
An Improved Method for TAL Effectors DNA-Binding
Sites Prediction Reveals Functional Convergence in TAL
Repertoires of Xanthomonas oryzae Strains
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Abstract

Transcription Activators-Like Effectors (TALEs) belong to a family of virulence proteins from the Xanthomonas genus of
bacterial plant pathogens that are translocated into the plant cell. In the nucleus, TALEs act as transcription factors inducing
the expression of susceptibility genes. A code for TALE-DNA binding specificity and high-resolution three-dimensional
structures of TALE-DNA complexes were recently reported. Accurate prediction of TAL Effector Binding Elements (EBEs) is
essential to elucidate the biological functions of the many sequenced TALEs as well as for robust design of artificial TALE
DNA-binding domains in biotechnological applications. In this work a program with improved EBE prediction performances
was developed using an updated specificity matrix and a position weight correction function to account for the matching
pattern observed in a validation set of TALE-DNA interactions. To gain a systems perspective on the large TALE repertoires
from X. oryzae strains, this program was used to predict rice gene targets for 99 sequenced family members. Integrating
predictions and available expression data in a TALE-gene network revealed multiple candidate transcriptional targets for
many TALEs as well as several possible instances of functional convergence among TALEs.
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Introduction

Transcription activator-like effectors (TALEs) belong to a family

of bacterial proteins initially identified in the Xanthomonas genus of

plant pathogens. TALEs are translocated into plant cells via the

bacterial type III secretion system (T3SS). They operate by

mimicking the activity of plant transcription factors and bind to

promoter regions of host plant genes. When TALEs contribute to

virulence, the induction of their cognate target gene, referred to as

a susceptibility gene, enhances the fitness of the bacteria in plant

tissues [1–3]. Occasionally, TALEs also specify incompatibility

(resistance) on certain plant host genotypes. This occurs by two

described mechanisms: either a TALE induces the expression of a

plant resistance gene, also termed executor gene (dominant

resistance), or a DNA polymorphism in the upstream region of a

TALE susceptibility gene prevents target site recognition (recessive

resistance) [1].

TALEs have highly conserved amino acid sequences containing

T3SS secretion and translocation signals in their N-terminal

region, a central DNA-binding domain, nuclear localization

signals and a transcriptional activation domain in their C-terminal

region [1,2]. TALEs differ mostly in their central region consisting

of a number (10–25) of tandemly arranged repeats of typically 34

amino acids each with hypervariable di-amino acids at positions

12 and 13, called RVDs (Repeat Variable Diresidues) [4,5]. The

binding of TALEs to DNA sequences is highly specific due to

unique combinations of RVDs. Individual RVDs selectively

associate with individual nucleotides depending on the nature of

the amino acids in the diresidue. For example, a TALE repeat

with the RVD ‘‘HD’’ (His and Asp at positions 12 and 13) binds

preferentially to cytosine [4,5]. Moreover, the sequence of RVDs

determines the preferred DNA sequence for binding in a co-linear

fashion. The elucidation of this TALE-DNA specificity ‘‘code’’

enabled the first predictions of TALEs binding sites in plant

genomes [4,5]. More recently, the crystal structures of TALEs

showed that their DNA-binding domain wraps around the DNA

double helix helicoidally with the RVDs in the innermost part of

the complex in close proximity with their cognate nucleotide on

the DNA molecule [6–9]. It was also shown that the two amino

acids in the RVD have different roles in the interactions. The first

amino acid in the RVD (the 12th in each repeat) does not directly

contact DNA but stabilizes the local conformation of the RVD

loop, while the second amino acid determines specificity by

interacting directly with the nucleotide via hydrogen bonds or van

der Waals interactions [7,9].
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The discovery of the TALE-DNA code was a milestone not only

in plant-pathology but also in biotechnology. By using the binding

specificities of the best characterized RVDs (HD2. C, NI2. A,

NG2. T, NN2. G, NS2. N) and taking advantage of the

modular nature of TALEs, researchers have been able to engineer

artificial TALE proteins with any desired specificity to induce the

expression of individual genes, not only in plants but also in other

eukaryotes [10]. Furthermore, the repeat regions of TALEs have

been fused with other protein domains of interest, notably

nucleases, thus allowing the specific editing of desired genomic

regions [10]. Custom TALE domains coupled with repressor

domains for specific transcriptional control have also been

engineered [11]. Some of these constructions are already being

used to produce improved phenotypes (e.g, disease resistance) in

plants and animals, and the potential applications of this

technology are remarkable [12–14].

The Xanthomonas genus comprises 27 species that collectively

cause major diseases on more than 400 plant hosts, including a

wide variety of economically important crops, such as rice, citrus,

banana, cassava, cabbage, tomato, pepper and beans [15]. There

are currently 104 Xanthomonas genome sequences available from 11

species (http://www.xanthomonas.org/) and this number is likely

to increase dramatically in the near future. Xanthomonas strains

harbor quantitatively and qualitatively different repertoires of

TALEs, and the total number of sequenced TALEs available in

databases reaches roughly 100 (http://www.xanthomonas.org/).

Despite great advances in TALE-based biotechnology, the

collective role of TALEs during infection has not been

systematically investigated and only a few transcriptional targets

have been validated in host plants [4,5,16–21]. Yet, the ability to

predict binding sites for TALEs is key to a better understanding of

the disease process and to develop genetic resistance strategies

which are greatly needed considering the impact of Xanthomonas on

agriculture worldwide [22].

Currently, a single TALE target prediction algorithm based on

the published TALE-DNA code [5] has been released and is

available in the TALE-NT suite [23]. Despite its ability to

correctly identify previously unknown targets of some TALEs [5],

it fails to detect the genuine targets of others (see Results section).

This is particularly true for several TALE-target pairs that exhibit

RVD-nucleotide association patterns deviating from expected

matches based on the documented specificities [5,16]. The effects

of such imperfect RVD-nucleotide pairings on TALE activity still

remain elusive and therefore represent an obstacle for the accurate

prediction of TALE Effector Binding Elements (EBEs).

In this work, we used the available literature on TALE-RVD

specificities from experimentally validated TALE-DNA interac-

tions to develop new programs for TALE binding sites prediction.

Our software outperformed the TALE-target finder module of the

TALE-NT suite in differentiating positive and negative TALE-

DNA interactions. It was subsequently employed to predict rice

microarray data-supported new binding sites for TALEs from

various X. oryzae strains. Because we had access to TALE

repertoires of both the xylem vessel-associated X. oryzae pv. oryzae

(Xoo), the causative agent of the bacterial leaf blight, and the

mesophyll-associated X. oryzae pv. oryzicola (Xoc), the causative

agent of the bacterial leaf streak, we could also compare the plant

candidate target sets of these pathovars with contrasting tissue

specificity. The resulting predictions reveal a putative network for

TALE-gene interactions with several examples of functional

convergence within and across strains.

Results

New Approaches for EBE Predictions that use a Modified
RVD-nucleotide Association Matrix

In this work, two programs named Talvez and Storyteller were

designed to predict TAL effectors binding sites in plant genomes.

Similar to the reference target finder program from the TALE-NT

suite [23], hereon referred to as Talent, both programs use a

RVD-nucleotide association matrix to convert a sequence of

RVDs for a given TALE into a positional weight matrix (PWM).

However, we first refined the previous RVD-nucleotide associa-

tion model published in [4,5] to account for more recent insight

into RVD-nucleotide specificities [7,9]. In our updated matrix

(Table S1), identical counts were assigned to all RVDs sharing the

same second hyper variable residue (e.g. HG, NG), since it has

been shown that this residue only is responsible for nucleotide

specificity [7,9]. In addition, considering that cytosine binding at

position 0 is possible and functional, albeit with lower activity

[9,18], prediction of cytosine binding at this position was allowed

but was assigned a lower value than thymine. For predictions, both

Talvez and Storyteller first convert a sequence of RVDs into a

PWM based on this updated RVD-nucleotide association matrix.

Talvez then uses the PWM to scan and score all possible EBEs

with a log-likelihood function developed originally to study plant

transcription factors binding sites [24]. In contrast, Storyteller uses

the PWM to generate a set of possible EBEs and constructs a

hidden Markov model that is then fed to the program HMMER

[25] to scan DNA sequences. (see Materials and Methods, program

descriptions).

Comparative Analysis of the Performances of the EBE
Predictors in a Curated Set of Experimentally Validated
TALE-DNA Interactions

To compare the performances of the EBE prediction programs,

a validation set was first established (Table S2). It is composed of

72 experimentally confirmed control TALE-EBE interactions

obtained from the literature for a total of 22 TALEs [4,5,14,16–

21,26–30]. Of these, 35 were classified as positive interactions

because the considered EBE has been shown to mediate specific

transcriptional induction of downstream sequences in the presence

of its cognate TALE (e.g., by beta-glucuronidase [GUS] reporter

assays). Another 37 interactions were classified as negative. These

involved mutated EBEs that in contrast to the wild type sequences

were demonstrated to be non functional in the same experiments.

