicada a 3160 msnm, al sureste de la localidad de Yura y al suroeste de la localidad Cuchu Ingenio y a unos 4 km aguas abajo de la desembocadura sobre el río Yura de los ríos Charara y San Juan.

TUMUSLA. Con control fluviométrico sobre el río Tumusla. Recibe el aporte de la cuenca Salto León y de las cuencas de los río Caiza, Huayrani y otros. Ubicada junto a la población de Tumusla, a 2580 msnm y a 18 km aguas arriba del punto de desembocadura del río Vitichi sobre el río Tumusla.

PALCA GRANDE. Con control fluviométrico sobre el río Tumusla. Recibe el aporte de las cuencas Salto León, Tumusla y de las cuencas de los ríos Vitichi, Cotagaita y otros. Ubicada junto a la localidad de Palca Grande a 2345 msnm, medio kilómetro aguas arriba del punto de desembocadura del río Chico de Camargo sobre el río Tumusla y al sur de la población de Camargo y norte de la población de Villa Abecia.

SAN PEDRO. Con control fluviométrico sobre el río Chico de Camargo. Ubicada cerca de la localidad Palca Grande a 2340 msnm, 1.k Km aguas arriba del punto de desembocadura del río Chico de Camargo sobre el río Tumusla y a unos 2 km aguas abajo del punto de desembocadura del Río San Pedro sobre el Río Chico de Camargo.

TUPIZA. Con control fluviométrico sobre el río Tupiza. Ubicada cerca de la localidad de Tupiza a 2960 msnm, a unos 10 km aguas arriba del punto de desembocadura del río Tupiza en el río San Juan del Oro.

El PUENTE. Con control fluviométrico sobre el río san Juan del Oro. Recibe el aporte de las cuencas de los ríos Grande de San Juan, San Antonio (Esmoruco), Guadalupe, Esmoruco, Viluyo, Talina, Tupiza, Sococha, Guananguni, Honda, Manzanal, Impora y otros. Ubicada junto a la localidad El Puente a 2320 msnm, al sur de la localidad de Las Carreras y a unos 7 km aguas arriba del punto de desembocadura del río Tomayapo sobre el río San Juan del Oro.

EL MOLINO. Con control fluviométrico sobre el río Tomayapo. Ubicada cerca de la localidad de El Molino Tomayapo a 3300 msnm y a unos 41 km aguas arriba del punto de desembocadura del río Tomayapo en el río San Juan del Oro.

CHILLCARA. Con control fluviométrico sobre el río Camblaya. Recibe el aporte de todas las cuencas anteriores y las de los ríos Tarcara, Chico y otros. Ubicada a 2090 msnm al este de la población de Villa Abecia, al sur de la Estancia La Cabrería y al norte de la estancia Las Animas, a unos 4.5 km aguas arriba del punto de desembocadura del río Paichu sobre el río Camblaya.

SAN JOSECITO. Con control fluviométrico sobre el río Pilaya. Recibe el aporte de todas las cuencas anteriormente descritas, además de las cuencas de los ríos Huacata, Inca Huasi, Lechera, Arenales, Temporal, Nogal, Pescado, San Simón, Manzanal y otros. Ubicada a 835 msnm al norte de la localidad El Huyco y oeste de la localidad de Timboy y a unos 15 Km. aguas abajo del punto de desembocadura del río Pescado sobre el río Pilaya.

TALULA. Con control fluviométrico sobre el río Pilcomayo. Ubicada cerca de la localidad de Talula a 2.570 msnm y a 32 km aguas arriba del punto de desembocadura del río Ravelo en el río Pilcomayo.

NUJCHU. Con control fluviométrico sobre el río Ravelo/Cachimayu. Ubicada junto a la localidad de Nujchu a 2400 msnm a unos 16 km aguas arriba del punto de desembocadura del río Ravelo en el río Pilcomayo.

VIÑA QUEMADA. Con control fluviométrico sobre el río Pilcomayo. Recibe el aporte de las cuencas Talula, Nujchu y de la cuenca del río Mataca. Ubicada a 2020 msnm al sureste de la localidad de La Mendoza, a unos 7 km aguas arriba de la confluencia del río Icla.

VILLAMONTES. Con control fluviométrico ubicado sobre el río Pilcomayo. Recibe el aporte de todas las cuencas descritas anteriormente y las de las cuencas de los ríos Icla, Turuchipa, Torremayu, Ajchilla, Chaco Banado, Puca Mayu, Animbe, Yairi, Ñacamiri, Ingre, Timboy, Saururo, Palos Blancos, Huacaya, Isiri, Caipipendi y otros. Ubicada junto a la población de Villamontes a 390 msnm, justamente a la salida de la serranía Aguarague y a unos 12 km aguas abajo de la desembocadura de los ríos Isiri y Caipipendi en el río Pilcomayo.

MISIÓN LA PAZ. Con control fluviométrico sobre el río Pilcomayo. Es el punto de control de toda la cuenca alta. Además de las anteriores, recibe el aporte de las cuencas de los ríos Ihuiraru, Camatindi, Macharetí y otros. Administrada por la institución competente de Argentina.

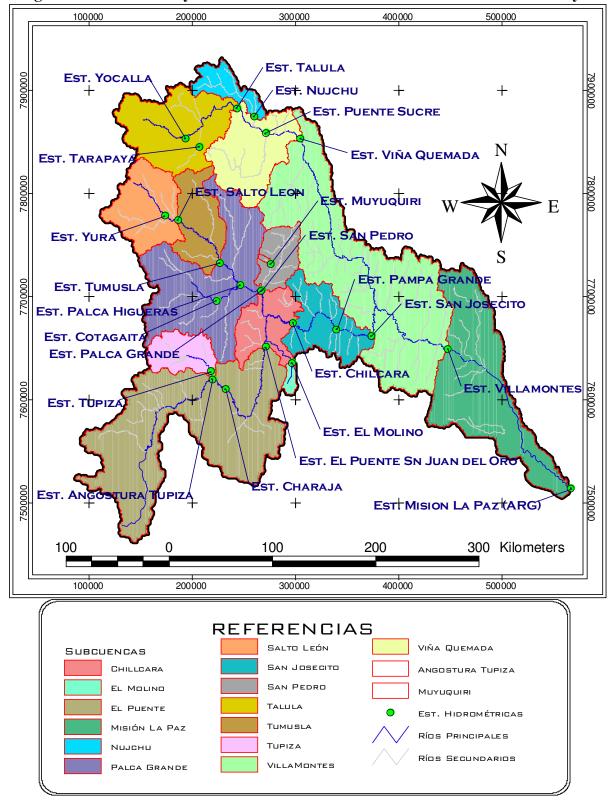


Figura 2.6: Subcuencas y estaciones hidrométricas de la Cuenca Alta del Pilcomayo

La tabla 2.1 muestra los principales parámetros morfométricos de las subcuencas de la Cuenca Alta del río Pilcomayo, empezando con el área de aporte y perímetro. La superficie total de la cuenca hasta Villamontes es de 80711 km2 y hasta Misión La Paz es de 91821 km2. Se observa que la pendiente de las zonas altas de las cuencas de los ríos Pilcomayo y San Juan del Oro (controladas por las estaciones de Talula y El Puente), es más moderada que la de las subcuencas que aportan a esos mismos ríos aguas abajo. Para el conjunto de la Cuenca Alta hasta Villamontes, la pendiente es relativamente uniforme.

La pendiente media del curso principal se obtuvo siguiendo el curso más largo. Nuevamente destaca el tramo superior del río San Juan del Oro como el de pendiente más moderada. La pendiente media del río Pilcomayo hasta Villamontes es de 0.72%. El índice de compacidad más próximo a 1 de las subcuencas de la parte alta indica una respuesta hidrológica más rápida y por tanto, crecidas de mayor magnitud relativa. Este índice tiende a aumenta en dirección aguas abajo hasta alcanzar 2.3 en Villamontes y 2.6 en Misión La Paz.

La densidad de drenaje y la longitud de flujo de superficie, si bien son parámetros cuyo valor depende de la escala de los mapas utilizados, permiten al menos una comparación entre subcuencas trabajadas con la misma escala. Dos subcuencas pequeñas, las de de Muyuquiriy El Molino, destacan por su alta densidad de drenaje y por tanto corta longitud de flujo superficial. Por el contrario, la parte alta de los ríos Tumusla y san Juan del Oro presentan una densidad de drenaje relativamente baja.

Tabla 2.1: Parámetros morfométricos de la Cuenca Alta del río Pilcomayo

				Area i, Area							unto de con	· ·					
				Perim	=	Perimetr	o de la c	uenca hasta	punto de co	ntrol							
				L _{LR}	=	Longitud	l en línea	recta, desd	e el punto de	e salida	a de la cuen	ca hasta el lí	mite má	is lejano sobre	e su divis	soria.	
				LT	=	Longitud	l total de	la red de dre	enaje natura	dentr	o de la cuen	ca <i>(mapas 2</i>	ONISIO	Gescala 1:250	0.000)		
				S _{MC}	=	Pendien	te media	de la cuenc	a hasta punt	o de c	ontrol						
				S MCP	=			del curso pr	•								
				lc _	=		•				ı, lc>3 alarga	ada					
				F	=			de Horton d									
				Dd	=			naje, escala		E0 000	,						
				L _{FS}		•	•	de superficie		50,000)						
	Sub Cuenca (Est.		Área i	Área	= Perím.	L _{LR}	S _{MC}	ión de la cu	erica P (%)		Rectáng I	Equiv (km)		Dd	L _{FS}	Re	
Nº	Hidrométr.)	Río	[Km ²]	[Km ²]	[Km]	[Km]	Г%1		Total	lc	Lmax	Lmin	F	[Km/Km ²]	[Km]	[Km]	
1	Nujchu	Nujchu	1608	1608	295	64 27.7 1.24 1.24 2.1 136.8 11.75 0.39 0.28 1.77 0.70											
2	Talula	Pilcomayo	6493	6493	490	120	22.1	1.02	1.02	1.7	216.8	29.96	0.45	0.09	5.68	0.76	
3	Viña Quemada	Pilcomayo	5348	13449	762	182	24.6	0.65	0.95	1.9	344.6	39.03	0.41	0.14	3.56	0.72	
4	Muyuquiri	Lique Mayu	63	63	37	15	36.8	2.59	2.59	1.3	14.4	4.39	0.28	0.34	1.47	0.60	
5	San Pedro	C.Camargo	2108	2108	238	77	27.8	1.26	1.26	1.5	98.3	21.44	0.36	0.41	1.23	0.68	
6	Salto Leon	Salto Leon	4455	4455	358	75	19.9	1.53	1.53	1.5	151.0	29.51	0.79	0.09	5.49	1.00	
7	Tumusla	Tumusla	3662	8117	523	128	25.3	0.82	1.15	1.6	227.6	35.66	0.50	0.10	5.06	0.79	
8	Palca Grande	Tumusla	10496	18613	878	176	26.4	0.35	0.88	1.8	395.0	47.12	0.60	0.10	5.07	0.88	
9	El Molino	Tomayapo	297	297	83	31	23.2	1.00	1.00	1.4	32.8	9.04	0.30	0.23	2.15	0.62	
10	Tupiza	Tupiza	2262	2262	271	66	25.1	1.43	1.43	1.6	117.3	19.29	0.52	0.09	5.84	0.81	
11	La Angostura	Tupiza	2311	2311	284	64	25.1	0.90	1.36	1.7	124.6	18.55	0.57	0.09	5.70	0.85	
12	El Puente	SnJuan Oro	17396	19707	1019	220	19.2	0.42	0.57	2.0	471.5	41.80	0.41	0.10	4.81	0.72	
13	Chillcara	Camblaya	3155	43880	1567	7 261 23.3 0.30 0.69 2.1 729.5 60.15 0.65 0.13 3.93 0.91											
14	San Josecito	Pilaya	4250	48130	1720	289	24.8	1.08	0.74	2.2	806.8	59.65	0.58	0.14	3.45	0.86	
15	VillaMontes	Pilcomayo	19131	80711	2276	397	28.6	0.48	0.72	2.3	1071.2	75.34	0.51	0.19	2.59	0.81	
16	Misión La Paz	Pilcomayo	11110	91821	2755	55 574 25.8 0.07 0.64 2.6 1318.3 69.65 0.28 0.19 2.64 0.60											

Fuente: Elaboración propia

Capítulo 3

BALANCE HÍDRICO DE CUENCA

3.1 CONCEPTOS BÁSICOS

Se entiende por Balance Hídrico de cuenca a la evaluación de las entradas y salidas de agua en un hidrosistema natural llamado cuenca hidrográfica. El balance hídrico tiene su fundamento en el principio de conservación de la masa y se expresa en la ecuación simplificada del balance, que equivale a decir que la precipitación es igual a la escorrentía más la evapotranspiración real, más un término de discrepancia:

 $\left\langle \begin{array}{c} \overline{P} \end{array} \right\rangle = \left\langle \begin{array}{c} \overline{Q} \end{array} \right\rangle + \left\langle \begin{array}{c} \overline{ET} \end{array} \right\rangle + \eta \tag{3.1}$ Donde: $\left\langle \begin{array}{c} \overline{P} \end{array} \right\rangle = \text{Precipitación media del periodo y área}$ $\left\langle \begin{array}{c} \overline{Q} \end{array} \right\rangle = \text{Caudal medio del periodo y área}$ $\left\langle \begin{array}{c} \overline{ET} \end{array} \right\rangle = \text{Evapotranspiración media del periodo y área}$ $\eta = \text{Término de discrepancia}$

El símbolo $\langle \ \rangle$ indica promedio espacial horizontal y la barra promedio temporal.

Puesto que las mediciones de cada uno de los parámetros que intervienen en el balance se efectúan en forma separada y por diferentes medios de observación, es que surgen errores sistemáticos. Estos errores se traducen en el término de discrepancia, el cual no es más que un indicador de la calidad con que cada uno de los componentes se ajusta a la ecuación del balance. Valores bajos de η solamente indican que los términos del balance tienden a compensarse.

Puede considerarse al Balance Hídrico como una representación y evaluación cuantitativa de los componentes del ciclo del agua o ciclo hidrológico (figura 3.1), a nivel de cuenca. El ciclo no tiene principio ni fin y sus diversos procesos ocurren en forma continua. El ciclo hidrológico sirve también para hacer resaltar las fases básicas de interés para el hidrólogo: precipitación, evaporación y transpiración, flujo superficial y subterráneo. Por medio del Balance se puede lograr un conocimiento cualitativo y cuantitativo del ciclo hidrológico y de las interrelaciones entre fases. También es de interés la frecuencia con que pueden presentarse los casos extremos del ciclo, pues esta es la base del análisis económico, que es, o debe ser, el determinante final de todos los proyectos hidráulicos. (Ven Te Chow, Maidment David R., Mays Larry W, 1998)

El paso de tiempo (anual o mensual) usado en el Balance influye en la ecuación y metodología. Una forma más general de la ecuación es la siguiente:

$$P + Q_{sl} + Q_{ul} - E - ET - Q_{sO} - Q_{uO} - \Delta S - \eta = 0$$
(3.2)

Donde:

P = Precipitación

Qsl = Entrada de agua superficial a la cuenca o cuerpo de agua
Qul = Entrada de agua subterránea a la cuenca o cuerpo de agua

E = Evaporación

ET = Evapotranspiración

QsO = Salida de agua superficial QuO = Salida de agua subterránea

 ΔS = Variación del almacenamiento de agua en la cuenca

 η = Término residual de discrepancia, error de medición o estimación

La ecuación 3.2 evalúa por separado el flujo superficial y subterráneo y considera variación del almacenamiento en la cuenca, lo que es indispensable para balances de paso mensual. Las unidades de la ecuación pueden ser expresadas en altura media de agua sobre la cuenca o cuerpo de agua (mm), como volumen de agua (hm3), o en forma de flujo (m3/s). Se puede expandir el término ΔS para obtener una ecuación aún más detallada:

$$P + Q_{sl} + Q_{ul} - E - ET - Q_{sO} - Q_{uO} - \Delta M - \Delta G - \Delta S_L - \Delta S_{CH} - \Delta S_{GL} - \Delta S_{SN} - \eta = 0$$
(3.3)

Donde:

 ΔM = Variación del almacenamiento de humedad en el suelo y zona

saturada

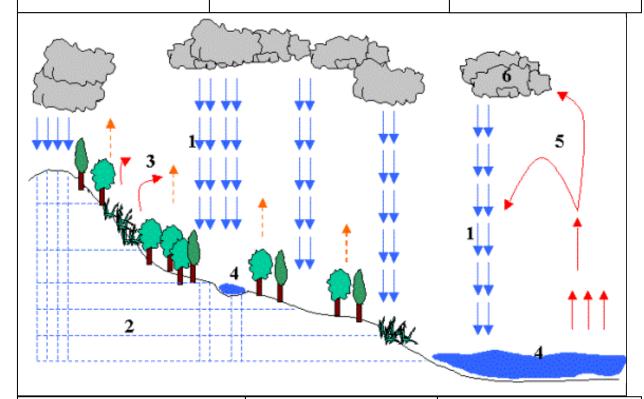
 ΔG = Variación del almacenamiento en acuíferos

 $\Delta \, S_L = Variación del almacenamiento en lagos y embalses$ $<math>\Delta \, S_{CH} = Variación del almacenamiento en cursos de agua$

 ΔS_{GL} = Variación del almacenamiento en glaciares

 ΔS_{SN} = Variación del almacenamiento en cobertura de nieve

3.2 METODOLOGÍA


Existen diversos tipos de balance hídrico y métodos asociados. Por ejemplo el balance hídrico puntual o *balance agrológico* es la base para el cálculo de las necesidades de agua de los cultivos. Por medio del *balance aerológico* se busca determinar el contenido de agua en la atmósfera y su dinámica. Las expresiones del balance hídrico en la atmósfera, que surgen de la conservación de la masa, pueden variar según los procesos físicos a ser estudiados. La forma que convendrá tratar es la que contiene como residuo a la diferencia entre la evaporación y la precipitación promediadas en un periodo de tiempo dado y sobre una superficie dada.

El *balance isotópico* usa el comportamiento isotópico del vapor de agua al moverse a través de las diversas fases del ciclo hidrológico. Por el proceso de evaporación el agua del suelo se enriquece del isótopo ¹⁸ O respecto del agua de precipitación. Por otra parte el vapor de condensación será más rico en ¹⁸ O respecto que el vapor original. De esta forma, el vapor residual, después de un proceso de condensación, se empobrecerá en ¹⁸ O . Si este proceso se repite por etapas, el vapor residual cada vez tendrá una composición isotópica menor que la

anterior y así sucesivamente. De esta forma la concentración isotópica de la precipitación irá disminuyendo a medida que se desenvuelve el proceso.

Figura 3.1: Ciclo hidrológico

- 1) Precipitación o Iluvia. Es el fenómeno, por el cual el agua es transportada a través de la atmósfera por las nubes hacia el interior con un movimiento circular; como resultado de la gravedad y pérdida de agua, esta cae.
- 3) Transpiración. Las plantas y otras formas de vegetación toman el agua del suelo y la excretan otra vez como vapor de agua. Cerca del 10% de la precipitación que cae en la tierra se vaporiza otra vez a través de la transpiración de las plantas, el resto se evapora de los mares y de los océanos.
- 6) Condensación. En contacto con la atmósfera el vapor de agua se transformará de nuevo a líquido, de modo que sea visible en el aire. Estas acumulaciones de agua en el aire son lo que llamamos las nubes.

- 2) Infiltración. El agua de lluvia se infiltra en la tierra y fluye en la zona saturada, donde se convierte en agua subterránea. El agua subterránea se mueve lentamente desde lugares con alta presión y elevación; hacia los lugares con una baja presión y elevación. Se mueve desde el área de infiltración a través de un acuífero, hacia un área de descarga, que puede ser un río, lago, mar o un océano.
- 4) Salida superficial. El agua de lluvia que no se infiltra en el suelo alcanzará directamente el agua superficial, como salida a los ríos y a los lagos. Después será transportada de nuevo a los mares y a los océanos. Esta agua es llamada agua de salida superficial.
- 5) Evaporación. Debido a la influencia de la luz del sol (radiación solar), el agua en los océanos y los lagos se calentará. Como resultado de esto se evaporará y será transportada de nuevo a la atmósfera. Allí formará las nubes que con el tiempo causarán la precipitación devolviendo el agua otra vez a la tierra. La evaporación de los océanos es la clase más importante de evaporación.

La metodología utilizada para el presente estudio corresponde a la del balance hídrico superficial de cuenca de paso mensual. Fue desarrollada durante la primera fase del proyecto Balance Hídrico Microregional de Bolivia y aplicada inicialmente a una cuenca piloto. La figura 3.2 muestra esa metodología, que corresponde al objetivo de obtener series mensuales de las principales componentes del balance: precipitación, evapotranspiración real y escurrimiento.

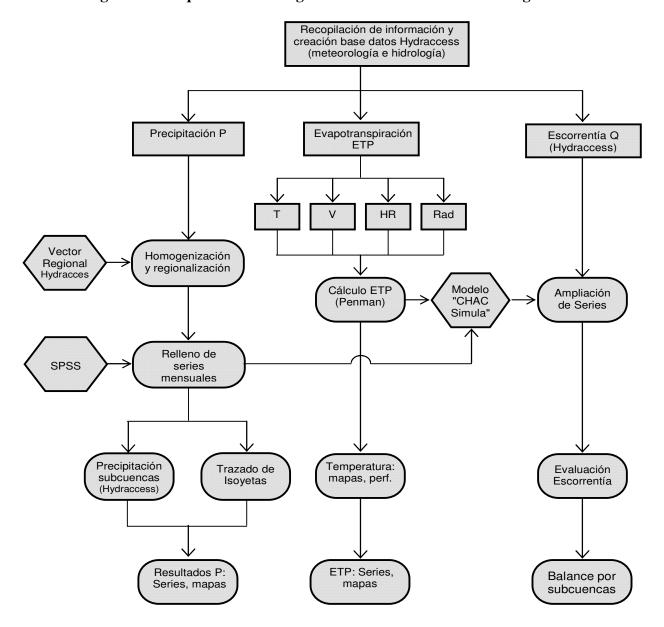


Figura 3.2: Esquema metodológico del Balance Hídrico Microregional

Existen aspectos de la metodología que pueden considerarse básicos. En primer lugar, la evaluación por separado de la precipitación, evapotranspiración potencial (ETP) y el escurrimiento. Esto permite obtener resultados para cada componente, como series mensuales y mapas (con apoyo de un SIG). En segundo lugar, la necesidad de evaluar la calidad y

consistencia de la información, mediante métodos como el Vector Regional. En tercer lugar, el uso de un modelo matemático de balance (CHAC Simula), al que se le asignó dos objetivos específicos: a) Completar y ampliar las series mensuales de caudal; b) Obtener una mejor comprensión del funcionamiento hidrológico de la cuenca. El modelo tiene la gran ventaja de extraer el máximo de información de los datos disponibles, permitiendo estimar el escurrimiento en sitios donde no existen registros hidrométricos o existen lagunas en las series medidas. Es necesario, entre otras cosas, porque al utilizarse un paso mensual, se debe considerar el almacenamiento temporal en diversos reservorios (ver ecuaciones 3.2 y 3.3), para los que generalmente no se dispone de datos medidos. Además, mediante el modelo se determina la evapotranspiración real (ETR). En el siguiente capítulo se describen sus principales características.

Después de la evaluación por componentes y la aplicación del modelo, se obtiene el balance hídrico por subcuencas. Posteriormente se obtiene el balance hídrico consolidado por cuenca, bajo el criterio de que los valores obtenidos para una cuenca deberán presentar total correspondencia en su magnitud con el de las subcuencas componentes. Las discrepancias deberán ser analizadas y explicadas.

3.2 EL MODELO DE TÉMEZ

El modelo matemático de balance de cuenca CHAC-Simula aplica el modelo de Témez (Témez, 1977 citado en CEDEX, 2004). Se trata de un modelo conceptual, agregado, de simulación continua, de pocos parámetros, de paso mensual, que aplica el principio de continuidad y simula los principales procesos de transferencia de agua en el ciclo hidrológico considerando dos almacenamientos: suelo/zona no saturada y acuífero/zona saturada. (Figura 3.3). Ha sido utilizado para elaborar el Plan Nacional de Aguas de Portugal y, en su versión distribuida (SIMPA), en el Plan Hidrológico de España (Libro Blanco).

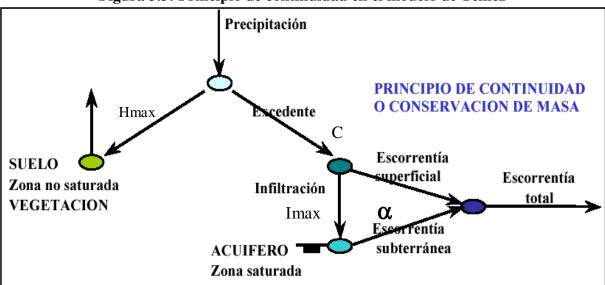


Figura 3.3: Principio de continuidad en el modelo de Témez

Fuente: Cedex (2004)

Tabla 3.1: Síntesis de variables y ecuaciones del modelo de Témez

l abia 5.1. Sintesis de v	ariables y ecuaciones del modelo de Temez
K: Parámetro coeficiente P _i : Precipitación; mes (i). H _{i-1} : Humedad anteceden	dad máxima. mm/mes te. nción máxima. mm/mes de descarga del acuífero. días ⁻¹ de uso de suelo medio sobre ETP mm te; mes (i-1). mm potencial, afectada por el coeficiente de usos de suelo; mes (i). mm m nc; mes (i). mm m ficial; mes (i). mm rránea; mes (i). mm nes (i). m³/s mes (i). mm
Umbral de escorrentía, P _o	$P_0 = C \cdot \left(H_{m \acute{a} x} - H_{i-1} \right)$
Excedente, T _i	$P_{i} \leq P_{o} \Rightarrow T_{i} = 0$ $P_{i} > P_{o} \Rightarrow T_{i} = \frac{(P_{i} - P_{o})^{2}}{P_{i} + \delta - 2P_{o}} \text{ siendo}$ $\delta = H_{\text{max}} - H_{i-1} + EP_{i}$
Balance de agua en el suelo, H _i	$H_{i} = Max(0, H_{i-1} + P_{i} - T_{i} - EP_{i})$
Evapotranspiración real, ER _i	$ER_{i} = min(H_{i-1} + P_{i} - T_{i}, EP_{i})$
Infiltración, I _i	$I_i = I_{m \acute{\alpha} x} \cdot \frac{T_i}{T_i' + I_{m \acute{\alpha} x}}$
Aportación superficial, A _{SUP_i}	$A_{SUP_i} = T_i - I_i$
Caudal drenado por el acuífero, Q _i	$Q_i = \alpha \cdot V_i \qquad \qquad Q_i = Q_{i-1} \cdot e^{-\alpha \cdot t} + \alpha \cdot R_i \cdot e^{-\alpha \cdot \frac{t}{2}}$
Aportación subterránea, A _{SUB_i}	$A_{SUB_i} = V_{i-1} - V_i + R_i \cdot t$
Aportación total, A _{TOT_i}	$A_{TOT_i} = A_{SUP_i} + A_{SUB_i}$
VAI	RIANTES DEL MODELO
Siendo	Parámetro número de días con precipitación Dos ramas de descarga del acuífero α ₁ : Parámetro coeficiente de descarga del acuífero. días - 1 α ₂ : Parámetro coeficiente de descarga del acuífero. días - 1 Parámetros reparto de recarga. Tanto por uno

Fuente: Manual del CHAC (Cedex, 2004)

La tabla 3.1 resume las variables utilizadas por el modelo, sus unidades y las ecuaciones que rigen los diferentes subprocesos. La información de entrada que requiere el modelo puede clasificarse en cuatro tipos: Series mensuales, datos generales, valores iniciales y parámetros de calibración. La precipitación, evapotranspiración potencial (ETP) y escorrentía (caudal) se deben introducir como series mensuales. Cada subcuenca tiene una sola serie de cada variable,

lo que corresponde a un modelo agregado. Esto significa que los valores de precipitación y ETP han resultado de un cálculo espacial de ambas variables, en base a métodos como el de polígonos de Thiessen, distancia inversa o Krigging. En la versión del modelo de Témez que se desarrolló y utilizó en el IHH hasta el 2004 (IHH-SIMULA) cada serie usaba un archivo, pero en la versión CHAC las tres series pueden incluirse en un solo archivo.

Los datos generales son: el área de la cuenca, el número de días de lluvia tipo por mes y el coeficiente ETP o de uso del suelo. El número de días lluvias tipo es el valor promedio del número de días del mes que presentan precipitación en la cuenca. En la forma actual del modelo, es un valor constante para todos los meses del año. Por experiencia, se recomienda usar el promedio de días de lluvia de la estación húmeda. El coeficiente ETP es un coeficiente de corrección de la evapotranspiración potencial. El valor por defecto es 1, si los valores ingresados en la serie correspondiente a dicha variable climatológica fueron calculados mediante el método que mejor se ajuste a la región y uso del suelo.

Los datos iniciales son el caudal subterráneo y la humedad del suelo (contenido de agua) correspondientes al primer mes del periodo de simulación. Si no existen valores medidos, deberán asumirse valores sujetos a corrección posterior. El uso del año hidrológico en la modelación presenta una ventaja importante relacionada a este aspecto, ya que en cuencas subhúmedas o semiáridas, como es el caso del Pilcomayo, es muy razonable asumir el valor 0 para la humedad inicial.

Los cuatro parámetros de calibración son el parámetro C de excedencia, la capacidad máxima de almacenamiento de agua en el suelo Hmax, la capacidad máxima de infiltración Imax y el coeficiente de descarga del acuífero α . La ubicación de estos parámetros en la figura 3.3 indica en que subproceso tiene más influencia cada uno de ellos. Se los describe a continuación por separado.

