UNIVERSIDAD MAYOR DE SAN ANDRÉS
FACULTAD DE AGRONOMÍA
CARRERA DE INGENIERÍA AGRONÓMICA

TESIS DE GRADO

EVALUACIÓN COMPARATIVA DEL COMPORTAMIENTO AGRONÓMICO DE DIEZ VARIEDADES DE QUINUA (Chenopodium quinoa Willd.) EN EL ALTIPLANO NORTE

Rodolfo APAZA QUISPE

La Paz – Bolivia
2006
EVALUACIÓN COMPARATIVA DEL COMPORTAMIENTO AGRONÓMICO DE DIEZ VARIEDADES DE QUINUA (*Chenopodium quinoa* Willd.) EN EL ALTIPLANO NORTE

Tesis de Grado presentado como requisito parcial para optar el Título de Ingeniero Agrónomo

Rodolfo APAZA QUISPE

ASESORES:

Dr. Jean – Pierre RAFFAILLAC ..

Ing. M.Sc. Félix MAMANI REYNOSO

TRIBUNAL REVISOR:

Ing. Ph.D. Bernardo SOLIZ GUERRERO

Ing. Ph.D. Alejandro BONIFACIO FLORES

Ing. M.Sc. Félix ROJAS PONCE ..

APROBADA

DECANO a. i. :

Ing. Ph.D. René CHIPANA RIVERA
Dedicatoria

Con todo mi amor a mis queridos padres Felipe Apaza y Rosa Quispe por todo su apoyo, paciencia y esfuerzo demostrado en todo momento; a mis hermanos Freddy, Juan Carlos, Heriberto y a mi amada compañera Zulema Gutierrez.
AGRADECIMIENTOS

Gracias a Dios por la vida, que me ha dado tantos momentos felices, a mis amados padres Felipe Apaza y Rosa Quispe por todo su apoyo, amor y orientación. Y a mi querida compañera Zulema Gutierrez quién llegó en el momento exacto para iluminar mi vida.

Mis sinceros agradecimientos al Institut de recherche pour le développement “IRD”, que mediante el Proyecto Quinua – CLIFA, me ofrecieron la oportunidad de culminar mis estudios superiores.

Al Dr. Jean–Pierre RAFFAILLAC, tutor de tesis, por su amistad, confianza, paciencia, por su guía para la ejecución del trabajo de campo y su gran espíritu de colaboración en favor de los estudiantes de la Facultad de Agronomía.

A la Ing. M.Sc. Carmen DEL CASTILLO, por las sugerencias vertidas y todas las correcciones realizadas en la elaboración del presente documento.

Al Ing. M.Sc. Félix MAMANI REYNOSO, asesor de tesis, por su amistad, sus consejos y todo su tiempo empleado en la corrección del documento final.

Gracias a todos los docentes de la Facultad de Agronomía, por la formación académica y profesional adquirida día a día en las aulas durante mi corta vida universitaria.