Next, the validation set was screened using Talvez, Storyteller, and

Talent as a reference. All three programs were able to score

positive interactions significantly higher than negative ones (one-

tailed t-test, p-value,0.001) (Figure 1A). Accordingly, in the ROC

graph of Figure 1B, the three programs localize well above the

random guess diagonal and close to the upper left corner, which

denotes high rates of true positives (up to 0.942% for Talvez) and

low rates of false positives (as low as 0.051% for Storyteller). Both

Talvez and Storyteller appear better than Talent for both

performance metrices and display comparable rates even though

Storyteller is slightly more conservative than Talvez on this

validation set (inset of Figure 1B).

Comparative Analysis of EBE Predictors’ Ability to Rank
Positive Control Target Genes in Complete Sets of
Promoters from Plant Genomes

Next we sought to comparatively evaluate the three predictors

in a realistic situation recapitulating a typical application of the

software. To this end, the predictors were tested for their ability to

TAL Effectors DNA-Binding Sites Prediction
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detect and assign a high score to genuine TAL targets in complete

sets of promoter sequences, which exhibit a very different

prediction class than our validation set. We first selected those

TALEs from the validation set (AvrXa27, AvrXa7, PthXo1,

PthXo3, PthXo6, PthXo7, Tal1C, Tal9a and TalC from X. oryzae

strains; Hax2 from X. campestris pv. armoraciae) that have at least one

genuine gene target and associated EBE in the genome of the host

plants Oryza sativa cv. Nipponbare or Arabidopsis thaliana Col0

(Table 1 and Table S2). This subset of TALEs served to screen the

promoters (500 bases before the translation start site) of all

annotated protein-coding loci of the appropriate plant genome.

Table 1 details for each of these TALEs the ranking of the score of

its cognate positive control target gene(s) among all predictions for

this particular TALE, broken down by prediction program. For

five out of eleven predictions (AvrXa27, AvrXa7-LO-

C_Os11g31190, Hax2, PthXo3, PthXo6), Talvez ranked the

control target better than the other programs. For five of them

(AvrXa7-LOC_Os04g19960, PthXo1, Tal1c, Tal9A, TaLC), it

performed as well as the other program(s). For one prediction

(PthXo7- OsTFIIAc1), Talent performed the best (Table 1).

Intriguingly, five of the control TALE-EBE pairings, namely,

AvrXa27-Xa27, AvrXa7-Os11N3, AvrXa7-LOC_Os04g19960,

PthXo3-Os11N3 and Hax2-PAP1 could not be detected or their

scores ranked extremely low (Table 1). It has been noted before

that in these interactions, the EBE sequence deviates from the

canonical RVD-nucleotide association model [4,5,16,31] but it is

not currently well understood how these pairings function

nonetheless.

From our comparative analysis of the relative performances of

the three algorithms, we conclude that both Storyteller and

Talvez, which rely on the same novel RVD-nucleotide association

matrix, outperformed the reference predictor Talent in terms of

true and false positive rates when evaluated in the framework of

our curated validation set. Furthermore, in searches against the

entire rice and Arabidopsis promoter sets for positive control TALE-

gene target pairs, Talvez exhibited a higher detection sensitivity

and better rankings than the two other programs. Consequently,

the Talvez predictor was selected for subsequent work on refining

the prediction approach.

Implementation of a Position Correction Parameter to
Tolerate RVD-nucleotide Mismatches Towards the C
Terminal End of RVD Sequences

In order to further improve predictions, we asked why, as

highlighted above, some genuine EBE had low ranks or were not

detected at all in our initial analysis. For this, we systematically

inspected the quality of RVD-nucleotide matches for each TALE-

EBE pairing in our validation set of 74 interactions. We defined as

perfect matches (PM) those instances of RVD-nucleotide matches

that conform to the most probable pairing specified in the updated

RVD-nucleotide association matrix (cells with a black background

in Table S1) as opposed to other possibilities. Not unexpectedly,

we found that positive interactions had significantly more total PM

than negative interactions (Figure 2A). The same held true when

normalizing for the number of RVDs in each TALE (Figure 2B).

We subsequently examined the PM distribution along the aligned

RVD/nucleotide sequences by computing the PM frequency for

each position in the TALE-EBE interactions (numbered from N-

to C- terminus in the TALE repetitions, and 59 to 39 in the EBE in

Figure 2C). As shown in Figure 2D, we observed that the PM

frequency in the first 15 positions was statistically different between

negative and positive interactions. In contrast, there was no

difference in PM frequency when considering the region after

position 15 in the 15 out of 21 TALEs of our validation set that

had more than 15 RVDs. These observations suggested that the

RVD-nucleotide match pattern in the distal part of the RVD

sequence-EBE alignment holds little useful information for

distinguishing productive TALE-DNA interactions. We reasoned

that it may be counterproductive to strongly penalize suboptimal

RVD-nucleotide pairings in distal regions of the alignment as this

may unnecessarily diminish the overall score of legitimate hits

relative to background. We therefore added a ‘‘position correc-

tion’’ parameter to the Talvez program in order to buffer this

potential effect and to ultimately improve the performances of our

prediction model. The value of the position correction parameter

corresponds to a RVD position after which a scaled down matrix

for RVD-DNA specificities is used instead of the standard matrix.

In our scaled down matrix, non-perfect matches are no longer

penalized and are assigned a count value slightly lower than

perfect matches (See the Material and methods section and Table

S3).

Figure 1. Performances of the EBE prediction software in the
TALE-EBE validation set. (A) Boxplot showing the median (thick
line), the lower and upper quartiles (box) and the minimum and
maximum (whiskers) of the prediction scores for the set of positive (+)
and negative (2) control TALE-DNA interactions using three programs
for EBE prediction. Scores were scaled down according to the maximum
score on the set to facilitate comparison. Talent scores were scaled x21

since they follow an inverse scale relative to the other programs, this
transformation maintains data structure. ** Indicates significant positive
vs. negative differences (one-tailed t-test p-value,0.001). (B) ROC
graph showing the true positive and false positive rate of the three EBE
predictors based on validation set screenings. Dashed line indicates the
theoretical performance of a random classifying program where true
positive rate = false positive rate. The inset in the upper right corner
shows the rates for Talvez and Storyteller at a higher scale to highlight
the differences between the two programs.
doi:10.1371/journal.pone.0068464.g001
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The Position Correction Parameter Improves EBEs
Prediction

Next, we addressed the effect of the position correction feature

on both false positive and false negative rates on our validation set

(Table S2) by varying the position correction parameter of Talvez

between 7 and 26. In Figure 3A, position values below 15

produced poorer predictions than without position correction.

This probably reflects the loss of information due to a premature

usage of the less discriminatory scaled down RVD-nucleotide

specificity matrix. In contrast, for positions above or equal to 15,

the rates of true positives and false positives were robust and

remained similar to the values obtained without correction

(Figure 3A), indicating that in this context, position correction

had no measurable effect on the program’s performance.

Furthermore, as shown in Figure 3B, the complete sets of rice

and Arabidopsis promoters were screened as before to assess the

ranking of control genomic targets upon position correction.

Overall, a position correction value of 19 substantially improved

the ranking of positive control targets relative to no correction at

all. Moreover, 6 of these 11 targets were ranked first among the

predicted target promoters (Figure 3B). Notably, with our dataset,

this position correction value appeared to be a good compromise

in the sense that it was the only one that, with the exception of

Xa27, ranked all positive control targets within the top 200 best

predictions of their cognate TALE (Figure 3B).

In conclusion, these results suggested that optimal RVD-

nucleotide pairings in the C-terminal region of TALEs DNA-

binding repeat domain may contribute to a lesser extent than the

N-terminal region to productive TALE-DNA associations. This

property was integrated into Talvez by not penalizing mismatches

after a certain RVD. Benchmarking of the position correction

value in our validation and genomic control sets revealed that

values above position 15, and particularly position 19 provided an

appreciable gain in prediction performances over no position

correction; hence it was subsequently employed when searching

for TALE targets in the rice genome with Talvez.

Defining the Search Parameters for the Comprehensive
Identification of High Quality Candidate Targets of X.
oryzae TALEs in Rice

TALEs are central to the interaction between many Xanthomonas

strains and their respective host plant. They are often the primary

molecular factor explaining the outcomes of both compatible

(disease) and incompatible (resistance) interactions [32]. The large

number of TALE genes found in the genome of some X. oryzae

pathovars (e.g. 17 for Xoo PXO99A and up to 32 for Xoc BLS256)

[33] makes them atypical relative to other species of the genus and

raises the question of the biological significance of such enlarged

genomic TALE repertoires. The availability of complete TALE

sets in the genome of X. oryzae strains as well as numerous TALE

sequences from a variety of other strains prompted us to use our

prediction algorithm in order to comprehensively investigate the

sets of high quality candidate TALE targets in the Oryza sativa cv.

