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Can intestinal microbiota be 
associated with non-intestinal 
cancers?
Camille Jacqueline1,2, Lionel Brazier2, Dominique Faugère1,2, François Renaud1,2, Frédéric 
Thomas1,2 & Benjamin Roche2,3

While the role of intestinal microbiota is increasingly recognized in the etiology of digestive cancers, 
its effects on the development of cancer in other parts of the body have been little studied. Through 
new-generation sequencing, we aimed to identify an association between the structure of intestinal 
microbiota and the presence of eye disc tumor in Drosophila larvae. First, we observed a parental effect 
on the diversity and structure of bacterial communities. Second, we identified a bacterial signature (at 
the family level) of cancer: cancerous larvae host a significantly lower relative abundance of Bacillaceae 
than individuals that did not develop the tumor. Thus, for the first time, we showed that a non-
digestive cancer, i.e., in the brain, could be associated with an altered composition of the gut microbial 
community. Finally, we discuss the potential implications of the immune system in the gut–brain axis 
concept to explain the long-distant effect of intestinal microbiota on brain tumors. We also highlight the 
potential of our results in a therapeutic perspective for brain cancer that could be generalized for other 
cancers.

All human body surfaces and cavities are inhabited by complex communities of micro-organisms (e.g., viruses, 
bacteria) whose composition is influenced by host genetics, feeding habits, life style, and microbial exposure1,2. 
Recent evidence suggests that many human diseases are attributable not only to pathogens circulating in host 
populations, but also to global changes in our microbiota3. Our microbiome contains a metagenome that exceeds 
our own genome size and interacts with key functions in the homeostasis of our body, resulting in a healthy state. 
In particular, the microbiome is involved in the modulation of important components of the organism including 
inflammation and metabolism4, which are also considered as two hallmarks of cancer5. This is why the intricate 
interactions of the human microbiome with cancer development have been increasingly investigated, giving rise 
to the concept of the “oncobiome”6. Even though this concept has been criticized because studies have demon-
strated associations rather than causations7, several investigations in germ-free animals have highlighted the 
impact of the global microbiota on cancer development in various organs (reviewed by8). Because microbial mass 
is represented at 99% by the bacterial species within the gastrointestinal tract, studies have focused on the role of 
intestinal microbiota in carcinogenesis.

Changes in intestinal microbiota have been associated with diseases at local (e.g., inflammatory bowel dis-
ease9) and long-distant (e.g., multiple sclerosis10) scales. In the context of cancer, most studies have looked at 
interactions between intestinal microbiota and digestive cancers. One pro-tumoral role of microbiota is linked to 
inflammation11. For instance, a disruption of the mucosal–epithelial barrier induces pro-inflammatory cytokine 
secretion, which in turn induces tumor growth in a colon adenoma mice model12. In addition, microbiota has 
been shown to drive colon carcinogenesis through other mechanisms, such as the alteration of retinoic acid 
metabolism13. Microbiota can play a fundamental role in the elaboration of an efficient immune system14 and 
could also promote anti-tumoral surveillance to prevent cancer or at least limit tumor growth. In fact, microbial 
products shape T cell repertories15 and could regulate anti-tumor responses through the priming of cross-reactive 
T cells specific to both bacterial and tumoral antigens16.
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Very few studies have explored the link between intestinal microbiota alterations and non-digestive cancers. 
The pro-tumoral effect of intestinal microbiota has been reported in a liver cancer mice model17 whereas reduced 
bacterial load was positively correlated with breast tumor18. Nevertheless, for several reasons (e.g., neural, endo-
crine, or immune afferents19), it is expected that interactions could exist between intestinal microbiota and malig-
nancies located in different parts of the body (i.e., long-distant interactions). For example, the concept of the 
gut–brain axis describes the complex and bidirectional communication system between brain and gut20. The 
disturbance of this system has been implicated in a wide range of health disorders (e.g., gastrointestinal inflamma-
tion, eating disorders)21. In the context of cancer, this gut–brain crosstalk has been little investigated even though 
it seems worth exploring, since immunity—through the production of cytokines—is involved in this communica-
tion22. Therefore, one could expect that immune responses directed towards cancer cells in the brain could affect 
the microbial community in the gut, or that alteration in microbiota structure could result in cancer proliferation.