Y gracias a todos mis amigos y compañeros que me apoyaron en todo momento ofreciéndome su amistad y apoyo moral durante el tiempo transcurrido en la Facultad.
<table>
<thead>
<tr>
<th>ÍNDICE</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATORIA</td>
<td>3</td>
</tr>
<tr>
<td>AGRADECIEMIENTOS</td>
<td>4</td>
</tr>
<tr>
<td>CONTENIDO</td>
<td>5</td>
</tr>
<tr>
<td>ÍNDICE DE CUADROS</td>
<td>8</td>
</tr>
<tr>
<td>ÍNDICE DE FIGURAS</td>
<td>9</td>
</tr>
<tr>
<td>RESUMEN</td>
<td>11</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>12</td>
</tr>
<tr>
<td>1. INTRODUCCIÓN</td>
<td>13</td>
</tr>
<tr>
<td>2. OBJETIVOS</td>
<td>15</td>
</tr>
<tr>
<td>2.1 Objetivo General</td>
<td>15</td>
</tr>
<tr>
<td>2.2 Objetivos Específicos</td>
<td>15</td>
</tr>
<tr>
<td>2.3 Hipótesis</td>
<td>15</td>
</tr>
<tr>
<td>3. REVISIÓN BIBLIOGRÁFICA</td>
<td>16</td>
</tr>
<tr>
<td>3.1 Historia e Importancia de la quinua</td>
<td>16</td>
</tr>
<tr>
<td>3.2 Origen de la quinua</td>
<td>17</td>
</tr>
<tr>
<td>3.3 Posición taxonómica</td>
<td>17</td>
</tr>
<tr>
<td>3.4 Morfología del cultivo de quinua</td>
<td>18</td>
</tr>
<tr>
<td>3.5 Fases fenológicas de la quinua</td>
<td>20</td>
</tr>
<tr>
<td>3.6 Valor nutritivo</td>
<td>21</td>
</tr>
<tr>
<td>3.7 Variabilidad y diversidad genética</td>
<td>22</td>
</tr>
<tr>
<td>3.8 Manejo del cultivo</td>
<td>23</td>
</tr>
<tr>
<td>3.8.1 Preparación del terreno</td>
<td>23</td>
</tr>
<tr>
<td>3.8.2 Siembra</td>
<td>23</td>
</tr>
<tr>
<td>3.8.3 Profundidad de siembra</td>
<td>24</td>
</tr>
<tr>
<td>3.8.4 Densidad de siembra</td>
<td>24</td>
</tr>
<tr>
<td>3.8.5 Época de siembra</td>
<td>25</td>
</tr>
<tr>
<td>3.8.6 Rotación de cultivos</td>
<td>25</td>
</tr>
<tr>
<td>3.8.7 Labores culturales</td>
<td>26</td>
</tr>
<tr>
<td>3.8.7.1 Deshierbe</td>
<td>26</td>
</tr>
<tr>
<td>3.8.7.2 Raleo</td>
<td>26</td>
</tr>
<tr>
<td>3.8.7.3 Aporque</td>
<td>26</td>
</tr>
<tr>
<td>3.8.7.4 Fertilización</td>
<td>26</td>
</tr>
<tr>
<td>3.8.7.5 Cosecha</td>
<td>27</td>
</tr>
<tr>
<td>3.8.7.6 Corte o siega</td>
<td>27</td>
</tr>
<tr>
<td>3.8.7.7 Emparvado, trilla, venteado y limpieza</td>
<td>28</td>
</tr>
<tr>
<td>3.8.7.8 Almacenamiento del grano</td>
<td>28</td>
</tr>
<tr>
<td>3.9 Usos de la quinua</td>
<td>29</td>
</tr>
<tr>
<td>3.10 Características fisiológicas</td>
<td>29</td>
</tr>
</tbody>
</table>
3.11 Crecimiento y Desarrollo