Nipponbare genome. To this end, we cross checked Talvez

predictions with experimental evidence of candidate target gene

induction during compatible interactions in publicly available

microarray data as a good estimate of true direct up-regulation of

a gene by a TALE in a rice susceptible background.

Talvez was used to identify candidate target genes for all

sequenced TALEs from Asian Xoo and Xoc strains with associated

microarray data of rice gene responses to infection in databases

(Xoo PXO86, Xoo PXO99A, Xoo MAFF311018, Xoc BLS256, 69

TALEs were used and 20 microarray comparisons; see Table S4

and Table S5). To minimize the false positive rate, the set of

potential TALE target genes was delimited as the top scoring 200

genes for each TALE. This set of tentative target genes was then

contrasted with experimental expression data. Those targets that

showed an expression pattern consistent with that of a true target

(i.e. induction in appropriate wild-type strain vs mock or

corresponding T3SS mutant treatments comparisons, see Table

S5) were considered as candidate targets for the corresponding

TALE. To define an induction criterion, we first inspected the

behavior of all six rice control TALE targets from Table 1

(LOC_Os04g19960, Os8N3/Xa13/OsSWEET11, Os11N3/OsS-

WEET14, OsHen1, OsTFX1 and OSTFIIAy1) in a set of five

Table 1. Comparison of EBE predictors rankings of known TALE targets in genomic searches.

TALE Strain
Target Gene
Name Locus ID

EBE
distance Reference

Talvez
rank

Storyteller
rank Talent rank

AvrXa27 Xoo PXO99A Xa27 LOC_Os06g39810 284 [4,21] 674 Ø 3186

AvrXa7 Xoo PXO86 Os11N3 LOC_Os11g31190 2259 [16,26] 261 344 443

AvrXa7 Xoo PXO86 LOC_Os04g19960 260 [14] Ø Ø Ø

Hax2 Xca 5 PAP1 AT1G56650 2130 [4] 231 438 Ø

PthXo1 Xoo PXO99A Os8N3 LOC_Os08g42350 2251 [4,17,26] 1 1 1

PthXo3 Xoo PXO61 Os11N3 LOC_Os11g31190 2261 [16] 752 Ø Ø

PthXo6 Xoo PXO99A OsTFX1 LOC_Os09g29820 2136 [4,19] 1 2 2

PthXo7 Xoo PXO99A OsTFIIAc1 LOC_Os01g73890 2469 [4,19] 9 6 2

Tal1c Xoo PXO99A OsHen1 LOC_Os07g06970 2217 [5,29] 1 1 1

Tal9A Xoc BLS256 OsHen1 LOC_Os07g06970 2206 [5,29] 1 1 1

TalC Xoo BAI3 Os11N3 LOC_Os11g31190 2319 [18] 1 2 1

The table reports the ranking of the EBE corresponding to a control target gene in the set of predicted EBEs produced after searching Arabidopsis or rice promoters with
a control TALE query and one of the three prediction program. The background shading of the rankings is coded as follow: white, best ranking among the predictors;
light grey, detected but ranks below the best predictor; dark grey and Ø denote that no EBE was detected above cut-off score. EBE location refers to the distance
between the first base (59) of the EBE and the annotated translation start of the gene. The references of the literature supporting each TALE-control gene target pair are
indicated in brackets.
doi:10.1371/journal.pone.0068464.t001
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relevant microarray data comparisons. In all examined compar-

isons, these genes displayed very high fold change ratios which, as

shown in Figure S1, consistently ranked in the top 100 of the lists

of significantly induced genes (log2 fold change $1, adjusted p-

value #0.1). We therefore adopted a differential expression rank

threshold of 100 which was sufficient to capture all control TALE

targets, and applied this threshold to select Talvez predictions

exhibiting an induction pattern similar to genuine TALE targets.

Because we were primarily interested in delineating a broad set

of high-quality candidate TALE targets, we further investigated, in

this genome-wide framework, which position correction parameter

value improved our ability to identify induced genes harboring a

predicted EBE in their upstream region. To this end, we ran

Talvez predictions for all query TALEs (Table S4) with various

position correction values (15–20), including no correction. As

shown in Table S6, position 19 maximized the total number of

genes that were both Talvez-predicted and differentially expressed.

It also maximized the number of TALE having at least one

candidate target. Importantly, with this position, it was possible to

identify 13 out of the 14 pairs identified by the first version of

Figure 2. Distribution of perfect matches (PM) in the TALE-EBE
validation set. (A) Box plot of the distribution of the number of
perfect RVD-nucleotide matches computed for individual negative and
positive control TALE-EBE pairs. (B) Distribution of perfect match
frequency of individual control TALE-EBE pairs. The frequency
corresponds to the ratio of the number of perfect RVD-nucleotide
matches to TALE length expressed in number of RVD. (C) Frequency of
perfect matches across TALE-DNA positions. The frequency corresponds
to the ratio of the number of perfect RVD-nucleotide at the considered
position to the total number of RVD-nucleotide pairs at this position in
TALE-EBE pairs of the positive or negative control set. (D) Frequency of
perfect RVD-nucleotide match between positions 1 and 15 ( = number
of PM/15). (E) Frequency of perfect match for TALE-DNA positions
beyond 15 ( = number of PM/(length-15)). The p-value of the
corresponding two-tailed Wilcoxon test in this comparison is 0.371. **
significant differences, one-tailed Wilcoxon test p-value,0.001; ***
significant differences one-tailed Wilcoxon p-value,1e-7.
doi:10.1371/journal.pone.0068464.g002

Figure 3. Effects of the Talvez position correction parameter on
performances. (A) ROC graph showing true positive and false positive
rates obtained by screening the validation set with a range (7–25) of
position correction values. The data points for positions above 14th as
well as for Talvez without position correction (labeled with ‘‘None’’) all
superpose on the left uppermost point. (B) Rankings of positive control
TALE targets among genes predicted to contain EBEs in their promoter
regions after screening the Arabidopsis and rice genome with Talvez
and position correction parameter value varying between 15 and 19 as
well as without position correction. The color coding of the various
TALE-target pairs is described in the legend beneath the plot. Rankings
for positions above 19 were similar to those without position
corrections and were omitted here. The dashed line corresponds to
rank values equal to 200.
doi:10.1371/journal.pone.0068464.g003
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Talent [5] for Xoo PXO99A and Xoc BLS256 strains (see our

resulting list of candidates in Table S7). The missing Tal7a/8a-

LOC_Os01g68740 pair [5] was predicted by Talvez but did not

meet our criteria for differential expression. Hence, we concluded

that examining the differentially expressed top 200 Talvez

predictions with a position correction value of 19 produces an

exhaustive and high quality perspective on susceptible rice

candidate TALE targets.

The Inferred TALEs-candidate Target Genes Regulatory
Network is Potentially Enriched for Functional Hub Genes

By comparing Talvez predictions and microarray data with the

parameters defined above, a set of 73 rice genes was predicted to

be induced by 47 TALEs (Table S7 and Datasets S1). On the

other hand, for the remaining 22 TALEs, no differentially

expressed target gene was found. The differentially expressed

genes and their corresponding TALEs were organized into a

TALE-gene network of 91 interactions (Figure 4), 17 of which

correspond to our controls or to interactions already predicted in

the literature (Table S7). This network contains 17 instances of

simple one-to-one interactions between a TALE and a putative

target. The remaining interactions are organized into more

complex modules corresponding to multiple TALEs from identical

or distinct strains predicted to target the same genes or conversely,

single TALEs predicted to target multiple genes (Figure 4). The

annotated functions in this candidate TALE target gene set are

very heterogeneous, and no enrichment of any GO term was

found using Singular Enrichment Analysis (SEA) (see Figure S2A)

[34]. However, a possible commonality of TALE-target genes is

their role in functional networks. Of the 73 candidate targets, 43

genes (58%) were found to be highly connected (degree .5) in a

Rice network of predicted functional interactions [35] (Figure

S2B). The percentage of highly connected genes among TALE

targets was significantly higher than among sets (n = 100) of

randomly selected rice genes (Figure S2C). This suggests that

TALEs might converge into targeting highly connected hubs in

plants networks, as described for Pseudomonas syringae type III

virulence effectors in Arabidopsis [36].