In this study, we explored the possibility of a long-distant crosstalk between a tumor in the brain and intes-
tinal microbiota. We characterized the diversity and structure of intestinal microbiota in Drosophila larvae 
with a tumor in the eye-antennal disc using new generation sequencing (NGS) of polymerase chain reaction 
(PCR)-generated amplicons from the 16S rRNA gene. Using microbial community diversity analyses, we sought 
the presence of a specific signature at the family level that could be linked with the cancerous status. Finally, we 
discuss the potential implication of the immune system to explain the long-distance effect of intestinal microbiota 
on brain tumor and highlight the potential of our results in a therapeutic perspective.

Materials and Methods
Tumor model and Drosophila stocks. The genetically modified Drosophila melanogaster flies used in 
this study were engineered to develop a tumor of the eye disc, as previously described23. The genetic scheme 
uses eyeless promoter-driven FLP recombinase expression (eyFLP) to introduce multiple genetic alterations in 
GFP-labeled cells, specifically in the developing larval eye-antennal imaginal discs as well as the optic lobes of the 
brain, but not in other adjacent tissues. Clones are mutant for the cell polarity regulator scribbled (scrib), which 
is a loss-of-function allele. Scrib mutants normally die; however, in combination with oncogenic UAS-Ras85v12 
(gain-of-function transgene), cell death is prevented and tumor overgrowth occurs. Male yw122; Sp/Cyo; F8213/
TM6 flies were crossed with yw, ey(3.5)-FLP; act5 > stop > gal4,UAS-GFP; FRT82B, Tub-gal80 females to gener-
ate healthy clones (cross 1). Male UAS-Ras85v12; FRT82B; scrib1/TM6B flies were crossed with the same females 
described above to generate RAS/scrib GFP-labeled clones (cross 2) (Fig. 1). Female flies were isolated before 
emergence at the pupal stage and fertilized by two-day-old males. All Drosophila stocks and crosses were main-
tained on standard fly media.

Figure 1. Schematic representation of the experimental design. The two boxes describe the crosses generated 
to obtain control larvae (cross 1) and cancerous/non-cancerous larvae (cross 2). The picture shows an eye-
antennal tumor in situ under GFP.
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Experimental protocol. The crosses were allowed to lay eggs on sugar-agar plates for less than 24 h, and 
collected embryos were incubated for two days at 24 °C. Microbiota-free larvae from crosses 1 and 2 were also 
generated by dechorionation of embryos with 50% bleach. This control allows us to determine contamination that 
occurs during dissection due to bacteria present on the cuticle or in the hemolymph. From the two crosses, we 
selected larvae at the late 2nd or early 3rd instar stage based on the lack of the dominant Tubby phenotype carried 
on the TM6b balancer chromosome. After selection, seven larvae were transferred into each well of a 96-well plate 
filled with yeast-sugar-agar media; wells were then sealed by plugs.

After two more days of incubation at 24 °C, we performed tumor visualization of 3rd instar larvae using a 
dissecting microscope under GFP fluorescence (Zeiss A Lovert 200 M, 2.5X). The GFP-labeled tumor cells were 
easily observable in living larvae through the transparent cuticle (Fig. 1). Cross 1 descendants did not show 
an over-proliferation of eye-disc cells, but half of the cells are GFP-labeled (these control larvae are henceforth 
referred to NC). Our model has shown that only 20% of the non-Tubby cross 2 descendants harbor the tumor. 
Thus, we distinguished cross 2 larvae that did not express the tumor (non-cancerous larvae; henceforth referred 
to as G) from those showing the GFP-labeled tumor (cancerous larvae; henceforth C).

After determining the cancerous status, we obtained 30 larvae for each group (cancerous, non-cancerous, and 
control) and three control microbiota-free larvae of each cross. Before dissection, each 3rd instar larva was washed 
in three successive bathes: bleach, 70% alcohol, and sterile water. The gut (from proventriculus to rectum, exclud-
ing Malpighian tubules) was then dissected with bleach-sterilized forceps in sterile PBS. The dissected intestines 
were transferred to Eppendorf tubes for DNA extraction and kept at −20 °C. A control for the dissection was 
made using a drop of PBS solution treated as for dissections, but without insect materials, to ensure the absence 
of bacterial contaminants.

DNA extraction and PCR reaction. Total genomic DNA was extracted from isolated larva guts following 
the manufacturer’s protocol (QIAGEN DNeasy® Blood and Tissue Kit). All DNA extractions were resuspended 
in 50 µL of sterile water and stored at −20 °C. Extraction controls were processed in parallel during the DNA 
extraction procedure to monitor reagent contamination24.

