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Abstract. In this work, we introduce and evaluate a data
assimilation framework for gauged and radar altimetry-
based discharge and water levels applied to a large scale
hydrologic-hydrodynamic model for stream flow forecasts
over the Amazon River basin. We used the process-based
hydrological model called MGB-IPH coupled with a river
hydrodynamic module using a storage model for flood-
plains. The Ensemble Kalman Filter technique was used to
assimilate information from hundreds of gauging and al-
timetry stations based on ENVISAT satellite data. Model
state variables errors were generated by corrupting precip-
itation forcing, considering log-normally distributed, time
and spatially correlated errors. The EnKF performed well
when assimilating in situ discharge, by improving model
estimates at the assimilation sites (change in root-mean-
squared error1rms =−49 %) and also transferring informa-
tion to ungauged rivers reaches (1rms =−16 %). Altimetry
data assimilation improves results, in terms of water levels
(1rms =−44 %) and discharges (1rms =−15 %) to a minor
degree, mostly close to altimetry sites and at a daily basis,
even though radar altimetry data has a low temporal res-
olution. Sensitivity tests highlighted the importance of the

magnitude of the precipitation errors and that of their spa-
tial correlation, while temporal correlation showed to be dis-
pensable. The deterioration of model performance at some
unmonitored reaches indicates the need for proper charac-
terisation of model errors and spatial localisation techniques
for hydrological applications. Finally, we evaluated stream
flow forecasts for the Amazon basin based on initial con-
ditions produced by the data assimilation scheme and us-
ing the ensemble stream flow prediction approach where the
model is forced by past meteorological forcings. The result-
ing forecasts agreed well with the observations and main-
tained meaningful skill at large rivers even for long lead
times, e.g.> 90 days at the Solim̃oes/Amazon main stem.
Results encourage the potential of hydrological forecasts at
large rivers and/or poorly monitored regions by combining
models and remote-sensing information.
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1 Introduction

Land surface waters play an important role in global wa-
ter cycle and earth system, regulating freshwater discharge
from land into oceans (Oki and Kanae, 2006) and also
land-atmosphere exchanges of water, energy (Krinner, 2003;
Decharme et al., 2011) and gases such as methane (Gedney et
al., 2004). Moreover, it directly affects society that uses it for
drinking water and also transportation of people and goods,
agriculture and energy production from hydropower. More
specific to the Amazon basin, important extreme hydrologi-
cal events have occurred recently, for instance, the 2009 and
2012 floods and the 1996, 2005 and 2010 droughts (Chen et
al., 2010; Tomasella et al., 2010; Marengo et al., 2008, 2011;
Espinoza et al., 2011). These events caused several impacts
on local population that strongly depends on the rivers and
is very vulnerable to floods since most settlements lie along
the rivers.

In situ measurements of river stage and discharge at stream
gauges are the most conventional alternative for monitor-
ing surface waters, although observation networks are rather
sparse at several regions such as the Amazon River basin. Al-
ternatively, radar altimetry techniques have been developed
in past years to monitor water levels (e.g. Santos da Silva
et al., 2010; Alsdorf et al., 2007) or discharges using rating
curves (e.g. Leon et al., 2006; Papa et al., 2010a; Getirana
and Peters-Lidard, 2013). If compared to in situ gauges in
remote regions, these satellite instruments can provide ob-
servations with much better spatial coverage, but with worse
temporal sampling. Moreover, the forthcoming Surface Wa-
ter and Ocean Topography (SWOT) mission (Durand et al.,
2010a) is designed to provide high resolution images of in-
land water surface elevation, including rivers, lakes, wetlands
and reservoirs, using a swath mapping radar altimeter with
high frequency repeat orbit. Additionally, it may also be pos-
sible to derive discharge estimates from SWOT data by using
specially developed algorithms (e.g. Durand et al., 2010b).

In contrast, there are several efforts on hydrological mod-
elling to simulate processes as river and floodplain dynamics
in large river basins such as the Amazon (Paiva et al., 2013a,
b; Yamazaki et al., 2011; Getirana et al., 2012; Decharme et
al., 2011; Coe et al., 2008; Wilson et al., 2007; Trigg et al.,
2009). These models can potentially provide detailed infor-
mation on surface waters, both spatially and temporally, but
such estimates are somehow imperfect due to uncertainty in
model structure, parameters and forcing data (Liu and Gupta,
2007).

Data assimilation (DA) methods are an alternative to op-
timally merge uncertain model predictions with both in situ
and the newly remote-sensing observations of surface waters.
The aim of DA techniques is to “produce physically consis-
tent representations or estimates of the dynamical behaviour
of a system by merging the information present in imper-
fect models and uncertain data in an optimal way to achieve
uncertainty quantification and reduction” (Liu and Gupta,

2007). Such methods can also be used to estimate balanced
initial states of hydrological models for forecasting the afore-
mentioned extreme events. There are already some hydrolog-
ical regional/global forecast systems founded on physically-
based hydrological models (e.g. Wood et al., 2002; Thielen
et al., 2009; Alfieri et al., 2013), and also several physical
modelling experiments in the Amazon basin, as previously
mentioned. However, current attempts for developing hydro-
logical forecasts in this particular basin are mostly based on
statistical methods (e.g. Uvo and Grahan, 1998; Uvo et al.,
2000). Furthermore, Paiva et al. (2012) showed that, for lead
times up to 3 months, uncertainty of initial conditions plays
a major role for discharge predictability on main Amazonian
Rivers, if compared to the importance of precipitation forc-
ing, suggesting the importance of DA techniques for stream-
flow forecasts in this region.

Research on data assimilation applied to hydrology has
increased in past years with various applications utilising
Kalman filters (e.g. the Ensemble Kalman Filter – EnKF,
developed by Evensen, 2003), particle filters or variational
methods, as extensively reviewed in Liu and Gupta (2007),
Reichle (2008) and Liu et al. (2012). These applications in-
clude a wide range of observations, both in situ and remotely
sensed, data assimilation methods and models representing
different hydrological processes, at different spatial scales
and with several objectives, such as: the assimilation of snow
(Andreadis and Lettenmaier, 2006) and soil moisture (Re-
ichle et al., 2002) data into land surface models using the
EnKF; assimilation of in situ water level measurements into
a small scale 1-D hydrodynamic model for flood forecast us-
ing Kalman filtering methods (Neal et al., 2007; Ricci et al.,
2011); assimilation of synthetic SWOT data into hydrody-
namic models at restricted areas using the EnKF and some
variations (Biancamaria et al., 2011; Andreadis et al., 2007;
Durand et al., 2008); assimilation of discharge data into dis-
tributed hydrological models (Clark et al., 2008; McMillan et
al., 2013; Lee et al., 2012; Thirel et al., 2010; Rakovec et al.,
2012) using the EnKF or variational methods; simultaneous
assimilation of soil moisture and discharge data into a dis-
tributed hydrological model using variational DA (Lee et al.,
2011); assimilation of radar altimetry data of reservoir water
levels using the EnKF (Pereira-Cardenal et al., 2011); devel-
opment of a modelling platform (Land Information System –
LIS) to merge multiple in situ and remotely sensed observa-
tions with land surface models (Kumar et al., 2008); merg-
ing water levels information derived from a satellite Syn-
thetic Aperture Radar (SAR) image and digital terrain model
(DTM) with a 1-D hydrodynamic model for estimating river
discharge (Neal et al., 2009); assimilation of water levels de-
rived from SAR images and DTMs into hydrodynamic mod-
els using variational (Hostache et al., 2010) or particle fil-
ter (Matgen et al., 2010; Giustarini et al., 2011) methods;
assimilating water levels and surface velocity derived from
floaters monitored by global navigation satellite systems into
hydrodynamic models (Hostache et al., 2011); among others.