To assess the possibility that associations between differential

expression and EBE predictions are fortuitous, for example due to

the prediction of ubiquitous sequences in the genome, a set of 100

random TALE-gene networks was used as a negative control and

compared with the original network. These random networks were

generated by shuffling the RVD sequences of the TALEs used for

the original network then predicting EBE for these shuffled TALEs

in the rice genome and filtering the predictions based on

microarray data. As a result, the random networks were composed

of less elements (TALEs and promoters) and the distribution of the

prediction ranks was significantly different from the original

network (Kolmogorov-Smirnov test p-value 2.2e-16) showing no

prevalence of high ranking genes (Figure 5A and B). This indicates

that a large fraction of the edges in the TALE-gene network

represents biologically relevant, non-random associations. It is

however possible that many of the low ranking predictions (right

tail of the distribution in Figure 5A) derive from spurious

associations.

The TALE-candidate Target Gene Network Contains
Several Instances of Multi-gene Targeting by Single
TALEs

As exemplified by the case of AvrXa7 from strain PXO86 that

has been shown to directly induce transcription of both Os11N3

and LOC_Os04g19960 [14,16], there is the under-scrutinized

possibility that individual TALEs are actually able to coordinately

induce plant gene sets. In the network of Figure 4, 23 TALEs

(48%) had more than one potential target gene. Yet, no correlation

was found between the number of target genes for each TALE

(degree) and TALE length (Spearman correlation coeffi-

cient = 0.1), nor between TALE degree and specific RVD

compositions (Spearman correlation coefficient from 20.2 to

0.4) (Figure S3). This suggests that targeting of multiple host genes

may not be attributable to RVD number and composition bias

and that individual TALEs may actually control gene sets

composed of multiple virulence targets and/or off-targets. To

support this notion with more discriminatory expression data, we

identified Talvez-predicted genes specifically induced by individ-

ual TALEs by comparing the expression profiles of plants

inoculated with wild-type bacteria and mutants for PthXo1

(GSE36272, PXO99A vs PXO99A ME2) and both PthXo6 and

AvrXa27 (GSE36272, PXO99A vs PXO99A ME1). For the

PthXo1 experiments, from the top 100 most induced genes, only

the known Os8N3 target had a predicted EBE (Table S8),

indicating that this TALE probably does not have additional

targets in the rice genome. Therefore, the other predicted target

for PthXo1 detected in the PXO99A versus PXO99A T3SS

mutant microarray data comparison on Nipponbare (Table S7) is

likely a false positive. In contrast, for the PthXo6/AvrXa27

experiment, in addition to the known PthXo6 target OsTFX1

(LOC_Os09g29820), up to six genes were significantly induced in

the wild type versus double mutant strain comparison on at least

one rice variety and had a high-scoring Talvez-predicted EBE for

PthXo6 (Table S8).

TALE-candidate Target Gene Networks Reveal within-
strain Functional Redundancy and between-strain
Functional Convergence as Remarkable Features of TALE
Repertoires

Various TALEs from unrelated X. oryzae strains directly induce

members of the MtN3 gene family (also known as Nodulin-3 or

SWEET) [16,18,32,37]. This represents a strong case of functional

convergence for inducing functionally related genes. Here, besides

the known TALE targets Os8N3 and Os11N3, another MtN3/

SWEET (LOC_Os12g29220) was found to be putatively targeted

by a TALE (YP_451027.1) from MAFF311018 (Figure 6). This

gene, hereafter referred to as Os12N3, is closely related to Os11N3

and was recently shown to correspond to the recessive resistance

gene xa25 conferring race-specific resistance to the Xoo strain

PXO339 [38]. Interestingly, in addition to the YP_451027.1

TALE, MAFF311018 also possess an avrXa7 homolog that is

predicted to target Os11N3 (Figure 6). Altogether these observa-

tions raise the possibility that the YP_451027.1 and AvrXa7

TALEs, both encoded by the same strain could act redundantly on

distinct MtN3/SWEET family members on the IR24 variety. In

order to find additional evidence for TALE functional conver-

gence, we ran Talvez predictions for sequenced TALEs from other

X. oryzae strains for which no expression data are available (29

TALEs, 16 from the fully sequenced strain KACC10331, see

Table S4). We then constructed a ‘‘conserved target’’ network by

incorporating new TALE nodes into our previous network. These

nodes were connected to existing rice genes if these genes where

among the 200 best ranking Talvez predictions for these TALEs.

As a result, 24 additional TALEs were predicted to bind to the

promoter of 33 genes in the network (Figure S4, Table S7 and

Datasets S2). Strikingly, analogous to the situation observed for the

Japanese strain MAFF311018, two TALEs from the Korean strain

KACC10331 were also predicted to target Os11N3 and Os12N3
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(Figure 6), indicating that internal genetic redundancy among

TALEs targeting MtN3/SWEET family members may be a

recurrent feature of TALE repertoires. Interestingly, LO-

C_Os12g41110 (OsCML5) and LOC_Os05g31620 (OsCML15)

genes which both encode calmodulin-like proteins may represent

another case of convergence towards a gene family (Figure 4 and

Table S7). OsCML5 was predicted to be targeted by AvrXa7 and

AvrXa10, and was induced in the IR24 cultivar upon infection by

Xoo strain PXO86. Similarly, OsCML15 (LOC_Os05g31620) was

induced in Nipponbare inoculated with Xoo strain PXO99A versus

the T3SS mutant ME7, and contained a predicted EBE for

PthXo7. In rice, Calmodulin-like proteins are known to be

necessary for colonization of plants by both pathogenic and

symbiotic organisms [39,40].

By analogy with the Os11N3 precedent [16,18], those cases in

which multiple TALEs target the same gene in non-identical EBEs

can be interpreted as evidence of independent adaptative

convergence. It is also a strong indication that a candidate TALE

target acts as a genuine plant susceptibility factor. In the network

of Figure 4, 13 genes (18%) were targeted by more than one TALE

(with distinct RVD sequences), and this number reaches 37 (50%)

when taking into account the TALEs in the ‘‘conserved’’ network

(Figure S4). In addition to Os11N3, five genes were found to be

targeted by multiple TALEs in distinct EBEs (LOC_Os11g26790,

LOC_Os01g51040, LOC_Os05g11840, LOC_Os07g47790, LO-

C_Os07g06970). They therefore represent prime candidates for

novel plant susceptibility factors. One of these loci corresponds to

OsHen1 (LOC_Os07g06970) which is probably targeted by the Xoc

TALE Tal1c from BLS256 and the Xoo TALE Tal9A from

PXO99A [5]. Here, we predict that it may also be targeted by one

TALE from MAFF311018, as well as TALEs from strains JXOIII

and KACC1033 (the last two without microarray support)

(Figure 7A). Curiously, the TALE from JXOIII targeting OsHen1

was recently claimed to be the avirulence factor avrXa5 [41]. Apart

from OsHen1, the only other apparent case of convergence

between Xoc and Xoo strains (Figure 8 and Figure 7B) is the

LOC_Os03g03034 gene, a predicted flavanone 3-hydroxylase

(F3H). This F3H-encoding gene is likely induced by AvrXa23

from PXO99A, Tal2c from Xoc strain BLS256 (also reported in

[5]) and YP_450165.1 from Xoo strain MAFF31101, albeit

through an identical EBE (Figure 7B). Members of this gene

family are involved in the synthesis of flavonoids, which are known

to play a role in plant-bacteria interactions, mainly in defense

against pathogens and communication with beneficial symbionts

[42]. Other interesting potential cases of functional convergence

both between and within strains, as shown in Figure 4, were those

of LOC_Os11g26790 and LOC_Os07g47790. LO-

C_Os11g26790, a dehydrin gene, is predicted to have two

different EBEs for two TALEs from PXO99A as well as for two

TALEs from MAFF311018. Likewise, LOC_Os07g47790 encodes

a putative AP2 domain-containing protein and is predicted to have

two distinct EBEs for two different TALEs from Xoc BLS256:

Tal3c and Tal6 (See also Table S7). Interestingly, both gene

families have been implicated in plant biotic and abiotic stress

responses [43,44]. Altogether, these findings strengthen the idea

that functional redundancy is a major organizing principle shaping

TALE repertoires composition both between and within strains.

Figure 4. A TALE-candidate target gene network. Hierarchical representation of the TALE-candidate target gene network; genes are
represented by circles and TALEs by polygons. Only the names of genes and targets discussed in the main text are shown. Alias or common names
for TALEs are shown when available or the GeneBank accession number is given instead. Increasing edge thickness indicates better EBE prediction
ranking. Interactions previously reported in the literature are highlighted with red edges.
doi:10.1371/journal.pone.0068464.g004
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Discussion

One major output of this work is the design of a more accurate

prediction tool for TALE binding sites in DNA sequences. In

conjunction with public expression data, this advantage was

exploited to elucidate putative targets and potential functional

interactions among TALE repertoires of four bacterial strains

yielding an original repertoire-wide perspective on the virulence

strategies of rice-infecting X. oryzae strains.