The V3 region of the partial 16S rRNA gene (180 pb) was amplified from extracted DNA using the broad-range 
bacterial-specific primers Probio_Uni and Probio_Rev (Table S1 in supplementary material)25. These primers 
amplify more than 94% of the bacterial 16S rRNA coding sequence. Primers were modified to include a 10-mer 
barcode tag (forward primer) and adapter sequences for the Ion Torrent PGM sequencer. Each sample, including 
controls, was amplified by PCR once and identified with a specific barcode. The PCR was performed according 
to manufacturer’s protocol for Q5® DNA Polymerase (New England Biolabs). PCRs were conducted in 10 µM of 
each primer and 10 ng of DNA sample in 25 µL final volume. The PCR conditions used were 94 °C for 5 min fol-
lowed by 22 cycles of 94 °C for 30 s, 50 °C for 15 s, and 72 °C for 15 s, with a final extension step at 72 °C for 8 min. 
For each PCR plate, we added a negative control tube containing sterile water.

Ion Torrent PGM 16S metagenomic sequencing. The DNA library constructions derived from PCR 
were purified twice by magnetic separation using Agencourt AMPure XP DNA purification beads (Beckman 
Coulter Genomics). The elimination of free primers and new concentrations of libraries were then verified with 
electrophoresis on an Agilent 2100 Bioanalyser (Agilent Technology). All amplicons were diluted to 26 pM—
except for controls (dissection [1 sample], extraction [3 samples], and PCR [2 samples]), which were used pure—
and pooled to equalize concentrations for emulsion PCR with the Ion One Touch 400 Template kit v2 (Life 
Technologies) according to the manufacturer’s instructions. Sequencing of the amplicon libraries was carried 
using the Ion PGM™ Hi-Q™ Sequencing kit with 48 barcoded amplicon libraries pooled on Ion 318™ chips.

Sequence filtering. After sequencing, the flowgram files for each sample of each chip were downloaded 
from the Torrent Server and were then processed using Mothur v1.35.126. The standard operating procedure 
(SOP) for 454 pyrosequencing was adapted to the Ion Torrent technology27. Sequences were filtered to keep 
sequences with a) homopolymer of a maximum of 10 bases, b) a quality window average ≥30, c) a quality window 
size of 50 bases, d) one allowed mismatch in primers, and e) one allowed mismatch in barcode. All the fasta and 
qual files were concatenated into one file respectively from which were performed: a) alignment of sequences 
using Silva SSU Reference alignment v10228, b) removal of error and chimeric sequences with the uchime pro-
gram, c) assignment of sequences using the Wang method29 and with a bootstrap value superior to 80%, d) 
clustering into operational taxonomic units (OTUs) with a 97% similarity compared to the reference database, 
as commonly used30, e) filtering and removal of OTUs represented by a single sequence, and f) the consensus 
taxonomic classification for each OTU.

Statistical analyses. The shared and taxonomy files generated by Mothur were imported into R with the 
“phyloseq” package31. We considered taxonomic classification up to the family rank because information at spe-
cies level was too sparse and would introduce bias in diversity analyses due to the large number of unclassified 
species. In fact, 16 S approaches offer limited taxonomical resolution, particularly when the fragment considered 
is short, and it has been observed that none of the 16S pipelines performed satisfactorily at the species level32,33. 
Except if it is specified, our analyses, that aimed to generate descriptors of global diversity, were conducted using 
the total number of classified OTUs. Rarefaction curves for each group of larvae were plotted using observed 
OTUs and the Shannon index of species richness (the “iNEXT” and “DiversitySampler” packages;34,35). In addi-
tion, to investigate how our sequencing efforts related to the real bacterial population, we calculated Good’s cov-
erage estimator using the data generated by Mothur (i.e., the number of OTUs represented by a single sequence 
removed at step e)36.
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We then characterized the microbiota structure for each group of larvae. To standardize by sampling effort, 
alpha diversity and Simpson’s evenness index were calculated on a subsample (with replacement) of our libraries 
using the minimum number of reads found in our samples. We repeated this 100 times and averaged the diversity 
estimates from each trial. This method is also recommended to control for sequencing errors that could remains 
after filtering. Principal coordinate analysis (PCoA) (with the ordination function in R, using the bray distance 
method in the “phyloseq” package) and principal component analysis (PCA) (with the prcomp function in R) 
were also conducted on all OTUs to assess structure differences between groups. Finally, after having quantified 
the impact of parental effects on the descendants’ microbiota, we focused on the effect of the cancerous status 
on microbiota diversity by comparing cancerous vs non-cancerous groups. Redundancy analysis is a common 
ordination technique in community ecology that allows an unweighted linear regression on constrained variables. 
RDA was performed using cancerous status (presence or absence of tumor) as the constrained variable and rela-
tive abundance of OTUs as the response variable using the rda function of the “vegan” package. For this analysis, 
we focused on the most abundant families, with a relative abundance superior to 0.02% (i.e., 48 OTUs), in order to 
avoid attributing differences to OTUs that could represent sequencing errors. The significance of the constrained 
ordination model was assessed by the Monte Carlo Permutation Test. For families identified during this step, 
we evaluated whether their relative abundances were significantly different between the two groups through 
non-parametric Mann-Whitney tests and applied Šidák correction for multiple comparisons37. All analyses were 
conducted in R version 3.3.238.