Hydrol. Earth Syst. Sci., 17, 2929–2946, 2013 www.hydrol-earth-syst-sci.net/17/2929/2013/
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Although there is an extensive bibliography on hydrological
data assimilation, the current state of the art regional/global
hydrological prediction systems (e.g. Thielen et al., 2009;
Alfieri et al., 2013) still do not incorporate advanced data as-
similation systems for updating model initial states. Also, the
assimilation of discharge and water levels from in situ and re-
motely sensed observations into regional/global hydrologic-
hydrodynamic models is still uncommon.

In this paper, we present the development and evaluation
of a data assimilation framework for both gauged and radar
altimetry-based discharge and water levels into a large scale
hydrologic-hydrodynamic model of the Amazon River basin
using the EnKF. We also explore the usefulness of such sys-
tem to provide streamflow forecasts when forced by past re-
motely sensed precipitation data and based mostly on model
initial conditions. This paper is in the context of recent de-
velopments of techniques for integrating information from
hydrological models with newly remotely sensed data such
as the forthcoming SWOT mission and also in the context
of regional/global hydrological forecast systems including
large, poorly gauged river basins. Through our experimen-
tal results, we explore questions such as: is an EnKF-based
DA scheme feasible for assimilating discharge and water
level data into large scale hydrologic-hydrodynamic mod-
els? Is it able to improve discharge and water level estimates
at sites where data were assimilated and also at ungauged
rivers? Does the assimilation of radar altimetry data also im-
prove model estimates at large river basins, considering that
it has lower temporal resolution and accuracy if compared to
gauged in situ data? Would it be possible to provide accu-
rate streamflow forecasts at large basins such as the Amazon
using a large scale hydrologic-hydrodynamic model based
mostly on the initial hydrological states gathered by the DA
scheme? At which spatial and temporal scales?

2 Methods

2.1 The hydrologic-hydrodynamic model

We used the MGB-IPH model (Collischonn et al., 2007),
which is a large scale, distributed and process-based hy-
drological model with a hydrodynamic module described in
Paiva et al. (2011). It simulates surface energy and water bal-
ance and also discharge, water level and flood inundation on
a complex river network. Vertical hydrological processes in-
clude soil water budget using a bucket model, energy budget
and evapotranspiration using the Penman Monteith approach,
and also surface, subsurface and groundwater flow genera-
tion, among others. The flow generated within each catch-
ment is routed to the stream network using a linear reservoir
type model. River flow routing is performed using a com-
bination of either a Muskingum-Cunge (MC) method or a
hydrodynamic model (HD).

The hydrodynamic model of MGB-IPH (Paiva et al., 2011)
solves the full 1-D Saint-Venant equations for the river net-
work and flood inundation is simulated using a simple model
assuming that the floodplains act only as storage areas. River-
floodplain parameters (river width, bottom levels, roughness
coefficient, floodplain bathymetry) are estimated using GIS-
based algorithms from the Shuttle Radar Topography Mis-
sion (SRTM) Digital Elevation Model (DEM) (Farr et al.,
2007) and using geomorphological relations.

2.2 The Ensemble Kalman Filter

The goal of data assimilation is to combine the uncertain and
complementary information from measurements and simu-
lation models into an optimal estimate of the hydrological
fields of interest, providing a general framework for dealing
with uncertainty from measurements and also from model
inputs, structure and outputs (Reichle, 2008; Liu and Gupta,
2007; Liu et al., 2012; Vrugt et al., 2005).

A great part of the hydrological applications of data as-
similation methods uses schemes based on the Kalman fil-
ter (Kalman, 1960), specially the Ensemble Kalman Filter
(Evensen, 2003, 2009), which is also used in this study and
is briefly described below. The model representing the dy-
namics of the simulated system can be shown in a discrete
form by the process equation:

xk+1 = M (xk,uk,θ) + qk (1)

wherex represents the state variables and,u andθ represent
model forcings and parameters respectively,M is the nonlin-
ear model operator that relates model states from time inter-
val tk to tk+1 = tk + 1t , andqk represents errors in model
structure, parameter, forcings and antecedent states. In this
study,x is a vector composed by all MGB-IPH state vari-
ables, i.e. soil moisture, storage and discharge from sur-
face, subsurface and groundwater reservoirs, soil tempera-
ture, canopy storage and river discharge and water level. The
measurement equation is defined by:

yk = H(xk) + εk (2)

wherey is observation vector,ε is the vector of observation
errors andH is the observation operator which relates the
model state variables vectorx to the observations vectory.
In our case, observations are river discharges or water levels
at selected sites.

In the context of forecast systems and sequential data as-
similation methods, at each time interval, the model is in-
tegrated in time using Eq. (1) to provide a short-term fore-
cast (or background)xf

k+1 and whenever an observation is
available, the forecast errors (called model innovations) are
computed as (yk+1–H(xf

k+1)). Therefore, the goal of data
assimilation is to obtain an optimal estimate of model state
variablesxa (called analysis) given model and observation
errors. In the case of the original Kalman Filter (Kalman,

www.hydrol-earth-syst-sci.net/17/2929/2013/ Hydrol. Earth Syst. Sci., 17, 2929–2946, 2013
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1960), the DA problem is solved using a linear estimator as-
suming that (i) model and observation operators (MandH)

are linear; (ii) observation errors are unbiased and both tem-
porally and spatially uncorrelated; (iii) model errors are unbi-
ased and temporally uncorrelated; and (iv) there is no corre-
lation between model and observation errors. Consequently,
an unbiased and minimum variance estimate of model states
is obtained by:

xa
= xf

+ K
(
y − Hx f

)
(3)

K = PfHT
[
HPfHT

+ R
]−1

(4)

whereK is the Kalman gain,P is the covariance of model er-
rorsq, andR is the covariance of measurement errorsε. The
Kalman filter also provides the maximum likelihood solu-
tion of the DA problem when model and measurement errors
are assumed to be also Gaussian. However, the applicability
of the KF is limited since most hydrological systems exhibit
nonlinear dynamics (Liu and Gupta, 2007) and the assump-
tions about model errors (e.g. Gaussian, unbiased, among
others) are not always valid. Moreover, both the original KF
and also its nonlinear version, the Extended KF (EKF), have
additional drawbacks when applied in large and complex sys-
tems with lots of state variables (e.g. distributed hydrological
models) due to extra programming and heavy computational
requirements associated with the storage and forward inte-
gration of the error covariance matrixP (Vrugt et al., 2005).