Performance of Prediction Programs and Features of
TALE-EBE Specificity

We initially tested the performance of three programs for EBE

prediction: Talvez, the program that performed the best, is based

on transforming TALEs RVD sequences into PWMs and then

scoring all possible binding sites in a promoter region using a log-

likelihood function. Storyteller, another program developed in this

work, took advantage of a faster pattern-search algorithm based on

Hidden Markov models. While both programs had similar rates of

true and false positives in the validation set, when searching the

complete set of rice promoters Storyteller ranked control targets

lower than Talvez. We are currently trying to incorporate

additional corrections that may improve Storyteller’s predictions

while keeping its main advantage: greater speed. The search

strategy used by Talvez is similar to the one used by the TALE

target finder from the Tale-nt suite [23]. To a large extent, the

differences in performance between the two programs are likely

due to the use of different RVD-nucleotide specificities and

different scoring functions where Talvez takes into account the

background distribution of nucleotides in the promoter regions.

A detailed look into characterized RVD-DNA interactions

indicated that perfect RVD-nucleotide pairing in TALEs N-

terminal region (first 15–19 RVDs) probably determines for the

most part the target DNA recognition and activity. In contrast,

downstream positions seem to hold little information for identi-

fying legitimate EBEs. In agreement with this, Kay et al. [20]

introduced mutations in the last three positions of the AvrBs3

binding site UPA20 that had no effect on TALE activity.

Conversely, the sequence of the AvrBs4 TALE EBE of Bs4C, an

executor type resistance gene, exhibits a simple 2-bp polymor-

phism located at 59 positions 3–4 (Table S2) which explains why

the susceptible allele is unable to recognize AvrBs4 [30].

Currently, the most convincing experimental evidence in favor

of such a polar effect in TALE-DNA recognition is probably the

recent work by Meckler et al. [45]. Using both in vitro affinity and

in vivo activity assays, they demonstrated that N-terminal RVDs

contribute more to the overall DNA affinity than C-terminal

repeats and that mismatches at the 39-end of the target DNA are

more tolerated than at its 59-end. They note, however, that this

effect is more pronounced with artificial TALEs than with the

natural AvrBs3 TALE. These findings let them introduce an ‘‘N-

terminal organizing center’’ hypothesis that tries to explain why

positions after the 15th RVD may still contribute to activity in

specific contexts.

Figure 5. Comparison of the TALE-candidate target gene network with random networks obtained with shuffled TALEs. Properties of
the TALE-gene network are compared to average values from 100 randomized controls (error bars indicate standard deviation): (A) percent frequency
distribution of Talvez prediction ranks of TALE-gene pairs, the percentage of top (#1) ranking TALE-gene pairs is indicated for the TALE-gene
network. (B) Number of genes and TALEs in the TALE-gene network compared to control random networks.
doi:10.1371/journal.pone.0068464.g005
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Figure 6. TALEs from multiple Xoo strains may converge onto three distinct MtN3 gene family members. Panels (A), (B) and (C)
summarize Talvez predictions and expression data respectively for Os11N3, Os12N3 (Xa25) and Os8N3 (Xa13). From top to bottom: data in bar plots
derive from our analysis of microarray data from different rice genotypes and 24 hours after infection time points (hpi). Relevant treatments
comparisons are indicated above the graphs. logFC values correspond to log2-transformed fold-change ratios. In the Talvez prediction network
snapshots, the rank and score values along the edges represent Talvez prediction output for the connected gene (EBE) in target searches for the
corresponding TALE. The bottom part of each panel contains a manual alignment of the RVD sequences from TALEs that are predicted to target the
gene under consideration in the panel. Individual residues highlighted in bold deviate from the consensus at that position. The locations of the
predicted EBEs on the upstream sequences of the rice gene are marked by lines colored following the same pattern as on the RVD alignment.
Numbers on the left indicate the distance in base pair between the most upstream nucleotide of the reported sequence and the ATG. TalC from the
African Xoo strain BAI3 which has been reported to target Os11N3 [18] was included in panel A to illustrate the notion of convergence on gene
susceptibility targets at the level of distinct EBEs.
doi:10.1371/journal.pone.0068464.g006

Figure 7. Possible functional convergence on specific rice TALE targets between X. oryzae pathovars. Panels (A) and (B) summarize
Talvez predictions and expression data respectively for OsHen1 and F3H (LOC_Os03g03034). See legend of Figure 6 for details.
doi:10.1371/journal.pone.0068464.g007
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The control targets of four TALEs, namely AvrXa7, PthXo3,

AvrXa27 and Hax2, were hard to predict with any of the

programs and ranked very low in whole genome searches. AvrXa7

and PthXo3 are particularly long TALEs with a high number of

RVD-nucleotide mismatches in the DNA-binding sequence

upstream of their respective target. The predictions for these

TALEs were however largely improved when a position correction

was applied to Talvez. In contrast, AvrXa27 and Hax2 retained

relatively low rankings, despite a slight improvement in the

detection of their respective EBEs upon applying the position

correction. These TALE-EBE pairs probably correspond to

atypical interactions that cannot be explained solely on the basis

of the standard rules of RVD-nucleotide association. Clearly, the

current model of TALE-EBE specificity is not perfect and does not

yet account for less characterized or unsuspected aspects of TALE-

DNA interactions. For example, it was recently demonstrated that

different RVDs have different contributions to DNA binding

[45,46]. A more detailed knowledge of the contributions of

individual RVDs to affinity and how these contributions are

distributed and interact along the DNA target sequence may

eventually be useful to improve predictions for TALE-EBE pairs

such as the AvrXa27-Xa27 (LOC_Os06g39810) and Hax2-PAP1

(AT1G56650). Our preliminary attempts to incorporate a matrix

with higher scores for strong RVDs yielded no prediction

improvement in our validation set (data not shown). Another

feature that could improve predictions is a better knowledge about

the effect of the genomic context of the EBE on TALE binding or

activity (e.g. distance to TATA box, distance to translational start

sites). Yet, this aspect remains poorly explored.

X. oryzae Genomes-wide Candidate TALE Targets Mining:
One TALE, Several Targets?

Because of the key role of T3SS substrates in the infection

process, identification of type III effector host targets may be the

fastest route to the molecular dissection of virulence strategies of

pathogenic bacteria relying on such systems, and on the host

biological processes that are perturbed to create disease-promoting

conditions. In this respect, TALEs are interesting type III effectors

because they manipulate the host physiology by direct transcrip-

tional up-regulation of susceptibility genes. Hence, the ability to

accurately predict TALE-binding elements in rice promoters

enables a straightforward comparative perspective on individual

TALEs targets as well as on the organization of TALE repertoires:

how they are functionally structured with respect to their virulence

target genes and how these repertoires may evolve. The

performance of Talvez allowed a systemic insight into the sets of

candidate target genes of X. oryzae strains. Putative targets for a

total of 69 TALE sequences from four strains were identified in the

O.sativa japonica genome using a combination of software

predictions and expression data analysis. On top of this high-

quality TALE-candidate rice target gene network, Talvez predic-

tions for 29 additional TALEs identified genes that may be

repeatedly targeted by X. oryzae strains.

While it has been previously reported that individual TALEs

can induce the expression of multiple genes [14,20], our analysis of

TALE-target gene networks suggests that the extent at which this

may occur is striking (,50% of TALEs in the network had

multiple targets). This observation raises the question of the

functional interplay between genes within individual sets, as well as

the biological relevance of these sets of co-regulated genes in the

parasitic process. Many of the ‘‘additional’’ targets for each TALE

would likely have no physiological effect and may be the result of

fortuitous, adaptatively neutral pairings as it seems to be the case

for AvrXa7 from Xoo PXO86 and its secondary target LO-

C_Os04g19960 [14] which is annotated as a retrotransposon

protein. These findings furthermore underscore the importance of

carefully considering the probabilities of off-targets when TALEs

are to be applied to biotechnological engineering. Here, Talvez is

expected to improve the design of artificial TALEs.

On a contrasting note, it is worth pointing out that our

microarray-supported Talvez EBE predictions did not identify any

targets in the Nipponbare genome for 22 out of the 69 TALEs in

the query set. This apparent absence of candidate targets might

stem from an intrinsic inability of our algorithm to predict

accurate targets for this specific set of TALEs as discussed above.