Parámetro C

Se usa para calcular el valor límite Po de la precipitación por encima del cual habrá excedente de agua para la escorrentía e infiltración. Si C es 0 el valor de Po=0, por lo que toda lluvia, aún de pequeña magnitud, producirá escorrentía a la salida de la cuenca. Como se puede observar en la tabla 3.2, Po depende tanto de C como del contenido de agua en el suelo en el mes anterior. Este parámetro es adimensional y su rango usual es de 0 a 1. Valores típicos están en el rango de 0.1 a 0.4.

Hmax

Es la capacidad máxima de almacenamiento de agua en el suelo y zona no saturada en mm, incluyendo el almacenamiento superficial (charcos y depresiones) y en la vegetación. El agua almacenada en el suelo estará disponible para la evapotranspiración, por lo que un valor más grande de Hmax implica en principio una disminución del volumen de escorrentía. Este valor se puede obtener en base a información cartográfica, combinando un mapa de suelos o fisiografía con un mapa de vegetación, usando la metodología descrita por Zonisig (2000).

Imax

Se define como la infiltración máxima posible o capacidad de infiltración en el mes, en mm. Este parámetro determina la división del excedente T en escorrentía superficial y recarga al acuífero, por lo que un nombre más adecuado sería el de percolación máxima. Varios autores proponen estimar Imax a partir de las características hidrogeológicas de la cuenca. Se ha asociado también con el Número de Curva (CN) del Soil Conservation Service, pero con la limitación de que el CN está asociado a la infiltración en el suelo superficial, por lo que el uso del CN para estimar Imax sólo puede tomarse como referencia preliminar.

Coeficiente de descarga del acuífero a

Es la inversa de la constante de recesión k (α =1/k) expresada en (1/días). Resulta de considerar al acuífero un embalse lineal, lo que lleva a ecuaciones del tipo de la 3.4 para el caudal Q drenado por el acuífero en el intervalo i-1 a i. Se puede obtener de los registros hidrométricos de la época de estiaje o por calibración. α es más grande en cuencas pequeñas o con acuíferos poco importantes. La bibliografía (DHI, 2000) indica valores α en el rango de 0.005 a 0.1.

$$Q_{i} = Q_{i-1} * e^{-\Delta t/k} = Q_{i-1} * e^{-\alpha \Delta t}$$
 (3.4)

Con el objeto de disminuir el número de parámetros de calibración, explotar al máximo la información cartográfica disponible y tener la posibilidad de extender la modelación a subcuencas no aforadas, los parámetros Hmax e Imax se determinaron por medio de la base de datos y mapas temáticos elaborados por Zonisig (2000) para los tres departamentos bolivianos de Potosí, Chuquisaca y Tarija, que cubren más del 90% de la superficie de la Cuenca Alta del río Pilcomayo. Este proceso y los mapas resultantes se describen en detalle en el capítulo 6. Durante el proceso de calibración, esos parámetros se mantienen dentro de un estrecho rango alrededor de los valores así obtenidos y la calibración se limita a los parámetros C y α , lo que tiene ventajas adicionales de orden práctico.

3.3 INFORMACIÓN HIDROMETEOROLÓGICA

La figura 3.4 muestra la ubicación geográfica y tipo de las estaciones meteorológicas utilizadas en el Balance Hídrico de la Cuenca Alta del río Pilcomayo. La tabla 3.2 contiene la lista de esas estaciones, su ubicación política, subcuenca a la que pertenecen, coordenadas geográficas, altitud, tipo de estación y las variables cuyos registros están en la base de datos. Se ha agrupado las estaciones entre aquellas que están dentro de la cuenca y las de apoyo situadas fuera de ella. Se tiene un total de 245 estaciones meteorológicas que quedaron después del análisis de datos pluviométricos (capítulo 4), que obligó a eliminar 28 de las 273 estaciones iniciales. La gran mayoría de las estaciones son de SENAMHI, pero existen algunas al sureste de la cuenca que fueron manejadas por el proyecto CABAS y proporcionadas por el Proyecto Pilcomayo.

La ubicación (coordenadas geográficas) de la figura 3.4 y tabla 3.2 es la mejor a la que se pudo llegar después de verificar y eventualmente corregir las coordenadas proporcionadas por SENAMHI. Este proceso de realizó con ayuda de cartas geográficas escala 1:250,000. Un

cierto número de estaciones no se pudo ubicar en las cartas, por lo que su ubicación está sujeta a verificación posterior. Es recomendable tener lecturas con GPS de todas las estaciones, tanto en funcionamiento como fuera de servicio. Los datos de las 245 estaciones más las 5 auxiliares se encuentran en la base de datos Hydraccess que fue creada para el presente estudio.

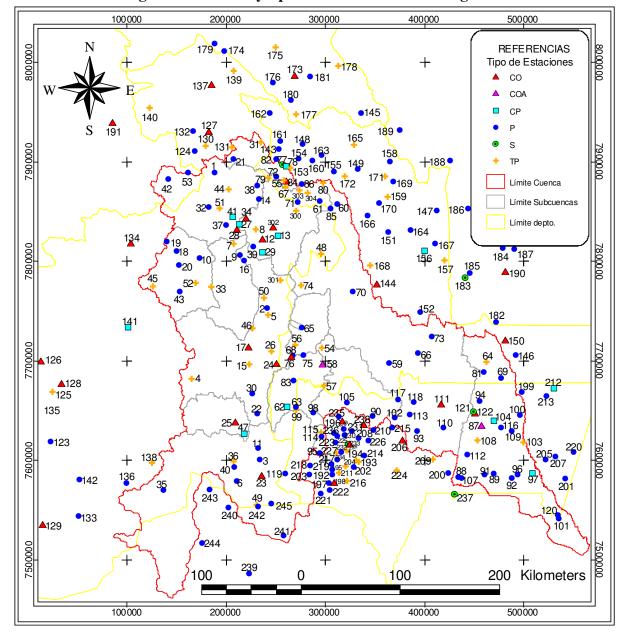


Fig. 3.4: Ubicación y tipo de estaciones meteorológicas

Tabla 3.2: Estaciones meteorológicas del Balance Hídrico de la Cuenca Alta del río Pilcomavo

					1 110	omayo						-	_	_	_	_
				io S	PSAD 56 U	TM 20 S	Latitud	Longitud	Ξa	0	<u>.e</u>	Σ	≅	2	Sol	۵
Nº	Estación	Dpto.	Prov.	Cuenca del río	NORTH	EAST	Sur	Longitud Oeste	Cota [msnm]	TIPO	Precip	Temp M.	% HRM	Viento	Ę.S	Evap
1	Ajtara	Potosi	T. Frias	PMY	7888889	188425	19.0692 S	65.9605 W	3440	Р	Р					П
2	Ámpa Ampa	Potosi	M. Omiste	TML	7752477	241676	20.3082 S	65.4738 W	2600	Р	Р					
3	Arenales	Potosi	M. Omiste	SJO	7600236	234023	21.6814 S	65.5704 W	3472	Р	Р					
4	Atocha	Potosi	S-Chichas	COT	7682171	165617	20.9307 S	66.2147 W	3654	TP	Р	Т				
5	Calcha	Potosi	N-Chichas	TML	7746268	242743	20.3644 S	65.4645 W	2850		Р	Т	%H	V		
6	Chagua	Potosi	M. Omiste	SJO	7578337	210256	21.8753 S	65.8038 W	3400	Р	Р					
7	Challviri	Potosi	T.Frias	TML	7817627	208341	19.7154 S	65.7824 W	4515	TP	Р	Т				
8	Chaqui	Potosi	C. Saavedra	PMY	7832645	230801	19.5830 S	65.5661 W	3550		Р	Т	%H	V		
9	Chaquilla (represa)	Potosi	Quijarro	TML	7805589	214213	19.8283 S	65.7297 W	3760		Р					
10	Chaquilla	Potosi	Quijarro	TML	7801669	170890	19.8534 S	66.1421 W	4138	Р	Р					
11	Charaja	Potosi	Sud Chichas	SJO	7611576	231937	21.5787 S	65.5888 W	3420	Р	Р					
12	Chico Chico	Potosi	C.Saavedra	PMY	7822601	237004	19.6745 S	65.5084 W	3480	co	Р	Т	%H	V		
13	Chinoli	Potosi	C. Saavedra	PMY	7825972	252570	19.6461 S	65.3596 W	3450		Р	Т	%H		Hr.	Ev
14	Colavi	Potosi	C. Saavedra	PMY	7862094	233313	19.3174 S	65.5380 W	3630	Р	Р					
15	Cotagaita	Potosi	N-Chichas	COT	7696159	223939	20.8141 S	65.6523 W	2690	TP	Р	Т		V		
16	Cucho Ingenio	Potosi	Linares	TML	7799804	217932	19.8776 S	65.6937 W	3700	Р	Р					П
17	Escara	Potosi	N-Chichas	TML	7714050	222768	20.6524 S	65.6607 W	2870	co	Р	Т	%H	V		
18	Killpani	Potosi	Quijarro	YUR	7809959	149599	19.7750 S	66.3435 W	4000		Р					
19	Lago Toro	Potosi	Quijarro	YUR	7819457	140382	19.6876 S	66.4296 W	4100	Р	Р					
20	Landara	Potosi	Quijarro	YUR	7795754	152500	19.9036 S	66.3186 W	3850	P	P					
21	Maragua (Chayanta)	Potosi	Chayanta	PMY	7902034	207421	18.9533 S	65.7782 W	3650	P	Р					
22	Mochara	Potosi	Sud Chichas	SJO	7646332	231035	21.2649 S	65.5919 W	3240		Р					
23	Mojo	Potosi	M. Omiste	SJO	7584330	236080	21.8252 S	65.5531 W	3460		Р	Т	%H	v		
24	Mosoj Llajta	Potosi	Nor Chichas	TML	7696792	250811	20.8121 S	65.3942 W	2800		Р	Т	%H			
25	Oploca	Potosi	S-Chichas	TUP	7638321	209209	21.3338 S	65.8034 W	3121	∞	Р.	Т	%H	i		İ
26	Palca Higueras	Potosi	N-Cinti	TML	7721128	256229	20.5931 S	65.3388 W	2550	TP	P	T	%H	_		
27	Potosi Aasana	Potosi	T. Frias	PMY	7837731	213317	19.5346 S	65.7319 W	4100		P	Т	%H			
28	Potosi Senamhi	Potosi	T. Frias	PMY	7831898	211311	19.5870 S	65.7519 W	3860		Р	Т	%H		Hr.	Ev
29	Puna (Villa Talavera)	Potosi	Linares	PMY	7809530	236846	19.7925 S	65.5118 W	3290	CP	Р	Т	%H		Hr.	1
30	Ramadas	Potosi	N-Chichas	TML	7666404	226428	21.0830 S	65.6331 W	3220	P	Р					
31	Ravelo	Potosi	Chayanta	RAV	7919726	235765	18.7974 S	65.5069 W	3200	TP	Р	Т				
32	Salinas de Yocalla	Potosi	T. Frias	PMY	7854208	182703	19.3813 S	66.0206 W	3510		Р					
33	Salto Leon	Potosi	Quijarro	TML	7774222	186083	20.1036 S	66.0019 W	3200		Р	Т		V*		
34	Samasa	Potosi	T. Frias	PMY	7843414	220358	19.4843 S	65.6640 W	3650		Р	Т	%H	V		
35	San Antonio Esmor.	Potosi	Sud Lipez	SJO	7569412	136417	21.9420 S	66.5193 W	3690	Р	Р					
36	San Jose Pampa G.	Potosi	S-Chichas	SJO	7599168	208345	21.6870 S	65.8186 W	3000	TP	Р	Т	%h*	٧		
37	Santa Lucia	Potosi	T.Frias	PMY	7835708	199457	19.5508 S	65.8641 W	3509	Р	Р					
38	Tacobamba	Potosi	C. Saavedra	PMY	7875446	231811	19.1967 S	65.5505 W	3080	Р	Р					
39	Talacocha	Potosi	Linares	PMY	7814152	227550	19.7495 S	65.5998 W	4450		Р					
40	Talina	Potosi	S-Chichas	SJO	7592159	207755	21.7501 S	65.8255 W	3200	Р	Р					
41	Tarapaya	Potosi	T. Frias	PMY	7844606	206803	19.4716 S	65.7928 W	3340		Р	Т	%Н	٧	Hr.	Ev
42	Thola Palca	Potosi	T. Frias	PMY	7882350	141646	19.1205 S	66.4057 W	4300		Р					
43	Tica Tica	Potosi	Quijarro	TML	7769448	153540	20.1411 S	66.3136 W	3890		Р					
44	Tinguipaya	Potosi	T. Frias	PMY	7872011	203272	19.2237 S	65.8222 W	3200		Р	Т		V		
45	Tomave	Potosi	Quijarro	TML	7775158	126766	20.0846 S	66.5682 W	3920		Р	Т	%H	V		
46	Tumusla	Potosi	N-Chichas	TML	7732641	227196	20.4852 S	65.6154 W	2580		Р	Т	%Н	_		
47	Tupiza	Potosi	S-Chichas	TUP	7626642	218226	21.4406 S	65.7185 W	2952		Р		%Н		Hr.	Ev
48	Turuchipa	Potosi	Linares	PMY	7807421	296348	19.8186 S	64.9444 W	2360		Р	Т		V		
49	Villazón	Potosi	M. Omiste	SJO	7555254	231528	22.0870 S	65.6019 W	3443		Р	Т		V		
50	Vitichi	Potosi	N-Chichas	TML	7763871	238905	20.2050 S	65.4986 W	3020		Р		%H	v		İ
51	Yocalla	Potosi	T. Frias	PMY	7853616	194509	19.3884 S	65.9084 W	3420		Р	T	,,,,,	V		
52	Yura	Potosi	Quijarro	YUR	7777733	173305	20.0698 S	66.1233 W	3375		P		%h*			
53	Cruce Ventilla	Oruro	Avaroa	PMY	7888766	162019	19.0661 S	66.2112 W	3675		P		1	Ė	\vdash	Ħ
54	Arpaja Alta (Incahuasi)	Chuq.	N-Cinti	PLY	7712563	297022	20.6753 S	64.9486 W	3190		Р	Т	 %H	V	_	H
55 55	Cachimayu	Chuq.	1	RAV	7712563	258864	20.6753 S 19.1472 S	65.2926 W	2400		P	T	1			
56	Cachimayu Camargo	Chuq.	Oropeza N-Cinti	TML	7716609	270459	19.1472 S 20.6357 S	65.2029 W	2400 2440		P	T	%H %H			
	•		1									T	/oF1			E.
57 58	Chilcar (Cinti)	Chuq.	S-Cinti	PLY DI V	7674207	298150	21.0218 S	64.9422 W	2242		P P		0/LI	V	ш	Ev Ev
100	Culpina	Chuq.	S-Cinti	PLY	7696644	297719	20.8192 S	64.9437 W	3150	UF	-	- 1	/o□	v	[FIL.]	⊏v

Nº	Estación	Dpto.	Prov.	Cuenca del río	PSAD 56 L	JTM 20 S	Latitud	Longitud	Cota [msnm]	TIPO	Precip	p M 4	% HRM	Viento	Hr. Sol	Evap
IN-	Estacion	ърю.	PIOV.	Cue	NORTH	EAST	Sur	Oeste	CC [ms	Ħ	Pre	Temp M	H %	Vie	ᆂ	Ē
59	El Palmar	Chuq.	Sud Cinti	PMY	7696819	364138	20.8236 S	64.3056 W	1190	Р	Р					
60	Ida	Chuq.	Oropeza	PMY	7857734	312106	19.3657 S	64.7889 W	2252	Р	Р					
61	La Mendoza	Chuq.	Yamparaez	PMY	7859596	294330	19.3471 S	64.9579 W	2080	Р	Р					
62	La Torre	Chuq.	N-Cinti	SJO	7654294	261962	21.1973 S	65.2930 W	2420	CP	Р	Т	%Н	٧	Hr.	
63	Las Carreras	Chuq.	S-Cinti	SJO	7653109	270720	21.2091 S	65.2088 W	2360	Р	Р					
64	Machareti	Chuq.	L. Calvo	PMY	7698534	463265	20.8128 S	63.3530 W	660	TP	Р	Т	%Н	٧		
65	Muyuquiri	Chuq.	N-Cinti	TML	7732747	275894	20.4907 S	65.1488 W	3120	Р	Р					
66	Ñacamiri	Chuq.	L. Calvo	PMY	7707511	393126	20.7289 S	64.0265 W	860	Р	Р					
67	Ñujchu	Chuq.	Oropeza	RAV	7875098	260514	19.2034 S	65.2777 W	2398	TP	Р	Т		٧		
68	Palca Grande	Chuq.	N-Cinti	TML	7704841	266817	20.7416 S	65.2394 W	2342	Р	Р					
69	Palermo	Chuq.	L. Calvo	PMY	7682486	477481	20.9580 S	63.2166 W	385	Р	Р					
70	Pirhuani	Chuq.	N-Cinti	PMY	7769031	327845	20.1684 S	64.6473 W	2100	Р	Р					
71	Puente Sucre	Chuq.	Oropeza	PMY	7859281	271774	19.3476 S	65.1726 W	2222	Р	Р					
72	Quila Quila	Chuq.	Oropeza	PMY	7884977	250265	19.1130 S	65.3739 W	2526	Р	Р					
73	Rosario del Ingre	Chuq.	H. Siles	PMY	7723675	407377	20.5837 S	63.8887 W	820	Р	Р					
74	San Lucas	Chuq.	N-Cinti	PMY	7776333	276479	20.0972 S	65.1377 W	3000	TP	Р	Т	%Н	٧		
75	San Pedro	Chuq.	N-Cinti	TML	7752588	320802	20.3163 S	64.7163 W	2200	Р	Р					
76	San Roque	Chuq.	N-Cinti	TML	7773286	341771	20.1312 S	64.5138 W	2550	CO	Р	Т	%Н	٧	Hr.	Ev
77	Sucre Aasana	Chuq.	Oropeza	PMY	7896894	257131	19.0062 S	65.3071 W	2903	S	Р	Т	%Н	٧		
78	Sucre Senamhi	Chuq.	Oropeza	PMY	7895384	261220	19.0203 S	65.2685 W	2890	CP	Р	Т	%Н	٧	Hr.	Ev
79	Talula / Taco Taco	Chuq.	Oropeza	PMY	7884033	243337	19.1240 S	65.4413 W	2700	TP	Р	Т		V	\dashv	Ev
80	Tarabuco	Chuq.	Yamparaez	PMY	7878243	298411	19.1791 S	64.9171 W	3284	TP	Р	Т	%Н	V		
81	Tiguipa	Chuq.	L. Calvo	PMY	7687632	460139	20.9112 S	63.3833 W	550	 Р	P	•	/ 54 1	.		
82	Tullma	Chuq.	Oropeza	PMY	7902397	251829	18.9559 S	65.3568 W	2580	Р	P					
83	Villa Abecia	Chuq.	S-Cinti	TML	7679535	267935	20.9702 S	65.2321 W	2200	Р	Р					
84	Villa Carmen / Yotala	Chuq.	Oropeza	PMY	7880512	261041	19.1546 S	65.2720 W	2511	co	P	Т	%Н	V	Hr.	Ev
85	Viña Quemada	Chuq.	Yamparaez	PMY	7852539	305263	19.1340 S	64.8546 W	2030	P	P	•	/01 1	٧	'''	LV
86	Yamparaez	Chuq.	Yamparaez	PMY	7877384	275929	19.1845 S	65.1309 W	3100	P	P					
87	Aguaraycito	Tarija	G-Chaco	PMY	7634618	457293	21.3901 S	63.4120 W	400	CO	P	Т			-	_
88	Aguayrenda	Tarija	G-Chaco	PMY	7582868	434271	21.8570 S	63.6361 W	1060	P	P	•				
89	Algarrobillas	Tarija	G-Chaco	PMY	7585823	470097	21.8313 S	63.2894 W	480	P	Р					
90	Alto de Cajas	Tarija	Mendez	PLY	7643652	347731	21.3026 S	64.4680 W	2980	P	P					
91	Bagual	Tarija	G.Chaco	PMY	7584688	460596	21.8413 S	63.3813 W	490	Р	Р					
92	Barro Blanco		G.Chaco	PMY	7581355	488292	21.8718 S	63.1133 W	382	P	Р				-	_
93		Tarija	O'connor	PMY	7628714	392525	21.67 16 S 21.4408 S	64.0372 W	1170	Р	Р					
94	Berety	Tarija		PMY	7659318	392323 455427		64.0372 VV 63.4294 W	490	Р	P					
95	Caigua	Tarija	G.Chaco	SJO	7606836	455427 294898	21.1669 S 21.6332 S	63.4294 W 64.9831 W	3400	Р	P					
	Campanario Canto del Monte	Tarija	Mendez		7585327		21.8360 S			Р	Р					
96 97	Carito dei Monte Crevaux	Tarija	G.Chaco G.Chaco	PMY PMY	7587119	494136 508739	21.8360 S	63.0567 W 62.9154 W	330 302	CP	Р	Т	0/11		_	_
-		Tarija					21.0190 S 21.2670 S			Р	P	ı	%Н			
98	El Molino(Tomayapo)	Tarija	Mendez	SJO	7646934	287833		65.0448 W	3200		1	_	0/11	.,		
99	El Puente	Tarija	Mendez	SJO	7650629	271190 496117	21.2316 S	65.2046 W	2345	TP P	P P	Τ	%Н	V		
100	El Veinticuatro	Tarija	G.Chaco	PMY	7644571		21.3007 S	63.0374 W	500	-						
101	Esmeralda	Tarija	G-Chaco	PMY	7541054	535143	22.2356 S	62.6590 W	260		Р					-
102	El Huayco	Tarija	O'connor	PMY	7642303	370326	21.3166 S	64.2503 W	1515	Ρf	Р	_	,,,			ļ
103	Ibibobo PMA	Tarija	G-Chaco	PMY	7618484	500548	21.5364 S	62.9947 W	364	TP	Р	T	%H			
104	La Vertiente	Tarija	G-Chaco	PMY	7639629	470398	21.3451 S	63.2855 W	348	CP	Р	Т	%Н			
105	Leon Cancha	Tarija	Mendez	PLY	7657504	322089	21.1752 S	64.7137 W	2600	Р	Р					
106	Ñoquera	Tarija	Avilez	SJO	7607405	279467	21.6229 S	65.1306 W	3300	P	Р				_	_
107	Palmar Chico	Tarija	G-Chaco	PMY	7581533	437150	21.8691 S	63.6083 W	614	P (Р	_				_
108	Palmar Grande	Tarija	G-Chaco	PMY	7619628	454188	21.5255 S	63.4424 W	467	TP	Р	Т	%Н		Hr.	Ev
109	Palo Marcado	Tarija	G.Chaco	PMY	7628744	487803	21.4437 S	63.1177 W	382	Р	Р					
110	Palos Blancos	Tarija	G-Chaco	PMY	7632071	419115	21.4118 S	63.7804 W	720	Р	Р	_				_
111	Puesto Margarita	Tarija	G-Chaco	PMY	7656148	417052	21.1942 S	63.7991 W	485	co	Р	Τ	%Н	V	Hr.	Ev
112	Sachapera	Tarija	G-Chaco	PMY	7604983	443312	21.6575 S	63.5479 W	610	Р	P					
113	Saladito Norte	Tarija	O'Connor	PMY	7645966	385455	21.2845 S	64.1042 W	840		Р					
114	Sama Iscayachi	Tarija	Mendez	SJO	7623019	296045	21.4838 S	64.9686 W	3440		Р					ļ!
115	San Antonio (Iscay)	Tarija	Mendez	SJO	7627985	296426	21.4390 S	64.9643 W	3440		Р	Т		٧		Ev
116	San Bernardo	Tarija	G.Chaco	PMY	7632730	477206	21.4076 S	63.2199 W	400	P	Р					
117	San Josesito	Tarija	O'Connor	PLY	7660698	373780	21.1506 S	64.2156 W	850	Р	Р					
118	Timboy	Tarija	O'Connor	PMY	7658341	389516	21.1730 S	64.0643 W	760	Р	Р					

A PO	F-tif	Б.	D	nca río	PSAD 56 L	JTM 20 S	Latitud	Longitud	ta nm]	0	cip	M A	EM M	otc	Sol	ap de
Nº	Estación	Dpto.	Prov.	Cuenca del río	NORTH	EAST	Sur	Oeste	Cota [msnm]	TIPO	Precip	Temp M	% HRM	Viento	불	Evap
119	Tojo	Tarija	Avilez	SJO	7585913	259409	21.8143 S	65.3273 W	2700	Р	Р					
120	Tuscal P.M.A.	Tarija	G.Chaco	PMY	7544397	534202	22.2054 S	62.6682 W	266	Р	Р					
121	Villa Montes Aasana	Tarija	G-Chaco	PMY	7649383	449112	21.2565 S	63.4905 W	500	S	Р	Т	%Н	٧		
122	Villa Montes Senamhi	Tarija	G-Chaco	PMY	7647502	451034	21.2769 S	63.4735 W	340	∞	Р	Τ	%Н	٧		Ev
							de la cuenca									
123	Alota	Potosi	Baldivieso	SUY	7618421	23179	21.4736 S	67.5990 W	3609	Р	Р					
124	Ayoma	Potosi	Chayanta	GRA	7911000	168110	18.8664 S	66.1496 W	3472	Р	Р					
125	Calcha de Lipez	Potosi	Nor Lipez	SUY	7668752	25043	21.0208 S	67.5670 W	3670	TP	P	T		V		
126	Colcha" K"	Potosi	Nor Lipez	SUY	7699960	13593	20.7367 S	67.6682 W	3780	00	Р	T	%Н	٧		
127	Colquechaca	Potosi	Chayanta	GRA	7930512	182699	18.6926 S	66.0081 W	4170	00	Р	T	%H	V	_	_
128	Julaca	Potosi	Nor Lipez	SUY	7676933	34119	20.9494 S	67.4778 W	3665	38	Р	T	%Н	٧		
129 130	Laguna Colorada Macha	Potosi	Sud Lipez	SUY GRA	7535255 7916321	15045 180111	22.2203 S 18.8203 S	67.7017 W	4278 3480	CO TP	P P	T T	%H %H	V		
131		Potosi	Chayanta Chayanta	GRA	7916321	206366	18.8404 S	66.0350 W 65.7864 W	3980	TP	P	T	%H	V		
132	Ocuri Pocoata	Potosi Potosi	Chayanta Chayanta	GRA	7914523	166329	18.6922 S	66.1632 W	3360	P	P	1				
133	Quetena Chico	Potosi	Sud Lipez	SUY	7543731	50987	22.1536 S	67.3517 W	4200	Р	Р					_
134	Río Mulatos	Potosi	Quijarro	DPC	7818100	104254	19.6930 S	66.7738 W	3815		Р	Т	%Н	v		
135	San Agustin	Potosi	Baldivieso	SUY	7650778	5922	21.1776 S	67.7556 W	3675	TP	P	T	/011	٧		
136	San Antonio de Lipez	Potosi	Sud Lipez	SUY	7576534	99005	21.8697 S	66.8791 W	4500	 Р	' Р	'				
137	San Pedro de B. Vista	Potosi	Charcas	GRA	7978009	185086	18.2643 S	65.9781 W	2743		P	Т	%Н	v	Hr.	
138	San Pablo de Lípez	Potosi	Sud Lipez	SUY	7597448	125516	21.6870 S	66.6183 W	4230	TP	P	T	/G	Ť		-
139	Toro Toro	Potosi	Charcas	GRA	7992090	207778	18.1404 S	65.7617 W	2700	TP	P	Т				
140	Uncia	Potosi	Bustillos	GRA	7954223	123120	18.4688 S	66.5678 W	3600	TP	Р	Т	%Н	V		
141	Uyuni	Potosi	Quijarro	SUY	7733674	101514	20.4536 S	66.8183 W	3695	CP	Р	Т	%Н	٧	Hr.	Ev
142	Zoniquera	Potosi	Nor Lipez	SUY	7579998	51895	21.8271 S	67.3330 W	4073	Р	Р					
143	Alamos	Chuq.	Oropeza	GRA	7911959	253324	18.8697 S	65.3414 W	2600	Р	Р					\equiv
144	Azurduy	Chuq.	Azurduy	ITZ	7776618	352506	20.1019 S	64.4108 W	2600	∞	Р	Т	%Н	٧	Hr.	Ev
145	Buena Vista	Chuq.	Oropeza	GRA	7949203	335660	18.5414 S	64.5571 W	2580	Р	Р					
146	Carandaiti	Chuq.	L. Calvo	PMY	7705177	492258	20.7531 S	63.0744 W	1575	Р	Р					
147	Cumandayti	Chuq.	Luís Calvo	GRA	7850607	412361	19.4370 S	63.8349 W	1020	Р	Р					
148	Chuqui Chuqui	Chuq.	Oropeza	GRA	7916864	276724	18.8281 S	65.1188 W	1775	Р	Р					
149	El Rodeo	Chuq.	Zudañez	GRA	7892476	332388	19.0536 S	64.5929 W	2000	Р	Р					
150	El Salvador	Chuq.	L. Calvo	PMY	7720130	481731	20.6179 S	63.1753 W	670	∞	Р	Т	%Н	٧	Hr.	Ev
151	El Villar	Chuq.	Tomina	ITZ	7829274	363418	19.6270 S	64.3026 W	2080	P	Р					
152	La Galeria	Chuq.	H.Siles	ITZ	7748325	395743	20.3604 S	63.9989 W	1148	Р	Р					
153	La Madona	Chuq.	Oropeza	GRA	7893500	264930	19.0378 S	65.2335 W	2840	TP	P	Т	%Н	V		
154	La Palma	Chuq.	Oropeza	GRA	7902962	273321	18.9532 S	65.1527 W	1992	Р	Р					
155	Lamboyo	Chuq.	Yamparaez	GRA	7890219	308810	19.0720 S	64.8171 W	2560	Р	Р	_	0/1.1	.,		_
156	Monteagudo	Chuq.	H. Siles	ITZ	7810685 7800665	400607	19.7972 S	63.9489 W	1230	CP TP	Р	T T	%Н	V	Hr.	Ev
157 158	Muyupampa (Iboperenda Nuevo Mundo	Chuq. Chuq.	Luís Calvo B.Boeto	ITZ GRA	7900119	421179 364748	19.8886 S 18.9870 S	63.7530 W 64.2849 W	1130 2220	P	P P	ı			_	_
159	Padilla	Chuq.	Tomina	GRA	7865060	363254	19.3037 S	64.3015 W	2102		P	Т				
160	Pajcha	Chuq.	Zudañez	GRA	7900638	287044	18.9757 S	65.0227 W	2300	P	P	'				
161	Pojpo	Chuq.	Oropeza	GRA	7920721	254948	18.7908 S	65.3249 W	2400	P	Р					
162	Poroma	Chuq.	Oropeza	GRA	7948794	244018	18.5360 S	65.4249 W	2300	Р	Р					
163	Presto	Chuq.	Zudañez	GRA	7906649	296587	18.9224 S	64.9315 W	2460	P	P					
164	Pte. Pacheco (Rio Azero	Chuq.	H.Siles	GRA	7831259	386217	19.6105 S	64.0850 W	1035	Р	P					
165	Redención Pampa	Chuq.	Zudañez	GRA	7917513	329339	18.8272 S	64.6196 W	2460		P	Т	%Н	V		
166	Sopachuy	Chuq.	Tomina	ITZ	7845569	342523	19.4782 S	64.5004 W	2100	Р	Р					
167	Taperillas	Chuq.	Luís Calvo	ITZ	7817399	410777	19.7370 S	63.8515 W	1120	Р	Р			_	_	_]
168	Tarvita	Chuq.	Azurduy	ITZ	7796159	345888	19.9249 S	64.4725 W	2420	TP	Р	Т	%Н	٧		
169	Urriolagoita	Chuq.	B.Boeto	GRA	7879855	368402	19.1703 S	64.2515 W	1980	Р	Р					
170	Villa Alcala	Chuq.	Tomina	GRA	7858344	354061	19.3637 S	64.3895 W	2080	Р	Р					
171	Villa Serrano	Chuq.	Oropeza	GRA	7885291	360850	19.1207 S	64.3230 W	2160		Р	Т		٧		
172	Zudañez	Chuq.	Zudañez	GRA	7886012	320392	19.1110 S	64.7074 W	2510		Р		%Н	_		Ev
173	Aiquile	Cocha	Campero	GRA	7986712	269474	18.1964 S	65.1796 W	2250		Р	Т	%Н	٧		
174	La Viña	Cocha	E.Arce	GRA	8010780	197970	17.9703 S	65.8516 W	2025	Р	Р					
175	Mizque (Maira)	Cocha	Mizque	GRA	8015212	250911	17.9370 S	65.3516 W	2035		Р	Т				
176	Molineros Rio Caine	Cocha	Mizque	GRA	7979703	247417	18.2572 S	65.3889 W	1800		Р	_				
177	Puente Arce	Cocha	Campero	GRA	7947999	271251	18.5463 S	65.1672 W	1550	TP	Р	Т				