3.11.1 Desarrollo de la semilla

3.11.2 Desarrollo de la planta

3.11.3 Desarrollo del tallo

3.11.4 Desarrollo de las hojas

3.12 Análisis de crecimiento

3.12.1 Parámetros del análisis de crecimiento

3.12.1.1 Tasa o intensidad de crecimiento

3.12.1.2 Distancia de crecimiento

3.12.1.3 Velocidad de crecimiento

3.13 Producción y rendimiento

3.13.1 Producción total

3.13.2 Rendimiento por viga

3.13.3 Rendimiento por hectárea

3.14 Componentes del Rendimiento

3.14.1 Rendimiento por planta

3.14.2 Rendimiento por terreno

4. LOCALIZACIÓN

4.1 Ubicación geográfica

4.2 Descripción de la zona

4.2.1 Clima

4.2.2 Vegetación

4.2.3 Fisiografía y suelos

5. MATERIALES Y MÉTODOS

5.1 Materiales

5.1.1 Biológico

5.1.2 De campo

5.1.3 De laboratorio

5.1.4 De gabinete

5.2 Metodología

5.2.1 Procedimiento experimental

5.2.1.1 Diseño experimental

5.2.1.2 Dimensión de la unidad experimental

5.2.2 Variables de respuesta

5.2.2.1 Variables agronómicas

5.2.2.2 Variables fisiotécnicas

5.2.2.3 Evaluación de la incidencia de la helada en el cultivo

5.2.2.4 Variables morfológicas registradas a la cosecha

5.2.2.5 Variables para el rendimiento

5.2.3 Desarrollo del ensayo

5.2.3.1 Preparación del terreno

5.2.3.2 Siembra

5.2.3.3 Labores culturales

5.2.3.4 Cosecha

5.2.3.5 Trilla y limpieza de la semilla

5.2.4 Análisis estadístico

6. RESULTADOS Y DISCUSIÓN

6.1 Aspectos climáticos

6.1.1 Temperatura

6.1.2 Precipitación

6.2 Suelos

6.3 Variables agronómicas

6.3.1 Porcentaje de germinación en laboratorio
6.3.2 Porcentaje de germinación en campo ... 57
6.3.2.1 Cantidad de semilla sembrada ... 57
6.3.2.2 Tasa de emergencia en campo .. 58
6.3.3 Número de hojas en el tallo principal ... 60
6.3.4 Porcentaje de defoliación del tallo principal 61
6.4 Variables Fisiotécnicas .. 62
 6.4.1 Peso seco de plantas por metro cuadrado 63
 6.4.2 Incremento del peso seco de la planta .. 64
 6.4.3 Peso seco de las hojas del tallo principal (HTP) 65
 6.4.4 Peso seco del tallo principal (TP) .. 66
 6.4.5 Peso seco de la panoja (PAN) ... 67
 6.4.6 Peso seco de las ramificaciones (RAM) .. 68
 6.4.7 Repartición de la biomasa seca total entre las diferentes partes 69
 6.4.8 Tasa de crecimiento absoluto (TCA) ... 70
 6.4.9 Tasa de crecimiento relativo (TCR) ... 71
 6.4.10 Índice de área foliar (IAF) ... 72
6.5 Evaluación de la incidencia de la helada en el cultivo 74
6.6 Variables morfológicas registradas a la cosecha 77
 6.6.1 Altura de planta .. 77
 6.6.2 Diámetro de tallo ... 79
 6.6.3 Correlación entre el diámetro de tallo y la altura de planta 80
 6.6.4 Longitud de panoja ... 81
 6.6.5 Diámetro de panoja ... 83
 6.6.6 Correlación entre la longitud y el diámetro de panoja 84
6.7 Variables para el Rendimiento .. 85
 6.7.1 Peso de 100 semillas .. 85
 6.7.2 Rendimiento de grano por planta individual 88
 6.7.3 Correlación entre el volumen de la panoja y la producción de granos ... 90
 6.7.4 Diámetro de grano .. 92
 6.7.5 Índice de cosecha ... 94

7. CONCLUSIONES .. 97
8. RECOMENDACIONES .. 99
9. BIBLIOGRAFÍA .. 100
ANEXOS ... 104
<table>
<thead>
<tr>
<th>Cuadro</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Análisis físico – químico del suelo de experimentación</td>
<td>54</td>
</tr>
<tr>
<td>2. Análisis de varianza para la prueba de germinación en laboratorio</td>
<td>55</td>
</tr>
<tr>
<td>3. Prueba de Duncan para el porcentaje de germinación de las diez</td>
<td></td>
</tr>
<tr>
<td>variedades de quinua en laboratorio</td>
<td></td>
</tr>
<tr>
<td>4. Cantidad aproximada de semilla sembrada de diez variedades de</td>
<td></td>
</tr>
<tr>
<td>quinua</td>
<td></td>
</tr>
<tr>
<td>5. Porcentaje de emergencia en campo evaluadas a diferentes días</td>
<td></td>
</tr>
<tr>
<td>después de la siembra (dds)</td>
<td>60</td>
</tr>
<tr>
<td>6. Análisis de varianza para la incidencia de la helada</td>
<td>75</td>
</tr>
<tr>
<td>7. Prueba de Duncan para el efecto de la helada</td>
<td>76</td>
</tr>
<tr>
<td>8. Análisis de varianza para la altura de planta</td>
<td>77</td>
</tr>
<tr>
<td>9. Prueba de Duncan para la altura de planta</td>
<td>78</td>
</tr>
<tr>
<td>10. Análisis de varianza para el diámetro de tallo</td>
<td>79</td>
</tr>
<tr>
<td>11. Análisis de varianza para la longitud de panoja</td>
<td>81</td>
</tr>
<tr>
<td>12. Prueba de Duncan para la longitud de panoja</td>
<td>82</td>
</tr>
<tr>
<td>13. Análisis de varianza para el diámetro de panoja</td>
<td>83</td>
</tr>
<tr>
<td>14. Prueba de Duncan para el diámetro de panoja</td>
<td>84</td>
</tr>
<tr>
<td>15. Análisis de varianza para el peso de 100 semillas</td>
<td>86</td>
</tr>
<tr>
<td>16. Prueba de Duncan para el peso de 100 semillas</td>
<td>87</td>
</tr>
<tr>
<td>17. Comparación del peso de 100 semillas (g) a la siembra y el peso</td>
<td></td>
</tr>
<tr>
<td>de 100 semillas (g) a la cosecha</td>
<td>87</td>
</tr>
<tr>
<td>18. Análisis de varianza para el rendimiento de grano por planta</td>
<td></td>
</tr>
<tr>
<td>individual</td>
<td>88</td>
</tr>
<tr>
<td>19. Prueba de Duncan para el peso de grano por planta</td>
<td>89</td>
</tr>
<tr>
<td>20. Análisis de varianza para el índice de cosecha</td>
<td>94</td>
</tr>
<tr>
<td>21. Prueba de Duncan para el índice de cosecha</td>
<td>95</td>
</tr>
<tr>
<td>Figura</td>
<td>ÍNDICE DE FIGURAS</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
</tr>
<tr>
<td>1.</td>
<td>Croquis del experimento ... 40</td>
</tr>
<tr>
<td>2.</td>
<td>Temperaturas máximas, mínimas y medias registradas durante el ensayo ... 51</td>
</tr>
<tr>
<td>5.</td>
<td>Evolución de la germinación en laboratorio a las 12, 36 y 72 horas de diez variedades de quinua ... 57</td>
</tr>
<tr>
<td>6.</td>
<td>Evolución de la emergencia a nivel de campo de diez variedades de quinua ... 59</td>
</tr>
<tr>
<td>7.</td>
<td>Evolución del número de hojas emitidas en el tallo principal en tres variedades ... 61</td>
</tr>
<tr>
<td>8.</td>
<td>Porcentaje de defoliación del tallo principal en tres variedades de quinua ... 62</td>
</tr>
<tr>
<td>9.</td>
<td>Acumulación del peso seco (g/m²) a los 60, 90 y 120 dds de tres variedades de quinua ... 63</td>
</tr>
<tr>
<td>10.</td>
<td>Incremento del peso seco (g) de una planta individual de tres variedades de quinua ... 64</td>
</tr>
<tr>
<td>11.</td>
<td>Evolución del peso seco (g) de las hojas del tallo principal de tres variedades de quinua ... 65</td>
</tr>
<tr>
<td>12.</td>
<td>Evolución del peso seco (g) del tallo principal de tres variedades de quinua ... 66</td>
</tr>
<tr>
<td>13.</td>
<td>Evolución del peso seco (g) de la panoja de tres variedades de quinua ... 67</td>
</tr>
<tr>
<td>14.</td>
<td>Evolución del peso seco (g) de las ramificaciones de tres variedades de quinua ... 68</td>
</tr>
<tr>
<td>15.</td>
<td>Porcentaje de repartición de los diferentes órganos en la biomasa seca total por planta ... 69</td>
</tr>
<tr>
<td>16.</td>
<td>Evolución de la Tasa de crecimiento absoluto de tres variedades de quinua ... 70</td>
</tr>
<tr>
<td>17.</td>
<td>Evolución de la Tasa de crecimiento relativo de tres variedades de quinua ... 71</td>
</tr>
<tr>
<td>18.</td>
<td>Evolución el área foliar total de una planta en m² de tres variedades de quinua ... 73</td>
</tr>
<tr>
<td>19.</td>
<td>Evolución del IAF de tres variedades de quinua ... 74</td>
</tr>
<tr>
<td>20.</td>
<td>Evolución de la helada registrada por tres captores a tres diferentes alturas sobre el nivel del suelo ... 74</td>
</tr>
<tr>
<td>21.</td>
<td>Relación porcentual del número de plantas afectadas en las diez variedades por cada Nota ... 77</td>
</tr>
<tr>
<td>22.</td>
<td>Diámetro de tallo (mm) de la diez variedades de quinua (m ± DE) ... 79</td>
</tr>
<tr>
<td>23.</td>
<td>Correlación entre el diámetro de tallo (mm) y la altura de planta (cm) ... 81</td>
</tr>
</tbody>
</table>
24. Correlación entre la longitud (cm) y el diámetro de panoja (cm) 85
25. Comparación entre el peso de grano/planta, el peso de grano de la panoja principal y el peso de grano de las panojas secundarias ... 90
26. Correlación entre el volumen de panoja (cm3) y la producción de granos (g) de quinua... 91
27. Peso de grano (g) seleccionado por clases diametrales 93
28. Porcentaje de repartición de granos de acuerdo a las clases diametrales y variedad... 94
29. Índice de cosecha correspondiente a cada variedad (m ± DE) 96
RESUMEN