Evensen (2003) presented the Ensemble Kalman Filter
(EnKF), which is a stochastic or Monte Carlo alternative for
the deterministic EKF (Evensen, 2009). In this method, en-
sembles of model states and/or observations are generated
using a priori-known errors and by means of the model op-
eratorM, the algorithm generates an ensemble of model tra-
jectories from which the time evolution of model errors and
error covariance matrix can be sampled:

Pf ∼= Pf
e =

(
xf − xf

)(
xf − xf

)T

,

Pa ∼= Pa
e =

(
xa− xa

)(
xa− xa

)T
. (5)

Each ensemble member is then updated using the same anal-
ysis equation from the original KF (Eqs. 3 and 4). Alterna-
tively, efficient computational implementations of the EnKF
are presented in Evensen (2003, 2004 and 2009) (see http:
//enkf.nersc.no/ for Fortran codes) where the explicit compu-
tation and storage ofPf are not required. We used the square
root scheme presented in Evensen (2004, 2009) where the
perturbation of measurements is not performed, in order to
reduce sampling errors.

For linear systems and with large ensemble sizes, the
EnKF provides the same solution as the KF method. How-
ever, it is noteworthy that it does not fully take into account
non-Gaussian errors nor solve the Bayesian update equation
for non-Gaussian probability distribution functions. Still, it is

a computational efficient analysis scheme for nonlinear mod-
els that provides a satisfactory solution, although it is subop-
timal, that somehow lies between a linear Gaussian update
and a full Bayesian computation (Evensen, 2009). Also, the
advantage of the EnKF is that it can be easily implemented
in any mathematical model, e.g. it does not require the devel-
opment of a particular adjoint model as the variational meth-
ods, and it usually requires smaller ensemble sizes, and con-
sequently less computational effort, if compared to particle
filter methods (Liu et al., 2012).

2.3 Uncertainty in precipitation forcing

We perturbed model states variables by adding a noise in pre-
cipitation forcing, considering (i) that this is the most un-
certain model input (Liu et al., 2012) and possibly the most
important source of model uncertainty and (ii) that this is a
proper method to generate physically coherent model errors.
A similar approach performed satisfactorily in other hydro-
logical applications of DA methods such as Andreadis and
Lettenmaier (2006) and Biancamaria et al. (2011). Precipita-
tion values were corrupted using a log-normally distribution
as presented by Nijjsen and Lettenmaier (2004) and also ap-
plied by Andreadis and Lettenmaier (2006):

Pc =
1+ β

√
E2 + 1

exp

(√
ln

[
E2 + 1

]
s

)
P (6)

wherePc [mm1t−1] is the perturbed daily precipitation,P
[mm1t−1] is the unperturbed daily precipitation,E is the
relative error [%],β is the relative bias ands ∼ N (0,1) is
a normally distributed and spatially correlated random vari-
able with zero mean and unit variance. Spatially correlated
pseudo random fieldsw were generated by means of the al-
gorithm based on the two dimensional Fourier transform pre-
sented in Evensen (2003) (see http://enkf.nersc.no/ for For-
tran codes), having zero mean, unit variance and isotropic
covariance function decreasing to thee−1 value at the dis-
tanceτx called spatial decorrelation length. At each spatial
location, temporal correlation was also considered using the
following equation for simulating the time evolution of errors
(Evensen, 2003):

sk = αsk−1 +

√
1− α2wk−1 (7)

wherek is the time interval,sk is a sequence of time cor-
related errors with zero mean and unit variance (input for
Eq. 6) andα determines the time decorrelation of the stochas-
tic forcing, e.g.α = 0 generates a sequence of white noise
while α = 1 removes the stochastic forcing. The parameterα

is determined by:

α = 1−
1t

τt
(8)

whereτt is the temporal decorrelation length, that determines
thats decreases by the ratioe−1 after a time periodt = τt if
the stochastic termw is excluded.
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2.4 Measurement errors

Water level (z)and discharge (Q)observations errors were
modelled using the following relations:

zc = z + εz,εz ∼ N
(
0 , σ 2

z

)
(9)

Qc = Q + εQ,εQ ∼ N
(
0 ,

(
σQQ

)2
)

(10)

wherezc [m] andQc [m3 s−1] are the observations ofz[m]
andQ[m3 s−1], εz [m] andεQ [m3 s−1] are the normally dis-
tributed errors with parametersσz [m] andσQ [%] of z and
Q, respectively. The formulation of discharge errors allows
representing larger uncertainties for high stage levels than for
low flows due to uncertainties in discharge rating curves, as
pointed out by Clark et al. (2008). Alternatively, simulated
and observed discharges were also transformed into the log
space before the assimilation, following Clark et al. (2008).
In this case, observation errors were modelled by:

Qc = ε′
QQ,ε′

Q ∼ logN
(
1,σ ′2

Q

)
(11)

where nowε′
Q is a log-normally distributed error with unit

mean and standard deviationσ ′
Q [%], similar to Eq. (10).

At log space, standard deviation is given byσ ′
logQ =√

log
(
σ ′2

Q + 1
)
.

3 Experimental design

3.1 The Amazon River basin

The study area is the Amazon River basin, known as the
largest hydrological system of the world (∼6 million km2

of surface area) and contributing with∼ 15 % to the total
fresh water released into the oceans. The Amazon basin is
characterised by extensive seasonally flooded areas (Hess et
al., 2003; Papa et al., 2010b; Melack and Hess, 2010), which
store and release large amounts of water from the rivers and
consequently attenuate and delay flood waves in several days
or months (Paiva et al., 2013a, b; Yamazaki et al., 2011).
Also, complex river hydraulics are present, where the low
river slopes cause backwater effects that control part of river
dynamics (Meade, 1991; Trigg et al., 2009; Tomasella et
al., 2010; Paiva et al., 2013a, b). Additionally, this region
presents high precipitation rates (average∼ 2200 mm yr−1)

with high spatial variability and contrasting rainfall regimes
in the northern (rainfall peak at JJA) and southern (rain-
fall peak at DJF) parts of the basin, with more defined wet
and dry seasons occurring in southern and eastern regions
(Espinoza et al., 2009).