N IO	E. V	Б.		nca río	PSAD 56 U	TM 20 S	Latitud	Longitud	ta nm]	0	cip	M A	A M	ıto	Sol	ар
Nº	Estación	Dpto.	Prov.	Cuenca del río	NORTH	EAST	Sur	Oeste	Cota [msnm]	TIPO	Precip	Temp M	% HRM	Viento	主	Evap
178	Pte Taperas (Rio Mizqu	Cocha	Campero	GRA	7996596	313321	18.1114 S	64.7643 W	1400	TP	Р					
179	Quiriria	Cocha	E.Arce	GRA	8018915	187967	17.8955 S	65.9447 W	2700	Р	Р					
180	Quiroga	Cocha	Campero	GRA	7961685	265868	18.4221 S	65.2166 W	1880	Р	Р					
181	Villa grandao	Cocha	Campero	GRA	7985533	284682	18.2119 S	65.0375 W	2200	Р	Р					
182	Boyuibe	Sta Cruz		ITZ	7738955	471951	20.4477 S	63.2689 W	800	Р	Р				_	=
183	Camiri Aasana	Sta Cruz	Cordillera	ITZ	7783426	441013	20.0485 S	63.5655 W	810	S	Р	Т	%Н	V		
184	Charagua	Sta Cruz	- 1	ITZ	7812503	478823	19.7831 S	63.2022 W	735	P	Р	·	/			
185	Choreti	Sta Cruz		ITZ	7787969	445870	20.0042 S	63.5175 W	878	Р	Р					
186	Gutierrez	Sta Cruz	Cordillera	ITZ	7852543	444128	19.4206 S	63.5322 W	925	P	P					. !
187	Itaquazurenda	Sta Cruz		ITZ	7811386	490882	19.7933 S	63.0871 W	690	P	Р		Н		\dashv	$-\parallel$
188	Masicuri	Sta Cruz		GRA	7900465	490002	18.9870 S	63.7015 W	400	P	Р					. !
		3					1		2540	Р	Р					. !
189	Pucara Con Antonio	Sta Cruz	· · · · · · · · · · · · · · · · · · ·	GRA	7931011	375220	18.7085 S	64.1835 W				_				. !
190	San Antonio	Sta Cruz	Cordillera	ITZ	7789650	481622	19.9897 S	63.1757 W	600	CO	Р	Т			_	_
191	Pazña	Oruro	Poopo	DPC	7939234	86113	18.5971 S	66.9206 W	3740	CO	Р	Τ				Ev
192	Alizos	Tarija	Avilez	BER	7585359	307007	21.8251 S	64.8672 W	2040	Р	Р					
193	Angostura	Tarija	Avilez	BER	7598247	334702	21.7116 S	64.5980 W	1680	TP	Р	Т	%Н	V		. !
194	Calamuchita	Tarija	Avilez	BER	7600035	332206	21.6952 S	64.6220 W	1680	TP	Р	Т	%Н			. !
195	Calderilla	Tarija	Avilez	BER	7590229	306790	21.7811 S	64.8687 W	3950	Р	Р					
196	Canasmoro	Tarija	Mendez	BER	7639061	317692	21.3413 S	64.7580 W	2080	CO	Р	Т	%Н	V		Ev
197	Canchas Mayu	Tarija	Avilez	BER	7576622	303557	21.9036 S	64.9016 W	1120	P	Р				\dashv	
198	Cañas	Tarija	Arce	BER	7577680	309198	21.8947 S	64.8469 W	2030	CO	Р	Т		V		Ev
199	Capirenda	Tarija	G-Chaco	PMY	7668339	498418	21.0860 S	63.0152 W	701	P	Р	Ċ				,
200	Carapari	Tarija	G-Chaco	PMY	7586754	424081	21.8215 S	63.7346 W	830	P	P					.
201	Carossi	Tarija	G.Chaco	PMY	7580507	542411	21.8790 S	62.5895 W	286	P	P					. !
202	Colon Sud	Tarija	Avilez	BER	7592740	328434	21.7607 S	64.6592 W	2000	P	Р				\dashv	$-\parallel$
203			Avilez	TAX	7584872	284060	21.7007 S 21.8269 S	65.0892 W	3200	P	Р					.
	Copacabana	Tarija	3		1							_	0/11	.,		
204	Chocloca	Tarija	Avilez	BER	7594155	320758	21.7471 S	64.7332 W	1800	TP	Р	Т	%Н	V		Ev
205	El Azucar	Tarija	G.Chaco	PMY	7599890	521703	21.7043 S	62.7902 W	286	P	Р	_		.,		_
206	Entre Ríos	Tarija	O' coonor	BER	7619914	378034	21.5193 S	64.1776 W	1230	CO	Р	Т	%Н	V	Hr.	Ev
207	Est. La Esperanza	Tarija	G.Chaco	PMY	7603200	532293	21.6742 S	62.6879 W	285	P	Р					. !
208	Gamoneda	Tarija	Cercado	BER	7621590	333959	21.5007 S	64.6029 W	2150	P	Р					.
209	Itau	Tarija	Gran chaco	BER	7600621	409119	21.6955 S	63.8786 W	950	TP	Р	Т				. !
210	Junacas	Tarija	Cercado	BER	7629462	348903	21.4309 S	64.4580 W	2300	Р	Р					. !
211	Juntas	Tarija	Avilez	BER	7587546	314281	21.8062 S	64.7966 W	1900	TP	Р	Т	%Н			
212	Los Galpones	Tarija	G.Chaco	PMY	7672421	530513	21.0488 S	62.7063 W	365	8	Р	Т				. !
213	Los Mistoles	Tarija	G.Chaco	PMY	7664216	522820	21.1231 S	62.7803 W	378	Р	Р					. !
214	Ladera Centro	Tarija	Cercado	BER	7604276	338991	21.6575 S	64.5560 W	2080	Р	Р					. !
215	Narvaez	Tarija	O'connor	BER	7632553	367486	21.4044 S	64.2784 W	1800	Р	Р					. !
216	Padcaya	Tarija	Arce	BER	7578945	323148	21.8848 S	64.7118 W	2010	TP	Р	Т	%Н	V		.
217	Pampa Redonda	Tarija	Cercado	BER	7599708	311648	21.6961 S	64.8207 W	1950	Р	Р					
218	Pasajes	Tarija	Avilez	TAX	7593959	284413	21.7449 S	65.0846 W	3660	Р	Р					. !
219	Pinos Sud	Tarija	Cercado	BER	7595837	306033	21.7304 S	64.8754 W	2100	Р	Р					. !
220	Pozo el Tigre P.M.A.	Tarija	G.Chaco	PMY	7607270	550195	21.6404 S	62.5164 W	289	Р	Р					. !
221	Rejera	Tarija	Arce	BER	7566281	295169	21.9961 S	64.9841 W	3000	Р	Р					. !
222	Rincon Cañas	Tarija	Arce	BER	7569367	304867	21.9693 S	64.8898 W	2280		Р				\dashv	\neg
223	Rincon Victoria	Tarija	Mendez	BER	7617675	310591	21.5337 S	64.8288 W	2200		Р					. !
224	Salinas	Tarija	O'connor	BER	7590293	372482	21.7865 S	64.2335 W	1060		Р	Т				. !
225	Sama Cumbre	Tarija	Mendez	BER	7623915	311617	21.4775 S	64.8182 W	3820		Р	·				. !
226	San Agustin	Tarija	Cercado	BER	7619011	343429	21.5248 S	64.5117 W	2210		P					
227	San Andres	Tarija	Cercado	BER	7607810	311864	21.6229 S	64.8177 W	1900		P	Т	%Н		\dashv	Ev
228	San Jacinto	Tarija	Cercado	BER	7610061	322133	21.6229 S	64.7183 W	1850		Р	T	%Н	W	-	Ev
229	San Lorenzo	Tarija	Mendez	BER	7630912	318690	21.6036 S 21.4150 S	64.7492 W	1900		Р	'	/or1	٧	-	∟v
			1												-	
230	San Mateo	Tarija	Cercado	BER	7624554	319138	21.4725 S	64.7456 W	1900		Р					
231	San Pedro de Buena Vis	,	Cercado	BER	7628674	327145	21.4360 S	64.6679 W	2200		Р	_	0/17	1/	-	\dashv
	Tarija Aasana	Tarija	Cercado	BER	7615846	323441	21.5515 S	64.7050 W	1855		Р	T	%H	V		_
	Tarija Senamhi	Tarija	Cercado	BER	7616467	323027	21.5459 S	64.7089 W	1860		Р	Т	%Н	V	Hr.	Ł۷
234	Tolomosa (Grande)	Tarija	Cercado	BER	7607693	316256	21.6244 S	64.7753 W	1900		Р				-	
235	Tomatas Grandes	Tarija	Mendez	BER	7642864	313628	21.3065 S	64.7967 W	2150		Р				-	
236	Tucumillas	Tarija	Mendez	BER	7626198	308581	21.4565 S	64.8473 W	2583	Р	Р					. !

Nº	Estación	Doto	Prov.	Cuenca del río	PSAD 56 L	TM 20 S	Latitud	Longitud	Cota [msnm]	TIPO	Precip	p M A	E.	Viento	Hr. Sol	Evap
IN-	Estacion	Dpto.	FIOV.	Cue	NORTH	EAST	Sur	Oeste	Sm]	ЫL	Pre	Temp M	% HRM	Vie	Ŧ	Ē
237	Yacuiba	Tarija	G-Chaco	PMY	7565807	430156	22.0109 S	63.6767 W	644	S	Р	Т	%Н	٧		
238	Yesera Norte	Tarija	Cercado	BER	7636074	339134	21.3703 S	64.5516 W	2200	$^{\circ}$	Р	Т	%Н			
239	Abra Pampa	ARG-J	Jujuy	RIN	7485692	222803	22.7167 S	65.7000 W	3484	Р	Р					
240	Cieneguillas	ARG-J	Jujuy	RIN	7551814	202683	22.1167 S	65.8833 W	3682	Р	Р					
241	Condor	ARG-J	Jujuy	SJO	7523225	258191	22.3833 S	65.3500 W	3850	Р	Р					
242	La Quiaca	ARG-J	Jujuy	SJO	7552341	231930	22.1167 S	65.6000 W	3442	Р	Р					
243	Santa Catalina	ARG-J	Jujuy	RIN	7569911	183385	21.9500 S	66.0667 W	3802	Р	Р					
244	Rinconada	ARG-J	Jujuy	RIN	7516177	175884	22.4333 S	66.1500 W	3950	Р	Р					
245	Yavi	ARG-J	Jujuy	SJO	7554416	245661	22.1000 S	65.4667 W	3500	Р	Р					
300	Millares	Potosí	C. Saavedra	PMY	7851212	271000	19.4201 S	65.1808 W	2300	TP	Р	Т		٧		
301	Otavi	Potosí	Linares	TML	7781454	256021	20.0482 S	65.3325 W	3380		Р	Т		٧		
302	Mojo Torillo	Potosí	C. Saavedra	PMY	7834756	247044	19.5658 S	65.4110 W	3360		Р	Т	%Н	٧		
303	Alcantarí	Chuq.	Yamparez	PMY	7871812	274874	19.2345 S	65.1415 W	3100		Р	T		٧		Ev
304	Escana	Chuq.	Yamparez	PMY	7869587	282211	19.2554 S	65.0720 W	2630	TP	Р	Т	%H	V		Ev
-	rencias:															
BEI	Río Bermejo		ITZ Río I			RAV	Río Ravelo		TAX		go T					
CB.	· · · · , · ·			ique M	ayu	RIN	Laguna Rine	conada	TML	. Ríc) Tu	mus	sla			
CO	T Río Cotagaita		PLY Río F	Pilaya		SJO Río San Juan Del Oro TOM Río Toma						ma	yapo)		
GR	A Río Grande		PMY Río F	yo	SUY	Salar de Uy	runi	TUP	Ríc	Tu	piza	a				
DP	C Río Desaguadero,	lago Po	oopo, Salar d	de Coip	asa	TAR	Río Tarapa	ya	YUR	Ríc	Yu	ra				

Fuente: Elaboración propia, con datos SENAMHI

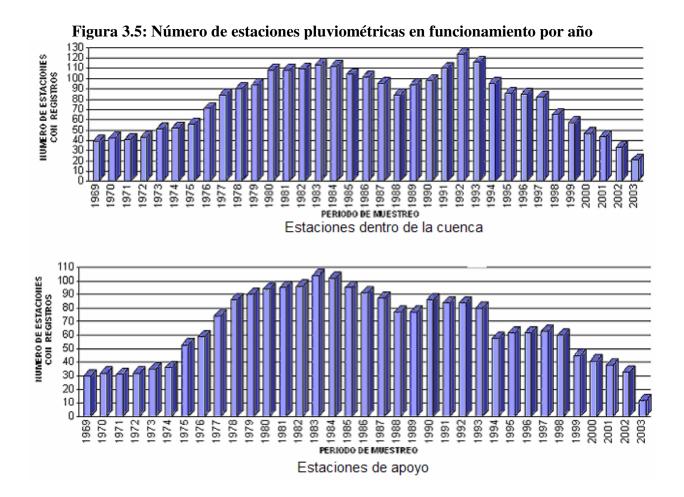
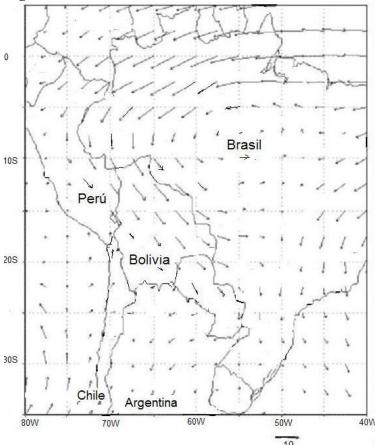

La tabla 3.3 muestra las estaciones hidrométricas de la Cuenca Alta del río Pilcomayo, su ubicación política, subcuenca a la que pertenecen, coordenadas geográficas, cota altitudinal, y variables de medición. Se hace notar que las estaciones de la tabla que cuentan solamente con lecturas liminimétricas (cotas), no pudieron ser procesadas para obtener las series de caudal. Sin embargo la información limnimétrica de esas estaciones es útil en la etapa de generación de caudales mediante el modelo. Una descripción completa de las estaciones hidrométricas y su tratamiento se encuentra en el informe respectivo (Aguilar, Malbrunot y Vauchel, 2005).

Tabla 3.3: Estaciones hidrométricas de la Cuenca Alta del río Pilcomayo

		Statione	5 1114	Ometr	cus uc	ia caeme	a Alla u				, •	
Estación	Dpto.	Prov.	Cuenca del río	PSAD 56 U	ЛМ 20 S	Latitud	Longitud	Cota [msnm]	TIPO	Lectura Aforos	Lectura Cotas	Curva Calibraci ón
Lotation	Брю.	1 100.	9 B	NORTH	EAST	Sur	Oeste	O SE	F	Lec	ခိုင်	Saj S
LA ANGOSTURA	Potosí	Sud Chichas	TUP	7619632	220345	21.5076 S	65.7008 S	2890	HDM	L.A.	L.C	C.C.
CHARAJA	Potosí	Sud Chichas	SJO	7610527	232862	21.5917 S	65.5815 S	3420	HDM		L.C	
CHILCARA	Chuq.	Sud Cinti	CBY	7673894	298501	21.0281 S	64.9404 S	3242	HDM	L.A.	L.C	C.C.
COTAGAITA	Potosí	Nor Chichas	COT	7695733	223878	20.8213 S	65.6544 S	2664	HDM		L.C	
EL MOLINO	Tarija	Mendez	TOM	7635805	296839	21.3719 S	64.9609 S	3200	HDM	L.A.	L.C	C.C.
EL PUENTE	Tarija	Mendez	SJO	7651142	270923	21.2303 S	65.2086 S	2248	HDM	L.A.	L.C	C.C.
MUYUQUIRI	Chuq.	Nor Cinti	LMY	7731349	276166	20.5067 S	65.1478 S	3120	HDM	L.A.	L.C	C.C.
NUJCHU	Chuq.	Oropeza	RAV	7874489	260301	19.2123 S	65.2813 S	2398	HDM	L.A.	L.C	C.C.
PALCA GRANDE	Chuq.	Nor Cinti	TML	7705000	266782	20.7435 S	65.2412 S	2356	HDM	L.A.	L.C	C.C.
PALCA HIGUERAS	Potosí	Nor Chichas	TML	7711046	246871	20.6863 S	65.4315 S	2440	HDM		L.C	
PAMPA GRANDE	Tarija	Mendez	PLY	7668310	340091	21.0826 S	64.5408 S	1000	HDM	L.A.	L.C	C.C.
PUENTE SUCRE	Chuq.	Oropeza	PMY	7858753	271816	19.3557 S	65.1737 S	2222	HDM	L.A.	L.C	C.C.
SALTO LEON	Potosí	Quijarro	YUR	7774283	186321	20.1065 S	66.0011 S	3658	HDM	L.A.	L.C	C.C.
SAN JOSECITO	Tarija	O' Connor	PLY	7661842	373648	21.1437 S	64.2183 S	1821	HDM	L.A.	L.C	C.C.
SAN PEDRO	Chuq.	Nor Cinti	CAM	7706147	268013	20.7333 S	65.2293 S	2338	HDM	L.A.	L.C	C.C.
TALULA	Chuq.	Oropeza	PMY	7882892	243793	19.1344 S	65.4371 S	2607	HDM	L.A.	L.C	C.C.
TARAPAYA	Potosí	Tomas Frías	TAR	7845402	207117	19.4679 S	65.7912 S	3341	HDM		L.C	
TUMUSLA	Potosí	Nor Chichas	TML	7732948	227281	20.4859 S	65.6160 S	2605	HDM	L.A.	L.C	C.C.
TUPIZA	Potosí	Sud Chichas	TUP	7627271	218622	21.4384 S	65.7161 S	2977	HDM	L.A.	L.C	C.C.
VILLAMONTES	Tarija	Gran Chaco	PMY	7649134	448046	21.2621 S	63.5023 S	392	HDM	L.A.	L.C	C.C.
VINA QUEMADA	Chuq.	Zudañez	PMY	7853510	304806	19.4065 S	64.8603 S	2056	HDM	L.A.	L.C	C.C.
YOCALLA	Potosí	Tomas Frías	PMY	7853303	193677	19.3945 S	65.9178 S	3350	HDM		L.C	
YURA	Potosí	Quijarro	YUR	7778211	173740	20.0690 S	66.1206 S	3336	HDM		L.C	
MISIÓN LA PAZ	Arg-S	Salta	PMY	7513909	566983	22.4833 S	62.5604 S	230	HDM		L.C	

3.4 PERIODO CONSIDERADO PARA EL BALANCE HÍDRICO

Durante la primera fase del proyecto del Balance Hídrico Microregional de Bolivia, se definió que el periodo de análisis sería el comprendido entre los años 1970 y 2000, lo que tomó en cuenta la disponibilidad de datos en la red meteorológica del SENAMHI. La figura 3.5 muestra el número de estaciones pluviométricas en funcionamiento en la Cuenca Alta del río Pilcomayo entre 1969 y 2003. El gráfico superior muestra las estaciones situadas dentro de la cuenca y el inferior las estaciones de apoyo. En ambos casos se observa que se contó con el mayor número de estaciones meteorológicas durante el periodo comprendido entre 1977 y 1994. Después de 1994 la red meteorológica de SENAMHI sufrió un rápido deterioro. Todo lo anterior debe ser tomado en cuenta al analizar y utilizar los resultados del Balance hídrico de la cuenca.


Capítulo 4

ANÁLISIS DE LA PRECIPITACIÓN

4.1 CARACTERIZACIÓN REGIONAL

La precipitación es el parámetro de entrada al Balance Hídrico de cuenca. El régimen hidrológico está ante todo determinado por la variación en tiempo y espacio de la precipitación, que a su vez está fuertemente influenciada por la circulación atmosférica, tanto global como regional, que se describe brevemente a continuación.

Figura 4.1: Dirección de los vientos alisios en enero

El continente sudamericano se encuentra bajo la influencia de los sistemas de alta presión (anticiclones) del Atlántico, del Pacífico Sur y del Caribe. Entre los dos primeros se forma una zona de baja presión cerca del Ecuador, la Convergencia Zona de Intertropical (ZCIT), que sigue el movimiento aparente del Sol. La diferencia de presiones combinada con la rotación de la tierra se combinan para producir los vientos alisios, que traen la mayor parte de la humedad y las lluvias desde el este (Amazonía y Atlántico). La cordillera de Los Andes actúa como una barrera y desvía los alisios de baja altitud (ver figura 4.1), por lo que las regiones situadas al oeste de la cadena montañosa, como el Altiplano y algunos valles interandinos (entre los que se cuenta la mayor parte de la cuenca del río Pilcomayo),

reciben mucha menos lluvia que la planicie amazónica y los valles nororientales.

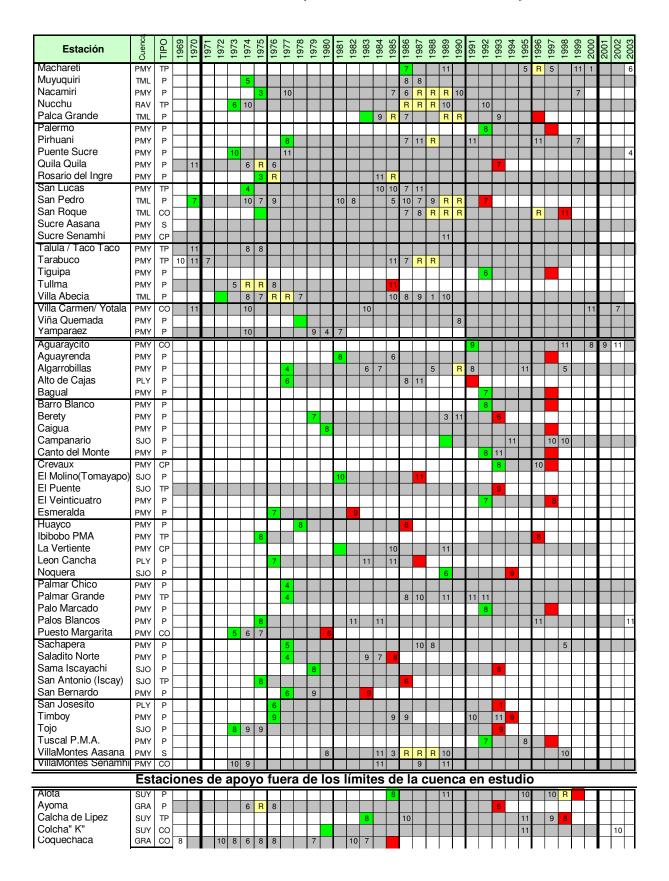
La ZCIT se desplaza durante el año, situándose más o menos en el lugar que recibe más radiación solar. Durante el verano austral, la ZCIT oscila sobre la Amazonía boliviana, donde su notable inflexión hacia el Sur extiende ampliamente las bajas presiones tropicales. Al mismo tiempo se forma sobre al Altiplano a gran altitud (la troposfera), un sistema de alta presión, conocido como la Alta de Bolivia. Tiene lugar entonces la estación lluviosa.

Durante el invierno austral, la ZCIT alcanza las Antillas y los anticiclones meridionales retornan a sus latitudes más septentrionales. Es la estación seca, caracterizada por una mayor

estabilidad del aire y una menor disponibilidad de vapor de agua. Durante esta época en la región de estudio predominan vientos del oeste, muy secos (sin vapor precipitable). Estas condiciones son ocasionalmente interrumpidas por la irrupción de frentes fríos provenientes del sur, que provocan nevadas y lluvias invernales.

Como consecuencia, la región muestra un ciclo estacional muy marcado. En coincidencia con el movimiento de la ZCIT hacia el sur, más del 60% de la precipitación se produce durante el verano austral, de diciembre a marzo, cuando prevalece el flujo de aire húmedo proveniente de la Amazonía. La mayor parte de la precipitación cae en forma de intensas tormentas convectivas.

4.2 INFORMACIÓN PLUVIOMÉTRICA


La figura 4.2 muestra la ubicación de las estaciones pluviométricas usadas en el Balance de la cuenca. Los números de estación de la figura 4.2 corresponden a los de la tabla 3.2. La tabla 4.1 es el diagrama de barras de los registros pluviométricos de esas estaciones, para el periodo 1969-2003. Se observa que hay una cantidad importante de años incompletos.