Relevant EBEs for these TALEs may also have been missed

because they are located outside of the 500-bp upstream regions of

annotated objects represented in the Affymetrix chip. On the other

hand, it is likely that cognate EBEs are genuinely absent from the

Nipponbare genome and that searching other genomes, e.g. from

indica varieties, may ultimately identify true targets. Alternatively,

as proposed by Yang and Gabriel [47], these TALEs may not have

a relevant target at all and may be maintained as a reservoir for

the evolution of new TALE-target specificities via recombination

among TALE genes, thus facilitating adaptation to changing host

genotypes.

Universal Virulence Targets of X. oryzae TALE Repertoires:
An Emerging Model

Our comparative analysis of the sets of rice genes potentially

targeted by the complete TALE repertoires from Xoo and Xoc

strains provides a novel perspective on genes or gene families that

repeatedly appear to be induced by TALEs. The observed overlap

of our high-quality rice candidate target sets across strains is

relatively limited and rather unexpected, especially for the

PXO99A and MAFF311018 strains which belong to the same

Xoo pathovar but share only six common targets (Figure 8). One

interpretation of this situation is that the contribution of TALE

repertoires to a pathogenic lifestyle is achieved through the

induction of mainly unrelated primary target gene sets that

however converge functionally on common processes. It is also

possible that induction of only a few conserved targets is key to

sustain a rice parasitic lifestyle and that the induction of others is

accidental and makes no contribution to plant tissue colonization.

Out of the 77 genes in the network, OsHen1 (LOC_Os07g06970)

stands out as being putatively targeted by 5 distinct TALEs from

all Xoo and Xoc strains with a complete TALE inventory, plus the

alleged [41] AvrXa5 avirulence protein. This observation suggests

that this putative methyltransferase, a central component of small

RNAs biogenesis pathways [48], may be universally targeted by all

X. oryzae strains regardless of their respective tissue tropism but a

role of OsHen1 as a susceptibility gene has not been described yet.

Similarly, LOC_Os03g03034 annotated as a flavanone 3-hydrox-

ylase (F3H) with potential roles in plant-bacteria interactions could

belong to the same universal target category. However, no cognate

TALE was found for this F3H in the KACC10331 genome. In

rice, F3H proteins have been found to be induced in multiple

resistant interactions [49]. Whether the induction of F3H family

members by these TALEs contributes to resistance and/or

virulence is intriguing and will be addressed in future studies.

Remarkably, our work and earlier studies of others provide

strong evidence that induction of a member of the MtN3/SWEET

family, presumably as a way to extort carbon sources from the

host, is an absolute requirement for Xoo strains to successfully

colonize rice xylem vessels. Indeed, it was previously shown that

three unrelated Xoo strains require TALE-mediated transcriptional

induction of a MtN3/SWEET family member for full virulence on

susceptible rice varieties [16–18]. Our ‘‘conserved’’ network
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further extend these results by identifying additional TALEs from

MAFF311018 and KACC10331 strains that are predicted to up-

regulate Os12N3, another member of the MtN3/SWEET family

which corresponds to the responsive allele (Xa25) of the xa25

resistance gene [38]. The Os12N3 susceptibility allele (Xa25) is

induced by PXO339 in susceptible varieties, including Nippon-

bare [38]. Its induction by artificial TALEs was recently shown to

increase susceptibility to Xoo strains [50]. Moreover, the promoter

region of Os12N3 shows various polymorphic sites possibly

associated with resistance (including two polymorphic sites in the

predicted EBE for YP_451027.1) [38]. Thus PXO399 most

probably expresses a TALE that specifically recognizes the

promoter region of Os12N3. Interestingly, based on our predic-

tions for TALEs of Xoc strain BLS256 and an earlier genetic screen

with BLS303 [51] which failed to identify a Xoc TALE targeting a

MtN3/SWEET family member, Xoc strains may not require

relocation of sucrose to the apoplast or may rely on other sugar

efflux mechanisms for infection of the leaf mesophyll. It is

noteworthy however that heterologous TALEs targeting MtN3/

SWEET family members do confer an increased virulence to Xoc

[52]. Even if we were unable to demonstrate a specific functional

enrichment in our rice candidate target set, it is interesting to note

that beyond sugars, TALEs may have evolved to manipulate

additional transmembrane transport mechanisms because several

candidate targets have an annotation suggestive of a role in ions

(sulfate and potassium) and purine derivatives transport. Apart

from the MtN3/SWEET family, OsTFX1 (LOC_Os09g29820, the

PthXo6 target) has also been reported to be ‘‘universally’’ induced

by Xoo strains from diverse geographical origins [19]. In the

network, MAFF311018 is the only strain with a complete TALE

repertoire that is not predicted to target OsTFX1. However, this

gene ranks in the 100 most induced genes 24 hours post

inoculation with this strain (data not shown), revealing a possible

false negative prediction or pointing to an erroneous TALE DNA

sequence in databases.

Functional Redundancy of TALE Repertoires may have
Important Consequences on Strategies for Disease
Control Relying on Host Genetic Resistance

Another original feature of X. oryzae TALE repertoires that

emerges from our study is an apparent tendency of individual

repertoires to maintain several TALEs capable of redundantly

targeting the same or functionally equivalent genes. This seems to

be true for the plethora of TALEs in the Xoc BLS256 genome, but

perhaps the most edifying example of functional convergence

involves again the MtN3/SWEET gene family. We discovered that

strains MAFF311018 and most likely KACC10331 possess a

couple of RVD sequence-unrelated but functionally redundant

TALEs, each putatively capable of inducing a separate MtN3/

SWEET gene (Figure 6). It is also likely that analogous to

MAFF311018 and KACC10331, a third Xoo strain, PXO71,

possesses redundant TALEs targeting MtN3/SWEET genes

because two distinct TALEs from this strain were shown to be

able to complement a PXO99A ME2 mutant [51], now known to

be defective for Os8N3 induction [17]. Our assertion that various

Xoo strains have acquired a redundant set of MtN3/SWEET-

targeting TALEs is reminiscent of a well described property of P.

syringae type III effector repertoires that appear to incorporate

some degree of functional redundancy among effectors. This

feature presumably confers an enhanced robustness to effector

repertoires by allowing the costless loss of an effector upon

detection by the plant immune surveillance system [53]. One

immediate conjuncture of this model applied to TALEs is that

contrary to the findings with strains BAI3, PXO99A and PXO86

[18,19,54], a single mutation in any of the redundant TALEs in

MAFF311018, KACC10331 and possibly PXO71 strains will

most likely have few consequences whereas cumulative inactiva-

tion of both TALEs should significantly compromise the virulence

of the mutant strains. A further ramification of this model in the

context of disease control strategies based on varietal resistance is

that, in principle, strains like MAFF311018 would overcome

resistances based on single loss-of-TALE-responsiveness alleles

such as xa13 (the resistance allele of Os8N3), xa25 (the resistance

allele of Os12N3), or the ones engineered in the Os11N3 gene

promoter [14]. Considering this aspect and the apparently

universal requirement of Xoo on MtN3/SWEET susceptibility

genes to cause disease, it is therefore advisable to pyramide several

unresponsive MtN3/SWEET genes alleles in a single genetic

background, thus likely conferring broad spectrum resistance to

bacterial leaf blight. It is important to note however that this

strategy could be defeated by strains that have acquired TALEs

recognizing novel EBEs, such as TalC for Os11N3 [18].

In conclusion, this work provides a more accurate tool for

mining TALEs virulence targets in the genomes of host plants, as

performed here for O. sativa, and for predicting artificial TALEs

off-target binding sites in biotechnological applications. Our

understanding of the global contribution of TALEs to pathoge-

nicity in the X. oryzae–rice pathosystem will benefit from the

identification of conserved plant targets which tend to be highly

connected hubs in functional networks and which may play a

major role in susceptibility. The identification of redundant

TALEs within individual effector repertoires provides guidelines

for their inactivation and for breeding and engineering resistant

plant varieties. In the future, Talvez in conjunction with gene

expression data will greatly facilitate the identification of candidate

TALE-dependant immunity loci in the genomes of resistant

accessions in the germplasm of major crops.