La presente investigación se llevó a cabo en los predios de la Estación Experimental Belén, ubicada en la comunidad de Belén a 4 km de la localidad de Achacachi, Provincia Omasuyos del Departamento de La Paz. El objetivo del estudio fue el de evaluar comparativamente el comportamiento agronómico de diez variedades de quinua, procedente de diferentes regiones del Altiplano boliviano, en las condiciones ambientales de la Localidad de Belén.

El diseño utilizado en el experimento fue el de bloques completos al azar, con cuatro bloques y diez variedades: Chucapaca, Surumi y Kamiri del Programa Patacamaya (IBTA); Huganda, Jiwaki y Agro 2000 de la Estación Experimental Belén y las variedades Toledo naranja, Real blanca, Toledo rojo y K’ellu originarias de las comunidades del Ayllu Huatari y de la zona intersalar (Uyuni – Coipasa).

Dentro las variables de respuesta evaluadas están: altura de planta, diámetro de tallo, longitud y diámetro de panoja, peso de 100 semillas, diámetro de grano, rendimiento por planta e índice de cosecha y para las variedades Chucapaca, Surumi y Kamiri se evaluaron la biomasa seca, tasa de crecimiento absoluto (TCA), tasa de crecimiento relativo (TCR) y el índice de área foliar (IAF).

Las condiciones climáticas, principalmente la irregularidad de lluvias en la época de siembra, caracterizó a la gestión agrícola 2003 – 2004, provocando pérdidas en cuanto a la densidad de plantas por superficie, causada por la baja emergencia en cuanto al número de plantas por metro cuadrado.