400,000 500,000 100000 200000 300,000 **REFERENCIAS** 179 175 Estaciones Pluviométricas 173 176 Límite de Cuenca 137° 180 Límite Subcuencas •145 140 Límite departamental 191 •189 165 •188 171° •169 •159 170 147 •186 166 **•**164 134 151 19 •18 •16<mark>7</mark> •29 185 183 156 157 **•**20 168 • 190 52• •144 **•**74 43 152 141 **≥**65 •150 17° <u>•66</u> 126 24• 128 212 30 •125 121 122 104 1 116 213 22 135 **•**113 •108 •123 103 205 207 **•**112 138 218 119 203 23 •3 209 200• 88 224 •142 201 Ficticia 243 49 240, 242 **1**33 **1**29 101 **•**244 239 200 Kilometers 100 100 100000 200000 300000 400000 500000

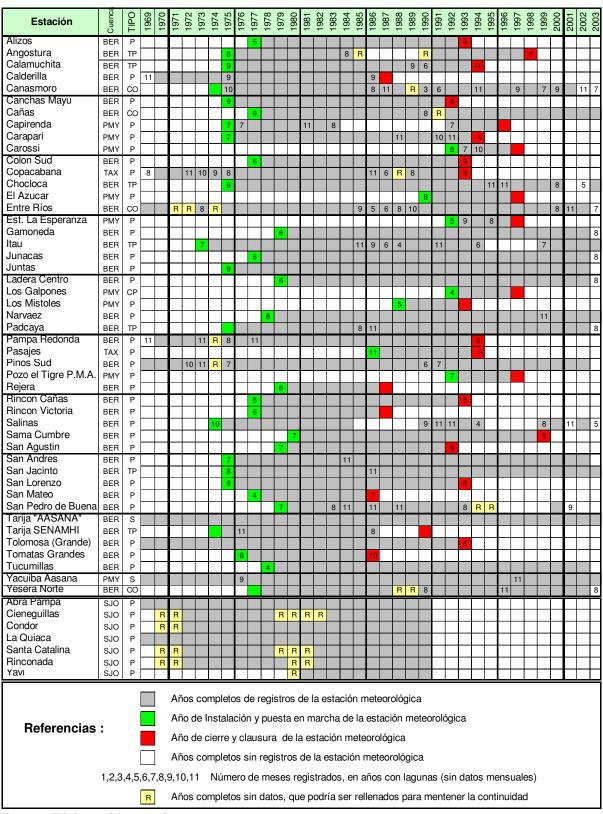

Figura 4.2: Ubicación de estaciones pluviométricas

Tabla 4.1: Diagrama de barras de registros pluviométricos

Estación	Cuenca	TIPO	1969	1970	71	1972	1973	1974	1975	1976	1977	1978	1979	086	81	1982	1983	1984	1985	1986	1987	900	1990	91	1992	1993	1994	1995	1996	1997	1998	1999	2000	01	2002	2003
			19	19	1971			19	19		19		19	19	1981	9	19			19		5 6	19	1991	19	_	19	19	19	19	19	19	20	2001	20	20
Ajtara	PMY	Р				11	11			8		11						11	11		10		-			6										Н
Ampa Ampa Arenales	TML SJO	P P												9			11	11			11	_	-	H		4										Н
Atocha	TML	TP												9			11	5			11	+	+	Н		/		9		9	8					Н
Calcha	TML	TP			-									9		9		11			-	+	+	11				9		10	8				_	H
Chagua	SJO	P												J		11		• •			-	+	+	-	10	7		J		10	U					Н
Challviri	PMY	Р														•		11		9	-			Н	10	R	R	7		9	8					Н
Chaqui	PMY	TP												10	11				11			+	1	Н				9		9	-					П
Chaquilla (represa)	TML	Р															10				11 7	7		Н												П
Chaquilla `	TML	Р						6	R	8														Н												П
Charaja	SJO	Р												8						9	6			11												П
Chico Chico	PMY	СО													П							٤		Г				9		10	8					П
Chinoli	PMY	СО																						Г												П
Colavi	PMY	Р		6						8							11	11						Г					П							П
Cotagaita	COT	TP					8	9	10	R	11					9	11			11	11			П												П
Cucho Ingenio	TML	Р								6			10																							
Escara	TML	CO											6																						9	
Killpani	YUR	Р	11					6																												
Lago Toro	YUR	Р	11					5																												
Landara	YUR	Р						6																												
Maragua (Chayanta)	PMY	Р						5	R	8			R				11									7										
Mochara	SJO	Р													9						8	8 1)													
Mojo	SJO	CO																	9																	
Mosoj Llajta	TML	CO																					10					11		9	8					
Oploca	TUP	CO																11																		
Palca Higueras	TML	TP									8			11					11		8 9	1	1					7		9	8					
Potosi Aeropuerto	PMY	CP										8	11			10	11			8	8 1	1			11	R		8	11							
Potosi Senamhi	PMY	CO																																		
Puna (Villa Talavera)	PMY	CP										10					9																7	9		
Ramadas	TML	Р									8										8															
Ravelo	RAV	TP					11	11						11			11			6	R F	?	3	11		7	10									Ш
Salinas de Yocalla	PMY	Р						8	R	R	R	5	11		11																					Ш
Salto Leon	TML	TP			8			11	8	9			11	7						5				ш												Ш
Samasa	PMY	CO																				5	_	L				9				6				Ш
San Antonio Esmor.	SJO	P								L					Н				11													<u> </u>				Ш
San Jose Pampa G.	SJO	TP			11					_				11										ш												Ш
Santa Lucia Tacobamba	PMY	P						6	R	8									10	8	_	_		L												Н
Talacocha	PMY	P					10	R	R	5		_									_		_	L												Н
Talina	PMY	Р									7	R	R	11	Н	44	10)		+	4	L												Н
Tarapaya	SJO PMY	P CP								8		10		-1		11	10			R	R 8	3	+	H												8
Thola Palca	PMY	Р						7	5	8		10							-		3															8
Tica Tica	TML	P						7	Э								8	11	10																	Н
Tinquipaya	PMY	TP						5	R	7		11					0	- 1 1	10		-	+	-	11				8		10	8					H
Tomave	FIVIT	TP						3	n	,				5				10	6	6	8							O		10	O					H
Tumusla	TML	TP			_			7	11					J	Н			10	0	U	0							8		8	Ω					Н
Tupiza	SJO	CP	7					-												10	R 1	1 0	,	Н				U		0	U					H
Turuchipa	PMY	TP	_														10			10	11 1	1 0		Н			7									Н
Villazón	SJO	TP			10		R	R	8	11			8				-0				_	+	╁	Н			_	10		8	8	10			-	Н
Vitichi	TML	TP			10					10			0								_			Н				10			0	10				Н
Yocalla	PMY	TP								10					Н			_			-	+	+	Н				9		10	8					Н
Yura	TML	TP									8						7							Н			8	Ū		. 0	-					Н
Cruce ventilia	PMY	Р		11		11		7	R	6	R	8				Ħ		11		10	11			Ħ												Ħ
Arpaja Alta (Incahuas	PLY	TP							5						П							Ť	Ť	Ħ			11	8	9	2	11					Ħ
Cachimayu `	RAV	TP		П		П					П	6				8	8	9		7	R 1	1					7									
UaUIIIIIayU	l .	TP		П		П		6		8								8						Г												П
Camargo	TML				_	_		6	R		8									8		+	+	-				_	\vdash			-		Н		П
Camargo Chilcar (Cinti)	PLY	TP				8		р	п	10	U													5			9									
Camargo	l .			8	10		8	ь	7	10	U									8	5	8	11	5			9	8	R	R						
Camargo Chilcar (Cinti)	PLY	TP	3	8	10		8	ь		10	O										5	8	11	5			9	8	R	R						H
Camargo Chilcar (Cinti) Culpina El Palmar Icla	PLY PLY	TP CP	3	8	10		8			10	0								11		5	8	11	5			9	8	R	R	11					
Camargo Chilcar (Cinti) Culpina El Palmar	PLY PLY PMY	TP CP P	3	8	10		8		7	10	0							_				8	11	5			9	8	R	R	11					
Camargo Chilcar (Cinti) Culpina El Palmar Icla	PLY PLY PMY PMY	TP CP P P	3	8	10		8		7 11 8	R					11	10				8		8	11	5			9	8	R	R	11					9

Estación	Cuenca	TIPO	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	0881	1991	1992	1997	1995	1996	0 1	1997	1998	1999	2000	2001	2002	2003
Julaca	SUY	СО						11											11		П	T		7	П	Т	Т	Т	T	Т	T				П	П	╗
Laguna Colorada	SUY	co																																	11		
Macha	GRA	TP						7	R	8										11								1	1		9	8					
Ocuri	GRA	TP					11	6	R	6								11	6	10															Ш		
Pocoata	GRA	Р						5					4		10		11	10						_		\perp		_	4	_					Ш		
Quetena Chico Río Mulatos	SUY	Р													Н					9		4	1	0		+	_	1	1 1	0	10	9			Ы	_	_
San Agustin	DPC	CO TP													Н	9	10	11	11		10	-		4	-	٠,	+	+	+	+	-	_	9				-
San Antonio Lipez	SUY	P											7											4		9	,		╇	+		_					4
San Pedro B. Vista	GRA	CO		7									_		+						-			+	-	-	+	╁	╁	+	+				\dashv	\dashv	\dashv
San Pablo Lipez	SUY	TP									8				H	11							10	1				9	1		9	8				\dashv	┥
Toro Toro	GRA	TP	8	7	8			8	R	R	7	8	11	11	10		-	11			11	+	10	+	+	+	+	Ť	+	+	3	-		8	\blacksquare	\dashv	-
Uncia	GRA	TP	8				7	10	8	R	5	0		-	11			11			**	7		7				+	т	+	+			U	П	-	+
Uyuni	SUY	СР	Ť						_		11	8							10			11		1							10	8					
∠oniquera	SUY	Р													П		8		11			7		1				т	т	т					П	\neg	╗
Alamos	GRA	Р	11					11	R	R							8	9	R			Ħ	10	Ť	Ħ				Ť	Ť					Ħ	T	Ħ
Azurduy	ITZ	СО	7				4													10		9	10	T		\top		t	t	T				11	7		٦
Buena Vista	GRA	TP							7	11										4	7			ı		9)		T	T	1				H	\exists	寸
Carandaiti	PMY	Р																		11		11		ı		ĺ			(3	T				H	\neg	٦
Cumandayti	GRA	Р							3	R	3			10						11																	4
Chuqui Chuqui	PMY	Р						6	R	11				11													F	1	1								
El Rodeo	GRA	Р										10														(Ι	Ι	Ι	I						
El Salvador	PMY	СО									8	R	8	7		9	R	R	R	4						7 F	_	_							8		9
El Villar	ITZ	Р	6					11	7				10						11				11				F	}									
La Galeria	ITZ	Р							9			11	9								9								3	3					Ш		
La Madona	GRA	TP										5							6	11			11			3									Ш		
La Palma	GRA	Р					6																	_		4	4	1	1						Ш		
Lamboyo	GRA	Р							6		11									11				4		_		1	1	4		11			Ш		
Monteagudo	ITZ	CP		11		8						11										_	-	5		4	4	4	4	4							9
Muyupampa (Iboperend Nuevo Mundo		TP							_							_	_						_	4	4	+	4	+	+	4							4
Padilla	GRA	Р	5					8	6								_		_	_		11	_	_	4	+	F	1	+	+					Ш	_	_
Pajcha	GRA	TP									-)							8	5	R	R	R	8					-	+							
Pojpo	GRA GRA	P P							0	6	R	R					_					4		4			_	+	╀	4					\vdash	\dashv	4
Poroma	GRA	P				10		8	8	11														4	1	1	F	,	+	+					\vdash	\rightarrow	4
Presto	GRA	P				10	11	11		R					+	-				7	R	9		+	- '	+		,	+	+							-
Pte Pacheco (Rio Azero	GRA	P				11	8		-	- 1					+				11	-	11	-		+		+	F	2	+	+					П		-
Redención Pampa	GRA	TP						10											11		-	+		\pm		+	Ŧ.	•	1	1		11			П		-
Sopachuy	ITZ	Р.	8					11										8	•			7		9		+	F	1	Ŧ.	+	Ħ				П	\dashv	-
Taperillas	ITZ	Р						•	8		11	11	=		H		11						ď	Ť			Ţ.		т	T					H	-	-
Tarvita	ITZ	TP	3				9		11		Ë				\exists					11	R	R	8	†		7	7 F	R F	R F	7	11					7	_
Urriolagoita	GRA	Р							7															1	1	_	F		Τ	Ť					\neg	Ť	_
Villa Alcala	GRA	Р							7													1		1		_	3 F	_	R F	2					T	ヿ	_
Villa Serrano	GRA	TP					11	9														1		T					t	Ť					Π		٦
∠udañez	GRA	TP						8																		Ī											5
Aiquile	GRA	CO		11		8	R							11				11				11		9	7 1	0 1	0 6	5 5	5 4	1	5	10			Ī		8
La Viña	GRA	Р						11	11									7	R	4							0				10	11	6		П		J
Mizque (Maira)	GRA	TP														9	9					8	4		1	1 1	1								П		
Molineros Rio Caine	GRA	TP			8	10			4		R									8	6														Ш		
Puente Arce	GRA	TP							7		R						11		7	R	R						1	1 7	7								2
Pte Taperas (Río Azero	GRA							11	R	R	R		8	11			7	8	8	Ĺ	\Box	$oldsymbol{ol}}}}}}}}}}}}}}}$			\Box			Ĺ	Ĺ						பி		_]
Quiriria	GRA	TP			L												11			11						1				1			8		Ш		_
QUIROGA	GRA	Р						11															9			1		I	1	0		6			Щ	_	_
Villa Granado	GRA	Ļ																				_		ļ		ļ	ļ	ļ	ļ	1					ᆜ	_	ᆜ
Boyuibe	ITZ	P									6	8							7	R	7			1		1		I	1	1							7
Camiri Aasana	ITZ	S																	11	R	_		10	1		1		H	L								
Charagua Choreti	ITZ	Р	<u> </u>	Н	 	H		H	_	H		0	7		1	R	R				9		10	1		3				5	4	4	4		Н	4	4
Gutierrez	ITZ ITZ	P P	\vdash	H	-	H		H				6	7							0	0			1					Ŧ	1					\dashv		-1
Itaguazurenda	ITZ	P								H	-			-			7	R	P	ŏ	8	-		1		+			+	+							11
Masicuri	GRA	P			11	7		11	7		11				Н		1		R R	6	5								+		3		-	\dashv	\dashv	\dashv	\dashv
Pucara	GRA	P	7		11	1		11			11			11					n	0	3	-		1	H	Ŧ	Ŧ	Ŧ	+		9						\dashv
San Antonio	ITZ	CO						17	T		11			11						R	7	\dashv		+		Ŧ			+	+							
Pazña	DPC	СО		H	H	H		H	4	9			11	11				11	4			7	7	Ŧ	+	Ŧ		Ŧ	f	Ŧ	7				7	=	٧
1 ULIIU	טייט	L		ш		ш		Ш	4	9			11	11				1.1	4											_					_	_	لــ

Fuente: Elaboración propia

4.3 ANALISIS DE CALIDAD Y TRATAMIENTO DE LA INFORMACION

Según UNESCO-ROSTLAC (1982), los errores en la medición de la precipitación se pueden agrupar en dos tipos básicos:

- error en la medida puntual
- error en la evaluación espacial

Una gran parte de los posibles errores son intrínsecos a la medición y por tanto inevitables. Ese es el caso de los errores debidos al instrumento de medición y al efecto aerodinámico en las trayectorias de las partículas causado por el instrumento, que caen en el primer tipo, junto con los errores debido a la operación y ubicación. En forma general, el error en la estimación de la precipitación espacial (por ejemplo una subcuenca), se puede descomponer en:

 $\Delta PC = \Delta P + \Delta PG + \Delta PF$

Donde:

 ΔPC = Error en la evaluación de la precipitación espacial ΔP = Error en la medida de la precipitación puntual

 ΔPG = Error por no ser suficientemente representativa la precipitación puntual

de la zona que representa, que puede ser muy grande si la densidad de la

red es muy pequeña

 ΔPF = Error en la precipitación de las zonas altas de montaña donde no hay

instrumentos y es necesario estimarla a partir de extrapolaciones de lo

que ocurre en las zonas más bajas (perfil pluviométrico)

Para obtener la mejor estimación posible de la precipitación espacial por subcuenca, se siguió la metodología descrita en la figura 3.2, que se puede sintetizar en tres etapas:

- Análisis de consistencia, homogenización y regionalización de la precipitación
- Relleno de series mensuales mediante correlación
- Estimación de la precipitación espacial por cuencas y subcuencas

A continuación se describe cada una de esas etapas, que comprende a su vez varios subprocesos. Paralelamente se presenta una síntesis de los resultados obtenidos en cada etapa.

4.3.1 Análisis de consistencia, homogenización y regionalización de la precipitación

Esta etapa es la que define la calidad de los datos y su consistencia. Los resultados que se obtienen al concluirla es la identificación de las estaciones con datos consistentes y confiables y de los grupos regionales que presentan un comportamiento homogéneo. La principal herramienta utilizada para esta etapa es el vector regional.

Vector regional

Basado en los mismos principios del método de la curva doble acumulada, el método del Vector Regional crea un vector de índices anuales de precipitación en base a una serie cronológica de precipitaciones anuales ficticias, correspondientes a una estación igualmente ficticia. El vector de índices toma en cuenta los efectos de la tendencia de las series, y los pseudo-ciclos de la zona o región climática que afectan a cada una de las estaciones, verificando de esta manera la homogeneidad temporal de las series. El vector de índices anuales verifica igualmente la homogeneidad espacial de series observadas en las estaciones pertenecientes a la misma zona climática.

El cálculo de los índices de precipitación se basa en una matriz de observaciones compuesta de los registros de precipitación anual de μ estaciones con n años de registros con observaciones faltantes a ciertas estaciones en ciertos años. Para cada estación se calcula una media que cubre el juego de datos del período de estudio, y para todos los años, se calcula un índice que será superior a 1 cuando el año sea húmedo e inferior a 1 cuando el año sea deficitario. El Vector Regional (VR) toma en cuenta la información de una región que supuestamente es homogénea climáticamente (comportamiento temporal similar). El Vector Regional fue desarrollado y convertido en código de programación por investigadores del Institut du Recherche pour Development (IRD) de Francia. Recientemente (2004), fue incorporado al Hydraccess (figura 4.3).

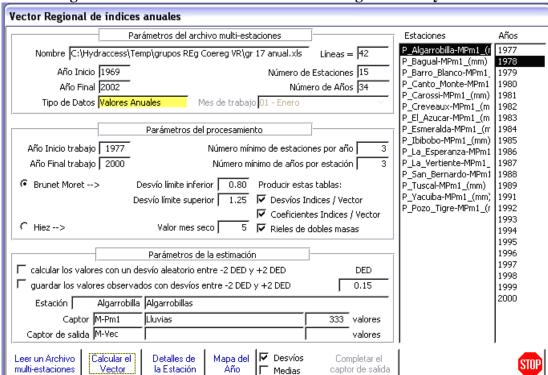


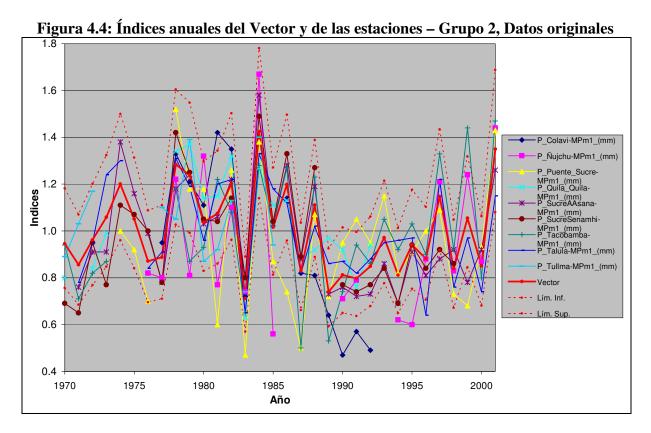
Figura 4.3: Ventana de entrada al Vector regional en Hydraccess

Una vez estimado el VR por grupo la crítica de los datos se facilita grandemente, porque se puede entonces:

- Evaluar la calidad de los datos de una estación y su pertenencia al grupo regional, mediante diversos parámetros estadísticos (i.e. coeficiente de correlación, error relativo, desviación Standard) proporcionados por el programa del VR.
- Comparar gráficamente el comportamiento de las estaciones dentro de un grupo y entre grupos, trazando, entre otras cosas, el vector regional del grupo, de las estaciones que lo componen, así como curvas doble acumuladas. Esto permite identificar rápidamente quiebres y datos anómalos.

La calidad del vector regional depende de la calidad de los datos de la entrada, aunque los algoritmos usados intentan minimizar la influencia de los datos erróneos. El vector calcula a la salida "la contaminación" por los errores que existen en los datos origen. Si se eliminan los datos incoherentes y se corrigen gradualmente los errores más evidentes en los datos de entrada, se llegará a un vector regional de buena calidad.

Cuando el VR es de calidad buena, se lo podría usar para reconstituir datos faltantes (lagunas), multiplicando el índice regional de un año por el valor medio de la precipitación en esa estación durante el período de estudio. Una opción del programa incluso permite agregar datos reconstituidos con un desvío, con valores arrastrados de lanzamientos aleatorios en función a una ley de Gauss, lo que evita disminuir la varianza de los juegos de valores reconstituidos. Sin embargo para una reconstitución fina de datos perdidos en una estación, es preferible usar la correlación con las estaciones más cercanas obtenida sobre periodos comunes.


Antes de aplicar el programa se requiere del análisis crítico de la información existente, entendiéndose por esto a la detección y exclusión de la matriz de aquellos datos incoherentes o no posibles, es decir que contengan errores groseros. A continuación y con carácter preliminar, se forman "grupos regionales" grandes de estaciones pluviométricas, tomando en cuenta su cercanía, características físicas y topográficas, etc. En la ventana de entrada (figura 4.3) se definen también varios parámetros de cálculo, como el número mínimo de estaciones por año y años por estación, el método (Brunet Moret o Hiez), los límites de confianza, etc.

La salida del programa contiene varios parámetros que evalúan la calidad de los resultados. Se usaron principalmente los siguientes:

- El coeficiente de correlación "r" del índice con las estaciones (>0.70)
- El valor de las desviaciones (que se deben mantener dentro de un margen de tolerancia)
- Los límites de confianza dentro de los que se deben mantener las series interanuales del índice del vector

El análisis de los resultados lleva a disminuir el tamaño del grupo regional, identificar estaciones cuyos datos son inconsistentes y en caso extremo, eliminar aquellas estaciones con bajo coeficiente de correlación y alta desviación. En una etapa posterior, los datos reconstituidos en estaciones pertenecientes a un mismo grupo regional, deben mantener un comportamiento similar al de los datos originales, por lo cual es aconsejable aplicar el VR a

los juegos de datos reconstituidos de cada grupo regional original. Como ejemplo, la figura 4.4 muestra los índices del vector regional y de las estaciones del grupo 2 para los datos originales. así como los límites inferior y superior del intervalo de confianza. La figura 4.5 muestra, para el mismo grupo, los índices de los datos reconstituidos, es decir corregidos y rellenados en la forma descrita en 4.3.2.

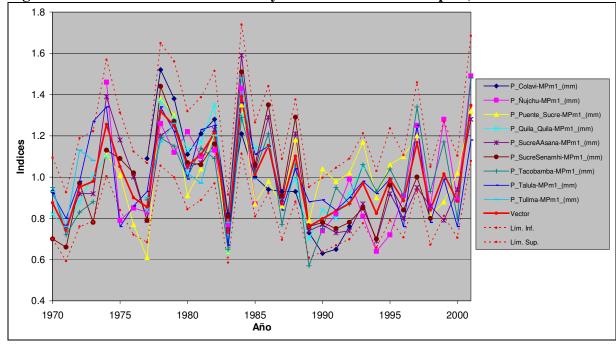


Figura 4.5: Índices anuales del Vector y de las estaciones – Grupo 2, Datos reconstituidos

El análisis descrito, aplicado a los registros de las estaciones usadas en el presente estudio, permitió definir 21 grupos regionales con estaciones dentro de la cuenca y en algunos casos con estaciones de apoyo. Se caracterizaron también 12 grupos regionales solamente con estaciones de apoyo fuera de la cuenca. Los resultados de los grupos regionales pertenecientes a la cuenca en estudio, se muestran en la tabla 4.2. Estos resultados son producto del "VR" de índices anuales para el periodo 1970-2001, calculados respecto al año hidrológico adoptado: septiembre-agosto. Para el presente estudio, algunas estaciones pertenecientes al sistema del río Pilcomayo están clasificadas como estación de apoyo por no estar dentro del límite de la Cuenca Alta.

La tabla 4.2 contiene información útil para otras actividades del estudio. Por ejemplo, la columna de precipitación media observada en mm corresponde al valor medio (Brunet Moret) de la precipitación para los años de registro (columna No años). En cambio, la columna de precipitación media calculada corresponde a la estimada con el promedio de los años donde pudo evaluarse el vector regional del grupo. Es este último valor el que se usó para elaborar el mapa de isoyetas. La diferencia entre el valor observado y el calculado para estaciones con registros para todo el periodo, como Sucre y Potosí, da una idea adicional de la homogeneidad del grupo regional. Idealmente esa diferencia debería ser nula o muy próxima a cero.

Las estaciones y grupos regionales de la tabla 4.2 son los que quedaron después de pasar el filtro que representan los parámetros de calidad descritos anteriormente. Se hizo todo los posible por conservar el mayor número de estaciones posible. Bajo este criterio se han mantenido también estaciones con coeficientes de correlación del vector inferiores a 0.7 y, en algún caso, se han identificado y formado grupos regionales con relativamente pocas estaciones. Se observa también que hay algunas estaciones que forman parte de más de un grupo regional.

Tabla 4.2: Grupos regionales de precipitación en la Cuenca Alta del río Pilcomayo

		na 4.2. Grupos regio								.,
	Nº	Estación	Nº		ión Media	Media	D.E.	Correl. /	Categ.	Obs.
	١,	Biación	Años	Observada	Calculada	Desvíos	Desvíos	Vector "r"	Est.	ODS.
	1	Ajtara	21	483.4	482.5	-0.018	0.112	0.908	E. C. E.	
l _	2	Ayoma	22	456.7	445.8	0.005	0.088	0.878	E.A.	
Grupo 1	3	CruceVentilla	26	520.9	525.2	-0.004	0.138	0.759	E. C. E.	
١ě	4	Salinas Yocalla	8	388.8	366.6	0.011	0.109	0.949	E. C. E.	
ᅜ	5	Thola Palca	17	370.0	352.7	0.018	0.109	0.809	E. C. E.	
1	6	Tinguipaya	29	549.9	550.9	-0.002	0.117	0.851	E. C. E.	
	7	Yocalla	26	388.9	396.5	-0.008	0.103	0.915	E. C. E.	
	1	Colavi	17	623.1	619.5	-0.006	0.138	0.829	E. C. E.	
	2	Nujchu	23	547.3	542.2	-0.014	0.135	0.848	E. C. E.	
	3	Puente Sucre	28	553.4	543.6	0.002	0.125	0.789	E. C. E.	
Grupo 2	4	Quila Quila	22	622.7	618.6	0.002	0.076	0.934	E. C. E.	
ĕ	5	Sucre AAsana	31	680.7	687.6	-0.014	0.102	0.896	E. C. E.	
٦ ټ	6	Sucre Senamhi	29	662.2	678.5	-0.015	0.102	0.905	E. C. E.	
U	7	Tacobamba	28	568.1	574.5	-0.004	0.096	0.885	E. C. E.	
	8	Talula	31	602.9	599.8	0.005	0.102	0.856	E. C. E.	
	9	Tullma	13	689.9	656.7	0.014	0.089	0.903	E. C. E.	
	1	Ajtara	21	4/8.4	488.2	-0.011	0.087	0.964	E. C. E.	
က	2	Colquechaca	15	557.2	535.7	0.004	0.110	0.816	E.A.	
Grupo 3	3	Macha	30	394.0	397.0	-0.008	0.119	0.837	E. A.	
ΙĦ	4	Ocuri	15	712.1	678.5	0.000	0.132	0.746	E.A.	
ΙĒ	5	Pocoata	10	498.1	497.1	-0.038	0.155	0.808	E.A.	
	6	Tacobamba	28	549.0	565.5	-0.020	0.130	0.775	E. C. E.	
	1	Chaquilla Represa	10	439.9	438.2	-0.016	0.188	0.862	E. C. E.	
	2	Chaqui	17	517.5	494.1	0.039	0.141	0.757	E C. E.	
4	3	Chico Chico	12	680.3	723.7	-0.030	0.121	0.868	E. C. E.	
Grupo 4	4	Chinoli	31	439.4	441.0	-0.004	0.145	0.737	E. C. E.	
ဌ	5	Puna	31	440.7	445.4	-0.010	0.100	0.906	E. C. E.	
5	6	San Lucas	27	506.3	506.7	-0.006	0.104	0.887	E. C. E.	
	7	Talacocha	12	500.6	495.5	-0.006	0.139	0.825	E. C. E.	
	8	Turuchipa	26	450.0	450.1	-0.007	0.144	0.825	E. C. E.	
	1	Challviri	14	524.7	486.9	0.012	0.135	0.820	E. C. E.	
	2	Cucholngenio	17	362.7	368.2	-0.029	0.123	0.924	E C. E.	
	3	Potosi Aasana	22	353.4	343.5	-0.004	0.104	0.932	E. C. E.	
Grupo 5	4	Potosi Senamhi	31	393.6	396.0	-0.006	0.123	0.868	E. C. E.	
8	5	Salinas Yocalla	8	390.4	403.9	0.012	0.076	0.939	E C. E.	
2	6	Samasa	10	344.5	348.2	0.020	0.102	0.881	E. C. E.	
၂ ဗ	7	Santa Lucia	22	360.7	367.5	-0.012	0.116	0.892	E C. E.	
	8	Tarapaya	17	366.3	362.6	-0.005	0.124	0.888	E. C. E.	
	9	Yocalla	26	393.1	382.8	0.019	0.124	0.890	E. C. E.	
	1	Aguayarcito	10	724.5	783.7	0.015	0.092	0.943	E. C. E.	
	2	Aguayrenda	16	1184.8	1111.8	0.005	0.110	0.843	E. C. E.	
ဖွ	3	Carapari	19	1020.3	989.0	0.005	0.142	0.806	E. A.	
Q	4	Itau	22	979.1	979.8	0.000	0.095	0.924	E. A.	
Grupo 6	5	Palmar Chico	24	1086.4	105/./	0.001	0.123	0.825	E. C. E.	
ট	6	Palmar Grande	24	/92.2	/60.8	0.015	0.132	0.802	E. C. E.	
	7	Sachapera	24	1005.2	993.7	-0.015	0.118	0.897	E. C. E.	
	8	Yacuiba	30	1204.0	1291.5	-0.057	0.161	0.897	E. A.	
	1	Aguayarcito	10	724.5	785.2	-0.011	0.110	0.910	E. C. E.	
	2	Caigua	17	1123.4	1040.8	-0.011	0.094	0.932	E. C. E.	
	3	E 24	5	641.7	675.6	-0.044	0.171	0.918	E. C. E.	.
_	4	Ibibobo	6	445.5	492.3	0.071	0.133	0.864	E. C. E.	
Grupo 7	5	La Vertiente	19	816.6	780.1	0.005	0.092	0.884	E. C. E.	
l 음	6	Palo Marcado	5	502.3	485.9	0.040	0.112	0.847	E. C. E.	
ঠি	7	Palos Blanco	26	666.6	688.4	-0.032	0.151	0.802	E C. E.	
	8	San Bernardo	6	575.3	558.8	0.008	0.085	0.995	E. C. E.	
	9	VillaMontes Aasana	14	850.7	821.2	-0.027	0.132	0.912	E. C. E.	
	10	VillaMontes Senamhi	27	877.0	881.9	-0.006	0.084	0.934	E. C. E.	
	1	Alto Cajas	10	533.4	482.0	0.015	0.126	0.834	E. C. E.	
	2	Berety	14	747.5	727.0	-0.001	0.095	0.814	E. C. E.	
	3	El Huayco	8	1287.4	1148.9	-0.002	0.069	0.959	E. C. E.	
	4	Entre Rios	26	1072.0	1088.3	-0.015	0.135	0.823	E. A.	
œ	5	Junacas	24	533.2	534.9	-0.011	0.145	0.786	E. A.	
Grupo 8	6	Narvaez	23	1154.6	1145.9	-0.001	0.145	0.786	E. A.	
슼	7	Puerto Margarita	7	501.0	464.5	0.065	0.005	0.757	E. C. E.	
5	8	Saladito Norte	8	901.6	831.0	-0.017	0.103	0.737	E C. E.	
	9	Salinas	15	1333.7	1347.5	-0.017	0.104	0.864	E. A.	
	10	San Josecito	17	907.9	894.9	-0.009	0.122	0.852	E. C. E.	
		Timboy	13	664.9	641.8	-0.009	0.113	0.655	E C. E.	*
	11 12	Yesera Norte	21	653.9	638.0	0.004	0.134	0.876	E. A.	
	14	. Josefa Morto	- '	555.5	330.0	0.000	0.000	0.070	<u> </u>	á.