3.2 Model implementation

We used a MGB-IPH implementation on the Amazon basin
developed by Paiva et al. (2013b), as briefly described be-
low. The model was forced using meteorological data ob-
tained from the CRU CL 2.0 dataset (New et al., 2002)
and remotely sensed precipitation estimates from the TRMM
3B42 v6 product (Huffman et al., 2007), with spatial res-
olution of 0.25◦ × 0.25◦ and daily time step for a period
spanning 12 yr (1998–2009). The model parameters related
to soil water budget were calibrated using daily discharge
data from stream gauges (see next section for description of
gauged data). Then, the model was validated against daily
discharge and water level data from stream gauge stations,
water levels derived from ENVISAT satellite altimetry data
(Santos da Silva et al., 2010) (212 sites with 35-day repeat
orbit), monthly Terrestrial Water Storage from GRACE mis-
sion (Frappart et al., 2010, 2011) and monthly flood inun-
dation extent from Papa et al. (2010b). Simulations agreed
with observations, with relatively high Nash and Suttcliffe in-
dex (ENS) values:ENS> 0.6 in∼ 70 % of discharge gauges,
ENS> 0.6 in ∼ 60 % of the water level stations derived
from satellite altimetry,ENS= 0.71 for total flood extent and
ENS= 0.93 for terrestrial water storage.

Since this study aimed at applications of data assimilation
to hydrological forecasting, we also used a real time precip-
itation product to force the MGB-IPH model. We choose to
use the TRMM Merge product (Rozante et al., 2010), which
is a near to real time precipitation estimate based on TRMM
3B42RT (Huffman et al., 2007) merged with data from in
situ gauges and provided by the Brazilian centre for weather
forecasts and climate studies CPTEC (Centro de Previsão do
Tempo e Estudos Cliḿaticos), a division of the Brazilian Na-
tional Institute for Space Research INPE (Instituto Nacional
de Pesquisas Espaciais).

3.3 Discharge and water level observations

We evaluated the assimilation of three types of data: (1) in
situ discharge observations; (2) remotely sensed water levels
derived from the ENVISAT radar altimeter; and (3) remotely
sensed discharge estimates derived from radar altimetry wa-
ter levels and rating curves.

In situ daily discharge from 109 stream gauges were pro-
vided by the Brazilian agency for water resources ANA
(Agência Nacional daśAguas), the Peruvian and Bolivian
national meteorology and hydrology services SENAMHI
(Servicio Nacional de Meteorologı́a e Hidroloǵıa) and
the French ORE-HYBAM programme (Hydrologie, Bio-
geochimie and Geodynamique du Bassin Amazonien,http:
//www.ore-hybam.org). We also used stage data from 66
ANA gauge stations, but only for validation purposes.

Remotely sensed water levels were obtained from the EN-
VISAT satellite altimeter. The ENVISAT satellite has a 35-
day repeat orbit and an 80 km inter-track distance at the

www.hydrol-earth-syst-sci.net/17/2929/2013/ Hydrol. Earth Syst. Sci., 17, 2929–2946, 2013
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Equator. The database used is an extension of the one pre-
sented in Santos da Silva et al. (2010), consisting in 212
altimetry stations (AS – deduced from the intersection of a
satellite track with a water body) with water level time se-
ries for the 2002–2009 period. ENVISAT data selection tech-
niques preconized by Santos da Silva et al. (2010) result in
∼ 10 to 40 cm water level accuracy. Due to differences in
water levels datum reference, the comparisons between sim-
ulated and observed water levels were performed in terms of
anomalies, i.e. after removing the long-term average.

Altimetry-based discharge data was developed by Getirana
and Peters-Lidard (2013) for the Amazon basin. This dataset
was constructed using a rating-curve-based methodology de-
riving water discharge from ENVISAT altimetry data at 475
altimetric stations. The stage-discharge relations at each AS
were built based on satellite altimetry and outputs from a
global flow routing (GFR) scheme (Getirana et al., 2012).
A second experiment was performed by Getirana and Peters-
Lidard (2013) using observed discharges at gauge stations
to force the GFR scheme at downstream reaches. Validation
of the methodology against observed discharges at 90 sites
showed a mean relative error of 27 % for the experiment us-
ing in situ discharge within the GFR scheme. We assimilated
data only from the 287 ASs located downstream of a gaug-
ing station where the accuracy of discharge estimates from
Getirana and Peters-Lidard (2013) was generally better.

3.4 Parameters of the DA scheme

The first sensitivity experiments used the following standard
parameters of the DA scheme. Ensemble size of the EnKF
was set asN = 200. Precipitation fields were corrupted con-
sidering the following error parameters: precipitation relative
errorE = 25 %, and precipitation relative biasβ = 1.0 follow-
ing Andreadis and Lettenmaier (2006); temporal decorrela-
tion length of precipitation errorsτt = 10 days; and spatial
decorrelation length of precipitation errorsτx = 1.0◦, sim-
ilarly to Andreadis and Lettenmaier (2006) and Clark et
al. (2008). The parameter of water level measurements er-
ror was set asσz = 0.20 m, based on the accuracy of EN-
VISAT estimates provided by Santos da Silva et al. (2010).
We computed the mean relative error between in situ dis-
charge measurements and values provided by rating curves
at 87 gauging stations from the ANA database as a surrogate
of the discharge error parameterσQ. The median value of all
stations was 13 %, while Clark et al. (2008) used 10 % in its
DA experiments. Therefore, we choose to also useσQ = 10 %
for simplicity. We usedσQ = 27 % for assimilation of satel-
lite based discharge data, based on the error value found in
Getirana and Peters-Lidard (2013).

3.5 Data assimilation experiments

We performed three data assimilation experiments,
namely: (i) in situ discharge assimilation (Exp 1) (ii) Radar

altimetry assimilation (Exp 2) and (iii) Assimilation of
discharge series based on satellite altimetry (Exp 3).

In the first experiment, we tested: (Exp. 1a) the assim-
ilation of discharge from almost all gauge stations (80 %)
using a few of them for validation (20 %), where these sta-
tions where randomly chosen; (Exp. 1b) the assimilation of
only 12 stations (∼10 %) located at some of the major tribu-
taries to emulate the situation of using only telemetric stream
gauges for real time applications – we choose 1 or 2 stations
located at the downstream reach of the largest Amazonian
rivers; (Exp. 1c) the assimilation of discharge from almost
all gauge stations, similar to (Exp. 1a), but without trans-
forming discharge into the log space (Sect. 2.4.). Moreover,
we explored the sensitivity of the DA scheme to some of its
parameters, namely the ensemble sizeN , precipitation rela-
tive errorE and temporal and spatial decorrelation lengths of
precipitation errorsτt, andτx.

The second experiment (Exp. 2) evaluated the assimilation
of ENVISAT radar altimetry water level anomalies from all
altimetry stations. Stage data from all in situ gauges were
used for model verification. Simulations were also compared
in terms of discharge using in situ data to evaluate the impact
of water level assimilation in discharge estimates.

In the third experiment (Exp. 3), we assessed the assimila-
tion of discharge derived from radar altimetry water level at
all altimetry stations. Discharge data from all stream gauges
were used for verification.