Materials and Methods

Talvez Description
Talvez is implemented in the Perl and Java programming

languages and is based in part on a method for transcription factor

binding sites identification relying on Positional Weight Matrices

(PWM) that shows great accuracy when accompanied with a log-

likelihood scoring system taking into account nucleotide distribu-

tions in scanned sequences [24]. Talvez scans DNA sequences for

EBEs in several steps: (i) for each input TALE RVD sequence, a

PWM is created according to the RVD-nucleotide association

matrixes described below (Table S1). If the position correction is

specified, the scaled-down specificities are applied starting after the

Figure 8. Overlap of candidate rice target gene sets for TALEs
from various X. oryzae strains. Venn diagram of rice genes from the
network assigned to distinct sets according to the strain of origin of
their cognate TALE(s).
doi:10.1371/journal.pone.0068464.g008
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input position. A user-defined number of pseudocounts can be

added to the PWMs, these pseudocounts correspond to a

probability value (default = 0.001) added to all instances in the

PWM so that any base is allowed to bind at any position albeit

with a low probability. (ii) The nucleotide compositions of input

DNA sequences (e.g. full genome sequences or promoter regions)

are calculated. (iii) Input DNA sequences are screened and scored

using a log-likelihood function provided by the Java script

available from [24] that weights the probability of a nucleotide

corresponding to the PWM vs the probabilities of finding this

nucleotide in any position according to the nucleotide composi-

tion. (iv) Results above a user-defined threshold value are reported

and ranked according to their score. The program scans only the

forward strand of the sequences and does not allow gaps. The

following parameters can be modified: the RVD-nucleotide

association matrixes, the RVD after which the position correction

is applied, the threshold score to report results, the number of

pseudocounts, and the total number of results to report. The web

version (http://bioinfo.mpl.ird.fr/cgi-bin/talvez/talvez.cgi) allows

scanning of 25 preloaded complete promoters sets from plant

genomes such as O. sativa, A. thaliana, Vitis vinifera or Populus

trichocarpa downloaded from Phytozome (http://www.phytozome.

net/).

Storyteller Description
Storyteller was written in the Perl programming language. It

relies on hidden Markov models and works as follows: (i) The

program converts a TALE RVD sequence into a PWM and uses

this matrix to generate a set of possible binding sequences (rounds).

(ii) While generating the sequences, an error function introduces

‘‘noise’’ to allow the creation of mismatching sequences. The noise

is reflected in the probability of generating any nucleotide for a

possible binding sequence regardless of the RVD specificities. The

probability can be zero, if the error function is set to ‘‘none’’, or

kept constant if the error function is set to ‘‘constant’’. The noise

can also be set to depend on the position. It can either linearly

increase or decrease along the sequence if the error function is set

to ‘‘linear’’, or it can be set to ‘‘parabolic’’ to allow more noise at

both ends, or it can be ‘‘Hvaa or RVD dependent’’ resulting in less

noise for the best characterized RVDs. In addition to the noise

function, the PWM also allows the use of pseudocounts. (iii) The

generated sequences are converted into a HMM using hmmbuild

from the HMMER2 software [55]. (iv) The model is used to scan

the genomic regions using hmmsearch from HMMER2 [55].

hmmsearch allows to include gaps and to specify a minimum score

or e-value as threshold to report a candidate match.

RVD-nucleotide Association Matrixes
To encode RVD-nucleotide association specificities, the values

of the counts matrix originally assembled by Moscou and

Bogdanove [5] were adjusted in order to incorporate more recent

findings and a priori assumptions in the association model: (i)

equal counts vectors were assigned to RVDs ending with the same

amino acid, keeping those of the most frequent RVD; (ii)

specificities for the 0 position were modified to allow the binding

of cytosine, albeit with a lower count than thymine. The resulting

matrix (reported in Table S1) is scaled similarly as originally

reported [5], resulting in a greater contribution to the overall

prediction score for better characterized RVD, such as and HD,

NI, NN, NG. In addition, a few specificities were also refined by

trial-and-error on the validation set. The scaled down RVD-

nucleotide association matrix for the position correction (Table S3)

was constructed by assigning the same value for all preferred DNA

base matches (darkest grey cells in Table S1) and the same, lower

value, for all non-preferred matches. This matrix was adopted

after preliminary tests against other possible options like not

scoring matches at all after a certain position.

EBE Prediction Input Parameters
Predictions for Talvez used the following parameters: pseudo-

counts ‘1e-05’, minimum score ‘9’, number of reported TALEs

‘all’ and various position corrections. Predictions for Storyteller

used the following parameters: rounds ‘1e5’, noise ‘0.5’, noise-

shape ‘hvaa-dependent’, max e-value ‘700’, minscore ‘2’, gap

probability ‘1e-3’. Predictions for Tale-NT [23] were run on the

web-server with default parameters, screening against the

Arabidopsis or Rice sets of predicted promoters and allowing

binding of C or T at position 0. Results were filtered to include

only genes with predicted boxes at a distance of less than 500 bp

from the ATG translational start codon and scores were scaled x21

to allow comparisons with the other programs. EBE screenings

were made against the promoter regions (500 bp upstream of the

translation start site) of predicted genes in the A. thaliana (TAIR v

10) and O. sativa (MSU 7.0). Promoter sequences were extracted

using the BioMart tool at www.phytozome.com [56]. Prior to

scanning the Nipponbare MSU 7 genome, the binding box from

the unrecognized xa27 allele was substituted with the binding box

of the Xa27 responsive allele [57].

TALEs Queries and the Validation Set of TALE-DNA Pairs
A comprehensive validation set of negative and positive

interactions was build based on published TALE-DNA pairs that

have been tested experimentally by GUS assays, electrophoretic

mobility shift assay and/or QRT-PCR [4,5,14,16–21,26–30]

(Table S2). Interactions that exhibited detectable induction in an

experiment and that were interpreted as positive in the original

sources were defined as ‘‘positive’’. In two cases (PthXo7-

OsTFX1DT, Avrxa7- Os11N3DT), significantly reduced induc-

tion activities were reported [26], these interactions were

nonetheless considered positive because of their detectable activity

in a GUS-assay and because the corresponding mutations (T to C

at position 0) are known to be functional. Negative interactions

consisted of mutated boxes of otherwise positive interactions that

showed no induction activity in the experiments. Note that the

interactions involving AvrBs4 and Bs4C (blue background in

Table S2) were not included in the analysis reported in Figure 1,

Figure 2 and Figure 3A. A subset of this validation set comprising

known natural targets for TALE in the rice and Arabidopsis genome

was used for whole-genome screenings (Table 1, Table S2). RVD

sequences for TALEs in the validation set and for all other known

TALEs referenced at the Xanthomonas Resource Database

(http://www.xanthomonas.org/, http://bioinfo-prod.mpl.ird.fr/

xantho/x.org/gui/) were manually extracted from the available

protein sequences at NCBI. Sequences from pseudogenes or

TALEs with less than two RVDs were not included. When two

database entries corresponded to the same RVD sequence in the

same strain only one entry was kept. All RVD sequences for

TALEs in our validation set were confirmed with those in the

corresponding literature. These sequences as well as other

information relative to the TALEs included in the analysis (e.g.

GenBank accession numbers, common name, strain of origin) can

be found in Table S4.

Receiver Operating Characteristics (ROC) Analyses
The outputs of the prediction softwares obtained after screening

the validation set of experimentally tested positive and negative

interactions were analyzed as follows: for each TALE and each

program, a minimum classifying threshold was defined as the
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lowest score for a genuine positive EBE, all EBEs scored above or

equal to that threshold were considered positive predictions and all

EBEs scored below that threshold were considered negative

predictions. In this way a true positive corresponded to a genuine

positive EBE scored equal or above the minimum threshold (i.e.

scored higher than all negative), and a false positive corresponded

to a genuine negative EBE scored equal or above the minimum

threshold (i.e. scored higher or equal than a known positive). For

construction of the ROC graphs, the true and false positive rates

were calculated as specified in [58].

Microarray Analyses and TALE–candidate Target Network
Construction

Routine computational tasks were performed in R with facilities

provided by packages from the Bioconductor project [59]. Primary

expression data used for gene differential expression analysis

corresponds to the following Gene Expression Omnibus (GEO)

datasets: ‘‘Comparative transcriptional profiling of rice undergoing

infection by X. oryzae pv. oryzae or by X. oryzae pv. oryzicola’’

(GSE16793), ‘‘Comparison of transcriptional responses of two

susceptible rice cultivars to strains of Xanthomonas oryzae’’

(GSE36272). The Affymetrix probe-level expression data in CEL

files was processed separately for each dataset using the

Bioconductor affy package [60] with default parameters of the

rma function that computes the RMA (Robust Multichip Average)

expression measure after background correction, normalization

and probe summarization. To identify differentially expressed

genes at a given time point after inoculation on susceptible plant

cultivars, pair-wise comparisons that tested (i) a wild-type strain

versus mock treatment (virulent strain effect), (ii) a wild-type strain

versus a T3SS-defective mutant strain (T3SS effect) or (iii) a wild-

type strain versus a mutant strain in a TALE gene (specific TALE

effect) (Table S5) were performed using the Bioconductor limma

package as described in [61]. The probesets that displayed a value

of the log2-transformed fold change (logFC) equal or above 1 and

an associated adjusted p-value (Benjamini and Hochberg’s

adjustment method) equal or below 0.1 in a treatment comparison

were deemed as differentially expressed. Their expression data

(logFC and logFC rank) and associated limma statistics in that

comparison were recorded in a custom sqlite database. This

database also stored the Talvez predictions on the corresponding

500 bp promoters set and was queried to retrieve TALE targets

satisfying specific criteria as described in the results section. The

mapping of Affymetrix probe sets on MSU6 Gene Model IDs was

obtained from the www.ricechip.org website.