-			Nº	Precipitad	ión Media	Media	D.E.	Correl. /	Categ.	0.
	Nº	Estación	Años	Observada	Calculada	Desvíos	Desvíos	Vector "r"	Est.	Obs.
	1	Atocha	15	229.0	257.5	-0.022	0.139	0.789	E. C. E.	
	2	Chagua	11	275.5	284.4	0.013	0.134	0.837	E. C. E.	
	3	Oploca	15	349.5	303.9	0.015	0.095	0.960	E. C. E.	
6	4	San Antonio Esmoruco	12	314.6	308.3	0.025	0.111	0.901	E.C.E.	
Grupo	5	San Antonio Lipez	14	314.1	316.9	-0.020	0.093	0.984	E.A.	
Ĭ	6 7	San Jose Pampa Grande San Pablo Lipez	10 24	348.4 256.6	310.4 254.3	-0.036 -0.008	0.140 0.108	0.947 0.944	E. C. E. E. A.	
1	8	Talina	16	314.5	333.7	-0.008	0.100	0.860	E. C. E.	
	9	Tupiza	27	298.2	298.0	-0.011	0.084	0.968	E C. E.	
	10	Vıllazon	28	349.7	350.3	-0.002	0.110	0.917	E. C. E.	
	1	Calderillas	18	1090.7	1138.9	-0.024	0.101	0.868	E.A.	
	2	Campanario	13	357.3	350.0	0.003	0.142	0.622	E. C. E.	*
	3	CanasMoro	26	619.3	610.8	-0.004	0.090	0.840	Ł.A.	
	4	Canchas Mayu	18	945.6	924.0	-0.001	0.076	0.866	E.A.	
9	5	Copacabana	23	337.1	344.4	-0.015	0.137	0.706	E.A.	
Grupo 10	6	∃ Molino Mochara	7 13	577.9 289.4	579.9 282.8	-0.022 0.000	0.123 0.137	0.911 0.794	E. C. E. E. C. E.	
ᆿ	7 8	Noquera	5	365.9	343.2	0.000	0.137	0.794	E C. E.	
উ	9	PampaRedonda	23	895.5	904.8	-0.005	0.080	0.890	E. A.	
	10	Hejara	8	972.1	965.2	-0.022	0.109	0.897	E. A.	
	11	San Andres	26	1042.9	1028.2	-0.008	0.073	0.890	E. A.	
	12	Iomatas G	10	741.2	703.9	0.000	0.064	0.948	Ŀ. A.	
	13	Tucumillas	24	749.1	739.6	-0.022	0.125	0.725	E.A.	
	1	Chaquilla	31	281.4	280.5	0.003	0.112	0.921	E. C. E.	
	2	Killpani	5	375.2	290.3	0.015	0.108	0.873	E. C. E.	
1_	3	Lago Tora	5	420.2	327.8	0.005	0.083	0.952	E. C. E.	
Grupo 11	4	Landara Rio Mulatos	5 20	358.3 188.0	274.7 198.4	0.027 0.018	0.074 0.146	0.978 0.895	E. C. E. E. A.	
<u>a</u>	5 6	Salto Leon	16	280.7	252.9	0.016	0.140	0.893	E.G.E.	
Ĭ	7	Tica Tica	15	269.2	258.8	-0.024	0.131	0.958	E. C. E.	
١٥	8	Iomave	11	337.7	314.8	-0.050	0.154	0.955	E C. E.	
	9	Uyuni	27	179.6	192.8	-0.015	0.108	0.932	E.A.	
	10	Yura	9	235.3	255.5	0.018	0.130	0.835	E. C. E.	
	1	Атра Атра	13	324.9	306.8	0.034	0.124	0.911	E. C. E.	
	2	Calcha	21	279.3	295.9	-0.030	0.128	0.939	E. C. E.	
	3	Camargo	11	320.4	282.4	0.038	0.139	0.895	E. C. E.	
12	4	Cotagaita	13	297.9	270.7	0.000	0.131	0.894	E.C.E.	
Grupo 12	5 6	Ŀscara Mosoj Llajta	22 11	267.5 295.9	276.7 311.6	-0.004 0.017	0.147 0.146	0.854 0.822	E. C. E.	
ם	7	Muyuquiri	27	422.2	424.1	-0.004	0.140	0.822	E C. E.	
ອັ	8	Palca Higueras	24	326.3	327.6	-0.006	0.127	0.921	E. C. E.	
	9	Ramadas	22	312.2	315.9	-0.019	0.152	0.910	E. C. E.	
	10	Iumusla	24	336.2	329.1	0.017	0.121	0.899	E. C. E.	
	11	Vitichi	24	367.5	381.8	-0.038	0.124	0.922	E. C. E.	
	1	Charaja	13	266.3	256.7	-0.010	0.144	0.849	E. C. E.	
	2	Chillcar	15	199.8	189.1	0.019	0.110	0.877	E. C. E.	
	3	La lorre	21	355.0	346.9	0.000	0.102	0.871	E.C.E.	
5	4	Las Carreras	19	260.4	262.1	-0.004	0.121	0.808	E.C.E.	
Grupo 13	5 6	Leon Canchas Mojo	12 30	430.8 320.2	409.4 317.2	0.014 0.009	0.129 0.113	0.883 0.892	E C. E. E C. E.	
빌	7	Pasajes	9	290.5	291.7	0.003	0.095	0.665	E. A.	*
ច	8	100	20	308.9	311.6	-0.009	0.099	0.932	E. C. E.	
	9	Villa Abecia	25	260.4	262.8	-0.009	0.121	0.892	E. C. E.	
	10	Arenales	13	281.7	287.1	-0.066	0.171	0.846	E. C. E.	
	11	⊟ Puente	24	313.0	307.8	0.012	0.137	0.790	E. C. E.	
	1	Cachimayu	22	526.2	521.2	0.004	0.130	0.824	E. C. E.	
	2	Icia La Madana	27	386.6	378.9	0.021	0.099	0.857	E.C.E.	
	3	La Madona La Mendoza	14 16	623.4	647.3 392.4	-0.030 0.000	0.141	0.816	E. A.	
14	4 5	Pajcha	16 11	396.0 549.9	558.5	-0.021	0.137 0.124	0.734 0.908	E. A.	
Grupo 14	6	rajona Tarabuco	25	549.9 567.2	586.2	-0.021	0.124	0.806	E. G. E.	
2	7	Villa Alcala	18	724.9	728.5	0.023	0.104	0.797	E. A.	
<u>ত</u>	8	Viña Quemada	23	449.0	452.4	-0.004	0.151	0.769	E. C. E.	
	9	Yamparez	22	507.2	511.6	0.001	0.126	0.775	E. C. E.	
	10	Yotala	31	523.3	530.1	-0.013	0.135	0.837	E. C. E.	
	11	Zudanez	31	565.6	577.9	-0.021	0.116	0.846	Ł.A.	

	Nº	Estación	Nº		ión Media	Media	D.E.	Correl. /	Categ.	Obs.
			Años	Observada	Calculada	Desvíos	Desvíos	Vector "r"	Est.	003.
	1	Arpaja Alta	16	465.6	461.9	0.017	0.113	0.902	E.C.E.	
15	2	Camargo	11	311.4	293.6	0.005	0.089	0.958	E. C. E.	
0	3	Culpina	25	285.5	288.6	-0.010	0.111	0.848	E.C.E	
Grupo 15	4	Muyuquiri	27 8	421.8 343.8	434.2 334.8	-0.032 0.003	0.129	0.910 0.962	E. C. E. E. C. E.	
5	5	Palca Grande San Pedro	17	323.7	334.6 311.9	0.003	0.088 0.117	0.962	E. C. E.	
•	6	San Roque	20	292./	294.1	-0.009	0.117	0.897	E. C. E.	
	1	Boyuibe	22	617.6	648.7	-0.003	0.120	0.902	E. A.	
	2	Capirenda	12	648.6	661.8	-0.016	0.155	0.664	E.A.	*
	3	Carandayti	19	530.3	536.6	-0.038	0.153	0.920	E. A.	
	4	∃ Palmar	6	1350.5	1294.9	0.001	0.109	0.716	E. C. E.	
9	5	∃ Salvador	18	696.2	/08.5	0.004	0.132	0.705	E. A.	
Grupo 16	6	La Galeria	23	864.0	849.8	0.000	0.141	0.752	E.A.	
dn	7	Los Galpones	5	683.1	640.2	0.026	0.074	0.945	Ŀ. A.	
5	8	Palermo .	5	420.9	390.8	0.036	0.131	0.953	E. C. E.	
	9	Macharety	13	/01.8	803.9	-0.021	0.144	0.663	E. C. E.	*
	10	Nacamiri	18	1008.5	993.4	-0.033	0.175	0.689	E. C. E.	*
	11	Hosario Ingre	22	986./	1032.0	-0.030	0.160	0./23	E. C. E.	
	12	I iguipa	5	999.1	963.6	-0.004	0.109	0.959	E. C. E.	
	1	Algarrobilla	22	739.7	742.3	-0.009	0.139	0.843	E. C. E.	
	2	Bagual	6	/10.8	815.9	-0.078	0.162	0.957	E. C. E.	·
	3	Barro Blanco	6	771.0	819.0	-0.008	0.087	0.950	E. C. E.	
	4	Canto Monte	6	587.9	661./	-0.060	0.180	0.//4	E. C. E.	·
	5	Carossi	6	538.9	565.8	0.004	0.169	0.833	E. A.	-
1	6	Creveaux	5	584.8	5/5./	0.05/	0.133	0.849	F.C.E	
Grupo 17	7	∃ Azucar	7	568.8	589.4	-0.013	0.145	0.834	E. A.	
dn	8	Esmeralda Ibibaba	6	608.8	588.1	0.007	0.111	0.882	E.C.E	
5	9	lbibobo	6 6	478.5 468.5	527.5 481.2	0.030 0.025	0.075	0.948	E. C. E. E. A.	
•	10	La Esperanza La Vertiente	19	815.5	401.2 818.6	-0.005	0.072 0.150	0.936 0.715	E. G. E.	
	11 12	San Bernardo	6	575.3	562.2	-0.003	0.130	0.713	E. C. E.	
	13	luscal	6	541.5	584.0	-0.022	0.139	0.809	E. C. E.	
	14	Yacuiba	30	1231.1	1332.5	-0.076	0.199	0.776	E. A.	l . I
	15	Pozo ligre	6	4/8.6	468.7	0.072	0.149	0.746	E.A.	
	1	La Palma	25	541.4	536.2	0.012	0.117	0.864	E.A.	
	2	Lamboyo	23	5/1.9	592.0	-0.018	0.141	0.834	Ŀ. A.	
ω	3	Maragua	22	581.2	563.2	-0.010	0.154	0.720	E. C. E.	. I
<u>-</u>	4	Pajcha	11	549.9	540.4	-0.008	0.130	0.864	Ŀ. A.	
ğ	5	Pojpo	12	758.7	693.3	0.009	0.077	0.934	E.A.	
Grupo 18	6	Poroma	25	765.9	786.1	-0.029	0.125	0.909	E.A.	
O	7	Presto	29	379.0	382.8	-0.010	0.147	0.855	E.A.	
	8	Ravelo	25	786.2	806.6	-0.025	0.121	0.883	E. C. E.	
	9	Tullma	13	689.9	627.3	0.009	0.111	0.840	E. C. E.	
rup 19	1	Azurduy	30	/28.5	/34.3	-0.008	0.120	0.834	E.A.	
٩	2	∃ Villar Pirbuggi	29 21	587.1	591.8	-0.005	0.105	0.903	E. C. E.	
G _L	4	Pirhuani Tarvita	21 29	979.8 803.2	1057.2 805.1	-0.006 -0.002	0.119 0.110	0.762 0.866	E. C. E.	
	1	PampaRedonda	23	914.5	893.5	0.002	0.117	0.790	E. A.	\vdash
	2	Hnos Sud	30	1087.3	1105.9	-0.01/	0.117	0.730	E. A.	
0	3	HinconVictor	10	1094.8	1025.4	-0.001	0.110	0.851	E.A.	
0	4	Sama Cumbre	19	/66.4	825.6	-0.041	0.13/	0.8/4	E.A.	
Grupo 20	5	Sama Iscayach	15	414.4	404.7	0.008	0.143	0.807	E. C. E.	
3r	6	San Andres	26	1042.9	1029.5	0.013	0.095	0.837	E. A.	
9	7	San Antonio Iscayachi	11	367.3	341.4	0.029	0.135	0.882	E. C. E.	
	8	Tucumillas	24	749.1	735.7	0.006	0.104	0.824	E.A.	
	1	Abra Pampa	21	354.1	357.7	-0.010	0.151	0.809	E.A.	
1	2	Cieneguillas	15	389.8	397.3	-0.025	0.127	0.931	E.A.	
21	3	Condor arg	19	414.1	410.6	0.002	0.158	0./35	Ŀ . A.	
0	4	La Quiaca	21	295.2	294.4	0.003	0.145	0.792	E. C. E.	
Grupo 21	5	Rinconada	17	440.7	437.0	0.002	0.162	0.775	E.A.	
ច	6	Santa Catalina	16	397.0	399.9	-0.014	0.144	0.847	L.A.	
1	7	Villazón	28	347.1	342.7	0.013	0.195	0.662	E.C.E.	*
	8	Yavı	10	251.2	215.9	0.066	0.108	0.935	E. C. E.	á

^{*} Estación con factor de correlación menor a 0.7, conservada por su periodo de registro y/o ubicación geográfica

[•] Estación que presenta un desvío alto, conservada por su periodo de registro y/o ubicación geográfica.

E.C.E.: Estación dentro de Cuenca Alta

E.A.: Estación de apoyo

4.3.2 Relleno y reconstitución estadística de datos pluviométricos

Los registros pluviométricos frecuentemente muestran "lagunas" (periodos sin datos). Para obtener una base de uso común y no perder la información de un año debido a que se tengan algunos meses sin registro, es conveniente completar registros mensuales mediante relleno. Existen diversos procedimientos y criterios para realizar el relleno, entre los que se mencionan el uso de la media mensual histórica de la estación y el de la distancia inversa. Para el presente estudio se ha utilizado la correlación múltiple entre estaciones que en lo posible, pertenezcan al mismo grupo regional. Por consideraciones prácticas, en los casos de grupos con un número importante de estaciones, el relleno de una serie de datos de una estación cualquiera se realizará tomando en cuenta a las estaciones geográficamente más cercanas, siempre y cuando esas estaciones tengan consistencia aceptable (según el vector regional). Los criterios de relleno son los siguientes:

- El relleno se realiza entre estaciones pertenecientes al mismo grupo regional. En caso de que esto no sea posible, se deberá realizar un cuidadoso análisis para usar estaciones de otro grupo.
- Se podrá rellenar registros faltantes siempre que los mismos no superen periodos continuos de 6 meses.
- Las nuevas series rellenadas y/o ampliadas deberán seguir el comportamiento original, lo que será comprobado mediante la teoría de decisiones y/o el Vector Regional, donde el comportamiento de los vectores de la serie rellenada deberá seguir el de la serie original.

Para una mejor aplicación del método se vio por conveniente dividir al año en tres estaciones, de acuerdo al comportamiento de la región de estudio:

Época húmeda: Noviembre, Diciembre, Enero, Febrero, Marzo
Época seca: Mayo, Junio, Julio, Agosto

Época seca: Mayo, Junio, Julio, Agosto
Época de transición: Abril, Septiembre, Octubre

Varios programas estadísticos incluyen a la regresión múltiple entre sus herramientas y tienen además diversos parámetros que permiten evaluar la bondad de ajuste, como el coeficiente de regresión (r2), de regresión corregida (r2 Correg.), error típico de la estimación y el estadístico F que indica si existe relación lineal significativa entre la variable dependiente y el conjunto de variables independientes. El valor 0.00 indica un máximo nivel significativo de una serie de datos (de una estación) en la regresión. Para el presente estudio se utilizó el módulo de regresión múltiple del programa SPSS-Statistical Product and Service Solutions versión 11.5.1. Por criterio y experiencia, se aplicó la regresión linear con imposición en el origen, es decir que la ecuación no tiene término independiente:

$$Y = \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + \dots + \beta_n \cdot X_n$$

La tabla 4.3 presenta valores medios mensuales y anuales de precipitación para el periodo 1970-2000 en 127 estaciones. Estos valores fueron obtenidos en base a las series corregidas,

rellenadas y validadas según los pasos anteriores. Las estaciones de la tabla 4.3 son por tanto importantes por su comportamiento homogéneo y longitud de registro y servirán de base para cálculos posteriores.

Tabla 4.3: Precipitación media mensual y anual (mm) en la Cuenca del río Pilcomayo

	ESTACIONES					•								
$\overline{}$	ESTACIONES Aitoro	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	ANUAL
	Ajtara	130.0	83.6	76.5	22.3	1.5	1.0	0.5	5.6	10.1	23.0	41.7	86.9	1
	Ampa Ampa	74.7	58.8	43.0	17.8	4.2	1.1		3.5	7.9	18.2	26.1	1	1
	Arenales	74.8	57.8	44.1	6.4	0.0	0.0	0.4	2.0	3.8	11.3	26.7	59.8	1
	Atocha	81.0	55.4	31.2	5.1	0.1	0.4	0.1	1.8	3.3	5.6	21.1	8	1
	Calcha	80.9	55.4	51.2	7.0	0.2	0.6	0.3	3.2	4.6	15.2	27.1		
	Chagua	78.2	63.1	319	11.3	0.0	0.0	0.0	1.8	1.3	9.4	29.3	8	1
	Challviri	100.9	86.0	83.8	26.1	4.8	4.0	0.7	5.4	9.7	44.2	49.9	8	
	Chaqui	123.8	77.9	71.9	26.9	0.8	1.1	0.5	5.5	11.6	37.4	54.9	81.6	-
	Chaquilla	84.2	59.6	41.3	5.5	1.2	0.7	0.2	2.7	4.6	6.4	22.9		1
	Chaquilla Represa	96.9	77.3	62.4	29.7	1.0	12.1	6.4	4.9	6.0	29.9	54.4	57.3	
	Charaja Chias Chias	78.8	50.0	35.9	4.7	0.3	0.0	0.0	0.4	2.2	13.7	21.8		
	Chico Chico	173.2	111.6	107.0	36.2	3.7	3.0	0.0	6.8	18.5	58.9	60.2	144.7	1
	Chinoli Colavi	102.2	71.4	62.9	16.7	2.9	2.0	0.8	6.2	8.9	30.5	39.5		
	Cotagaita	135.6	108.5	96.0	30.2	2.4	2.3	1.3	10.6	17.1	34.6	63.5		619.5
	Chinoli	63.2	67.3	34.0	9.6	0.9	0.3	0.0	0.6	0.5	1.6	19.3	73.4	
	Colavi	102.2	71.4	62.9	16.7	2.9	2.0	0.8	6.2 10.6	8.9	30.5	39.5		1
	Cotagaita	135.6	108.5	96.0	30.2	2.4	2.3	1.3		17.1	3	63.5		
	Cucho Ingenio	63.2	67.3	34.0	9.6	0.9	0.3	0.0	0.6	0.5	1.6	19.3	3	
	Escara	113.2	71.8	50.1	20.9	0.9	2.1	1.2	2.8	2.4	9.6	27.5		
	Killpani	84.9 97.5	43.0 91.1	52.5 21.2	6.4 5.6	0.1 0.4	0.2 0.6	0.1 0.1	2.6 0.7	3.6 4.7	8.2 1.4	22.6 24.1	52.6 43.0	
	Lago Toro	109.3	78.9	42.4	5.6 14.4	0.4 2.1	0.6 1.4	0.1		4.7 5.9	1.4 2.9	24.1 15.1	8	1
<u>-</u>	Landara		76.9 70.7	26.2	5.7	3.0	0.3	0.0	2.5 1.2	1.8	8	15.0		1
So	Maragua	99.0 146.1	70.7 101.1	83.2	31.0	4.0	3.8	1.0	7.4	13.9	1.7 34.0	47.0	3	
Potosí	Mochara	84.7	55.6	43.2	8.3	0.2	0.6	0.6	0.7	3.4	34.0 18.1	25.1		
10	Mojo	76.0	50.6	44.0	6.8	1.0	0.5	0.0	1.0	3.4	13.0	25.7	55.5	
g	Mosoj Llajta	113.1	61.4	50.8	5.6	0.0	0.0	0.0	2.0	4.8	9.0	15.3	8	1
2	Oploca	96.5	69.1	38.1	6.4	0.5	1.6	0.0	0.7	2.5	9.0 8.4	21.7	58.5	1
i i	Palca Higueras	84.3	55.1	56.1	7.5	1.1	0.2	0.2	3.0	5.2	13.4	31.8	8	1
ΙĔΙ	Potosi Aasana	83.8	54.6	50.1	18.0	2.6	1.6	1.3	3.0 4.6	11.2	20.5	34.4	60.5	
Departamento	Potosi Senamhi	95.4	68.3	63.9	18.8	0.8	1.2	0.4	4.7	9.5	25.3	35.1		
ba	Puna (Villa Talavera)	103.0	73.9	75.3	27.1	0.7	1.7	0.3	5.4	12.7	29.8	38.1	1	1
9	Ramadas	90.5	58.8	53.3	7.6	0.0	0.1	0.0	1.2	1.7	6.3	29.0	8	1
-	Ravelo	197.6	154.5	118.0	32.3	3.8	2.7	1.5	10.4	24.6	56.8	71.6	133.2	
	Salinas de Yocalla	107.4	70.5	47.7	12.4	2.7	0.3	0.8	5.5	8.1	12.5	20.8	78.1	
	Salto Leon	71.3	59.3	37.2	4.7	1.7	0.5	0.5	3.1		7.1	21.8	40.6	
	Samasa	86.5	69.2	51.6	21.4	0.7	1.6	0.3	4.4	7.2	22.9	34.0		
	San Antonio Esmoruco	91.6	76.8	55.5	12.6	0.1	0.4	0.2	1.3	2.5	1.6	12.5	1	1
	San Jose Pampa Grande		63.2	44.0	6.5	0.0	0.7	0.0	0.3	2.2	8.3	19.3	1	
	Santa Lucia	96.0	58.1	57.5	18.6	1.3	3.0	0.7	3.5	8.0	20.8	32.3	67.7	367.5
	Tacobamba	130.0	104.1	92.2	23.4	1.6	1.0	1.1	7.6	15.7	44.2	56.4	97.2	
	Talacocha	94.4	86.1	82.2	29.4	1.4	4.2	2.0	6.5	15.1	42.8	50.3	81.1	495.5
	Talina	90.8	57.9	50.4	16.0	0.0	0.1	0.0	2.2	5.3	7.1	24.0	79.9	333.7
	Tarapaya	87.9	64.2	54.8	14.8	1.1	0.6	0.2	4.9	10.5	27.6	33.6	62.6	362.6
	Thola Palca	93.3	66.5	44.3	15.8	1.3	1.2	5.4	8.5	15.9	13.1	24.3	63.2	352.7
	Tica Tica	82.1	60.3	32.0	8.2	1.5	1.9	1.0	2.8	1.9	11.7	19.5	35.9	258.8
	Tinquipaya	124.1	103.3	76.8	29.5	3.7	1.6	1.1	11.6	12.6	37.6	52.4	96.9	550.9
	Tomave	88.2	63.9	48.4	6.6	0.9	3.2	0.0	1.9	5.2	5.5	23.2	1	
	Tumusla	85.7	65.1	46.1	11.4	0.1	0.2	0.2	2.3	4.5	12.4	27.8		
	Tupiza	94.1	60.7	38.2	7.1	0.7	0.4	0.1				23.3		
	Turuchipa	90.5	74.7	65.9	25.1	5.6	2.8	3.2				49.8	86.1	
	Villazón	102.5	59.5	53.4	11.3	1.0	0.4	0.1				26.5		
	Vitichi	91.5	87.5	53.4	13.6	2.6	0.5	0.4				32.4		
	Yocalla	105.4	76.5	58.7	19.1	1.2	1.1			7.6		29.4		
	Yura	52.2	63.9	50.3	3.5	0.0	0.0	0.1	3.6	5.4	12.2	16.6		
ای	Arpaja Alta	111.6	81.8	74.7	17.0	1.4	1.2	1.1				47.7	85.5	
မြို့မြ	Cachimayu	114.8	83.4	86.1		2.2	1.6					50.0		1
<u>iš</u>	Camargo	70.5	55.0	44.4	4.6	1.9	1.8	0.5		3.5	8	29.2	3	
ə	Chilcar	40.7	37.6	25.8	5.9	1.7	1.6	1.1		4.6	B .	20.3	8	1
Chuquisaca	Culpina	62.3	58.3	46.1	13.5	3.5	1.0	0.4	2.4	6.1	14.7	28.9		
0	El Palmar	273.1	255.5	224.7	139.6	31.2	16.7	7.4	16.7	17.0		111.2	212.7	1294.9
Depto.	lcla La Maradana	91.4	68.4	52.4	14.5	1.4	0.7	1.1		9	R	38.0	2	
[호	La Mendoza	85.8	55.8	61.8	15.0	2.8	0.7	2.0				48.0		
اۃا	La Torre	76.9	65.7	57.2	12.9			1.0						
	Las Carrera	58.9	53.1	42.4	10.8	1.5	1.0	0.2	1.2	5.6	19.3	23.6	44.7	262.1