Results
Data summary. After having applied all filtering methods described in the previous section, our dataset 
consisted of 897 unique nearly full-length high-quality clones (i.e., groups of identical sequences) representing 
90 larva samples (which we refer to as libraries). This dataset excluded 45 536 clones that had a length inferior to 
90 bp (we expected sequences with an average length of 180 bp) and that were not correctly aligned to reference 
sequences (differed from 95% of the sequences). In addition, 44 421 clones were eliminated because they pre-
sented one base of difference with the reference sequences or because they were identified as chimeric by Mothur 
software. Finally, 1040 clones were removed because they were represented by one sequence only. From the 897 
clones, clustering with Mothur, using an average neighbor algorithm with 97% of similarity with the reference 
database, has created 179 distinct OTUs and corresponded to more than three billion sequences (i.e., reads). 
The libraries varied in terms of sequencing depth, ranging from 102 to 105 reads per sample (Fig. 2A). However, 
sequencing depth was comparable between the three groups of larvae (p-values for each combination from the 
Mann-Whitney test: C-G = 0.8, NC-G = 0.5, NC-C = 0.76; Fig. 2B). Finally, controls for dissection, extractions, 

Figure 2. Description of data generated by sequencing and mothur analysis. (A) Sequencing depth in all 
samples concatenated. (B) Sequencing depth according to larval status. (C) Relative abundance of bacterial 
families across the three groups (C: cancerous; G: non-cancerous; NC: control). For the sake of clarity, families 
with a relative abundance below 2% are not included.
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and PCR did not show bacterial contamination, and taxa of interest were absent from microbiota-free larvae (see 
Figs S1, S2 in supplementary materials).

The bacterial community of our libraries essentially comprised four phyla: Actinobacteria, Bacteroidetes, 
Proteobacteria, and Firmicutes; this latter was by far the most prevalent (99% of total OTUs). Even though 
the number of OTUs was high, most of families were poorly represented (low number of sequences, very few 
samples). Four bacterial families of Firmicutes accounted for nearly all the diversity of our libraries (98% of 
total OTUs) (Fig. 2C). These included Leuconostococaceae, which was the predominant phylotype (60% of 
Firmicutes), Streptococaceae (30%), Bacillaceae (12%), and Lactobacillaceae (2%). Microbial compositions 
were highly conserved between individuals at the phylum and family levels (Fig. S3 in supplementary materials). 
However, microdiversity (i.e., diversity in rare OTUs) was highly variable at the inter-individual level. In fact, 
when we considered families with a relative abundance superior to 0.02% (assuming this avoids observing ran-
dom sequencing errors), we found that the number of OTUs ranged from 35 to 5 by sample, with an average of 
19 OTUs per sample.

Rarefaction analyses were used to determine if the sampling effort was sufficient to correctly describe the 
bacterial community. It showed that larval groups differed slightly in richness and were sampled at comparable 
depths (Fig. 3). Even if the rarefaction curves based on the number of OTUs did not reach a plateau (and therefore 
convergence), extrapolations with 25% supplementary reads showed that the sequencing depth for each group 
was satisfactory (Fig. 3A). Moreover, the Shannon diversity estimates were stable at the observed sequencing 
depth and even with lower one (Fig. 3B). This suggests that although new phylotypes could be expected with 
additional sequencing, most of the diversity was already captured. Finally, Good’s estimator of coverage for the 
total library was greater than 99%.