In all cases, simulations started in 1998 and ran to 2002 for
model spin-up. The year of 2003 was used for the spin-up of
the DA scheme, where no update was performed in the first
months allowing the system to develop a coherent correlation
structure, following Andreadis and Lettenmaier (2006). To
access the DA scheme performance, model simulations us-
ing (EnKF simulation) and not using (Open-loop simulation)
data assimilation were compared. Results were evaluated for
the two year period 2004–2005 by means of the following
model performance statistics that compare simulation results
with observations: (i) the Nash-Suttcliffe coefficientENS
ranging from−∞ to 1 (optimum) and (ii) changes in root-
mean-square error1rms= 100 (rms2–rms1)/rms1, ranging
from −100 % (optimum) to∞, where rms1 and rms2 are
root-mean-squared errors from Open-loop and EnKF simu-
lations, respectively. The period 2004–2005 was chosen for
its highest availability of in situ discharge and stage data to-
gether with altimetry data, and also because it contains an
important extreme hydrological event – the 2005 drought.

3.6 Prospects of streamflow forecasting

Hindcast streamflow forecasts were generated using an en-
semble streamflow prediction (ESP) approach (Day, 1985),
as described below. The model uses an estimate of initial
conditions derived from the DA scheme and runs forced
by an ensemble of observed meteorological data from past
years. An estimate of initial conditions is computed during
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the spin-up period using a hydrological model driven by ob-
served meteorological forcings, updated using data assimi-
lation of observations up to the time of forecast (e.g. fore-
cast starts with model states from 1 June of 2010). Then, an
ensemble forecast is obtained using observed meteorologi-
cal data resampled from past years (e.g. meteorological data
from 1 June to 1 September of years 1998, 1999,. . . , 2009).

Precipitation from TRMM Merge was used during spin-
up period, while during forecast the model was forced with
TRMM 3B42 data for the period spanning 12 years (1998–
2009) and, consequently, the forecast ensemble had 12 mem-
bers. The DA scheme used the configuration from Exp. 1b
where in situ discharge data were assimilated to update
model states before starting a forecast. ESP runs generated
decadal forecasts up to 90 days lead time and starting at every
1st, 10th and 20th day of the month for the two year period of
2004–2005. Aiming at exploring the usefulness of such sys-
tem to provide streamflow forecasts in future applications,
we chose to test it for a past period (2004–2005) where a
large amount of discharge data is available for verification.
For simplicity reasons, forecasts were evaluated only by de-
terministic means by averaging ensemble values into a single
forecast. We used the skill score SScli which compares the
performance of the model forecasts with a control forecast
based on climatology (Wilks, 2006):

SScli = 1−

∑
t

(Qt
obs− Qt

for)
2∑

t

(Qt
obs− Qt

cli)
2

(12)

wheret is the time interval,Qobs is daily discharge observed
at stream gauge stations,Qfor is forecasted discharge,Qcli is
the climatological value of discharge on dayt computed from
observations. SScli ranges from−∞ to 1 (optimum) and pos-
itive values show an improvement over a forecast based on
climatology.

4 Results and discussion

4.1 In situ discharge assimilation

We start our analysis evaluating the sensitivity of the DA
scheme performance to some of its parameters, as presented
in Fig. 1. The objective of such examination is to verify
which parameters are the most important ones and if the DA
performance is improved by using values of these parame-
ters that are different from the first guess ones based on pre-
vious studies (see Sect. 3.4.). The configuration of Exp. 1a
was used, where in situ discharge data were assimilated. Re-
sults were evaluated in terms of mean changes in root-mean-
squared error (1rms) between observed and simulated dis-
charges, computed for two samples, the first including stream
gauges used for data assimilation and the latter only the vali-
dation ones. Larger decreases in the rms error indicate better
performance of the DA scheme.

Fig. 1. Sensitivity tests of DA scheme parameters. Mean change
in root-mean-square error (1rms) for the assimilation (line with
stars) and validation (line with dots) stream gauges as function of
ensemble size (N), precipitation relative error (E)and spatial (τx)

and temporal (τt) decorrelation lengths of precipitation errors. First
guess values are represented by the black line.

According to the analysis, the DA scheme strongly de-
pends on the ensemble sizeN . Small N values produce
small improvements in discharge results and larger values
enhance the DA performance (smaller1rms values), al-
though the improvement rate is small forN values larger
than 150 members. Such behaviour is possibly due to nu-
merical reasons, since a largerN enable a better sampling of
model covariance errors from the ensemble, as discussed by
Evensen (2009). The DA scheme is also very sensitive to pre-
cipitation relative errorE and increasingE values improves
DA performance. However, ifE is larger than 50 %,1rms in-
creases in validation sites causing worse results (see Fig. 1).
Possibly, larger precipitation errors cause larger model uncer-
tainty and consequently the DA scheme gives more weight to
observations, but it starts to degrade model results at different
locations after some point. A moderate dependence to theτx
parameter was found and spatial correlation of precipitation
errors showed to be of importance, since the performance
degrades for smaller decorrelation lengths. The best results
were obtained for 1.5◦ for both the assimilation and valida-
tion samples. Finally, a weak sensitivity to theτt parameter
was found, which indicates that considering temporal cor-
relation in precipitation errors is not as important as spatial
correlation.

Based on the sensitivity tests, we used the following new
parameter values for the further experiments:N = 200 (un-
changed),E = 50 %,τx = 1.5◦ andτt = 10 days (unchanged).
However, it is noteworthy that these parameter values related
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Fig. 2. Evaluation of in situ discharge assimilation. Spatial distribution of change in root-mean-square error (1rms) in stream gauges used
for data assimilation (circles) and validation (squares) considering the assimilation of(a) almost all gauges (Exp. 1a),(b) only 12 gauges
(Exp. 1b) and(c) almost all gauges but without log transformation (Exp. 1c).

Table 1.Summary of the performance of in situ discharge data assimilation (Exp. 1): median Nash and Suttcliffe index (ENS) in simulation
(Open-loop) and assimilation (EnKF) modes and mean change in root-mean-square error (1rms).