	ESTACIONES	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC	anual
	Machareti	139.2	147.1	130.9	72.1	25.9	7.3	8.3	2.9	9.9	36.6	81.3	142.4	803.9
	Muyuquiri	106.3	82.0	64.0	13.4	1.4	0.8	1.2	4.2	7.0	25.9	42.1	85.9	434.2
	Nacamiri	176.8	197.1	161.8	88.0	26.0	8.6	9.0	10.3	13.6	36.1	106.1	160.0	993.4
	Ñujchu	126.7	97.9	87.0	16.3	3.4	1.1	1.2	10.5	19.3	34.5	51.4	92.9	542.2
	Palca Grande	66.0	52.8	51.1	19.0	2.8	1.0	0.3	1.1	5.6	25.4	44.6	65.1	334.8
	Pirhuani	183.6	177.2	171.6	74.3	15.5	4.2	5.7	9.0	23.6	79.7	131.8	181.1	1057.2
<u>س</u>	Puente Sucre	123.3	95.7	89.5	23.0	2.9	1.1	0.7	7.5	21.2	36.3	46.4	96.1	543.6
ac	Quila Quila	140.6	108.1	107.2	26.2	5.4	1.9	2.9	8.9	19.0	47.1	55.9	95.5	618.6
lis	Rosario del Ingre	190.2	176.7	162.5	77.8	39.1	16.4	10.2	6.9	22.6	62.1	102.6	164.9	1032.0
Chuquisaca	San Lucas	107.0	91.5	86.5	19.9	1.9	1.3	1.4	4.7	14.1	36.9	53.8	87.8	506.7
٦ ا	San Pedro	73.4	59.3	52.6	9.2	1.0	1.3	1.7	1.8	4.9	18.1	29.9	58.8	311.9
o.	San Roque	62.4	59.0	54.3	7.8	1.6	0.4	0.3	2.4 10.7	5.5	14.5	30.7	55.4	294.1
Depto.	Sucre Aasana Sucre Senamhi	149.8 143.9	111.6	111.4 111.1	30.5 30.3	4.1	1.6 1.6	3.1 3.1	10.7	30.6	58.5 58.1	69.4 69.7	106.4 107.6	687.6 678.5
۵	Talula / Taco Taco	144.3	107.7 103.1	100.3	27.8	4.1 4.5	0.9	1.8	9.1	30.6 24.5	43.1	50.5	89.9	599.8
	Tarabuco	143.1	97.7	81.9	28.0	4.3	2.7	1.6	9.1	20.9	40.2	55.4	101.6	586.2
	Tullma	152.2	124.9	92.7	32.7	6.8	4.6	4.2	10.0	18.2	44.0	58.3	101.0	656.7
	Villa Abecia	70.2	56.0	40.4	5.3	2.1	0.7	0.5	1.0	2.0	11.3	23.2	50.2	262.8
	Viña Quemada	93.5	75.7	76.0	22.2	1.6	1.5	1.1	4.6	16.9	33.2	41.8	84.2	452.4
	Yamparez	120.3	100.2	76.4	17.9	3.7	1.4	1.6	8.4	21.4	38.5	43.7	78.2	511.6
	Yotala	114.9	86.2	91.4	19.4	3.0	2.1	1.9	7.3	20.3	43.8	48.8	90.9	530.1
	Cruce Ventilla	132.4	98.1	89.7	25.0	2.6	2.2	0.8	7.9	10.6	27.2	47.4	81.4	525.2
	Aguayarcito	154.1	137.1	143.4	68.3	27.3	1.8	1.7	2.1	13.7	32.0	79.9	122.3	783.7
	Aguayrenda	221.4	196.0	196.4	120.4	41.3	8.4	5.8	4.4	16.5	41.6	104.5	155.1	1111.8
	Algarrobillas	148.7	117.8	128.4	64.3	20.2	5.5	2.7	2.7	8.3	32.9	83.3	127.4	742.3
	Alto de Cajas	89.1	86.0	75.2	42.6	5.6	4.6	2.8	3.6	4.0	17.9	57.7	93.0	482.0
	Bagual	133.5	122.0	123.1	33.0	30.6	2.5	0.7	5.4	15.5	45.1	113.3	191.3	815.9
	Barro Blanco	160.9	113.9	112.8	26.8	28.7	2.2	1.4	1.9	32.5	48.0	131.4	158.6	819.0
	Berety	138.0	124.2	130.5	52.6	11.0	6.7	3.7	5.2	6.7	35.6	90.9	111.9	717.0
	Caigua	189.6	176.2	155.4	114.4	35.0	11.4	5.3	7.2	13.2	41.7	118.8	172.6	1040.8
	Campanario	82.9	79.4	45.4	17.4	1.0	1.3	0.4	2.0	6.2	13.1	33.3	67.5	350.0
	Canto De Monte	134.8	114.0	75.9	29.4	20.7	2.2	1.0	1.5	17.8	35.0	108.9	120.4	661.7
	Crevaux	116.1	102.3	86.8	21.8	14.9	0.1	0.0	2.2	8.2	23.0	81.3	118.9	575.7
	El Huayco	214.2	215.2	195.6	95.6	15.6	10.7	9.5	8.1	8.7	55.3	141.4	179.0	1148.9
	El Molino	141.3	129.5	79.3	22.5	2.4	1.3	1.4	7.9	4.6	18.5	52.5	118.9	579.9
<u>س</u>	El Puente	74.0	61.0	43.6	10.3	0.6	0.8	0.2	2.0	3.9	21.3	34.7	55.5	307.8
Tarija	El Veinticuatro Esmeralda	139.4 108.3	146.4 84.6	86.5 117.7	31.6 47.0	16.0 15.6	2.7 15.4	1.2 3.2	0.4 6.6	13.9 2.7	48.3 18.4	71.8 77.9	117.5 90.6	675.6 588.1
Įμ	Ibibobo	89.5	105.8	78.8	15.3	10.4	3.8	1.6	4.2	10.1	22.1	57.1	93.6	492.3
de	La Vertiente	148.8	133.2	119.7	65.6	21.8	7.6	3.7	6.6	9.8	35.6	96.5	131.3	780.1
달	Leon Cancha	110.8	72.2	61.7	13.1	3.2	2.7	0.6	1.0	2.9	17.5	36.4	87.5	409.4
Je.	Palermo	101.2	69.5	50.5	24.5	25.0	5.5	0.3	0.8	4.6	8.3	57.4	43.3	390.8
partamento	Palmar Chico	219.8	181.2	195.8	88.7	25.3	7.7	3.7	4.1	12.8	34.1	116.0	168.4	1057.7
ar	Palmar Grande	146.5	127.4	135.7	63.6	18.6	3.5	2.1	6.0	6.2	23.0	94.5	133.8	760.8
Dep	Palo Marcado	85.5	94.9	77.0	33.0	19.3	2.9	0.1	2.7	10.8	22.8	58.7	78.3	485.9
1"	Palos Blancos	154.7	115.9	119.5	42.7	9.0	3.1	1.0	3.1	10.4	33.8	74.1	121.1	688.4
	Puesto Margarita	104.6	78.7	66.8	21.4	6.1	5.2	2.2	1.8	11.5	34.2	49.7	82.4	464.5
	Sachapera	208.7	165.5	184.8	86.4	20.7	6.9	2.7	4.6	16.5	32.8	109.9	154.1	993.7
	Saladito Norte	185.2	146.7	141.9	73.5	16.8	6.5	4.3	7.4	10.3	27.0	83.3	128.1	831.0
	Sama Iscaya	103.5	79.7	60.7	10.7	1.0	0.0	0.6	2.9	4.2	17.2	39.0	85.2	404.7
	San Anton Iscayachi	80.2	74.3	52.8	10.3	1.6	0.3	0.5	4.7	5.9	14.1	33.4	63.6	341.4
	San Bernardo	122.2	85.2	112.7	36.5	19.9	6.1	8.7	10.4	4.3	19.3	59.7	73.8	558.8
	San Josesito	184.2	170.7	151.5	79.4	12.5	7.7	7.7	6.9	9.5	33.2	100.7	131.1	894.9
	Tiguipa	190.1	196.9	108.2	56.5	39.0	7.2	2.6	2.0	16.0	44.3	108.7	192.1	963.6
	Timboy	117.4	118.7	102.8	52.9	7.8	4.0	0.3	3.7	4.2	38.4	79.1	112.7	641.8
	Tojo	79.7	62.3	45.3	9.7	1.0	0.4	0.2	1.4	3.1	17.4	32.7	58.4	311.6
	Tuscal	101.5	114.8	79.0	24.1	20.9	1.6	0.6	2.5	10.4	31.5	72.9	124.3	584.0
	VillaMontes Aasana	169.0	140.2	131.9	88.5	22.8	8.0	3.5	9.4	10.0	31.4	77.3	129.1	821.2
6	VillaMontes Senamhi	168.7	136.6	153.5	77.6	27.1	10.0	6.0	6.2	10.0	34.8	96.6	154.9	881.9
ARG	La Quiaca	77.9	61.4	39.2	9.8	0.8	0.0	0.0	0.0	6.6	9.9	24.0	64.9	294.4
	Yavi	45.5	48.1	43.9	8.1	0.0	0.8	0.0	0.2	1.5	8.1	19.0	40.9	215.9

La figura 4.6 muestra el mapa de isoyetas anuales 1970-2000 para toda la Cuenca Alta del río Pilcomayo y regiones adyacentes. Este mapa fue elaborado en base a los valores medios anuales de las estaciones de la tabla 4.4 y de estaciones de apoyo situadas fuera de la cuenca. Fue trabajado en ArcView con ajuste manual, tomando en cuenta la orografía y comportamiento regional. Se observa que la precipitación supera los 1200 mm/año en la zona alrededor de El Palmar, ubicada en el tramo del Pilcomayo entre Viña Quemada y Villamontes en el departamento de Chuquisaca. Otro núcleo de precipitación se presenta en el extremo sur y lado este de la serranía del Aguaragüe, en la zona próxima a Yacuiba (estación situada fuera de la cuenca alta). Se observa también valores por encima de los 1000 mm/año en las subcuencas de algunos afluentes (Ingre, Ñacamiri) de la margen norte del Pilcomayo. Por contraste, en la margen sur del Pilcomayo y cerca de de Puesto Margarita, la precipitación se reduce hasta un mínimo de 500 mm/año.

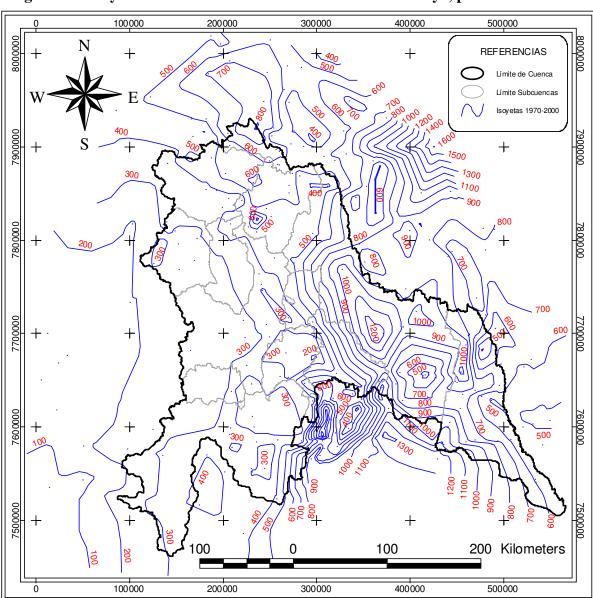


Figura 4.6: Isoyetas anuales en la Cuenca Alta del río Pilcomayo, periodo 1970-2000

Los valores mínimos se presentan en el extremo suroeste de la cuenca, en las cabeceras de la cuenca del río San Juan en Argentina, donde la precipitación apenas supera los 200 mm/año. Existe también un mínimo local en El Chilcar, cerca de Camargo. Gran parte del sector oeste de la cuenca, que pertenece al departamento de Potosí y las cuencas de los ríos Tumusla, Cotagaita y San Juan, presenta una precipitación por debajo de 300 mm/año. En la llanura chaqueña se observa que la precipitación disminuye al alejarse de la serranía del Aguaragüe y adentrarse en la llanura chaqueña en dirección al este, lo que hace suponer que esa serranía juega un rol orográfico.

4.4 EVALUACIÓN ESPACIAL DE LA PRECIPITACIÓN

Para las etapas posteriores del estudio y en particular, para la modelación, se requiere estimar la precipitación por subcuencas, en forma de series mensuales para todo el periodo de análisis. Para evaluar la precipitación espacial sobre una superficie definida existen varios métodos, empezando con el más simple, que es la media aritmética de los valores registrados en las estaciones en la subcuenca. Cada método tiene limitaciones, especialmente en zonas montañosas, donde puede existir una gran variación espacial de la precipitación frente a una densidad insuficiente de la red pluviométrica.

Por consideraciones prácticas se usó el módulo Spatial de Hydraccess para el cálculo de valores medios sobre una cuenca. Este módulo incorpora los métodos de media aritmética, polígonos de Thiessen, inverso de la distancia y recientemente, el de Kriging. Este módulo accede directamente a la base de datos y tiene una gran flexibilidad de cálculo. Por ejemplo, para el método de Thiessen calcula los coeficientes de peso de una manera dinámica, creando diversas combinaciones según la disponibilidad simultánea de datos en las estaciones próximas, para todo el periodo de análisis. Así, cuando un usuario modifica las coordenadas de alguna estación en Hydraccess se puede actualizar rápidamente la lluvia media sobre la cuenca. La figura 4.7 muestra una ventana del módulo Spatial, con los resultados obtenidos para una cuenca mediante los métodos de polígonos de Thiessen y de inverso de la distancia.

El módulo Spatial tiene la posibilidad (entre otras) de importar un archivo ArcView (shapefile) que represente los límites de la subcuenca y para el cálculo espacial de la precipitación, combinarlo con las coordenadas geográficas de las estaciones que se encuentran en la base de datos. Existe también la posibilidad de seleccionar de esa base las estaciones que se van a utilizar.

Considerando que la densidad relativa de la red pluviométrica de la cuenca es relativamente buena y que no se observa una variación espacial de la magnitud que se registra en los Yungas de La Paz y Cochabamba, se optó por el método de Thiessen para el cálculo de la precipitación en las subcuencas. La tabla 4.4 y la figura 4.8 muestran la precipitación media mensual y anual para las subcuencas e intercuencas definidas previamente. Las series completas fueron incorporadas a la base de datos Hydraccess y utilizadas en las siguientes etapas del estudio.

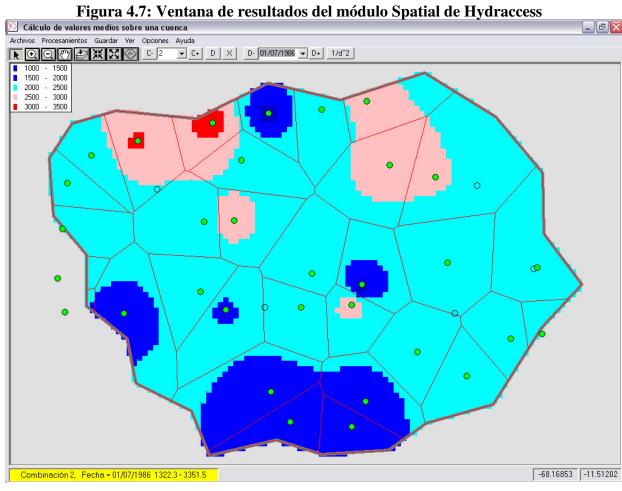


Tabla 4.4: Precipitación media mensual y anual por subcuenca

	Sub Quenca											11017		
N₽	(Est. Hidrométri.)	BE	FEB	MAR	ABR	MAY	JUN	JL	AGO	SEP	©T	NOV	DIC	ANUAL
1	Nujchu	154.9	116.6	95.0	266	3.5	26	1.9	8.4	21.9	44.0	56.6	105.3	637.4
2	Taula	112.8	83.9	67.3	20.4	1.9	1.6	1.1	6.2	11.0	24.7	37.3	79.3	447.5
3	Viña Quemeda	110.5	83.5	75.0	220	26	1.8	0.9	6.5	14.6	32.5	44.3	85.1	479.4
4	Muyuquiri	100.0	81.3	62.5	14.0	1.1	0.6	1.6	3.9	6.3	25.0	37.5	81.0	409.9
5	San Pedro	102.4	79.2	70.9	14.6	23	1.4	1.1	3.4	8.3	27.0	43.5	84.2	438.3
6	Satto Leon	80.0	59.0	37.8	5.8	0.8	1.6	0.4	24	4.5	7.0	18.0	45.7	2628
7	Turusla	91.9	66.7	48.1	128	1.6	1.1	0.4	29	5.7	15.5	29.2	62.7	338.4
8	Palca Grande	84.5	60.7	45.2	9.0	0.9	1.0	0.2	1.9	3.9	10.6	23.8	61.6	303.4
9	☐ Mdino	113.7	97.6	74.2	163	1.9	0.5	0.6	3.2	8.2	21.3	44.5	90.2	4722
10	Tupiza	90.6	59.9	36.3	62	0.4	1.0	0.1	1.0	3.1	6.9	21.7	59.7	286.9
11	La Angostura	89.9	59.8	36.6	63	0.4	1.0	0.1	1.1	3.2	7.1	223	59.4	287.3
12	■ Puente	928	68.7	43.5	7.4	1.0	0.5	0.2	1.2	3.0	8.8	22.5	66.5	316.0
13	Chillcara	69.8	60.0	45.1	83	1.6	0.7	0.5	1.6	4.9	15.0	27.1	54.9	289.6
14	San Josecito	107.8	88.5	77.1	25.3	5.5	25	1.4	2.6	7.3	22.9	48.0	84.5	473.5
15	Villa/Vontes	146.5	131.9	119.0	59.3	16.3	6.4	4.3	6.1	15.4	40.3	81.5	123.2	750.2
16	Msión La Paz	143.5	128.6	136.0	720	21.8	8.2	3.7	4.4	9.7	31.6	81.5	130.6	771.5
	OMIXAM	154.9	131.9	136.0	720	21.8	8.2	4.3	8.4	21.9	44.0	81.5	130.6	771.5
	MNMO	69.8	59.0	36.3	58	0.4	0.5	0.1	1.0	3.0	6.9	18.0	45.7	2628

(Fuente: Elaboración propia en base a datos reconstituidos 1970-2000)

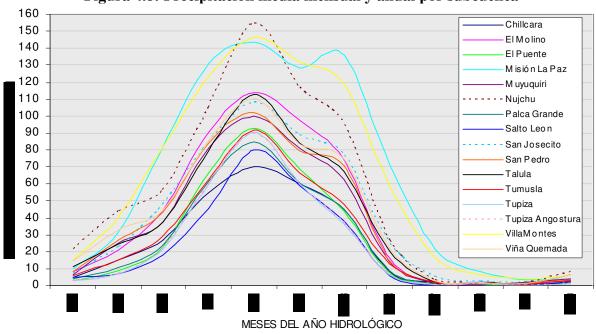


Figura 4.8: Precipitación media mensual y anual por subcuenca

(Fuente: Elaboración propia en base a datos reconstituidos 1970-2000)

Capítulo 5

EVAPOTRANSPIRACIÓN

La evaporación es el proceso físico por el cual el agua en estado líquido se transforma a su estado gaseoso (vapor de agua), lo que requiere aporte externo de energía. La evapotranspiración (ET) es la cantidad de agua que se transfiere de la superficie terrestre (suelo y cuerpos de agua) a la atmósfera. Se compone de evaporación del agua líquida o sólida y de transpiración de las plantas. La evapotranspiración potencial (ETP) es la cantidad de agua que, si estuviera disponible, sería evapotranspirada desde una superficie definida. El proceso y variables necesarias para estimar este parámetro a nivel puntual y espacial serán descritos en el desarrollo del presente capítulo. La evapotranspiración real (ETR) es la cantidad de agua que realmente pasa a la atmósfera por el proceso de evapotranspiración. Su valor máximo sería la evapotranspiración potencial. La ETR es uno de los tres componentes del balance hídrico y será evaluada en los capítulos siguientes.

5.1 MÉTODOS DE ESTIMACIÓN DE LA EVAPOTRANSPIRACIÓN POTENCIAL

5.1.1 Evaporación en tanque

La evaporación medida en tanque evaporimétrico concentra la mayor parte de variables que intervienen en el fenómeno físico de evapotranspiración y aparenta ser una estimación confiable para la determinación de la evapotranspiración potencial. Sin embargo, los efectos del instrumento de medición obligan a usar un coeficiente de ajuste (cuyo valor es generalmente menor a 1) para cada tanque en particular y un coeficiente para cada tipo de cultivo o vegetación (UNESCO-ROSTLAC, 1982). Además, el número de estaciones de la red meteorológica de SENAMHI que cuenta con mediciones en tanque (tipo A) es muy pequeño y es aún menor el de estaciones que disponen de lisímetro, método que proporciona datos más precisos.

La tabla 5.1 muestra los valores de evaporación media mensual y anual medida en tanque evaporímétrico para las estaciones meteorológicas que cuentan con registros para un periodo considerable y la tabla 5.2 los valores anuales para estaciones de apoyo con registros cortos. Los valores extremos de algunas estaciones, como Crevaux y Palmar Grande, probablemente se deben a problemas de medición o transcripción y deben ser usados con cuidado. Los datos de la tabla 5.1 servirán para comparar y validar los otros métodos.

Tabla 5.1: Evaporación media en tanque, a nivel mensual y anual (mm) Cuenca Alta del Río Pilcomavo

	ES	TACION	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	ANUAL
	13	Chinoli	123	109	122	127	132	126	140	156	160	179	157	145	1675
Σĺ	28	Potosi Senamhi	92	83	104	117	124	123	129	129	141	142	139	133	1455
POTOSÍ	29	Puna (Villa Talavera)	114	104	116	108	111	105	113	132	135	154	142	129	1464
1 S	41	Tarapaya	144	119	133	136	138	111	111	132	172	178	167	175	1716
	47	Tupiza	146	133	142	144	125	111	124	146	179	206	209	179	1844
Ϋ́	57	Chilcara	313	284	295	263	208	162	179	235	273	313	329	281	2658
₩	58	Culpina	167	148	149	162	168	157	163	180	201	213	201	191	2099
I≅	76	San Roque	146	134	137	114	98	87	89	105	124	152	141	152	1477
снидиіѕас	78	Sucre Senamhi	144	126	138	131	139	130	142	159	173	181	172	161	1797
I₹	79	Talula / Taco	170	147	150	150	153	146	162	186	199	218	205	194	2082
Ö	84	Yotala (Villa Carmen)	169	136	142	126	119	106	117	146	167	186	184	183	1781
	97	Crevaux	265	241	282	252	264	180	161	210	289	276	317	300	3037
←	104	La Vertiente	65	64	93	54	45	40	57	68	51	58	71	78	742
ARIJA	108	Palmar Grande	65	63	73	51	40	27	39	50	57	70	68	73	677
₹	111	Puesto Margarita	192	163	148	105	104	96	124	171	177	231	196	173	1880
-	115	San Antonio (Iscay)	131	106	124	139	147	141	148	153	153	158	141	137	1676
	122	VillaMontes Senamhi	155	135	133	105	83	75	100	128	161	203	190	160	1627

(Fuente: Elaboración propia en base a datos de SENAMHI)

Tabla 5.2: Evaporación media anual en tanque[mm]

	ES	TACION	ANUAL		ES	TACION	ANUAL
Ь	141	Uyuni	1722		196	Canasmoro	1577
	303	Alcantari	2124		198	Cañas	1178
снидиіѕ	144	Azurduy	1550	Υ	204	Chocloca	1302
g	150	El Salvador	1445	ARIJ	206	Entre Rios	1536
동	156	Monteagudo	1225	1/	227	San Andres	1340
	172	Zudañez	1426		228	San Jacinto	1854
0	191	Pazña	1896		233	Tarija Senamhi	1576

(Fuente: Elaboración propia en base a datos de SENAMHI)

5.1.2 Métodos indirectos

Cuando no se poseen mediciones directas de la evaporación se recurre a métodos indirectos, generalmente fórmulas empíricas basadas en la ley de Dalton o en los factores meteorológicos que intervienen en el proceso, como temperatura del aire, humedad, radiación solar, horas del sol, velocidad del viento, presión atmosférica y otros. Estos métodos difieren en sus requerimientos de información y los principios físicos en que se basan.

Algunas de los métodos más difundidos para estimar la ETP son: Turc, Thornthwaite-Mather (1944), Blaney-Criddle, Gras y Christiansen (desarrollado para superficies regadas), Penman (1965) y Avellán. La elección de un método es muy sensible respecto a la disponibilidad de información.

Las fórmulas de Turc, Thornthwaite-Mather y Blaney-Criddle se basan en la temperatura para el cálculo de la ETP, lo cual es al mismo tiempo, una ventaja y una debilidad. La fórmula de Thornthwaite y Mather se utilizó para el Balance Hídrico de Bolivia (1992). Sin embargo, varios estudios, como el de Herbas (1987), muestran que el método subestima grandemente la

ETP en zonas montañosas tropicales. Algunos autores (Zonisig, 2001) han intentado superar ese problema aplicando un coeficiente de corrección por altitud, obtenido empíricamente en base al método de Penman, pero las limitaciones de este enfoque sugieren que solo puede usarse para una aproximación inicial.

Para el Balance Hídrico Microregional de Bolivia se definió aplicar el método de Penman, que tiene una base físico-teórica y es recomendado por la OMM. La fórmula de Penman está basada en la combinación del balance de energía y la ecuación de transporte aerodinámico. Requiere de la medición de varios parámetros climáticos, lo que limita su uso hasta cierto punto, pero se ha encontrado que proporciona resultados consistentes y confiables para las diversas regiones del país.

Las principales suposiciones del método son que prevalezca un flujo de energía de estado permanente y que los cambios temporales en el almacenamiento del calor en el agua no sean significativos. Estas suposiciones limitan su aplicación a intervalos de tiempo diarios o mayores y a situaciones que no involucren gran almacenamiento de calor (ej. lagos grandes). La fórmula utilizada es:

$$E = \frac{\frac{\Delta \cdot H + E_a \cdot \gamma}{\Delta + \gamma}}{\frac{\Delta + \gamma}{\gamma}} = \frac{\frac{\Delta}{\gamma} \cdot H + E_a}{\frac{\Delta}{\gamma} + 1}$$
(5.1)

Donde:

E Evaporación del periodo en mm

 Δ/γ Se determina en función a la temperatura media diaria. Este cociente adimensional es una función de la temperatura y de la altitud que se debe multiplicar por el cociente Po/Pz (Po = presión al nivel del mar y Pz = presión a la altitud del lugar).

 γ Constante psicrométrica de valor 0.65

Δ Pendiente de la curva de presión de saturación "ee", en función a la temperatura del aire, en el punto $\theta = \theta_{AIRE}$

$$\Delta = 1.3356 \cdot e_s \cdot \frac{17.27 \cdot 237.3}{(T + 237.3)^2}$$
 (5.2)

H Balance de energía diaria, calculado a partir de la siguiente fórmula:

$$H = \frac{R_o}{59} \cdot \left(0.24 + 0.58 \cdot \frac{n}{N}\right) \cdot \left(1 - \alpha\right) - \frac{\sigma \cdot \theta^4}{59} \cdot \left(0.56 - 0.0913 \cdot \sqrt{e}\right) \cdot \left(0.1 + 0.9 \cdot \frac{n}{N}\right)$$
(5.3)

Donde:

R_O: Radiación solar diaria en el límite superior de la atmósfera, en (cal/cm2-día), estimada en función de la latitud y época del año (Tabla 5.3)

n Número de horas de brillo solar, aproximado hasta la décima, obtenido de los heliógrafos

Número máximo de horas de brillo solar aproximado hasta la décima, en función de la latitud del lugar (Tabla 5.4.)

α Albedo de la superficie. Está en función al tipo de suelo, varia de 0 a 1 (tabla 5.5)

 θ : Temperatura media ambiente (aire) en (°K), $\theta = (T_{[^{\circ}C]} + 273)$

 σ : Constante de Stefan-Boltzmann, igual a $1.18*10^{-7}$ (cal / cm²-día)

e : Valor medio de la presión parcial del vapor de agua, en [mmHg], calculado con la

ecuación:
$$e = \frac{H_{RM}}{100} \cdot e_s \tag{5.4}$$

Siendo: H_{RM} Humedad relativa media en [%]

e_S Presión de vapor de saturación (en función de la temperatura media ambiente)

E_a Poder evaporante del aire en función del viento y del gradiente de la presión del vapor, (m/día), calculado a partir de la expresión:

$$E_a = 0.3473 \cdot \left(1 + 0.4 \cdot \left(\frac{10}{H_V} \right)^{\frac{1}{5.4}} \cdot V \right) \cdot \left(e_S - e \right)$$
 (5.5)

Donde:

Hv: Altura a la que se mide la velocidad del viento en (m), (se consideró 2.0 m)

V: Velocidad media del viento en (m/s)

Tabla 5.3: Radiación Solar Ro en el límite superior de la atmósfera (cal/cm²-día)

LATITUD	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC
10 S	920	920	873	802	720	684	702	767	850	897	915	920
12 S	938	920	867	791	696	661	684	755	838	897	926	932
14 S	950	926	861	773	679	637	661	738	838	903	938	944
16 S	956	932	856	755	661	614	637	720	826	903	944	956
18 S	968	932	850	743	637	590	620	702	814	903	956	974
20 S	979	932	838	720	614	566	596	684	802	897	962	985
22 S	991	932	826	702	590	543	572	661	791	897	968	991
24 S	991	932	814	684	566	519	549	643	779	897	968	1003

Fuente: UNESCO (1982)

Tabla 5.4: Medias mensuales de la duración astronómica del día N (horas)

LAT. SUD	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	OCT.	NOV.	DIC.
10	12.60	12.40	12.10	11.90	11.70	11.50	11.60	11.80	12.00	12.30	12.60	12.70
12	12.70	12.50	12.20	11.80	11.60	11.40	11.50	11.70	12.00	12.40	12.70	12.80
14	12.73	12.44	12.06	11.67	11.35	11.19	11.26	11.54	11.91	12.30	12.64	12.81
16	12.84	12.50	12.06	11.62	11.25	11.06	11.15	11.47	11.89	12.34	12.73	12.93
18	12.95	12.57	12.07	11.57	11.15	10.94	11.04	11.40	11.88	12.39	12.83	13.06
20	13.06	12.64	12.08	11.51	11.04	10.81	10.92	11.33	11.87	12.43	12.93	13.19
22	13.18	12.71	12.09	11.46	10.94	10.68	10.80	11.25	11.85	12.48	13.03	13.32
24	13.30	12.78	12.10	11.40	10.83	10.54	10.68	11.18	11.84	12.53	13.14	13.45

Fuente: UNESCO (1982)

Tabla 5.5: Albedo α en función al tipo de suelo

Tipo de suelo	α	Tipo de suelo	α	Tipo de suelo	α
Agua	0.02 - 0.06	Cereales	0.10 - 0.25	Nieve	0.40 - 0.90
Arcillas humedas	0.02 - 0.08	Cesped Verde	0.26	Pastos	0.26
Arcillas Secas	0.16	Cesped seco	0.19	Pastos y cultivos	0.22
Arenas Claras	0.35 - 0.40	Cultivos	0.18	Rocas	0.13 - 0.15
Arenas Obscuras	0.35	Hielo	0.36 - 0.50	Tierras inundables	0.35
Bosques de pinos	0.10 - 0.14	Lechugas	0.22	Zonas urbanizadas	0.15 - 0.25
Bosques frondosos	0.18				

5.2 VARIABLES METEOROLÓGICAS

A continuación se describe por separado las principales variables que requiere el método de Penman.

5.2.1 Temperatura media ambiente

La temperatura es el estado calorífico o nivel térmico del calor en un cuerpo. "Mediante la temperatura se expresa numéricamente el efecto que en los cuerpos producen el calor originado por el balance entre la radiación recibida y la emitida. Interesa especialmente, la temperatura del aire en las inmediaciones de la superficie terrestre. El aire se calienta o enfría a partir del suelo por distintos métodos de transmisión y por los cambios de estado físico del agua atmosférica" (Herbas, 1987).

La temperatura varía de acuerdo a la ubicación geográfica. En la región andina y subandina, la variación diaria de temperatura tiene un ligero retraso respecto a la variación diaria de la radiación solar. La temperatura comienza a subir poco después de la salida del sol, alcanza un máximo de una a tres horas después de alcanzar el sol su cenit y baja durante la noche hasta alcanzar un mínimo hacia la salida del sol.

La tabla 5.6 muestra la temperatura media ambiente mensual y anual para el periodo de registro en las estaciones que miden este parámetro, situadas dentro de la cuenca. La columna Perfil indica el grupo regional térmico al que pertenece (perfil térmico). La tabla 5.7 muestra la temperatura media anual para las estaciones de apoyo (fuera de la cuenca) con periodo de registro aceptable.