De las diez variedades evaluadas en el ensayo, la variedad 4 (Huganda) fue la que registró los mayores promedios: 130.88 cm en la altura de planta, 32.78 cm en longitud de panoja y 65.72 g en el rendimiento por planta individual. En contraste a las variedades 8 (Real blanca) y 10 (K’ellu) que fueron las que registraron los menores promedios en cuanto a los mismos caracteres. De la misma forma la variedad 4 (Huganda) registró un mayor índice de cosecha con 38.8%, y la variedad 10 (K’ellu) registró el menor de los índices de cosecha con 22%.

De las variedades originarias de las comunidades del Ayllu Huatari y de la zona intersalar (Uyuni - Coipasa), la variedad 9 (Toledo rojo) fue la que registró los mayores promedios en cuanto a la altura de planta con 103.73 cm, peso de grano por planta con 42.73 g y volumen de la panoja principal con 96.25 cm³.
SUMMARY

The present investigation was carried out in the properties of the "Belén" Station Experimental, located in the community of Belén to 4 km of the town of Achacachi, Omasuyos County of the Department of La Paz. The objective of the study was evaluating the agronomic behavior of ten quinua varieties comparatively, coming from different regions of the Bolivian Highland, under the environmental conditions of the Belén Town.

The design used in the experiment was that of complete blocks at random, with four blocks and ten varieties: Chucapaca, Surumi and Kamiri of the Patacamaya programs (IBTA); Huganda, Jiwaki and Agro 2000 of the Belén Station Experimental and the varieties Toledo naranja, Real blanca, Toledo rojo and K'ellu would originate of the communities of the Ayllu Huatari and of the intersalar area (Uyuni - Coipasa).

Inside of the evaluated answer variables they are: plant height, shaft diameter, longitude and cob diameter, weight of 100 seeds, grain diameter, yield for plant and crop index and for the varieties Chucapaca, Surumi and Kamiri were evaluated the dry biomass, rate of absolute growth (TCA), rate of relative growth (TCR) and the area index to foliate (IAF).

The climatic conditions, mainly the irregularity of rains in the time of sows, characterize to the agricultural administration 2003 - 2004, causing losses as for the density of plants for surface, caused by the drop emergency as for the number of plants for square meter.

Of the ten varieties evaluated in the rehearsal, the variety 4 (Huganda) the one that registered the biggest averages was: 130.88 cm in the plant height, 32.78 cm in cob longitude and 65.72 g in the yield for plant singular. In contrast to the varieties 8 (Real white) and 10 (K'ellu) that those that registered the smallest averages as for the same characters were. In the same way the variety 4 (Huganda) it registered a bigger crop index with 38.8%, and the variety 10 (K'ellu) registered the smaller than the crop indexes with 22%.

Of the varieties you would originate of the communities of the Ayllu Huatari and of the intersalar area (Uyuni - Coipasa), the variety 9 (Toledo rojo) was registered the biggest averages as for the plant height with 103.73 cm, grain weight for plant with 42.73 g and volume of the main cob with 96.25 cm³.
1. **INTRODUCCIÓN**

En el Altiplano boliviano se desarrollan actividades tanto pecuarias como agrícolas, donde se cultivan diversas especies vegetales, dentro de las cuales se encuentra la quinua, una planta de gran importancia en la alimentación humana por su alto valor nutritivo, por su rusticidad y por su capacidad de resistencia a condiciones ambientales adversas.

Actualmente, el grano de la quinua se constituye en un alimento básico de muchos pueblos, donde llega a ser el principal integrante de la dieta diaria, es consumida tradicionalmente como pito, qispiña y sopa de quinua; también es utilizada en gastronomía, pastelería e insuflados, además la planta es utilizada como forraje en broza para la alimentación del ganado.

Uno de los principales problemas que se presenta en la actividad agrícola, poniendo en riesgo el éxito de la producción, es la influencia de los cambios del ambiente que afecta el funcionamiento fisiológico de las plantas, que se expresa en el comportamiento agronómico a lo largo del ciclo vegetativo, y en consecuencia la cantidad y calidad del rendimiento final.

Entre estos factores adversos se destacan en la región altiplánica, la distribución irregular de lluvias (sequía), las temperaturas bajas (heladas) y la granizada, provocando mal desarrollo de la planta, bajo porcentaje de emergencia en campo consiguientemente baja densidad de plantas por metro cuadrado y por tanto pérdidas durante la cosecha.

Pese a que la quinua, en estado silvestre, es tolerante a condiciones adversas, al parecer las variedades mejoradas no pueden soportar estos cambios sin que afecten su comportamiento agronómico durante su crecimiento y desarrollo, así como también en la cantidad y calidad del rendimiento en grano.
Por tanto, es necesario seguir investigando e identificando características propias de tolerancia y adaptabilidad a condiciones climatológicas adversas a la producción, mediante la evaluación del comportamiento agronómico de variedades mejoradas y originarias de diferentes lugares; así como también, conocer el efecto que ejercen los factores bióticos y abióticos de la zona sobre las plantas, ya sea, individualmente o en una parcela cultivada y las respuestas que estas presentan, con un mismo fin, el de aportar con datos para el mantenimiento varietal y dar a conocer métodos para manejar los cultivos en condiciones no óptimas.

