
180 South African Journal of Science 104, May/June 2008 Biological Modelling

Predator density-dependent prey dispersal in a
patchy environment with a refuge for the prey
K. Dao Duca*, P. Augera,b and T. Nguyen-Huua,b

Introduction
Predator–prey theory has long been and remains a dominant

and important theme in ecology and mathematical ecology, for
which many problems remain open.1 Considered since the first
Lotka-Volterra model as a classical application of mathematics in
biology, models based on differential equations for interactions
between species, thanks to analytical techniques and computer-
ization, have become progressively more complex. They increas-
ingly give a more realistic description of ecological systems,
and thereby have improved our understanding of the dynamic
relationship between prey and predator. The hiding behaviour
of prey in particular has been incorporated as an important
ingredient of predator–prey systems2 and its consequences on
stability have been studied in several models. The traditional
way in which refuge has been introduced is via a ‘snapshot’
approach, requiring that a constant proportion or number of
prey cannot be killed by the predators.3 Some early theoretical
work suggests that the use of refuges by prey, according to this
approach, has a stabilizing effect on predator–prey dynamics,4–6

whereas other models show no such simple pattern.7,8

More recently, several studies have taken into account the
dynamic nature of the refuge, and more generally, the impor-
tance of spatial heterogeneity,9,10 using patchy environment in
their models.11–13 The behavioural aspect of this kind of migration
focuses on its possible modalities. The density dependence
of dispersal has been studied in many papers, whereas the
dependence of predator density in prey migration13,14 is
relatively less studied than the dependence of prey density in
predator migration.15–18 Spatial heterogeneity leads to the con-
sideration of two different types of dynamics – local interactions
between species, on the one hand, and migrations from patch to
patch on the other. In some cases, there exist two different time
scales (for instance, a fast time scale corresponding to individual
processes like migration, and a slow one for demographic
changes (see ref. 14); it is then possible to reduce, via results

provided by geometrical singular perturbation (GSP) theory,
the dimension of the mathematical model to obtain a reduced or
‘aggregated’ model which can be handled analytically).19–21 It
has been shown11 by using these methods that the refuge has a
stabilizing effect on the equilibrium for a simple Lotka-Volterra
model with refuge and density-independent migration. The
purpose of this article is to examine the impact of predator
density on the migration of prey in such a model. We add here
the idea that, to survive, prey has to search for resources outside
its refuge and so exposes itself to predation.

We first describe the predator–prey model, comprising a set
of three ordinary differential equations governing the local
dynamics of prey and predator population densities. These
dynamics present two time scales, which enables us to use
aggregation of variables methods, based on perturbation tech-
niques and on application of a centre manifold theorem of
Fenichel26 to reduce the model to an aggregated one that consists
of two equations. To evaluate the impact of density dependence
in general, our model also uses a general predator density-
dependent function for prey migration. We then study this
model and its equilibrium points, and find a simple criterion
of stability for a positive equilibrium, depending on various
parameters and on the density-dependent migration function.
The stability analysis of the non-trivial equilibrium point so
found is then considered with a discussion of the results and
their ecological interpretations.

The predator–prey model
The model considers two patches, 1 and 2. The prey can move

on both patches whereas the predator remains on patch 1.
Patch 2, therefore, is a refuge for the prey. Let us denote ni(t)
as the density of the prey at time t on patch i (i = 1, 2) and p(t) the
density of the predator at time t on patch 1.

We assume that there are two different time scales of the
associated dynamics. Migrations are considered to be fast com-
pared to predator–prey interactions. In the prey equations, the
dynamics on patch 1 (conversely 2) is represented by a positive
(conversely negative) term describing the natural growth
(conversely mortality, as there are no resources in the refuge)
and a negative term representing prey killed by predators
on patch 1. For the predator, we consider a constant natural
mortality rate and assume that growth is proportional to the
density of prey captured.