Tabla 5.6: Temperatura media ambiente mensual v anual en (°C)

		Tabla 5.6 :	1 em	pera	tura	mea	na ar	nbie	nte n	nens	uai y	<i>a</i> nu	iai er	1 (°C	<u>) </u>		
	ES	TACION	Altura [msnm]	Pefil	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	ANUAL
	4	Atocha	3654	1	13.9	13.9	12.5	10.0	7.2	4.3	3.9	6.1	8.6	11.5	13.6	14.9	10.0
	5	Calcha	2850	-	18.5	18.2	17.8	16.9	13.3	11.3	10.9	13.4	15.8	17.9	18.4	19.0	16.0
	7	Challviri	4095	2	9.9	9.8	9.6	8.8	6.9	5.5	5.4	7.0	8.5	9.9	10.2	10.4	8.5
	8	Chaqui	3550	2	11.9	11.8	11.3	11.3	11.3	9.9	9.0	10.0	10.9	12.0	12.4	12.1	11.2
	12	Chico Chico	3480	2	12.2	12.1	11.5	11.7	10.7	8.6	8.8	9.9	10.7	12.0	12.7	12.7	11.1
	13	Chinoli	3450	2	13.3	12.9	13.0	12.3	10.6	9.0	8.9	10.2	11.8	13.1	13.7	13.7	11.9
	15	Cotagaita	2690	1	20.1	19.8	20.4	18.3	13.6	10.5	10.2	12.4	14.6	19.5	19.3	20.3	16.6
	17	Escara	2870	1	17.3	17.1	16.5	15.4	12.6	10.6	10.4	12.7	14.3	16.0	17.1	17.3	14.8
	300	Millares	2300	2	21.5	21.0	21.6	21.3	19.6	17.2	16.2	18.6	20.2	21.5	22.0	21.8	20.2
	23	Mojo	3460	1	14.9	14.5	14.2	12.6	9.3	7.2	7.0	8.9	11.1	13.4	14.8	15.2	11.9
	24	Mosoj Llajta	2800	1	19.1	19.0	18.1	16.1	12.0	9.6	10.2	11.8	14.8	17.9	19.0	19.6	15.6
	25	Oploca	3121	1	17.6	17.2	16.8	15.0	12.3	10.2	10.2	11.9	14.4	16.7	18.0	17.7	14.9
	301	Otavi	3380	2	14.3	14.5	14.2	13.6	10.3	8.6	9.1	10.7	12.2	14.3	15.1	14.9	12.7
_	26	Palca Higueras	2550	2	21.2	21.1	21.1	19.4	17.0	14.5	15.0	16.7	18.7	20.5	21.7	21.6	19.0
S (27	Potosi Aasana	4100	2	9.1	9.0	8.7	7.8	6.1	4.6	4.2	5.8	7.1	8.6	9.1	9.5	7.5
Τ 0	28	Potosi Senamhi	3860	2	10.7	10.5	10.6	9.7	7.8	6.1	5.7	7.1	8.4	10.3	11.0	11.0	9.0
0	29	Puna (Villa Talavera)	3290	2	14.0	13.7	13.4	12.6	10.8	9.2	8.8	10.2	11.9	13.4	14.0	14.1	12.1
Д	31	Ravelo	3200	2	14.3	13.9	13.6	12.6	11.1	9.5	9.5	10.8	12.3	13.9	14.2	14.2	12.5
	33	Salto Leon	3200	2	16.8	17.8	16.6	14.8	11.7	9.0	9.7	8.7	12.0	13.9	15.7	17.0	13.6
	34	Samasa	3650	-	13.2	12.8	12.7	12.7	11.4	10.1	9.8	11.0	12.3	13.7	13.9	14.1	12.3
	36	San Jose Pampa G	3000	1	17.4	17.3	17.3	15.9	13.2	11.5	11.9	13.5	15.0	17.2	18.6	18.9	15.6
	41	Tarapaya	3340	2	14.9	14.5	13.8	12.3	10.1	7.8	7.9	9.7	11.4	13.9	15.0	15.7	12.2
	44	Tinquipaya	3200	2	15.2	15.3	15.2	14.7	12.9	10.2	10.0	12.0	13.8	15.2	15.8	15.7	13.8
	45	Tomave	3920	2	13.0	11.0	10.0	10.5	7.5	6.6	5.7	7.5	6.9	9.9	10.2	11.4	9.2
	46	Tumusla	2580	2	21.1	20.8	19.8	19.1	15.2	12.6	12.2	14.8	17.4	20.0	21.0	21.3	18.0
	47	Tupiza	2952	1	17.5	17.4	17.1	15.0	11.4	8.5	8.5	11.3	14.2	16.6	17.8	18.0	14.5
	48	Turuchipa	2360	2	20.9	20.9	21.7	20.1	18.6	17.4	17.9	18.9	20.0	20.8	21.1	21.4	20.0
	49	Villazón	3443	1	15.4	15.2	14.4	12.5	8.2	4.6	4.1	7.5	10.2	13.1	15.0	15.2	11.3
	50	Vitichi	3020	2	16.1	15.9	15.4	15.0	13.3	11.6	13.4	13.6	15.2	16.5	16.5	15.4	14.8
	51	Yocalla	3420	2	14.5	14.2	14.3	13.4	11.0	9.2	9.0	10.9	12.7	14.4	15.3	15.2	12.6
	52	Yura	3375	2	16.1	15.8	15.3	13.5	10.7	8.9	8.6	10.1	11.7	14.5	16.2	16.5	13.2
	54	Arpaja Alta	3190	1	14.3	13.8	15.1	13.6	11.8	10.0	9.7	11.1	12.3	13.6	13.9	14.5	12.8
	55	Cachimayu	2400	2	18.9	27.9	18.3	18.0	15.9	13.9	13.1	15.3	16.8	18.8	19.0	19.7	18.0
	56	Camargo	2408	-	23.0	23.2	23.1	21.7	18.6	15.8	15.9	19.3	21.5	23.0	23.3	24.1	21.2
A	57	Chilcara	2242	-	21.7	21.5	21.1	20.0	17.8	15.2	15.2	16.9	18.6	21.4	21.8	21.9	19.4
ပ	58	Culpina	3150	1	14.2	13.8	13.9	13.3	11.0	9.4	8.9	10.3	11.3	13.5	14.1	14.5	12.4
A 6	62	La Torre	2420	-	21.0	20.6	20.4	19.9	17.1	14.7	14.3	16.7	18.6	20.6	21.1	21.5	18.9
UIS	64	Machareti	660	1	26.4	25.5	24.7	21.6	19.1	17.1	16.8	20.5	21.1	24.3	25.7	26.3	22.4
οn	67	Ñujchu	2398	2	21.3	20.7	19.8	19.4	16.8	14.6	14.8	17.1	18.5	19.8	21.0	21.0	18.6
O C	74	San Lucas	3000	2	17.1	17.3	17.4	16.7	14.1	12.1	12.4	13.5	14.8	16.4	16.9	17.1	15.5
I	76	San Roque	2550	2	20.5	19.8	19.8	18.0	15.0	13.2	12.5	14.7	16.8	20.1	21.3	21.6	17.8
ပ	77 70	Sucre Aasana Sucre Senamhi	2903	2	15.7	15.1	15.2	14.8	13.7	12.6	12.2 12.5	13.4	14.4	15.7	16.0	16.1 16.5	14.6
	78 70		2890	2	16.3	15.9	16.0	15.3	14.2	12.8		13.7	15.1	16.3	16.7		15.1
	79	Talula / Taco	2700	2	17.6	17.3	17.1	16.9	15.2	13.9	13.6	15.1	16.2	17.8	18.3	18.3	16.4
	80 84	Tarabuco	3284 2511	2	13.0 18.8	13.0 18.5	13.1 18.2	12.8 17.5	12.5 15.2	11.2 13.5	10.8 13.7	11.7 15.3	12.5 17.0	13.6 18.5	13.7 19.2	13.5 19.3	12.6 17.1
	87	Yotala (Villa Carmen) Aguayarcito	400	1	28.1	26.7	26.0	23.0	19.8	18.7	17.5	20.8	23.3	26.3	26.7	27.7	23.7
	97	Crevaux	302	1	27.9	25.8	25.9	23.4	20.7	18.8	17.5	20.0	22.8	25.5	27.3	27.7	23.7
	99	El Puente	2345	_	22.6	22.2	22.2	20.6	16.9	13.9	13.4	15.9	19.1	21.4	22.5	22.6	19.5
J A	104	La Vertiente	348	1	27.1	26.5	25.6	22.5	20.3	17.5	16.9	20.0	23.3	26.4	26.7	27.9	23.4
RIJ	108		467	1	26.4	26.0	25.1	22.2	19.0	17.3	16.7	18.8	21.7	25.8	26.0	26.5	22.6
AF	111		485	1	28.1	27.6	25.7	22.9	20.3	18.2	19.2	20.6	22.8	26.6	27.7	28.0	24.0
_	115	San Antonio (Iscay)	3440	1	11.7	11.9	12.0	11.4	10.5	9.6	9.3	9.8	10.3	11.8	11.9	11.9	11.1
	121	VillaMontes Aasana	500	1	26.9	25.7	25.1	22.4	19.9	16.7	16.8	19.3	21.7	25.4	26.4	27.4	22.8
	122	VillaMontes Senamhi	340	1	27.4	26.6	25.6	22.8	20.2	17.5	18.0	20.8	23.1	26.1	27.1	27.5	23.6
Fu	_	: Elaboración pro		ı bac							2.0						_3.4
ı u(J111C	. Liaboración pro	opia ci	ı vas	c a u	aios	uc 3		141111	-							

Tabla 5.7: Temperatura media anual en (°C) en estaciones de apoyo

		Tubia civi Te	Altura			1		(c) on estacion	Altura	Ĭ	
	ES	TACION	[m.s.n.m]	Pefil	ANUAL		ES	TACION	[m.s.n.m]	Pefil	ANUAL
	125	Calcha de Lipez	3670	-	7.2		193	Angostura	1680	1	18.2
	126	Colcha K	3780	-	9.6		194	Calamuchita	1680	1	17.8
	127	Colquechaca	4170	2	6.9		196	Canasmoro	2080	1	16.9
	128	Julaca	3665	-	6.4		198	Cañas	2030	1	17.0
	129	Laguna Colorada	4278	2	1.8		204	Chocloca	1800	1	18.0
_	130	Macha	3480	2	11.8		206	Entre Rios	1230	1	19.1
0 S	302	Mojo Torillo	3360	2	13.0	⋖	209	Itau	950	1	20.3
	131	Ocuri	3980	2	8.1	7	211	Juntas	1900	1	17.7
0	134	Río Mulatos	3850	-	5.5	RI	212	Los Galpones	365	1	24.9
۵	135	San Agustin	3675	-	7.4	۷	216	Padcaya	2010	1	17.1
	137	San Pedro de Buena V	2743	-	18.6	_	224	Salinas	1060	1	19.2
	138	San Pablo de Lipez	4260	2	5.5		227	San Andres	1900	1	17.7
	139	Toro Toro	2700	2	16.5		228	San Jacinto	1850	1	17.9
	140	Uncia	3600	2	9.9		232	Tarija Aasana	1855	1	17.8
	141	Uyuni	3695	2	8.5		233	Tarija Senamhi	1860	1	17.9
	303	Alcantari	3084	2	13.5		237	Yacuiba AASANA	644	1	21.0
	144	Azurduy	2600	2	14.4		238	Yesera Norte	2200	1	15.1
⋖	150	El Salvador	670	1	21.9	OR	191	Pazña	3740	2	8.5
AC	304	Escana	2630	2	17.0	۸	173	Aiquile	2250	2	19.1
S /	153	La Madonna	2840	2	15.0	CBB,	175	Mizque (Maira)	2035	-	17.8
	156	Monteagudo	1230	1	20.5	٥	177	Puente Arce	1550	-	25.5
٦٥	157	Muyupampa (Ibope	1130	1	19.7	ပ္ပ	183	Camiri (AASANA)	810	1	21.9
	159	Padilla	2102	-	17.2	S	190	San Antonio	600	1	23.8
I	165	Redencion Pampa	2460	-	16.2		-				

(Fuente: Elaboración Propia en base a datos de SENAMHI)

La información térmica existente fue utilizada tanto para el cálculo de la ETP como para la obtención del mapa de temperaturas. Para este último se obtuvo perfiles térmicos a nivel anual, es decir se estableció una relación entre la temperatura media anual y la altitud de la estación, mediante regresión. La figura 5.1 muestra esos perfiles en base a todos los datos disponibles, que permiten identificar claramente dos grupos regionales. La correlación es muy alta para las dos ecuaciones (r²=0.953 y r²=0.942, respectivamente), lo que evidencia que la altitud es el factor más significativo y que el comportamiento es consistente y homogéneo para ambos grupos.

19.7

16.9

16.1

2420

2160

2510

Villa Serrano

Zudañez

El primer grupo comprende todas las estaciones por debajo de los 2200 msnm, que incluye toda la región del Chaco. Incluye también estaciones entre 2200 y 3000 msnm situadas en el sector sur de la Cuenca Alta. La ecuación indica que el gradiente térmico es moderado (0.37 °C/100 m) y que la temperatura base (a una altitud de 0) es de 24.65 °C en toda la subregión. El segundo grupo comprende estaciones ubicadas en su mayoría en el sector noroeste de la cuenca, por encima de los 2200 msnm, así como estaciones cordilleranas del sector oeste. Este grupo presenta un fuerte gradiente térmico (0.69 °C/100 m) y una alta temperatura base (35.2 °C). La ecuación está fuertemente influenciada por un grupo de estaciones de valle, entre 2200 y 2800 msnm, que presentan temperaturas medias altas en relación a su altitud. En el otro extremo, las estaciones por encima de los 3800 msnm muestran un comportamiento más próximo a las estaciones del Altiplano Sur, situadas al Oeste.

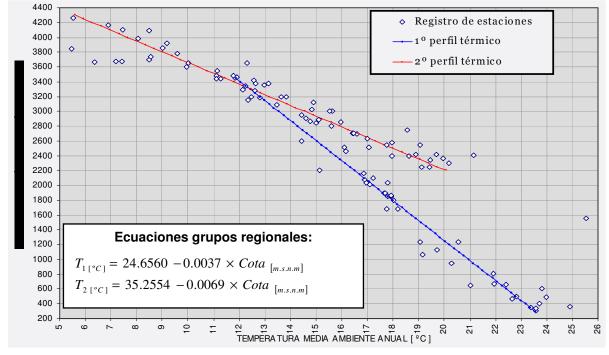


Figura 5.1: Perfiles térmicos - Cuenca Alta del río Pilcomayo

Fuente: Elaboración propia

Se combinó las dos relaciones temperatura-altitud con un modelo digital de elevaciones para obtener un mapa de temperatura en formato raster para toda la cuenca (figura 5.2). Para obtenerlo, se definió la región correspondiente a cada ecuación (por ejemplo, el perfil 2 se aplica solamente por encima de los 2200 msnm) y se aplicó las herramientas de álgebra de mapas disponibles existentes en ArcView. , en la que se identifican las temperaturas más bajas sobre la región montañosa y las más altas en la región del Chaco. El mapa resultante muestra la temperatura media anual en toda la cuenca, con mayor precisión y detalle que un mapa tradicional de isotermas.

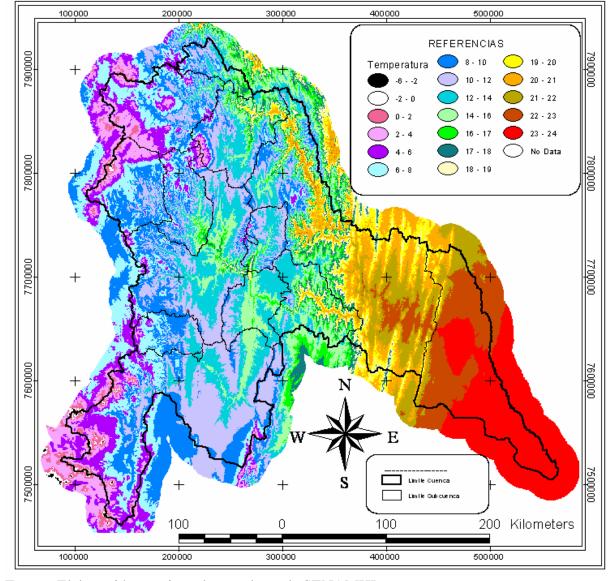


Figura 5.2: Mapa de temperatura media anual - Cuenca Alta del río Pilcomayo

Fuente: Elaboración propia en base a datos de SENAMHI

5.2.2 Humedad relativa

La atmósfera contiene cantidades variables de agua en forma de vapor. La humedad absoluta se define como el peso en gramos del agua contenida en un metro cúbico de aire. El contenido de agua en la atmósfera depende, principalmente, de la temperatura. Cuanto más caliente está una masa de aire, mayor es la cantidad de vapor de agua que puede retener. En contrapartida, a temperaturas bajas puede almacenar menos vapor de agua. Cuando una masa de aire caliente se enfría, por la causa que fuere, se desprende del vapor excedente en forma de precipitación.. Es de más interés práctico conocer cuánto vapor de agua existe expresado como porcentaje de la cantidad máxima que puede contener el aire saturado a una determinada temperatura, variable que se conoce como humedad relativa. La humedad relativa es un indicador del grado

de saturación del aire, de la magnitud de la evaporación, transpiración y de la probabilidad de lluvia convectiva. Se mide con psicrómetro ó termómetro de bulbo húmedo.

La tabla 5.8 muestra los valores de humedad relativa media mensual y anual, para estaciones meteorológicas de la cuenca incluidas en la base de datos, que cuentan con registros mensuales para un periodo considerable y la tabla 5.9, los valores medios anuales en estaciones meteorológicas de apoyo.

Tabla 5.8: Humedad relativa media mensual y anual (%), Cuenca Alta del río Pilcomayo

1 a	Dia .	5.8: numedad re	iauvo	i iiicu	na III	ciisua	пуа	iiuai	(10),	Cuci	ica A	ııa u	CI 110	1 1100	
	ES	TACION	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	MEDIA ANUAL
	5	Calcha	60.8	60.0	60.2	56.0	48.3	47.9	49.0	47.8	44.5	48.2	49.6	53.0	52.1
	8	Chaqui	58.4	56.0	53.9	40.8	25.2	22.0	23.3	27.7	34.9	40.6	43.3	48.4	39.5
	12	Chico Chico	71.6	71.1	74.6	65.8	57.4	51.9	53.8	56.1	58.5	58.5	60.2	70.8	62.5
	13	Chinoli	65.5	68.2	66.6	58.7	50.7	45.5	45.8	47.4	50.0	54.1	57.3	62.2	56.0
	17	Escara	47.0	46.6	46.8	38.3	33.5	34.6	32.6	31.6	32.0	35.8	39.4	41.4	38.3
	23	Mojo	58.8	59.6	55.9	44.5	37.0	37.8	35.8	34.8	38.4	44.2	47.5	53.3	45.6
l_	24	Mosoj Llajta	61.2	50.2	49.6	33.7	30.7	36.7	34.0	35.7	32.3	35.8	36.7	38.0	39.5
S	25	Oploca	58.4	57.7	56.4	48.5	43.1	40.3	37.8	37.1	37.8	41.0	43.9	51.3	46.1
0	26	Palca Higueras	50.8	49.2	46.7	40.6	35.2	37.8	37.1	35.1	33.9	38.7	45.3	46.6	41.4
0 Т	27	Potosi Aasana	67.1	67.5	66.6	53.6	41.6	41.7	43.0	42.0	43.1	48.0	50.8	56.8	51.8
<u> </u>	28	Potosi Senamhi	57.8	57.6	55.2	41.6	30.8	30.8	28.8	31.1	32.2	37.8	44.1	52.4	41.7
	29	Puna (Villa Talavera)	60.4	60.7	60.8	49.6	33.3	30.1	32.1	33.9	38.3	43.1	47.0	53.8	45.3
	34	Samasa	64.9	65.8	58.8	52.8	46.0	41.0	38.8	43.5	55.4	48.3	54.8	57.8	52.3
	41	Tarapaya	62.7	61.9	60.8	53.4	44.4	43.3	41.5	42.0	42.8	46.7	49.5	54.0	50.3
	45	Tomave	40.7	60.0	59.0	46.5	55.0	47.0	41.5	45.5	40.0	46.5	50.4	49.0	48.4
	46	Tumusla	51.2	50.3	48.3	42.0	34.4	37.0	36.0	36.2	35.5	38.5	44.1	47.6	41.7
	47	Tupiza	58.8	57.3	55.3	46.8	41.7	38.9	38.1	37.1	39.1	42.2	47.7	52.2	46.3
	50	Vitichi	58.1	58.3	57.0	47.4	39.0	38.6	38.3	39.9	40.4	46.2	49.2	54.6	47.3
	54	Arpaja Alta (I	76.8	78.2	76.8	69.2	63.0	57.0	60.0	59.1	61.5	67.1	70.3	74.0	67.7
	55	Cachimayu	71.5	72.1	74.0	67.8	57.8	54.5	45.7	51.8	53.3	54.3	63.2	64.0	60.8
⋖	56	Camargo	43.0	48.0	44.1	39.0	37.1	29.3	30.1	36.9	32.1	31.3	39.9	43.1	37.8
A C	58	Culpina	68.6	71.0	68.2	58.5	43.8	39.0	38.8	42.9	46.7	52.6	57.3	63.6	54.3
တ	62	La Torre	55.1	53.9	55.1	47.6	43.3	41.8	42.1	41.0	41.4	46.4	50.6	51.9	47.5
n	64	Machareti	79.8	82.4	81.7	85.2	83.0	76.3	71.3	70.0	72.6	63.7	73.0	78.3	76.4
g	74	San Lucas	69.6	69.2	68.2	61.3	54.2	54.0	55.1	53.6	56.9	59.1	63.0	65.3	60.8
	76	San Roque	60.6	59.3	59.9	54.6	49.6	48.7	51.6	52.5	45.2	48.6	52.2	53.9	53.0
I	77	Sucre Aasana	67.8	69.2	67.7	60.6	47.3	40.1	38.7	43.0	46.2	49.8	55.1	60.6	53.8
ပ	78	Sucre Senamhi	66.3	68.5	66.6	60.6	45.7	40.6	40.2	42.6	46.8	49.8	54.9	59.9	53.6
	80	Tarabuco	78.9	79.6	77.6	70.0	56.0	49.6	50.5	52.0	58.5	63.9	68.6	72.5	64.8
	84	Yotala (Villa Carmen)	65.2	67.8	67.7	63.9	57.4	53.9	51.4	50.2	52.8	55.2	57.0	59.9	58.5
	97	Crevaux	77.0	81.0	79.0	72.0	73.0	80.0	80.0	78.0	76.0	77.5	77.0	78.5	77.4
⋖	99	El Puente	46.1	48.7	47.6	44.9	38.8	37.5	40.8	41.7	41.2	44.1	43.2	41.5	43.0
2	104	La Vertiente	86.9	88.6	88.3	89.0	87.2	85.1	79.0	73.1	70.8	76.0	83.4	85.0	82.7
-R	108	Palmar Grande	62.1	64.7	68.3	71.6	71.2	66.7	60.8	54.1	49.7	51.8	55.5	58.1	61.2
۷	111	Puesto Margarita	65.7	60.0	75.0	68.5	60.0	57.5	53.5	56.0	61.5	53.0	55.5	64.5	60.9
-	121	VillaMontes Aasan	65.9	70.4	68.3	73.4	72.3	68.1	58.1	52.7	51.5	50.2	54.6	60.1	62.1
	122	VillaMontes Senamhi	73.1	75.8	77.3	79.9	80.6	79.1	72.5	68.7	65.5	65.6	68.6	69.2	73.0

Fuente: Elaboración propia en base a datos de SENAMHI

Tabla 5.9: Humedad relativa media anual en (%)

	ESTACION	MEDIA ANUAL		ES	TACION	MEDIA ANUAL		ES	TACION	MEDIA ANUAL
	126 Colcha K	39.2		144	Azurduy	76.3		193	Angostura	83.2
	127 Colquechaca	65.5	⋖	150	El Salvador	71.7		194	Calamuchita	70.9
	128 Julaca	58.9	AC	304	Escana	64.6		196	Canasmoro	65.2
1 75	129 Laguna Colorada	40.9	снидиіѕаса	153	La Madonna	72.7		204	Chocloca	68.4
OTOSI	130 Macha	46.8	٥	156	Monteagudo	66.4	⋖	206	Entre Rios	71.8
15	302 Mojo Torillo	78.7	₹	165	Redencion Pampa	63.1	7	211	Juntas	69.1
•	134 Río Mulatos	32.9	O	168	Tarvita	75.2	R	216	Padcaya	66.5
	137 San Pedro de Buena \	60.7		172	Zudañez	64.7	4	227	San Andres	62.6
	140 Uncia	54.5	СВВ	173	Aiquile	66.1	-	228	San Jacinto	63.3
	141 Uyuni	43.2	CE	178	Puente Taperas	58.8		232	Tarija Aasana	56.5
			S(183	Camiri (AASANA)	65.8		233	Tarija Senamhi	57.0
								237	Yacuiba AASANA	68.8
								238	Yesera Norte	68.6

Fuente: Elaboración propia en base a datos de SENAMHI

5.2.3 Vientos

El viento es el aire en movimiento. El viento es causado por las diferencias de temperatura producto de un desigual calentamiento de las diversas zonas de la Tierra y de la atmósfera. El viento ejerce influencia en los procesos de evaporación, como se puede observar en el término aerodinámico de la ecuación de Penman: a mayor intensidad de viento, mayor evaporación. La velocidad del viento se mide con anemómetros, y la dirección con veletas. La velocidad del viento se expresa en millas por hora, metros por segundo y muy frecuentemente en nudos (1 m/s = 2.2 mph) y (1 nudo = 1 1/7 mph). En un grado mayor que las otras variables, el viento está influenciado por la topografía local.

Para el cálculo de ETP, es importante conocer la velocidad. La tabla 5.10 muestra los valores de velocidad media del viento a nivel mensual y anual en estaciones de la cuenca y la tabla 5.11 los valores medios anuales en estaciones meteorológicas de apoyo.

Tabla 5.10: Velocidad media del viento, mensual y anual en (m/s) Cuenca Alta del río Pilcomayo

1															MEDIA
	ES	TACION	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	MEDIA
															ANUAL
	54	Arpaja Alta	0.9	1.0	0.9	1.0	1.0	1.0	1.0	0.9	1.0	1.0	1.0	1.0	1.0
	55	Cachimayu	0.7	8.0	1.1	1.0	1.0	1.1	1.4	1.1	1.3	1.1	1.0	8.0	1.0
	57	Chilcara	3.6	4.0	4.3	3.0	1.4	0.8	1.2	2.0	2.5	3.6	4.1	4.1	2.9
⋖	58	Culpina	3.7	3.7	3.3	3.9	3.8	3.6	3.8	3.9	4.3	4.2	4.2	3.9	3.9
ပ	62	La Torre	1.6	1.9	1.5	1.5	1.2	1.6	1.8	2.0	2.3	2.3	2.1	1.8	1.8
S A	64	Machareti	1.5	1.0	1.0	1.0	1.0	0.5	1.0	1.0	1.0	1.5	1.5	1.4	1.1
1 -	67	Ñujchu	2.1	2.1	2.1	2.6	2.6	2.1	2.6	3.1	2.6	2.1	2.1	2.1	2.3
٦	74	San Lucas	1.9	1.9	2.0	2.2	2.0	2.3	2.0	2.3	2.5	2.3	2.0	2.2	2.1
Ιŏ	76	San Roque	1.4	1.5	1.4	1.5	1.5	1.4	1.4	1.7	1.6	1.6	1.6	1.6	1.5
Ι =	77	Sucre Aasana	2.7	2.8	2.8	2.9	2.8	2.7	2.9	3.1	3.3	3.4	3.2	3.0	3.0
ပ	78	Sucre Senamhi	2.6	2.9	3.0	3.0	2.7	2.7	2.8	3.2	3.7	3.8	3.7	3.1	3.1
	79	Talula / Taco	1.7	1.6	1.5	1.8	2.1	2.4	2.3	2.3	2.6	2.6	2.4	2.1	2.1
	80	Tarabuco	1.8	1.7	1.8	1.9	2.0	1.9	2.0	2.2	2.3	2.4	2.2	1.8	2.0
	84	Yotala (Villa Carmen)	1.4	1.4	1.3	1.4	1.3	1.3	1.3	1.6	1.7	1.7	1.7	1.5	1.5
⋖	97	Crevaux	1.7	2.1	1.7	1.7	1.6	1.8	1.7	2.0	2.2	2.2	2.0	1.8	1.9
ARIJA	111	Puesto Margarita	1.1	1.6	1.6	1.6	1.6	1.6	1.1	2.1	2.0	2.0	1.9	1.6	1.6
Ι¥	121	VillaMontes Aasan	1.7	1.7	1.3	1.3	1.2	1.3	2.1	2.5	2.8	3.0	2.5	2.3	2.0
Ľ	122	VillaMontes Senamhi	2.0	1.5	1.1	0.9	1.1	1.2	1.3	1.8	2.1	2.3	1.8	2.0	1.6

	ES	TACION	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	MEDIA ANUAL
	5	Calcha	1.7	1.7	1.6	1.7	1.7	1.8	1.6	2.0	2.4	2.5	2.3	1.9	1.9
	8	Chaqui	1.2	1.0	1.2	1.4	1.6	1.8	1.6	1.7	1.5	1.5	1.2	1.1	1.4
	12	Chico Chico	2.3	1.9	1.9	2.7	2.4	2.4	2.5	2.0	2.9	2.4	2.8	2.4	2.4
	13	Chinoli	3.5	3.4	3.4	3.4	2.9	2.9	3.6	3.6	4.4	4.4	4.2	3.8	3.6
	15	Cotagaita	1.1	1.2	0.4	0.7	0.6	0.8	1.4	1.0	1.1	1.0	0.6	1.5	0.9
	17	Escara	2.0	2.4	2.1	2.2	2.5	2.5	2.0	2.1	2.5	2.5	2.1	2.5	2.3
	300	Millares	2.2	2.2	2.1	2.1	2.4	2.0	2.3	2.2	2.4	2.4	2.3	2.6	2.3
	23	Mojo	8.0	8.0	0.8	8.0	1.1	1.2	1.2	1.2	1.4	1.3	1.0	1.0	1.0
	24	Mosoj Llajta	2.0	1.9	1.7	1.7	2.2	2.5	2.4	2.4	2.9	2.7	2.8	2.3	2.3
	25	Oploca	0.9	0.9	0.9	1.2	1.2	1.2	1.2	1.4	1.4	1.4	1.1	1.0	1.1
	301	Otavi	1.5	2.1	2.0	1.2	2.1	2.4	2.2	2.3	1.6	1.6	1.8	1.4	1.9
Š	26	Palca Higueras	2.7	2.7	2.6	2.4	2.5	2.7	2.6	2.7	2.6	2.8	2.7	3.1	2.7
Ιő	27	Potosi Aasana	3.1	2.9	2.6	2.7	3.1	3.3	3.3	3.3	3.3	3.2	3.5	3.3	3.1
—	28	Potosi Senamhi	1.9	2.2	2.2	2.1	2.2	2.3	2.5	2.6	2.6	2.4	2.5	2.2	2.3
0	29	Puna (Villa Talavera)	1.7	1.6	1.5	1.6	1.4	1.6	1.7	2.0	2.0	2.0	1.8	1.7	1.7
□	34	Samasa	3.1	2.7	3.2	3.2	3.4	3.6	4.2	4.1	4.1	3.3	3.3	3.2	3.4
	36	San Jose Pampa G	1.1	0.5	1.2	1.2	1.1	1.3	0.7	1.4	1.0	1.4	0.8	8.0	1.0
	41	Tarapaya	2.6	2.7	2.6	2.5	2.6	2.7	2.4	2.5	2.7	2.7	2.9	3.0	2.7
	44	Tinquipaya	3.3	3.2	3.1	3.2	3.7	3.9	4.1	4.0	3.8	3.7	3.2	3.3	3.5
	45	Tomave	1.8	1.5	1.5	2.6	3.6	5.6	5.3	3.0	5.6	3.6	2.3	0.9	3.1
	46	Tumusla	0.6	8.0	0.9	0.7	1.0	1.0	1.3	1.4	1.2	1.0	1.0	8.0	1.0
	47	Tupiza	2.0	2.0	1.9	1.8	1.7	2.2	2.5	2.6	2.7	2.7	2.6	2.4	2.3
	48	Turuchipa	0.7	0.7	0.6	0.8	0.8	0.8	0.9	1.0	0.9	0.8	0.8	0.7	0.8
	49	Villazón	0.3	0.0	0.3	0.1	0.2	0.5	0.2	0.7	0.4	0.4	0.5	0.5	0.3
	50	Vitichi	2.6	2.7	2.8	2.7	2.7	2.7	2.6	2.7	2.8	2.6	2.5	2.5	2.7
	51	Yocalla	1.7	1.7	1.6	2.1	2.7	2.7	2.7	2.4	2.5	2.5	2.3	1.9	2.2
	52	Yura	1.5	1.5	1.0	1.0	1.5	1.1	1.5	1.1	1.5	1.2	1.2	1.2	1.3

Fuente: Elaboración propia en base a datos de SENAMHI

Tabla 5.11: Velocidad media anual del viento en (m/s) - Estaciones de apoyo

				_			()				
	ES	TACION	MEDIA ANUAL		ES	TACION	MEDIA ANUAL		ES	TACION	MEDIA ANUAL
	125	Calcha de Lipez	4.9		303	Alcantari	4.7		193	Angostura	2.6
1.	126	Colcha K	1.9	⋖	144	Azurduy	4.3		196	Canasmoro	1.8
S	127	Colquechaca	2.6	O	150	El Salvador	1.9	ℴ	204	Chocloca	2.1
0	128	Julaca	5.0	SA	304	Escana	2.4	٦,	206	Entre Rios	1.8
	130	Macha	3.0	_	153	La Madonna	1.6	RI	216	Padcaya	1.6
Ιĕ	134	Río Mulatos	2.6	η	156	Monteagudo	0.7	۷	228	San Jacinto	1.3
	137	San Pedro de Buena V	1.6	lŏ	165	Redencion Pampa	2.6	_	232	Tarija Aasana	2.2
	140	Uncia	1.8	ェ	168	Tarvita	2.0		233	Tarija Senamhi	1.5
S	173	Aiquile	8.0	ပ	171	Villa Serrano	1.7		237	Yacuiba AASANA	2.4
					172	Zudañoz	2.4	36	183	Camiri (AASANA)	1.5

Fuente: Elaboración propia en base a datos de SENAMHI

5.2.4 Radiación e insolación

Ante la escasez de estaciones meteorológicas que midan la radiación solar incidente, la mayoría de las versiones de la ecuación de Penman usan la insolación en horas sol/día (ver ecuación 5.3) para estimar la radiación neta. El número de horas en que irradia el sol sobre una estación meteorológica durante el día se mide con heliógrafo. La tabla 5.12 muestra los valores medios de insolación a nivel mensual y anual en estaciones de la cuenca y la tabla 5.13 en estaciones de apoyo.