Characterization of parental effects on intestinal microbiota. All diversity estimators indicated that 
control larvae had a more diverse bacterial community than cancerous and non-cancerous larvae coming from 
cross 2 (descendants carrying oncogenic mutations) (Table 1). In fact, control larvae tended to have a higher 
number of OTUs and a higher Shannon’s diversity index value than the other two groups, whatever the cancer-
ous status. In addition, this difference was found to be significant with respect to the alpha diversity (W = 287, 
p-value < 0.0001) and Simpson index of evenness (W = 394, p-value < 0.0001) (Fig. 4A and B).

Multivariate statistical analyses were performed to compare the overall structure of the intestinal microbiota 
for all samples. PCoA based on the relative abundance of OTUs revealed a separation between control individ-
uals and the two other groups according to the first two principal component scores, which accounted for 64% 

Figure 3. Rarefaction analysis of 16S rRNA gene clone libraries. (A) Observed rarefaction curves generated 
with the iNEXT package. Solid lines represent the observed accumulation with the number of reads sampled, 
and dashed lines represent the extrapolated accumulation considering 25% more reads. Shaded areas are 
the 95% confidence intervals. (B) Shannon’s index rarefaction curves (C: cancerous; G: non-cancerous; NC: 
control).

Groups
No. of 
samples

No. of 
clones

No. of OTUs 
(phylum level)

No. of OTUs 
(family level)

Observed alpha 
diversity

Shannon’s index of 
diversity

Simpson’s index 
of diversity

Simpson’s 
eveness

Cancerous (C) 30 1145021 19 102 4.3 0.59 1.577 1.52

Non cancerous (G) 30 1046822 16 106 4.5 0.62 1.569 1.58

Control (NC) 30 1092023 21 119 5.9 1.26 3.25 2.08

Total 90 3283855 28 179 4.9 0.64 1.7 1.73

Table 1. Drosophila microbial flora diversity estimates according to groups of interest.
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and 32% of the total variation respectively (96% in total; Fig. 4C). However, PCoA also showed that the bacterial 
microbiome of cancerous larvae was similar to that of non-cancerous larvae. Finally, PCA also revealed a differ-
ence in the structure of microbial communities. We observed that the differentiation between larvae from distinct 
cross was driven by different phyla (Fig. 4D). Thus, rarer phyla such as Verrumicrobia and Cyanobacteria were 
associated with control larvae, whereas dominant phyla (e.g., Firmicutes and Proteobacteria) were correlated with 
cancerous and non-cancerous groups.

Influence of cancerous status on bacterial families residing in larval intestines. Despite the rela-
tively tight clustering of cancerous and non-cancerous samples, RDA analysis allowed the identification of small 
differences in microbiota composition. In fact, the two first axes explained only 0.04% (constrained axis) and 
2.6% (unconstrained axis) of the total variation respectively and a Monte Carlo Permutation Test showed that 
the constrained ordination model produced by the RDA was not significant (p-value = 0.7). Thus, the varia-
tions observed in the relative abundances of OTUs cannot be explained by cancerous status. In other words, the 
presence of a tumor was not associated with a modification in the microbiota structure, in agreement with the 
results from previous multivariate analyses. However, we identified three OTUs as key variables which had at 
least 3% of the variability in their values explained by the constrained axis and at least 40% by the unconstrained 
axis (Fig. 5A). On the RDA biplot, we observed that Bacillaceae and Streptococcaceae were more abundant in 
the microbiota of non-cancerous larvae contrary to Leuconostocaceae, which were more common in cancerous 
larvae. Mann-Whitney tests showed that only the relative abundance of Bacillaceae was significantly different 
between cancerous and non-cancerous groups (W = 211, p-value = 0.0004; corresponding to a risk α = 0.055 for 
136 OTUs, according to Šidák correction). It is also worth noting that family Bacillaceae was essentially made up 
of the Bacillus genus.

Discussion
The aim of our study was to explore if non-digestive cancers, especially brain cancer, could be associated with 
a modification in the composition of intestinal microbiota. We characterized the diversity and structure of the 
intestinal microbiota in Drosophila larvae developing a cancer of the eye-antennal disc. First, we observed that 
cancerous and non-cancerous individuals with oncogenic mutations were not distinct according to the various 
diversity estimators that we employed, i.e., the composition of individuals’ bacterial communities were similar. 