El presente trabajo de investigación forma parte de una red agronómica multilocal para el cultivo de la quinua en Bolivia, con bases experimentales en diferentes áreas de producción del Altiplano boliviano, donde se describe los resultados obtenidos referente al comportamiento agronómico de diez variedades de quinua, originarias de distintos lugares, identificando características agro y morfo-fisiológicas de tolerancia o resistencia a factores ambientales adversos a la producción (sequías, heladas, granizo) y sus consecuencias en el rendimiento, tomando en cuenta la interacción entre el genotipo y el ambiente.
2. OBJETIVOS

2.1 Objetivo General

- Evaluar comparativamente el comportamiento agronómico de diez variedades de quinua, procedente de diferentes regiones del Altiplano boliviano, bajo las condiciones ambientales de la localidad de Belén.

2.2 Objetivos Específicos

- Identificar las mejores variedades de quinua adaptadas a las condiciones climáticas de la localidad de Belén de acuerdo a sus características morfológicas y agronómicas.

- Evaluar el nivel de crecimiento y desarrollo de tres variedades de quinua en las condiciones ambientales de la localidad de Belén a lo largo de su ciclo vegetativo.

- Comparar el rendimiento de grano por planta entre las diez variedades de quinua evaluadas en la localidad de Belén.

2.3 Hipótesis

- Las diez variedades de quinua, procedente de diferentes regiones del Altiplano boliviano tienen igual comportamiento agronómico bajo las condiciones ambientales de la localidad de Belén.

- El crecimiento y desarrollo de tres variedades de quinua en las condiciones ambientales de la localidad de Belén, es similar, durante el ciclo vegetativo del cultivo.

- El rendimiento de grano por planta es igual para las diez variedades de quinua evaluadas en la localidad de Belén.
3. REVISIÓN BIBLIOGRÁFICA

3.1 Historia e Importancia de la quinua

El cultivo de la quinua se remonta a épocas muy antiguas, donde los aborígenes le daban múltiples usos utilizándolo en la medicina, alimentación como forrajes y otros (IBTA, 1998). La quinua fue cultivada y utilizada por las civilizaciones prehispánicas y reemplazada por los cereales a la llegada de los españoles, a pesar de constituir un alimento básico de la población de ese entonces (FAO, 2001). La proteína de este grano mantenía a la armada Inca fuerte y robusta, donde cada año el emperador Inca abría en el suelo con una espada de oro y sembraba la primera semilla, sus propiedades medicinales eran así mismas muy apreciadas por los antiguos pobladores andinos, la usaban en tratamientos de diversas dolencias y enfermedades (Nutriquinua, 2004).

IBTA (1998), menciona que el cultivo de quinua constituye uno de los rubros de mayor importancia, no solo por la superficie cultivada, sino también por su utilización en la alimentación humana y por su alto contenido de proteína.

La actual aceptación de este cultivo en la preparación de diferentes platos, bebidas, así como alimentos procesados se refleja en el incremento de su área cultivada; sólo en países andinos en la actualidad se cultivan más de 80000 ha y su potencial de expansión se estima que puede cuadruplicar esa cifra, lo que se requiere es conocer en mayor detalle la adaptación climática que tiene el material genético biodiverso con que se cuenta (Tapia, 1991). Investigaciones recientes han convertido a esta planta Sudamericana en un producto con un gran potencial nutricional y económico para los productores del Altiplano principalmente (Nutriquinua, 2004).
3.2 Origen de la quinua

Desde que Vavilov estableció que el centro de origen de una planta cultivada es aquella región con la mayor diversidad de tipos, tanto de plantas cultivadas como de sus progenitores silvestres; todos los autores que han escrito sobre el origen de la quinua, están de acuerdo en considerar que la quinua es originaria de los Andes (Tapia, 1979).

Gandarillas (1984), citado por López (2000), realizó cruzamientos entre Chenopodium petiolare, variedad Paniculata y Chenopodium hircinum, obteniendo la Chenopodium quinoa confirmando que el centro de origen de la quinua cultivada está en América del Sur, pudiendo haberse originado entre Ecuador, Perú y Bolivia, ya que la especie Chenopodium hircinum se encuentra ampliamente distribuida en estos países.

FAO (2001), indica que desde el punto de vista de su variabilidad genética puede considerarse como una especie oligocéntrica, con centro de origen de amplia distribución y diversificación múltiple, siendo la región andina y dentro de ella, las orillas del Lago Titicaca, las que muestran mayor diversidad y variación genética.