The complete system, composed of a set of three ordinary
differential equations, is described as follows:

The term r1 > 0 represents the intrinsic growth rate of the prey
population in patch 1. Terms r2 and µ are natural mortality rate
for prey in patch 2 and for predator in patch 1, respectively. The
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In this article, we examine a two-patch predator–prey model which
incorporates a refuge for the prey. We suppose that prey migration
is dependent on predator density, according to a general function.
We consider two different time scales in the dynamics of the model, a
fast one describing patch to patch migration, and a slow one involv-
ing local prey and predator interaction. We take advantage of the
time scales to reduce the dimension of the model by use of methods
of aggregation of variables, and thereby examine the effect of
predator density-dependent migration of prey on the stability of the
predator–prey system. We establish a simple criterion of viability,
namely, the existence of a positive and globally stable equilibrium,
and show that density dependence has beneficial effects on both
species by providing larger equilibrium densities.

.



predation rates are given by a and b. The parameter k represents
the prey migration rate from patch 2 to patch 1; the prey migration
rate from patch 1 to patch 2 is assumed to be predator-density
dependent with the function

~
( )k p , which we suppose to be posi-

tive and to increase with p. In other words, the more predators
found on a patch, the more prey tends to leave the patch. We
suppose

~
( )k 0 > 0 because there is a natural migration from the

resource patch to the refuge even if there is no predator.
Let us define:

which is the total prey density. Our reduction method is based
on classical aggregation methods.21 We now consider the model
as an ε-perturbation of the non-perturbed problem obtained
for ε = 0, which presents the following fast equilibrium:

with

For each value of n and p, this equilibrium is hyperbolically
stable, which means that this set of fast equilibria constitutes
an attracting two-dimensional invariant set for small positive
values of ε. With this result, the centre manifold theorem given
using Fenichel26 allows us to approximate by a Taylor expansion
with respect to the small parameter ε the restriction of the com-
plete model to this invariant set. The first-order expansion gives
the aggregated model. If this model is structurally stable, then
the complete model is topologically equivalent to the reduced
model and we obtain a good idea of the behaviour of the com-
plete model by using the aggregated model (see also refs 25, 27
and 28, which give a detailed description of the theorem with
many applications). To derive the reduced model, we substi-
tute the fast equilibria with n1 and n2 and we add the first two
equations, giving the following system (with the slow time scale
t = ετ):

The aggregated model
Let us now study the aggregated model given by (2). First, we

determine the nullclines of the system:
• The n-nullclines are given by

• The p-nullclines are given by

As the equilibrium points of the model are the intersections
between the p-nullclines and the n-nullclines, we see that there
exists a non-trivial equilibrium in �

+2 if Equation (3) admits a
positive solution. A necessary and sufficient condition in
this case is kr k r1 20 0− >~

( ) (see Appendix A). Let us define a new
parameter � as follows: � = −kr k r1 20

~
( ) . The sign of � then deter-

mines the behaviour of the system.

• If � < 0, we have only (0, 0) as an equilibrium point, whose
associated Jacobian matrix is

which leads to the conclusion that it is a stable node (Tr(J) < 0 and
Det(J) > 0).
• If � = 0, the n-axis constitutes a set of equilibrium points which

are not isolated. In this case, the ε-error can play an important
role in the dynamics (see ref. 11, for example). Indeed, as
shown in this previous paper, the approximation does not
match the complete model. Consequently, we have to obtain a
first-order approximation of the manifold. In Appendix B, we
perform this approximation and give some analytical results
for the new model, providing a good example of a case where a
more precise approximation of the manifold is necessary.

• If � > 0, we have two equilibrium points:
– (0, 0), which is a saddle point (DetJ(0, 0) < 0)
– (n*, p*), whose Jacobian matrix associated with (n*, p*) is

(see Appendix C)

The trace of this matrix is strictly negative and the determinant
is positive. Consequently, (n*, p*) is a locally stable equilibrium
point. Figures 1 and 2 illustrate the two cases � < 0 and � > 0 with

the function
~

( ) :k p
p

D p
= +

+
α

α
0 .

We see that the system is viable (i.e. it does not lead to extinc-
tion) if and only if the parameter � is positive. In this case, we
have an equilibrium point, whose global asymptotic stability is
the subject of the next section.