Exp.1ab Exp. 1bc Exp. 1cd

Sites ENS 1rms(%) ENS 1rms (%) ENS 1rms (%)

All
Open-loop 0.68 – 0.68 – 0.68 –
EnKF 0.93 −42 0.72 −8 0.85 −25

Assimilation
Open-loop 0.71 − 0.89 − 0.71 –
EnKF 0.94 −49 0.98 −51 0.88 −29

Validation
Open-loop 0.60 − 0.65 − 0.60 –
EnKF 0.73 −16 0.67 −3 0.67 −10

Large riversa
Open-loop 0.79 – 0.79 – 0.79 –
EnKF 0.94 −34 0.87 −23 0.95 −40

a Streamgauges located at rivers reaches with upstream drainage area larger than 105 km2. b Exp. 1a – data assimilation
using discharge from 80 % of the stream gauges.c Exp. 1b – data assimilation using discharge from 10 % of the stream
gauges.d Exp. 1c – equal Exp. 1a but without transforming discharge into the log space.

to precipitation errors, although providing better results for
data assimilation, may not realistically represent errors in
the TRMM Merge dataset. For example, Tian and Peters-
Lidard (2010) developed a global map of errors in daily
satellite-based precipitation estimates that show features not
represented here: errors that are spatially and seasonally vari-
able and that decrease with precipitation rate (from∼ 100 %
at 1 mm d−1 to∼ 20 % at 100 mm d−1 in South America). On
the other hand, the DA scheme had better performance with
E = 50 %, which is only slightly larger than the values found
by Tian and Peters-Lidard (2010) for the Amazon region, that
ranges from∼ 20 % to∼ 70 %. A possible explanation is the
consideration of that model uncertainty coming from precip-
itation errors and neglecting other sources such as parameter
and model structural errors (Liu and Gupta, 2007), making
E larger. Therefore, and since the first guess values were not
fully justified in the previous studies (Andreadis and Letten-

maier, 2006; Clark et al., 2008), we preferred to use the pa-
rameter values where the DA scheme performs better.

We first evaluate results from the Exp. 1a. The DA scheme
improves results by decreasing model errors in almost all
stream gauges (blue sites in Fig. 2a), including both assimi-
lation and validation sites. On average,ENS values increase
from 0.71 to 0.94 and the rms error decreases by 49 % (Ta-
ble 1). For example, at an assimilation site located on the
Negro River (Fig. 3a), when the EnKF is used, the discharge
estimates are much closer to observations if compared with
the open-loop simulation. TheENS index increases from
0.62 to 0.91 and the rms error decreases by 51 %. Simi-
larly, results also improve at validation sites, although with
a smaller degree, and theENS index increases from 0.60 to
0.73, with a reduction in rms error of−16 % (Table 1), as
illustrated at a validation site located at upper Juruá River
basin (Fig. 3b). Such results demonstrate that the DA scheme
improves model discharge estimates, not only at sites where
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Fig. 3.Discharge derived from in situ observation (blue line), open-loop simulation (black line) and EnKF simulation (red line) at(a) Negro
River (assimilation site, Exp. 1a),(b) upper Jurúa River (validation site, Exp. 1a),(c) lower Jurúa River (validation site Exp. 1b) and upper
Jurúa River (assimilation site, Exp. 1c). Site are indicated Fig. 2.

data were assimilated but possibly at ungauged rivers reaches
as well.

In Exp. 1b, results improve at assimilation sites –ENS
increases from 0.89 to 0.98 and the rms error decreases
by 50 % (Table 1). However, since data from only a few
gauges were assimilated, there is no important improvement
(1rms= −3 %) if all validation sites are examined together.
As expected, according to Fig. 2b the DA scheme improves
discharge estimates mostly at large rivers (e.g. Fig. 3c),
whereENS increases from 0.79 to 0.87 while1rms equals
−23 %. But at smaller rivers, in most cases the DA scheme
has minor effect on simulated discharges (green squares at
Fig. 2b) or in some cases it degrades results.

In previous studies conducted over smaller basins (e.g. in
Clark et al., 2008; and in others summarised by Lee et al.,
2012), the attempt to transfer information to neighbour or
upstream ungauged river reaches was unsuccessful and cor-
rupted model results, while in our case (Exp. 1b) the DA
scheme degraded model outputs mostly at smaller basins and
improved results at larger rivers. Such behaviour possibly
happens because the state estimation in distributed hydrolog-
ical models is subject to overfitting due to the large dimen-
sionality of the model state space, and consequently, when
limited data is available, the data assimilation may update
state variables at some lumped fashion such as the sub-basin
scale, as explained by Lee et al. (2012).

Finally, we compare the use (Exp. 1a) or not (Exp. 1c) of
the transformation of discharge values into the log space be-
fore data assimilation. The performance of the DA scheme
degrades if the log transformation is not used, and in this
case1rms increases to−29 % and−10 % for the assim-
ilation and validation samples respectively, instead of the
−49 % and−16 % values obtained in the Exp. 1a. Clark et
al. (2008) argue that the EnKF with log transformation per-
forms better because relationships between streamflow and
model states are nonlinear and state updates are exception-
ally large when differences between model and observed val-
ues are high. However, the worst performance was observed
mostly at smaller river reaches (see Fig. 2c) as illustrated in
Fig. 3c. Also, DA performs better at gauging stations in large
rivers and1rms increases from−34 % (Exp. 1a) to−40 %
(Exp. 1c). Apparently, when the log transformation is not
used, the DA scheme gives more weight to large discharge
values (∼103 to ∼ 105 m3 s−1) at large rivers while observa-
tions at the smaller ones (<∼ 103 m3 s−1) are not fully taken
into account. These results indicate the importance of using
the log space transformation also to deal with very different
discharge magnitudes, including the ones arising from dif-
ferent spatial scales but also concerning to flood and drought
flows.
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Fig. 4. Evaluation of ENVISAT radar altimetry data assimilation. Spatial distribution of change in root-mean-square error (1rms) at(a)
altimetry stations used for data assimilation and stream gauges with(b) stage and(c) discharge data used for verification.

4.2 Radar altimetry data assimilation

In this section, the assimilation of water levels derived from
ENVISAT altimetry is evaluated (Exp. 2). Stage and dis-
charge data observed at in situ gauging stations were used
for validation purposes.

The DA scheme improves water level simulations at al-
timetry stations used for assimilation (Fig. 4a), as illustrated
in Fig. 5a. On average, rms decreases by 56 % andENS val-
ues increase from 0.66 to 0.96 (Table 2). Simulated water
level accuracy also increases when compared to in situ stage
data (1rms= −13 %). However, the improvement is more
evident if only gauging stations located at rivers where al-
timetry data were examined (Figs. 4b and 5b). In this case,
mean1rms equals−43 % andENS changes from 0.75 to
0.94 (Table 2), similar to what was obtained at altimetry sta-
tions. At other sites, the DA scheme has a minor effect on
simulated water levels or even degrades results in some cases.

Similar results were found for the in situ discharge val-
idation sample (Fig. 4c). Assimilating water level data im-
proves discharge estimates (1rms= −15 %) mostly at the
same rivers in which altimetry data is available (e.g. Fig. 5c).
But it also degrades results at some of the other river reaches.
The minor improvement of discharge estimates when wa-
ter levels are assimilated may related to the fact that water
level errors are not only related to stream flow or precipita-
tion errors, but also to river-floodplain geometry parameters,
as discussed by Paiva et al. (2013b). But this kind of model
uncertainty was not considered by the DA scheme. Conse-
quently, at river reaches where the model already provided
accurate discharge estimates but wrong water level results,
altimetry data assimilation corrects water levels but it can
degrade discharge results. Some possible alternatives to im-
prove model discharge results from radar altimetry assimila-
tion could be: (i) the simultaneous assimilation of discharge
and water level data; (ii) the assimilation of altimetry-based
discharge data (tested in Sect. 4.3); (iii) representing the un-
certainty of model parameters (e.g. river-floodplain geome-

try) in the DA scheme; (iv) assimilation of altimetry data
to first retrieve better river-floodplain geometry parameters
(e.g. Durand et al., 2008, 2010b); or (v) assimilation future
SWOT data (Durand et al., 2010a), that will provide addi-
tional information such as water surface slope.