3.3 Posición taxonómica

La FAO (2001), realiza la clasificación taxonómica de la quinua de la siguiente manera:

Reino : Vegetal
División : Fanerógamas
Clase : Dicotiledoneas
Sub clase : Angiospermas
Orden : Centrospermales
Familia : Chenopodiáceas
Genero : Chenopodium
Especie : Chenopodium quinoa Willdenow
3.4 Morfología del cultivo de quinua

Tapia (1979), señala que el estudio de la morfología de la quinua tiene especial importancia para la identificación de las razas dentro de la especie Chenopodium quinoa Willd y las variedades dentro de las primeras. Igualmente tiene importancia para el productor, el comprador y el industrial en la identificación de las diferentes variedades en el mercado a partir del grano.

La planta es erguida, alcanza alturas variables desde 30 a 300 cm, dependiendo de los genotipos, de las condiciones ambientales donde crece y de la fertilidad de los suelos (FAO, 2001).

La raíz es pivotante y vigorosa, su profundidad guarda estrecha relación con la altura de la planta. A partir del cuello, empieza a ramificarse en raíces secundarias, terciarias, etc., de las cuales salen las raicillas que también se ramifican en varias partes (Tapia, 1979).

El tallo es cilíndrico a la altura del cuello de la planta y después es anguloso. El color del tallo puede ser verde, verde con axilas coloreadas, verde con rayas coloreadas o púrpuras y de color rojo en toda su extensión (Espíndola, 1981 citado por Quino, 2000).

Tiene un hábito de crecimiento que puede ser sencillo y ramificado. Algunas plantas de hábito sencillo, cuando disponen de suficiente espacio para desarrollarse, tienden a ramificarse desde el suelo. En las siembras comerciales a chorro continuo, las plantas tienden a mostrar un tallo único por quedar suficientemente tupidas (Tapia, 1979).

Las hojas son simples, alternas y poseen peciolo largo, fino y acanalado, la forma de la hoja varía, en la parte inferior son grandes, romboidales y triangulares y en la superior pequeñas y lanceoladas, están cubiertas por cristales de oxalato de calcio, de colores rojo, púrpura o cristalino, tanto en el haz como en el envés,
presentando bordes dentados, aserrados o lisos, la coloración de la hoja es muy variable: del verde al rojo con diferentes tonalidades presenta nervaduras muy pronunciadas y fácilmente visibles (FAO, 2001).

El color de la planta joven está dado solamente por la hoja; el de la planta adulta, por las hojas, el tallo y la panoja. Los colores básicos son rojo, púrpura y verde (Tapia, 1979).

La panoja puede ser laxa o compacta. Es laxa cuando la panoja es grande y ancha y de poco rendimiento; es compacta cuando la panoja es pequeña y apretada de granos. La panoja puede ser glomerulada o amarantiforme, es glomerulada cuando los glomérulos que forman la panoja son más o menos redondeados; es amarantiforme cuando los glomérulos son muy alargados en forma de un dedo (Espíndola, 1981 citado por Quino, 2000).

Las flores son pequeñas, incompletas, sésiles y desprovistas de pétalos, constituida por una corola formada por cinco piezas florales tepaloides, sepaloides, pudiendo ser hermafroditas, pistiladas (femeninas) y androestériles, lo que indica que podría tener hábito autógamo como alógamo (FAO, 2001).

El fruto es un aquenio cubierto por el perigonio, del que se desprende con facilidad al frotarlo cuando está seco. El color del fruto está dado por el perigonio y se asocia directamente con el de la planta. En el estado maduro el perigonio tiene forma de estrella, por la quilla que presentan los cinco sépalos (Gandarillas, 1982 citado por Morales, 2000).

La semilla está envuelta por un episperma compuesta por cuatro capas: una primera capa externa que determina el color de la semilla y que contiene la saponina, una segunda capa que difiere de la primera y se observa cuando la primera capa es translúcida, una tercera capa que es una membrana delgada, opaca, de color amarillo y la cuarta capa que es translúcida, formada por una sola hilera de células (Tapia, 1990).
3.5 Fases fenológicas de la quinua

Espíndola (1994) citado por Rodriguez (2005), define las siguientes fases fenológicas por las que pasa la planta de quinua:

- **Fase de emergencia.** Caracterizada por la emergencia del embrión a la superficie del suelo, varía de 3 a 5 días desde la germinación hasta la emergencia.

- **Fase cotiledonar.** Posterior al cuarto día, con dos cotiledones expuestos en forma horizontal.

- **Fase de dos hojas basales.** Comprendida entre los 11 y 13 días después de la siembra. Esta etapa finaliza con la completa expansión de dos primeras hojas basales y la iniciación de las primeras hojas alternas.