Global asymptotic stability of (n*, p*)
To prove that (n*, p*) is globally asymptotically stable, we first

show that any orbit starting in �
+2 is bounded; in other words,

that there exists a compact in which this orbit stays closed.
From the study of the nullclines of the system, we proved that

every orbit starting in �
+2 stays in �

+2. Moreover, we know the
form of the orbits �+2; they circle the equilibrium point (n*, p*).
We can therefore define a return map (called first map of
Poincaré) for this vector field (see Fig. 3).

We now consider the horizontal transverse section S starting
from the equilibrium point (see Fig. 3; we verify that the field is
never horizontal on S and a point x0(h0), whose trajectory is
denoted by �(x0). We now show that P(h0) – h0 < 0. Let us consider
x1(P(h0)) and the closed curve Γ consisting of the segment [x 0 , x1]
and the part of the orbit joining x0 and x1. Let us note the vector
field ~X defined by

Using the Stockes theorem in the domain D delimited by Γ, we
have:
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As div(~X) − + <
f p r

pK
bf p

( )
’( )

2
1

1

0 on D, by definition of

the curve Γ, the right-hand part of Equation (5) is re-
duced to an integral along the transverse section. The
sign of that expression is that of P(h0)–h0 , which gives the
result. We have therefore shown that the trajectory
always progresses towards the inside and so is included
in a compact (delimited by Γ). In such a compact, we now
show that the trajectory can converge only to the equilib-
rium point. Using the Poincaré-Bendixson theorem
(which describes precisely all possible kinds of trajecto-
ries of a plane dynamical system – see refs 22 and 23 for
details and demonstration), and because the compact
considered contains only one singular point, there can be
only two kinds of behaviour:
• The ω-limit set ω(x0) (which is the set of accumulation

points of the trajectory) is a single point x, which is an
equilibrium point; the flow of the differential equation
Φ(t, x0) tends towards x tas → ∞

• ω is a periodic orbit.
Moreover, we have shown previously that as div(~X)< 0,

there cannot be any periodic orbit (this result is known as
the Dulac criterion (see ref. 29), which gives a criterion
of non-existence of periodic orbit for a plane dynamical
system). Consequently, ω(x0) is reduced to a single point
and we reach the conclusion: (n*, p*) is globally asymp-
totically stable.

Discussion and conclusion
We have shown that for ε < 1, we were able to reduce

the 3-dimension initial system to a 2-dimension aggre-
gated model which presents two general behaviours,
depending on the sign of the parameter �:

If � < 0, then the system is not viable. (0, 0) is globally
asymptotically stable. The same result applies for � = 0,
because the predators are then extinct.

If � > 0, there is a non-trivial globally asymptotically
stable point.

This result can easily be interpreted: the sign of �

depends on the quotient of two quantities k/
~

( )k 0 and
r1 /r2 , the first denoting the quotient between the migra-
tion terms when there are predators, and the second the
quotient between the terms of global growth. When
there are no predators, if the migration from patch 1 to
patch 2 is too important, the prey population naturally
disappears as patch 2 is hostile. Note that the influence of~
k on the qualitative behaviour of the system is determined only
by its value for p = 0. This result shows that the degree of preda-
tor-density dependence of prey dispersal has no influence on
stability, whereas in ref. 17, prey-density dependence of preda-
tor dispersal could destabilize as the degree of density depend-
ence increases.

We now want to compare the case of density-independent
migrations with the case of density-dependent migrations. The
density-independent case was studied in a previous paper.11 In
this article, we obtained a similar result of global stability of a
unique positive equilibrium for the aggregated model. Now, let
us focus on prey and predator equilibrium densities.

We return to the predator-density-dependent migration rate
of prey. A particular function is the following:

In a more general way, we can write this as follows:

where h(p) is a strictly positive and increasing function for any
p > 0 with h(0) = 0. The density-dependent migration rate is then
the sum of two terms, a constant term α0 and the density-
dependent term h(p). Therefore, we can consider two cases, the
density-independent case where

~
k (p) = α0 , and the density-

dependent case where
~

( ) ( ) .k p h p= +α0

In both cases, the positive equilibrium (n*, p*) is given by the
following expressions:

and

where f(p*) represents the prey proportion on patch 1 at the fast
equilibrium for the positive equilibrium (n*, p*) of the aggre-
gated model.