Furthermore, the DA scheme can degrade results in some
reaches where no data were assimilated. Such a problem is
possibly caused by spurious correlations in the model co-
variance matrix from the EnKF due to a poor sampling from
the ensemble. Aiming to avoid spurious correlations, meth-
ods such as covariance localisation or local analysis (Sakov
and Bertino, 2010) could be used to constrain the influence
of observations based on distance criteria as already used in
atmospheric or ocean applications. However, in our view, a
particular localisation criteria should be developed for hydro-
logical applications, since the correlation between the model
states can be a function of an Euclidean distance in some
cases (e.g. soil moisture) or in others, of a distance measured
following the rivers’ path (e.g. river discharge and water lev-
els).

Results from this experiment demonstrate that the assimi-
lation of radar altimetry data into large scale hydrologic mod-
els can improve simulations, mainly in terms of water levels
but also in discharge to a minor degree. Even though EN-
VISAT data is provided at a 35 day temporal resolution, its
assimilation can improve model results at a daily basis as il-
lustrated in Fig. 5b and c possibly due to the low temporal
variability of Amazonian hydrographs and the fact that EN-
VISAT measurements are non-simultaneous.

4.3 Assimilation of discharge series based on satellite
altimetry

In the last DA experiment (Exp. 3), we evaluate the assimi-
lation of discharge data derived from ENVISAT water level.
Therefore, the data assimilated into the model has the same
high spatial coverage and low temporal sampling as altime-
try water levels have, but it also contains discharge informa-
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Table 2.As Table 1 but for Exp. 2.

Sites ENS 1rms(%)

All

Radaraltimetry – Assimilation
Open-loop 0.66 –
EnKF 0.96 −56.0

In situ stage – Validation
Open-loop 0.64 –
EnKF 0.74 −13

In situ discharge – Validation
Open-loop 0.68 –
EnKF 0.68 1

InsideENVISAT
In situ stage – Validation

Open-loop 0.75 –
EnKF 0.94 −44

domaina In situ discharge – Validation
Open-loop 0.79 –
EnKF 0.86 −15

a Upstreamand downstream at least one altimetry station.

Table 3.As Table 1 but for Exp. 3.

Sites ENS 1rms(%)

All
Altimetry discharge – Assimilation

Open-loop 0.62 –
EnKF 0.79 −23

In situ discharge – Validation
Open-loop 0.68 –
EnKF 0.72 −5

InsideENVISAT In situ discharge – Validation
Open-loop 0.76 –

domaina EnKF 0.80 −15

a Upstreamand downstream at least one altimetry station.

tion which is the most important hydrological variable of the
model. In situ discharge data were also used for validation.

The DA scheme was able to assimilate altimetry-based
discharges increasing the agreement between these obser-
vations and model results in most of the altimetry stations
(Fig. 6a), as exemplified in Fig. 7a. In average, the rms er-
ror between altimetry-based discharges and model results
decreased 23 % (Table 3), which represents a smaller im-
provement if compared to the assimilation of in situ dis-
charge (1rms= −49 % in Exp. 1a). Since observation er-
rors are larger in the altimetry-based discharges, the DA
scheme gives more weight to background model results and
updated discharge values are not so close to measurements.
The comparison of model results with in situ discharge data
(Fig. 6b) shows that errors decrease mostly at gauging sta-
tions located at rivers where altimetry data were assimi-
lated (e.g. Fig. 7b). At these sites,ENS changes from 0.76
to 0.80 and the mean1rms is −14 % (Table 3), which is
comparable to the improvement obtained in the altimetry
data assimilation (Exp. 2, Table 2) over discharge results
(1rms= −15 %), but smaller than the enhancement of water
level results (1rms= −44 %). Moreover, similarly to Exp. 2,
at gauging stations located outside the assimilation domain,

the DA scheme has a minor effect on simulated discharge or
degrades results in some cases.

Results from this section show the potential of assimilating
discharge data derived from satellite altimetry into large scale
hydrological models instead of in situ discharge or satellite
water levels, even though such data has lower temporal res-
olution and accuracy if compared to data gathered at in situ
gauging stations.

4.4 Prospects of streamflow forecasting

We now assess the potential of a large scale hydrologic-
hydrodynamic model coupled with a DA scheme to pro-
vide streamflow forecasts in the Amazon basin. Since hydro-
logical initial states governs discharge predictability at the
large Amazonian rivers (discussed by Paiva et al., 2012), we
have chosen to generate forecasts starting with initial states
gathered by the DA scheme and then using the ensemble
streamflow prediction approach – ESP (Day, 1985), where
the model is run forced by an ensemble of observed meteo-
rological data from past years. Since this is a first attempt, we
have chosen to evaluate forecasts using only the DA scheme
configuration from Exp. 1b, where the model is updated us-
ing discharge data from 12 gauging stations located on the
Amazon and its main tributaries.
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Fig. 5. Observation (blue line), open-loop simulation (black line)
and EnKF simulation (red line) at(a) Japuŕa River altimetry site,(b)
Madeira River in situ stage site(c) Solimões River in situ discharge
site. Sites are indicated in Fig. 4.

We first evaluate hindcast forecasts at the
Solimões/Amazon main stem, including upper Solimões
River at Tamishiyacu, Solim̃oes River at Manacapuru and
Amazon River atÓbidos (Fig. 8). Notice that these gauges
were used by the DA scheme. The model was able to
forecast discharges with relatively high accuracy even for
very large lead times (90 days). In all cases, forecasts are
markedly better than simply using discharge climatology,
as shown by positive values of SScli skill score (Fig. 8).
As expected, the agreement between model values and

Fig. 6. Evaluation of ENVISAT radar altimetry discharge assim-
ilation. Spatial distribution of change in root-mean-square error
(1rms) at(a) altimetry stations used for data assimilation and(b)
stream gauges with discharge data used for validation.

observations decreases as function of lead time and, for
example, SScli decreases from 0.90 to 0.49 for forecasts 10
and 90 days ahead atÓbidos station. But it remains very
high, showing that it would be possible to produce accurate
forecasts at the Amazon main river for even larger lead
times. Model performance also increases from the upper to
the lower part of the Solim̃oes/Amazon River, and at the
same time, the spread of the ESP ensemble at large lead
times increases upstream and decreases downstream. Such
behaviour is explained by the fact that in larger rivers, the
hydrological predictability is much more influenced by the
current volumes of water stored upstream than by future
precipitation forcing, as discussed by Paiva et al. (2012).