Figure 4. Genetic background affects the diversity and structure of the bacterial communities of larvae. 
(A) Alpha diversity and (B) Simpson’s index of evenness for each group of larvae (C: cancerous; G: non-
cancerous; NC: control). (C) Principal coordinates analysis and (D) principal component analysis for each 
group of larvae. Blue dots represent control individuals, green dots non-cancerous individuals, and red dots 
cancerous individuals. In (D), arrows show the contribution of each principal phylum to the dimensions 
(Actn: Actinobacteria, Bctr: Bacteroidetes, Chlr: Chloroflexi, Cynb: Cyanobacteria, Frmc: Firmicute, Prtb: 
Proteobacteria, Vrrc: Verrumicrobia). Ellipses consider normal data. ***p-value < 0.0001.
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However, this composition was significantly different from control larvae, which did not carry the oncogenic 
mutations. Second, we identified a bacterial signature of the cancerous status at the family level: cancerous larvae 
had a significantly lower relative abundance of Bacillaceae than individuals who did not develop the tumor. Thus, 
for the first time, we showed that brain cancer could be associated with alterations in the intestinal microbial 
community.

Two hypotheses may explain the observed parental effect (i.e., parents play a role in determining offspring’s 
phenotype through non-genetic or genetic influences) on the microbiota structure and diversity of larvae groups. 
First, it has been shown that larvae acquire the bacteria that compose their microbiota by feeding on adult feces39. 
Females were genetically identical and harvested under identical conditions in the two crosses and thus cannot 

Figure 5. Influence of cancerous status on bacterial microbiota. (A) Biplot of the redundancy analysis 
considering constrained ordination model based on the relative abundance of operational taxonomic units 
(OTUs) (97% similarity level). OTUs with a relative abundance superior to 0.02% are indicated in red. The 
triangles show the centroids for factor constraints. The p-value of the Monte Carlo Permutation Test is shown in 
the upper right. (B) Relative abundance of three families of interest in the cancerous (C) and non-cancerous (G) 
groups. **p-value < 0.001.
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affect microbiota of descendants distinctly. However, as males came from two distinct lines, they could show 
divergent microbiota after extended husbandry isolation (as suggested in mice40). Thus, we hypothesize that the 
parental effect observed in our study may result from transmission of bacterial species from different males. 
Nevertheless, it has been shown that several laboratory lines of Drosophila have a low microbial diversity if they 
have been fed with the same fly media41. A second hypothesis relies on the recent observation of an association 
between host genome and microbiome42. In this context, oncogenic mutations could thus have an additional and 
significant effect on bacterial community structure. This hypothesis is particularly interesting because it implies 
that mutations, through modifying an individual’s phenotype, may alter intestinal microbiota even before cancer 
emerges. As scrib is involved in cell migration and polarity43, mutations could significantly affect the integrity 
of the gut epithelium, which is known to affect associated bacteria species44. The characterization of microbiota 
structure in larvae harboring other mutations triggering brain cancer (see45 for examples) could provide cru-
cial information to disentangle the effect of genetic mutations on microbiota. Further studies should also deter-
mine the part of microbiota structure that could be attributed to oncogenic mutations or to parental effects. For 
example, it would be necessary to reproduce our experiment by separating males and females before egg-laying. 
Another step would be to compare the microbiota of parent flies to those of their descendants. Finally, the obser-
vation of naturally-acquired microbiota in axenic larvae, bearing oncogenic mutation or not, may be also relevant 
to report in which measure mutations impact the colonization by bacterial species. Such experiments are defi-
nitely crucial before being able extrapolating to human diseases because intestinal microbiota is not considered 
to be heritable—or to a very low extent46—whereas several oncogenic mutations could be47.