Tabla 5.12: Insolación mensual y anual media (hr_{sol}/día), Cuenca Alta del río Pilcomayo

	ES	TACION	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	MEDIA ANUAL
	13	Chinoli	6.5	5.9	6.5	7.7	8.9	8.3	9.0	9.1	7.8	7.9	6.8	6.8	7.6
Š	28	Potosi Senamhi	5.8	6.0	6.6	8.0	8.7	8.7	9.4	9.2	8.4	8.1	7.6	6.6	7.8
РОТО	29	Puna (Villa Talavera)	5.9	6.1	6.3	7.6	8.2	7.3	7.5	8.2	7.3	6.6	6.5	6.2	7.0
18	41	Tarapaya	5.6	5.4	6.3	7.5	8.1	7.7	8.2	8.3	7.9	7.5	7.2	6.5	7.2
	47	Tupiza	6.2	6.2	7.3	7.6	8.3	7.5	8.3	8.5	7.8	7.8	8.0	7.3	7.6
w	58	Culpina	6.6	6.3	7.3	7.4	8.2	8.2	8.2	8.7	8.3	8.0	7.8	7.1	7.7
SIN	62	La Torre	6.0	5.9	6.8	7.6	7.3	6.3	7.1	7.8	7.3	7.4	7.2	6.6	6.9
١g	76	San Roque	6.8	6.6	7.3	7.8	8.2	7.1	6.9	8.0	8.3	8.2	7.4	6.9	7.5
CHŪ	78	Sucre Senamhi	5.7	5.3	6.4	7.1	9.0	8.5	8.9	8.7	8.0	7.7	6.9	6.3	7.4
Ľ	84	Yotala (Villa Carmen)	5.2	5.5	5.6	7.2	8.3	8.3	8.6	8.5	7.9	7.0	6.7	6.1	7.1
	111	Puesto Margarita	6.6	5.9	5.6	4.4	5.1	3.7	6.4	8.1	6.1	7.0	6.0	5.8	5.9

Fuente: Elaboración propia en base a datos de SENAMHI

Tabla 5.13: Insolación mensual y anual media (hr_{sol}/día) en estaciones de apoyo

	ES	TACION	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	MEDIA ANUAL
POT	137	San Pedro de Buena Vis	5.6	5.1	4.2	7.2	8.5	7.7	7.8	8.1	7.9	7.8	7.3	5.8	6.9
Ы	141	Uyuni	6.8	7.4	8.0	9.0	8.6	7.4	8.2	8.9	9.0	9.4	9.6	8.9	8.4
	144	Azurduy	4.8	4.6	5.4	6.2	7.1	7.3	7.7	7.9	6.9	6.5	5.3	4.9	6.2
문	150	El Salvador	6.0	5.8	5.5	4.7	3.9	3.8	5.9	6.1	5.2	5.9	6.2	5.8	5.4
	156	Monteagudo	5.3	4.6	4.4	3.7	4.1	4.2	5.2	5.8	5.1	5.6	5.3	5.1	4.9
ΤA	206	Entre Rios	5.7	5.8	6.0	6.6	7.5	7.3	7.5	7.7	7.3	7.2	6.5	6.1	6.7
Ľ	233	Tarija Senamhi	5.9	5.8	6.0	6.5	8.5	7.7	8.4	8.5	7.6	7.2	6.9	6.4	7.1

Fuente: Elaboración propia en base a datos de SENAMHI

5.3 CÁLCULO DE LA ETP CON EL MÉTODO DE PENMAN

La tabla 5.14 muestra la planilla electrónica EXCEL diseñada para el cálculo de la evapotranspiración potencial por el método de Penman. Los parámetros de entrada se muestran sin sombreado, las salidas intermedias en gris claro y los resultados finales en gris oscuro. La planilla fue aplicada a todas las estaciones que contaban con los parámetros meteorológicos requeridos, para el periodo 1970-2000.

Con el objeto de obtener valores de ETP en el mayor número de estaciones y durante el periodo más largo posible, se adoptaron algunos criterios de orden práctico:

- Cuando el periodo de registro de una o más de las variables meteorológicas era más corto que el del Balance (1970-2000), los años faltantes se rellenaron con los promedios mensuales de esa variable.
- Para estaciones donde no existiesen mediciones de las variables humedad relativa, vientos e insolación (una de ellas y solo en casos excepcionales, dos), se realizó la transposición de datos de otra estación próxima que contase con esos registros, seleccionada bajo criterio del operador.

El resultado de esta etapa son las series mensuales de ETP para el periodo 1970-2000 por estación, que fueron incluidas en la base de datos meteorológicos Hydraccess.

Tabla 5.14: Planilla electrónica de cálculo de ETP - Método de Penman

LATIT	CION: JD [°]: JDO EST [años]	SUCRE S 19.02 70-2	03 S			D [m.s.r IUD [°] ENAM.	ı Î:	65.26 10	90 85 W 00		PRESIO ALTURA ALBEDO			0.67 2.00 0.23	0
	PARAMETROS -	EHE 💌	FEB 💌	MAR 💌	ABR 💌	MAY 💌	JUN 💌	JUL 🗷	AGO ▼	SEP 💌	OCT 💌	NOV 💌	DIC 🔻	ANUAI -	Observ. 🔽
1996	T media [°C] Hum. Rel m [%] V [m/s] n [hr.sol/d] Ro [cal/cm2-d] N [hr.max sol]	14.8 71 1.54 2.95 983.2 13.01	15.2 71 2.06 4.66 943.3 12.61	72 2.06 5.84	66 3.09 7.45	57 2.57 8.08	11.2 49 2.06 8.60 581.1 10.87	50 1.54	53 2.57 9.14	13.6 52 3.09 8.48 808.4 11.87	16.2 54 3.09 6.65 906.0	15.4 62 2.57 6.15 963.7 12.88	14,4 72 3.09 4.70 989.8 13.13	60.8 2.4 6.8	1996
	es [mm] D/g Ea [mm/dia] H [mm/dia] ETP [mm/mes] ETP [mm/dia]	12.61 1.67 2.33 3.63 3.63	12.94 1.71 2.75 3.98 95.4	12.29 1.63 2.52	12.45 1.65	11.22 1.51 4.00	9.96 1.36	9.82 1.34	11.29 1.52 4.40	11.67 1.56	13.79 1.81 5.87 4.06 161.2 4.68	13.11 1.73 4.13	12.29 1.63 3.18 4.20 116.2 3.72	19.1	

Fuente: Elaboración propia

La tabla 5.15 muestra los valores de evapotranspiración potencial media mensual y anual en estaciones situadas en la cuenca y la tabla 5.16 en estaciones meteorológicas de apoyo. El rango de variación de este parámetro (1037 a 1868 mm/año) es más estrecho que el de la precipitación. Los valores extremos de ETP se pueden explicar como el resultado de los registros de dos o más parámetros, por ejemplo en el caso de Palca Higueras baja humedad relativa, intensidad del viento superior a la media y alta insolación.

Tabla 5.15: Evapotranspiración potencial media mensual y anual (mm), método de Penman, Cuenca Alta del río Pilcomayo

	ES	TACION	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC	ANUAL
	5	Calcha	138	121	121	108	91	76	76	105	134	157	155	153	1436
	8	Chaqui	106	92	97	99	104	96	93	106	109	121	118	115	1256
	12	Chico Chico	108	92	88	95	89	77	82	89	108	120	127	114	1188
	13	Chinoli	133	109	117	113	100	90	104	122	144	159	152	145	1486
	15	Cotagaita	149	132	124	107	80	65	82	94	115	148	142	169	1405
	17	Escara	155	142	141	126	116	96	93	118	145	167	162	176	1638
	300	Millares	145	124	130	121	117	92	103	126	144	163	160	165	1590
l_	23	Mojo	111	93	101	85	73	60	64	82	101	120	122	124	1135
S	25	Oploca	123	106	111	96	80	67	73	94	114	138	141	136	1278
0	301	Otavi	117	110	112	93	100	93	97	114	112	129	133	126	1335
15	26	Palca Higueras	178	155	167	143	130	107	116	139	160	187	186	199	1868
<u>~</u>	27	Potosi Aasana	104	89	91	93	98	85	88	106	116	130	132	127	1257
	28	Potosi Senamhi	107	96	105	101	98	85	95	110	120	135	132	122	1308
	29	Puna (Villa Talavera)	117	102	102	96	91	82	86	105	117	132	129	128	1288
	36	San Jose Pampa G	125	101	117	98	82	73	70	99	108	139	135	137	1283
	41	Tarapaya	130	113	119	106	102	88	88	107	126	148	153	160	1441
	44	Tinquipaya	140	122	132	128	132	115	125	145	157	174	162	162	1693
	46	Tumusla	141	123	129	106	91	72	82	108	127	148	150	151	1426
	47	Tupiza	139	123	131	111	90	83	94	118	139	166	167	164	1524
	48	Turuchipa	137	118	125	106	91	77	84	103	123	143	141	144	1391

1	ESTACION		ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC	ANUAL
POTOSÍ	49	Villazón	113	98	104	84	65	50	55	76	94	117	121	125	1104
	50	Vitichi	142	125	130	126	116	101	111	126	143	154	149	143	1565
	51	Yocalla	115	98	105	103	105	89	96	109	127	145	143	134	1367
	52	Yura	123	105	106	90	85	65	76	85	106	125	132	133	1230
CHUQUISACA	54	Arpaja Alta (I	104	86	90	79	68	57	60	77	91	106	108	110	1037
	55	Cachimayu	112	98	103	94	83	70	84	95	113	132	124	128	1236
	58	Culpina	135	110	119	118	119	105	112	128	144	161	156	149	1557
	62	La Torre	152	136	134	119	93	86	93	119	145	168	163	164	1570
	64	Machareti	149	120	117	80	61	50	64	88	97	141	145	147	1259
	67	Ñujchu	144	124	124	121	110	87	105	137	142	151	154	156	1556
	74	San Lucas	122	108	114	108	92	80	80	104	117	132	126	134	1316
	76	San Roque	144	124	129	108	90	72	75	97	124	154	155	159	1429
	77	Sucre Aasana	128	108	118	112	115	105	116	132	145	165	153	147	1544
	78	Sucre Senamhi	130	111	125	115	116	104	113	135	153	173	162	150	1588
	79	Talula / Taco	125	107	108	103	98	90	97	117	133	151	148	145	1422
	80	Tarabuco	98	83	91	86	92	82	88	104	110	125	116	110	1185
	84	Yotala (Villa Carmen)	128	109	111	101	87	73	81	105	122	142	144	142	1345
TARIJA	97	Crevaux	164	132	130	101	77	60	66	90	112	145	157	157	1390
	99	El Puente	165	142	147	122	93	80	85	109	142	172	176	178	1612
	103	Ibibobo	162	135	135	99	80	63	74	99	119	150	160	161	1438
	104	La Vertiente	154	124	119	79	66	49	65	101	123	159	143	153	1334
	108	Palmar Grande	171	142	124	85	70	63	76	110	142	179	167	181	1509
	111	Puesto Margarita	168	147	130	99	89	73	80	116	127	174	171	167	1539
	115	San Antonio (Iscay)	106	91	99	88	79	68	73	87	96	114	116	116	1134
	121	VillaMontes Aasan	168	133	130	90	75	60	83	120	141	188	176	178	1542
	122	VillaMontes Senamhi	172	135	127	87	71	54	70	105	124	166	158	168	1435

Fuente: Elaboración propia

Tabla 5.16: Evapotranspiración potencial anual (mm), método de Penman Estaciones meteorológicas de apovo

ESTACION ESTACION ANUAL **ESTACION** ANUAL ANUAL Calcha de Lipez 1419 144 Azurduy 1245 193 Angostura 1237 ⋖ 126 Colcha K 1306 ပ 150 El Salvador 1324 194 Calamuchita 1367 127 Colquechaca 1027 156 Monteagudo 1141 196 Canasmoro 1304 S 128 Julaca 1379 O O 165 Redencion Pampa 1388 204 Chocloca 1347 Laguna Colorada 837 168 206 Entre Rios 129 Tarvita 1260 1286 Э Villa Serrano 130 Macha 1532 171 1312 211 Juntas 1264 Río Mulatos 1325 172 Zudañez 1319 ᇤ 134 216 Padcaya 1252 1256 San Pablo de Lipez 1188 173 Aiguile 227 San Andres 1256 138 sd 137 San Pedro de Buena \ 1410 183 Camiri (AASANA) 1353 228 San Jacinto 1280 Uncia 232 Tarija Aasana 1463 140 1124 141 Uyuni 1303 Tarija Senamhi 233 1343 237 Yacuiba AASANA 1469 238 Yesera Norte 1202

Fuente: Elaboración propia

La figura 5.3 muestra la ETP media mensual calculada con Penman y la medida con tanque, para la estación de Sucre SENAMHI. Como complemento, se muestra la ETP calculada con Penman para Sucre AASANA (en amarillo). Para este ejemplo, la correspondencia entre valores mensuales es muy buena: las líneas son paralelas, con los valores de tanque por encima, como era de esperar. Se puede hallar fácilmente un coeficiente de corrección que ajuste los valores del tanque. En la figura 5.4 el comportamiento general sigue siendo bueno para Villamontes, pero los coeficientes presentan más variación mensual y en enero y febrero

son mayores a 1. Por otro lado, la ETP calculada para las otras 5 estaciones chaqueñas muestra que el comportamiento regional es homogéneo.

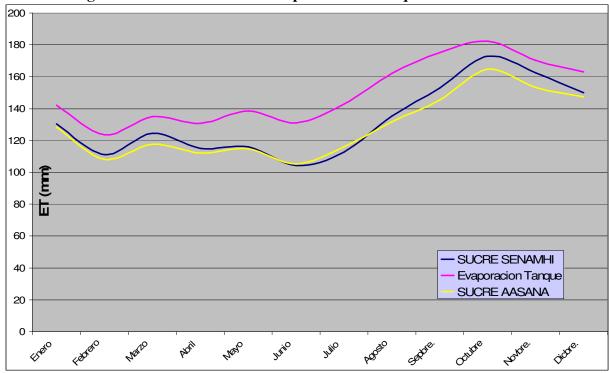
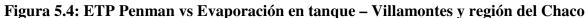
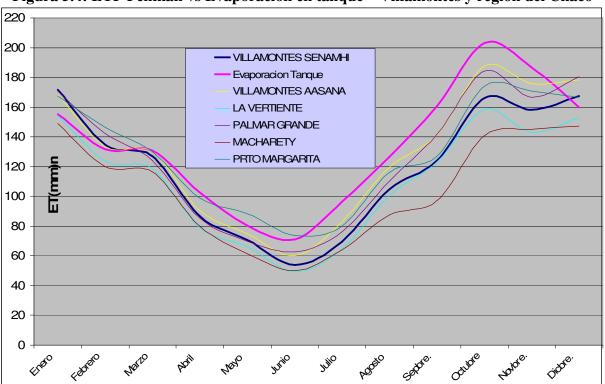




Figura 5.3: ETP Penman vs Evaporación en tanque – Estación Sucre

Fuente: Elaboración propia

5.4 EVALUACIÓN ESPACIAL DE LA EVAPOTRANSPIRACIÓN POTENCIAL

Con los resultados del análisis puntual para las estaciones de la cuenca, se elaboró el mapa de isolíneas de evapotranspiración potencial y el cálculo de las series mensuales para las subcuencas en que se aplicó el modelo, para todo el periodo 1970-2002. La figura 5.5 muestra las estaciones donde se calculó ETP por Penman, donde los números de estación corresponden a la tabla 3.2. La figura 5.6 muestra el mapa de isolíneas ETP para toda la Cuenca Alta, elaborado en ArcView y ajustado manualmente según criterio del operador y usando valores de referencia de otros estudios.

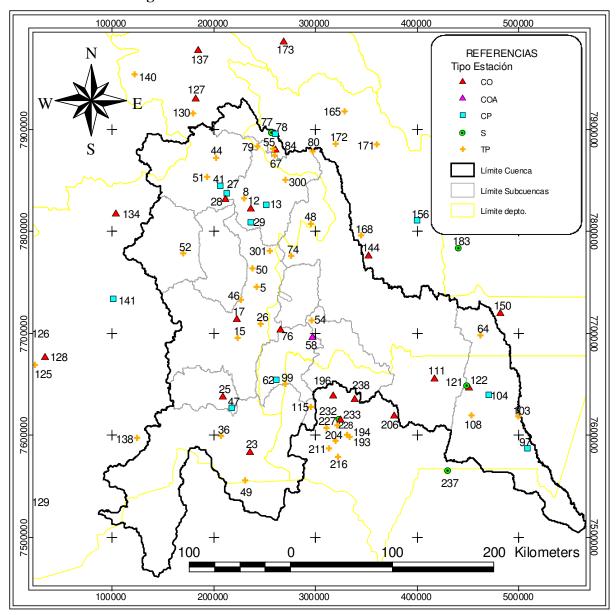


Figura 5.5: Estaciones usadas en el cálculo de ETP

Fuente: Elaboración propia

300,000 500,000 100,000 200000 **REFERENCIAS** Isolineas ETP 7900000 Límite Cuenca Límite Subcuencas 1300 7800000 7700000 7700000 1100 1000 7500000 7500000 200 Kilometers 100 100000 400 000 200000 300000 500 000

Figura 5.6: Mapa de isolíneas de ETP y ubicación de estaciones, periodo 1970-2000 Cuenca Alta del río Pilcomayo

Fuente: Elaboración propia

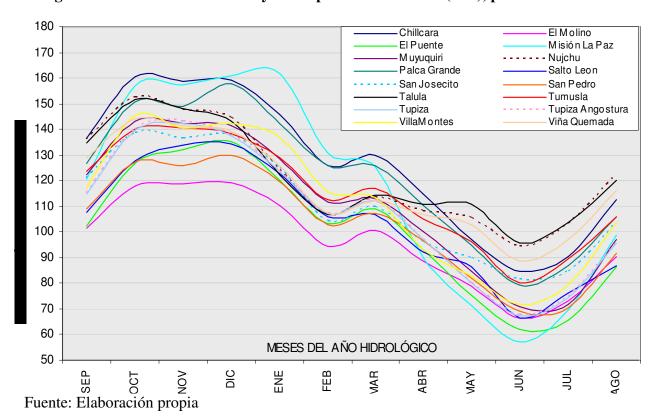

Para la evaluación espacial de la evapotranspiración potencial se usó el módulo Spatial de Hydraccess, bajo los mismos criterios que se aplicaron a la precipitación y descritos en el punto 4.4. Se obtuvieron así series de paso mensual para las subcuencas, para todo el periodo 1970-2000. La tabla 5.17 y la figura 5.7 muestra la evapotranspiración media mensual y anual para las subcuencas e intercuencas. Las series completas fueron incorporadas a la base de datos Hydraccess.

Tabla 5.17: ETP media mensual y anual por subcuencas en (mm), periodo 1970-2000 Cuenca Alta del río Pilcomayo

	Cutifu III I II Colling C													
Nº	Sub Cuenca (Est. Hidrométri.)	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC	ANUAL
1	Nujchu	124	107	113	108	105	94	103	122	136	153	147	144	1458
2	Talula	122	107	114	111	111	96	104	120	135	152	148	143	1462
3	Viña Quemada	126	107	112	107	103	89	97	116	129	144	141	139	1410
4	Muyuquiri	129	112	113	100	85	71	72	97	122	143	142	141	1327
5	San Pedro	120	103	107	96	82	69	71	92	109	127	126	130	1231
6	Salto Leon	123	106	107	92	86	66	76	87	108	127	134	134	1247
7	Tumusla	129	113	117	105	96	80	89	106	124	140	140	138	1378
8	Palca Grande	142	126	126	110	95	79	87	106	127	151	149	158	1456
9	El Molino	110	94	101	88	79	67	73	90	101	118	119	119	1160
10	Tupiza	123	107	112	97	80	68	74	96	115	140	142	137	1291
11	La Angostura	124	107	112	97	80	68	75	96	115	140	143	138	1296
12	El Puente	120	103	109	93	75	62	66	87	102	127	132	135	1211
13	Chillcara	146	126	130	115	97	85	90	112	137	161	159	159	1516
14	San Josecito	125	104	110	96	90	82	85	103	121	139	137	138	1329
15	VillaMontes	137	115	113	93	83	72	79	104	117	145	141	142	1341
16	Misión La Paz	162	131	125	90	71	57	69	99	121	157	157	161	1400
	MAXIMO	162	131	130	115	111	96	104	122	137	161	159	161	1516
	MINIMO	110	94	101	88	71	57	66	87	101	118	119	119	1160

Fuente: Elaboración propia

Figura 5.7: ETP media mensual y anual por subcuencas en (mm), periodo 1970-2000

REFERENCIAS

Aguilar, I., Malbrunot, A. y Vauchel, P., 2005. Análisis, crítica y tratamiento de los datos hidrométricos disponibles aguas arriba de Misión La Paz. La Paz, agosto 2005.

Arellano, R., 1988. Balance Hídrico de la cuenca del río Pilcomayo. Tesis UMSA, publicación PHICAB, La Paz.

ASS, GIRH, IIAMA, 2005. Modelos Precipitación-escorrentía. México.

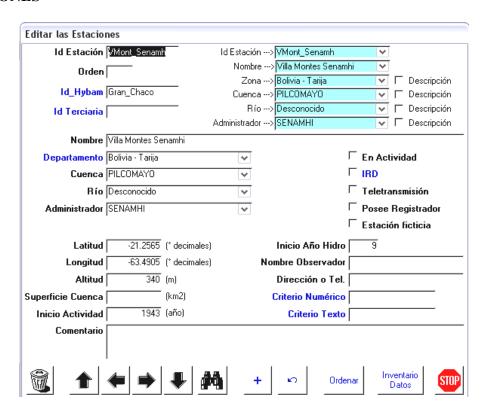
Centro de Estudios y Experimentación de Obras Públicas- CEDEX, Ministerio de Fomento, España, 2004. Cálculo Hidrometeorológico de Aportaciones y Crecidas (C.H.A.C.), Manual provisional. Madrid, mayo 2004.

Espinoza, D., en preparación. Balance Hídrico Microregional de la cuenca del río Pilcomayo. Tesis UMSA, La Paz.

Herbas, C., 1987. Climatología de la Cuenca Andina y Amazónica del río Grande, Bolivia. Tesis UMSA, Publicación PHICAB, La Paz. 237 p.

Roche, M.A. et al, 1992. Balance Hídrico Superficial de Bolivia. Publicación PHICAB, La Paz, 28 p.

UNESCO-ROSTLAC, 1982. Guía metodológica para la elaboración del Balance Hídrico de América del Sur.


ZONISIG. 2000, 2001. Zonificación Agroecológica y Socioeconómica, departamentos de Chuquisaca, Potosí y Tarija.

AN**E**XO

DESCRIPCIÓN BASE DE DATOS METEOROLÓGICOS - HYDRACCESS

(Bd_Pilc_orig_Com_Trinal.dbf): Base de datos originales, sin modificaciones (Bd_Pilc_rell_Com_Trinal.dbf): Base de datos con rellenos y reconstituciones

ESTACIONES

Id Estaciones: "Nombre de la estación" (max. 12 caracteres)

Orden: "—"

Id_ Hybam: "Provincia a la que pertenece la estación" (según SENAMHI)

Id Terciaria: "—"

Nombre: "Nombre completo de la estación" (descripción*)
Departamento: "País – departamento al que pertenece la estación"

Cuenca: "Cuenca a la que pertenece la estación"

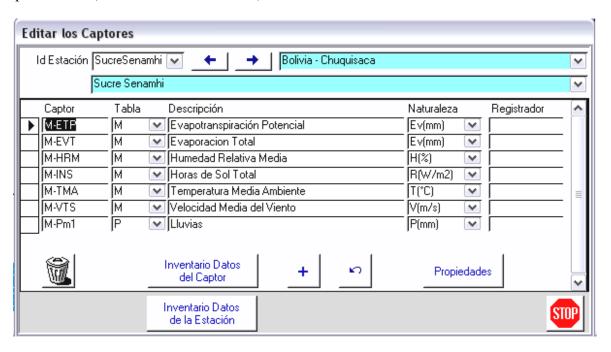
Río: "Desconocido" (**)

Administrador: "Administrador de la estación"

Latitud: "Latitud de la estación" (Coord. Geográficas en º decimales)
Longitud: "Longitud de la estación" (Coord. Geográficas en º decimales)
Altitud: "Altitud de la estación" (altura sobre el nivel del mar en metros)

Superficie de cuenca: "—" (no se cuenta con esta información)

Inicio de actividad: "Año de inicio de actividad en la estación" (según SENAMHI)


Inicio del año hidro: "Año en que se inicia el año hidrológico en la región" (***)

Referencias:

- * En algunos casos presenta información adicional (información según SENAMHI)
- ** La base de datos de SENAMHI no presenta esta información
- *** Año hidrológico asumido para el desarrollo del Balance Hídrico microregional

CAPTORES (M-...) "mensuales"

Tipo de tablas (P=lluvias,M=datos meteo)

<u>Captor:</u> <u>Descripción</u>

M-Pm1_ : Lluvias mensuales (Precipitación en [mm])

M-TMA_ : Temperatura Media Ambiente mensual (Temperatura en [°C])
 M-HRM_ : Humedad Relativa Media mensual (Humedad relativa en [%])
 M-VTS_ : Velocidad Media del Viento mensual (Velocidad en [m/s])

M-INS_ : Horas de Sol Total al mes (tiempo en [Horas])

M-EVT_ : Evaporación Total mensual en tanque (Evaporación en [mm])M-ETP_ : Evapotranspiración Potencial por Penman (evaporación en [mm])