Analysis from Fig. 8 also demonstrates that the model
successfully predicted the severe 2005 drought at the
Solimões/Amazon main stem. At this year, discharges
dropped∼ 1 month earlier than normal (Fig. 8) and river lev-
els fell to historically low levels causing navigation to be sus-
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Fig. 7. Observation (blue line), open-loop simulation (black line)
and EnKF simulation (red line) of discharge at(a) Negro River al-
timetry site and(b) Jurúa River in situ site. Sites are indicated in
Fig. 6.

pended (Marengo et al., 2008). Even so, the model was able
to predict this low flows∼ 90 days ahead.

We now evaluate forecasts at gauging stations located all
over the Amazon basin. Forecasts for a smaller lead time of
5 days or even 15 days (Fig. 9a and b) were relatively ac-
curate with positive SScli values at several gauging stations
located at both upstream and downstream rivers. However,
the quality of the forecasts decreased as a function of lead
time (30 and 90 days, Fig. 9c and d). It becomes very poor
at smaller rivers and remains meaningful with positive SScli
values mainly at gauging stations with large draining areas.
For 90 days lead time, SScli index remains positive at almost
all stations along the Solim̃oes/Amazon main stem and in
some of the main tributaries. This behaviour is also illus-
trated at Fig. 10. SScli values are usually higher at gauging
stations located in rivers draining large areas and decrease
with lead time. For instance, if only stations gauging rivers
with drainage area larger than 105 km2 or 4× 105 km2 are
considered, on average, forecasts remain better than clima-
tology (SScli > 0) up to∼ 15 and∼ 25 days lead time, re-
spectively. On the other hand, if only the largest rivers are
taken into account (>106 km2), SScli values are high and al-
ways positive, which demonstrates the good performance of

Fig. 8. Evaluation of streamflow forecasts. Observed (blue), cli-
matological (black) discharges, ensemble forecasts (grey) together
with ensemble mean (red) at(a) Upper Solim̃oes River at Tamishiy-
acu, (b) Solimões River at Manacapuru and (c) Amazon river at
Óbidos. Presented forecasts started each 10 January, April, July and
October. Sites are indicated in Fig. 9.
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Fig. 9.Evaluation of streamflow forecasts. Spatial distribution of the skill score SScli for (a) 5, (b) 15, (c) 30 and(d) 90 days lead time.

the model forecasts. SScli is also high at stream gauges used
for data assimilation where forecasts are usually better, SScli
is close to one for small lead times, as expected, and becomes
negative after∼ 55 days.

5 Summary and conclusions

We presented the development and evaluation of a data as-
similation scheme for both gauged and satellite altimetry-
based discharge and water levels into a large scale
hydrologic-hydrodynamic model of the Amazon River basin
using the Ensemble Kalman Filter – EnKF. We also evaluated
hindcast forecasts based on this system using the ensemble
streamflow prediction approach, where the model was forced
by an ensemble of past precipitation forcing from TRMM
mission.

According to our results, the data assimilation scheme
performed well in assimilating in situ and remotely sensed
discharge and water levels into the large scale hydrologic-
hydrodynamic model. The assimilation of in situ discharge
showed that EnKF can improve discharge estimates at as-
similation gauges, but differently from previous studies at

smaller basins (e.g. Clark et al., 2008; and others summarised
by Lee et al., 2012), also transfer information to ungauged
rivers by improving results at validation sites, although with
a smaller degree. The assimilation of discharge data at a re-
duced number of gauging stations located at larger rivers im-
proves results mostly at the large reaches but it degrades re-
sults at some smaller basins. Also, the transformation of dis-
charge measurements into the log space proved to be impor-
tant to deal with very different discharge magnitudes arising
from different spatial scales or from contrasting flood and
recession flows.

The assimilation of satellite altimetry data improved
model water levels, and also discharges to a minor degree,
mostly at the same river reaches where altimetry stations
are located. Assimilating altimetry-based discharge also im-
proved model estimates, although to a minor degree if com-
pared to the in situ discharge assimilation, probably due
to the larger errors in remotely sensed observations. How-
ever, in both cases, even though radar altimetry data has low
temporal resolution (35 days), its assimilation can improve
model results at a daily basis, possibly due to its higher spa-
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Fig. 10.Median skill score SScli of stream flow forecasts at gauging
stations as function of lead time. Different curves show results con-
sidering gauges with different drainage areas (red and blue lines)
and only gauges used for data assimilation (black line with dots).

tial resolution and the low temporal variability of Amazonian
hydrographs.

The sensitivity analysis of the parameter from the DA
scheme highlighted the importance of the magnitude of pre-
cipitation errors and that of their spatial correlation, while
temporal correlation showed to be dispensable.

The deterioration of model performance at some unmoni-
tored reaches may be due to the large dimensionality of state
space in distributed hydrological models compared to the
available information. Consequently, data assimilation may
update state variables at some lumped fashion such as the
sub-basin scale, as explained by Lee et al. (2012). This prob-
lem can be also due to spurious correlations that can arise
by numerical reasons and could be avoided by using proper
spatial localisation methods (e.g. Sakov and Bertino, 2010)
developed for hydrological applications to constrain the in-
fluence of measurements. Additionally, the DA scheme could
benefit from a better characterisation of model errors, where
not only precipitation but other sources of uncertainty, such
as in model parameters and structure could be included, as
suggested by Liu et al. (2012).

Although limitations still exist, results are encouraging.
This kind of DA scheme could also be easily employed to
other similar regional/global scale hydrological models (e.g.
Yamazaki et al., 2011; Decharme et al., 2011; Alfieri et
al., 2013). It has also the potential to improve by assimilat-
ing remotely sensed water levels gathered by other satellite

missions as the existing ones, or the altimetry missions to
be launched in the coming years by the European Spatial
Agency ESA, namely the Sentinel-3 constellation and the
forthcoming SWOT mission (Durand et al., 2010a). More-
over, the altimetry-based discharge assimilation can improve
when better discharge estimates become available, such as
the ones under development for the future SWOT mission
(Durand et al., 2010b).

Finally, the model was able to provide relatively accurate
streamflow forecasts in the Amazon basin. For smaller lead
times (∼5 to 15 days), forecasts agreed with observations
in lots of gauging stations and for larger lead times (>30
days) they remained meaningful mostly at larger rivers. Fore-
casts were usually better at stream gauges used for data
assimilation, especially for smaller lead times. Along the
Solimões/Amazon main stem, forecast were highly accurate
even for very large lead times (90 days) and the model was
capable to successfully predict the record 2005 drought at
the Solim̃oes/Amazon River well in advance. These results
demonstrate the potential for developing stream flow fore-
casts with large lead times at the world’s large river basins,
such as the Amazon, founded on large scale hydrological
models based mostly on initial states gathered with proper
DA schemes, and using past climate with the ESP approach.
Also, results point to the potentiality of providing hydrolog-
ical forecasts at poorly monitored regions by using mostly
remotely sensed information.
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