The bacterial signature between cancerous and non-cancerous individuals is due to the Bacillaceae family. 
However, our study does not test if a higher relative abundance of this family protects against cancer development 
or, conversely, if the development of cancer cells affects Bacillaceae populations specifically. It has recently been 
suggested that the efficiency of the immune system may depend on the immunogenicity of microbiome lipopol-
ysaccharides (LPS)48. In this study, authors demonstrated that Escherichia coli is highly immunogenic because of 
LPS at its surface and that early-life infection by this bacteria may contribute to a more equilibrated immune sys-
tem. Bacillaceae is one of the rare Firmicutes families that share a specific LPS with E. coli49, suggesting that they 
could also share the same immunogenicity. This expectation is supported by the potential of Bacillus spp.—the 
dominant genus of the family in our study—to increase mortality in other insect species50, which could reflect an 
over-response of the immune system. Even though we did not observe such mortality, which could be the result 
of co-evolution, we can expect that the immune system is still stimulated by the presence of the bacteria, at least at 
a low level. Thus, we hypothesize that species of Bacillaceae could help to eliminate cancer cells at the beginning 
of carcinogenesis, and therefore avoiding cancer emergence for individuals carrying oncogenic mutations. To 
confirm the impact of Bacillaceae species on cancer development and the accuracy of our hypothesis, additional 
experiments are clearly necessary. First, the comparison of axenic, microbiota-colonized and mono-associated 
axenic larvae (with specific colonization by Bacillaceae species) should allow a better characterization of immune 
response pathways triggered by these bacteria, as well as the intrinsic impact of this family on cancer cell accu-
mulation. If the role of Bacillaceae family is confirmed, further studies should investigate its mechanistic effects 
by exploring the effect of an injection of specific LPS on cancer cell accumulation. Alternatively, colonization of 
axenic larvae with modified Bacillaceae, unable to produce LPS, could help distinguishing if LPS production is 
the only active mechanism involved in cancer development.

Drosophila is a recognized model for cancer study45 and may be useful in the study of questions that may not 
be addressable with human biological data. For example, human bacterial diversity is usually measured from 
fecal samples, but the degree to which the composition and function of fecal samples differ from mucosal sam-
ples remains unclear51. With animal models, this constraint is removed, and species richness can be examined 
throughout the whole intestine. One important limitation for extrapolating our results to humans relies in their 
dramatically different microbiota composition compared to Drosophila. Most human studies linking microbiota 
structure and diversity to cancer (principally colorectal cancer) have identified changes in the proportions of 
Bacteroides in communities (see52 for a review). However, Bacteroides are almost absent from the microbiota of 
Drosophila larvae, which is largely dominated by Firmicutes. In addition, characterization of microbiota com-
position at species level has not been considered in our study because of the small length of our 16s fragment 
as well as our sample size. Further studies, exploring bacterial signature at species level through the sequenc-
ing of full-length 16s RNA53, may allow identifying specific taxa implied in carcinogenesis. In this context, the 
long-distance crosstalk between brain cancer and intestinal microbiota should be investigated in humans in 
order to identify precise bacterial signatures of brain cancer. Another caveat of our study is that we characterized 
microbiota structure and diversity at the 3rd instar larval stage, which is reached after only a few days of devel-
opment. Thus, this model does not include long-term processes that could occur in long-living animals. A first 
step could be to reproduce our study in an adult insect model where carcinogenesis may be more progressive 
(see, e.g.,54). Finally, alimentation is a key factor to take into account when investigating microbiota modification. 
Alimentation often differs between individuals in nature and deeply affects microbiota (both in humans55 and 
insects41). In addition, it has been proposed that microbiota may influence nutrition56 and/or immunity, both of 
which can affect cancer risk57,58. Since we always used the same food media for all individuals, we may under-
estimate the difference that could exist between cancerous and non-cancerous individuals in natural situations 
(especially if cancerous individuals experience a different nutrition). Further studies should consider interactions 
of alimentation with the gut–brain axis to accurately identify bacterial cancer signatures.

The three-way interconnection between intestinal microbiome, cancer, and the immune system is increas-
ingly recognized16. Even though our study gives preliminary results, it shows for the first time the possibility of 
long-distance effects of intestinal microbiota on cancer in distant organs. One important task that remains is 
to identify the orientation and mechanisms of the long-distant communication between brain and gut. In fact, 
alterations in microbiota communities could be neutral, detrimental, or beneficial to cancer, and studies should 
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be undertaken to identify the causality of these changes. Such studies could allow the identification of species 
associated with a decreased risk of cancer that could be used as a preventive measure (e.g., administration of 
probiotics), and drugs could also be designed to mimic their influence on the immune system to improve cancer 
cell elimination. Finally, increasing our knowledge about pro-tumoral species could also have important applica-
tions, for example, they could serve as biomarkers for early detection of cancer risk, or they could be targeted by 
therapeutic strategies such as narrow-spectrum antibiotics.
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