Let us denote respectively ( , )* *n ni i and ( , )* *n nd d the equilibrium
in the density-independent and the density-dependent cases.
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Fig. 1. Phase portrait when λ < 0, with the following parameter values: α = 2, D = 5, α0 = 5,
r1 = 1, r2 = 4, a = 2, b = 3, µ = 2, k = 5.

Fig. 2. Phase portrait when � > 0, with the following parameter values: α = 2, D = 5, α0 = 5,
r1 = 3, r 2 = 2, a = 2, b = 3, µ = 2, k = 5.
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In the density-independent case, the equilibrium prey and
predator densities are the following:

and

In the density-dependent case, the equilibrium densities
become

and

This can be written:

and

Remember that the function h(0) = 0 and h is a monotonous
increasing function of p. Therefore, equilibrium densities for
prey as well as for predator are larger in the density-dependent
case than in the density-independent case (Fig. 4).

As a consequence, we find that the predator-density dependence
of prey migration has important consequences for the preda-
tor–prey community. It has a positive effect on both species by
providing larger prey and predator densities at equilibrium. In a
certain sense, we can conclude that it increases the fitness of the
predator–prey community. Communities in which prey individ-
uals move according to predator-density migration rules are
more likely to spread with larger population densities at equilib-
rium. It is interesting to see that the mechanism not only

increases the equilibrium density of prey but also that of
predator. A priori, one could imagine that when prey is more
efficient at avoiding predation, predators would have more
difficulty capturing prey and this would lead to a decrease in
predator density at equilibrium. However, our result shows that
this is not the case and that the predator density-dependent
mechanism for prey migration is not only beneficial for prey but
also for predator. The density of prey available for predation is
less, which cause a loss of predation efficiency, but the total prey
density is greater. It appears that it is more profitable for the
predator to exploit a large reservoir at a regulated rate, even with
a loss of efficiency, than to create a situation in which prey
cannot escape while too many predators are located on the
capture patch, as might occur in the case of density-independent
migration. The density-dependent migration of prey prevents
an overcapture of prey by predators. Hence density-dependent
migration regulates interactions between prey and predators
better, leading to a higher population density for both species.
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Fig. 3. Scheme of the return map (Poincaré map). A half straight line is chosen,
starting from the equilibrium point (transverse section). This line is parameterized
by a positive real number h (h = 0 at the equilibrium point). For each point h on this
line, the trajectory starting from h and defined by the system (2) turns around the
equilibrium and re-intersects the section, defining P(h). If P(h) < h, then the trajec-
tory approaches the equilibrium, while if P(h) > h, the trajectory is going away from
it. In the article, we consider a point x0(h0) and its image x1(P(h0)) given by the return
map.

Fig.4.Density-dependent case: the fixed point p* of the function C + h(p) increases.
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Appendix A

Given that the n-isocline is always positive for

p > 0, there exists a unique positive equilibrium point if and only

if the equation

admits a positive root. Let us denote

Since F(p) is decreasing and F(p) → –∞as p → ∞, there exists
a positive root if and only if F(0) > 0. In other words, the parame-
ter � = −kr k r1 20

~
( ) must be positive.

Appendix B
Let us rewrite the system (1) the following equivalent way:

To get a first-order approximation of the manifold, the method
consists in writing

and replacing n1 by this expression in (6). In particular, we obtain

We can also consider
dn
dr

1 as

which gives, since n f p n1
* ( )= ,

We now identify the terms of order (ε) in both formulae, which
gives

with

We finally obtain the following aggregated model:

Here, we see that if p = 0, for n ≠ 0, �n = 0 if and only if

n
k k
bkk

u kr=
+

−
~

( )
~

( )
( )

0
0 2 , so the non-isolated singularities along the

n-axis disappear with this development, and another positive
equilibrium can appear. Since the case � = 0 is minor and more
complex, we will not take it further in this study and this article.

Appendix C
If it exists, the non-trivial equilibrium point (n*, p*) verifies

The Jacobian matrix associated with the system is

Since

we then have
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