Random TALEs – rice genes networks were constructed by first

generating six random TALEs for each natural X. oryzae TALE

encoded in PXO99A, MAFF311018, PXO86 and BLS256 strains

by shuffling their RVD sequence. Next, 100 random networks

were assembled iteratively by randomly selecting one of the six

shuffled TALE derivative for each initial natural TALE and

querying the database for its associated Talvez-predicted targets

that also met the microarray expression criteria. The distributions

of node properties such as Talvez rank and connectivity measures

(TALE and rice gene degrees) were computed in R with facilities

from the graph package of Bioconductor.

Additional Analyses
Perfect matches (PMs) in the validation set of positive and

negative interactions were identified using an in-house Perl script

that identified PMs in each position based on the RVD-nucleotide

specificities used by Talvez. Connectivity of TALE target or

random gene sets in was assessed by querying the Ricenet [35]

server online (http://www.functionalnet.org/ricenet/search.html)

and retrieving the complete output network (query and all

predictions). TALE-gene network and functional networks for

TALE targets obtained from RiceNet were visualized using

Cytoscape [62]. Singular Enrichment Analyses (SEA) for GO

terms were performed on the AgriGO platform [34] against the O.

sativa MSU7 nonTE background and by testing with Fisher and

hypergeometric methods at 0.05 significance. Other advanced

options were left unchanged. Statistical tests for distribution and

mean comparisons were performed in R.

Predictor Programs Availability
Packages containing the source code of the Talvez and

Storyteller programs are available in Datasets S3 and Datasets

S4, respectively. A web interface and the source code of the Talvez

and Storyteller programs are also accessible on our server at

http://bioinfo.mpl.ird.fr/cgi-bin/talvez/talvez.cgi, and http://

bioinfo-prod.mpl.ird.fr/xantho/tales, respectively. Finally, the

source code of the Talvez and Storyteller is also available for

download on Sourceforge at https://sourceforge.net/projects/

talvez/and https://sourceforge.net/projects/storytellr/

respectively.

Supporting Information

Figure S1 Distribution of the relative expression ranks
of control TALE target genes in microarray data. The x-

axis values correspond to a decimal log transform of the rank of

the log2 fold change (logFCRank) of the Affymetrix probeset(s)

corresponding to a control gene in a specific treatment

comparison. For all bacterial strain-rice cultivar combinations

(see legend), the logFCRank data correspond to a wild type strain

versus mock comparison. For PXO99A, a wild type strain versus

mutant strain defective for type III secretion comparison was also

included.

(TIF)

Figure S2 Relevance of candidate TALE target genes in
available rice functional prediction data. (A) Singular

Enrichment Analyses for GO terms associated with candidate

TALE target genes (input list) compared to background annota-

tions in rice performed with AgriGO. No significant differences

were found (Fisher exact test, p-value ,0.05). (B) Predicted

functional network for candidate TALE target genes in the

probabilistic functional gene network RiceNet. Candidate TALE

target genes are shown in red, non-TALE targets are shown in

green (C) Frequency of highly connected genes in RiceNet among

candidate TALE targets compared to randomly selected sets of

rice genes.

(TIF)

Figure S3 A survey of possible association between in-
network TALE degree and TALE RVD sequence fea-
tures. Dispersion plots showing the relation between TALE

degree (total number of targets) and TALE length (in number of

repetitions) or TALE common RVDs frequency (percentage) in

the predicted TALE-target gene network. Spearman correlation

values are shown between parentheses.

(TIF)

Figure S4 Representation of the ‘‘conserved target’’
network. See the legend of Figure 4A for details. Gray color

represent Avrxa7-related TALEs from Xoo strains: KXO85,

PXO0314, PXO2648, PXO348, PXO356, PXO357, PXO557

and an in-vitro Avrxa7 mutant.

(TIF)
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Table S1 Updated RVD-nucleotide association matrix used by

Storyteller and Talvez to produce PWMs. Darker gray shading

indicates increasing binding preferences for each RVD. Higher

counts were assigned to well-studied RVDs (eg. HD, NG).

(XLSX)

Table S2 Validation set of controls used to test EBE prediction

programs. RVDs and promoter sequences were extracted from the

indicated references. Interaction class indicate the experimental

results,+(positive) = the TALE binds to the EBE or is able to

induce the expression of a gene located downstream of the EBE, 2

(negative) = the TALE is unable to induce the expression of a gene

located downstream of the EBE. Raw prediction scores from each

program are reported. Each prediction is classified as a true

positive (TP), true negative, (TN), false positive (FP) and false

negative (FN). Xca = X. campestis pv. armoriaceae, Xcv = X. campestris

pv. vesicatoria, Xg = X. gardnerii, Xoc = X. oryzae pv. oryzicola,

Xoo = X. oryzae pv. oryzae. The subset of interactions that were

used for genomic screenings and that correspond to genuine

targets in the rice or Arabidopsis genome are highlighted in green

and underlined.

(XLSX)

Table S3 Scaled-down RVD-nucleotide association matrix. This

matrix is used by Talvez to produce PWMs after a specified

position when the position correction is applied. All perfect

matches were assigned a value of 1.5 and all non-preferred

matches a value of 1.0.

(XLSX)

Table S4 Supplementary information on TALEs from X.oryzae

strains used in this work.

(XLSX)

Table S5 Description of the microarray data comparisons

performed to identify TALE-regulated genes. Each row corre-

sponds to a pair-wise treatment comparison used in this work to

calculate Log Fold changes and select up-regulated genes.

Information about the host plant genotype, the query strain, the

appropriate reference treatment and the sampling time is

provided. Number of TALEs indicates the potential number of

TALEs that are expected to be queried for potential rice gene

induction activity in that comparison (i.e. difference in TALE

numbers between the tested strain and the control treatment).

Accession numbers correspond to NCBI GEO Datasets accession

numbers.

(XLSX)

Table S6 Assessment of various position correction values for

predicting induced TALE targets. Performance indicators for the

capacity of Talvez to predict differentially expressed genes (as

determined by microarray data) for all sequenced X. oryzae TALs

when varying the value of the position correction. A gene within

the top 200 predicted genes and that also shows differential

expression in microarray data is considered as a TALE target

gene. Predictions were made against the set of rice promoters for

the set of 69 TALE RVD sequences encoded in the genome of

strains that have supporting rice expression data. The Number of

top or high ranking genes columns reports the cumulated counts of

TALE-wise target gene predictions that rank respectively first or in

the top 10 in the entire predictions set and that are also

differentially expressed. The Sum column displays the row-wise

sum of performance indicators values as a composite aggregator

value to be maximized.

(XLSX)

Table S7 TALE-candidate target gene network data. Talvez

predictions obtained with a position correction value of 19 and

cross-referenced with microarray data are reported. Accession

number corresponds to the TALE protein sequence available in

public databases. RVD sequences were manually extracted from

available protein sequences. TALE alias corresponds to a known

common name for a given TALE. TARGET gene ID refers to the

locus ID of genes containing a Talvez-predicted EBE in their

promoters. Prediction scores and rank correspond to the Talvez

predictions for the TALE-EBE pair after searching the rice

promoters set. Evidence indicates whether the TALE-gene

association is supported by gene-induction data in microarrays

or if it corresponds to a TALE from a strain without associated

microarray data that has a predicted target that is likely induced

by TALE from our reference strains (‘‘Conserved target’’). The

logFC, logFCRank, AveExpr, adj_P_Val and B columns contains

respectively the log2-fold change, the rank of the logFC when the

values for that comparison (described in the Treatment compar-

ison column) are sorted in a decreasing order, the average log2-

expression level for that gene across all the arrays in the

experiment, the associated p-value after adjustment for multiple

testing and the log-odds that the corresponding gene is

differentially expressed in the comparison.

(XLSX)

Table S8 Predicted EBEs in the promoter of differentially

expressed genes in microarray comparisons addressing TALE-

specific effects. LogFC values correspond to the log2 fold-change

from comparisons between plants inoculated with either the wild-

type or a TALE-mutant bacteri. EBE distances refer to the

translation start site.

(XLSX)

Datasets S1 Cytoscape Session (.cys) file containing the
primary, expression data supported TALE-rice gene
network that served for the construction of Figure 4A.
(CYS)

Datasets S2 Cytoscape Session (.cys) file containing the
conserved TALE-rice gene network that served for the
construction of Figure S4.
(CYS)

Datasets S3 Script files for Talvez.

(TAR)

Datasets S4 Script files for Storyteller.

(TAR)
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