- **Fase de 5 hojas alternas.** Caracterizada por la completa expansión de cinco primeras hojas alternas y es la fase del inicio del desarrollo de los diversos órganos de la planta.

- **Fase de 13 hojas alterna.** Fase que implica un notable crecimiento enramado de la planta junto a las dos siguientes fases, como consecuencia del rápido alargamiento de los entrenudos, en especial del tercio inferior.

- **Fase de despunte de panoja.** Caracterizada por el despunte de la flórula (inflorescencia) hasta la pre-floración, sin la apertura de ninguna flor. Si la planta es de hábito ramificado, la aparición de las ramas laterales aun no es notable por la dominancia de las hojas del tallo principal.

- **Fase de floración.** Se considera esta fase cuando el 50% de las flores están en plena floración y las restantes en antesis.
- **Fase de grano lechoso.** El germen se apresura a definirse en tamaño y forma; los carbohidratos son apenas compuestos líquidos incipientes.

- **Fase de grano masoso.** El tejido perispérmico sufre un cambio de estado lechoso a estado pastoso semisólido; es un cambio que ocurre a medida que el contenido del almidón aumenta, en tanto que el contenido de agua se reduce.

- **Fase de grano pastoso duro (madurez fisiológica).** Caracterizada cuando las plantas muestran hojas verde amarillentas y una defoliación de forma gradual. Fase en donde el grano presenta resistencia cuando se comete presión por las uñas, como consecuencia de que las estructuras almidonosas del perisperma se ha solidificado.

3.6 Valor nutritivo

El grano de quinua no es excepcionalmente alto en el contenido de proteínas, aunque supera a los cereales más consumidos. Su verdadero valor radica en la calidad de su proteína; es decir, en la combinación de una mayor proporción de aminoácidos esenciales para la alimentación humana, lo cual le otorga un alto valor biológico (Ritva, 1988).

El grano de quinua es muy digestivo, de rápida cocción (15 min) y apreciable sabor, además de sus propiedades nutritivas es muy fácil de usar. Es considerada por la FAO (Organización de las Naciones Unidas para la Agricultura y la Alimentación) y la OMS (Organización Mundial de la Salud) como un alimento único por su altísimo valor nutricional, puede ser consumido por toda la familia, inclusive las personas celíacas (alérgicas al gluten). Este supergrano mantiene sus cualidades nutritivas incluso en procesos industriales, y es capaz de sustituir notablemente a las proteínas de origen animal, es un sustituto ideal para el abastecimiento de calcio ya que es comparado con la proteína de la leche (Nutriquinoa, 2004).
López (1976) citado por la FAO (2001), menciona que la quinua se presenta como una alternativa estratégica y favorable para toda la sierra o región montañosa de América del Sur, por ser un producto de gran valor nutritivo y con alto contenido de proteínas (14-18%) y por su balance de aminoácidos esenciales, como lisina (79), isoleucina (68), leucina (104), fenilalanina (59), valina (76), tirosina (41), treonina (40), metionina (18) y triptófano (16), expresados en g/10 kg de grano.

3.7 Variabilidad y diversidad genética

La variabilidad y diversidad son términos que se utilizan para representar la variación genética de las especies; esta variabilidad puede encontrarse en condiciones naturales o artificiales (Espíndola y Limachi, 1996 citado por López, 2000). La diseminación de los cultivos provocó la variabilidad de éstos. Asimismo, la variabilidad de germoplasma permite al mejorador de plantas seleccionar y recombinar características deseables en nuevas variedades para condiciones específicas (Chávez, 1993).

En este sentido, Tapia (1979) menciona que la mayor variación de quinuas cultivadas se encuentra alrededor del lago Titicaca, entre Cuzco (Perú) y el lago Poopó (Bolivia), de acuerdo a una clasificación botánica efectuada por Gandarillas (1968) en materiales coleccionados en el Ecuador, Perú y Bolivia.

Laguna (2003), añade que Bolivia tiene mayor diversidad genética de quinua (1800 accesiones contra 1000 del Perú y 250 del Ecuador), y hasta 1999, Bolivia controló el 88 a 95% de las exportaciones mundiales de quinua y sólo exporta quinua real grano de mayor preferencia en el mercado mundial principalmente en Francia, Alemania y Holanda.

Tapia (1990), concluye que los ecotipos de la zona de los salares al sur de Bolivia presentan la mejor adaptación a la tolerancia a suelos salinos.
3.8 Manejo del Cultivo

3.8.1 Preparación del terreno

Tapia (1979), indica que tradicionalmente no se realiza una preparación especial del terreno para la siembra. Pero algunos agricultores medianos y las empresas roturan con tractor después de la cosecha de papa (mayo, junio).

En el caso de la parte sur del Altiplano de Bolivia, la preparación del terreno se realiza en febrero para realizar la siembra en el mes de septiembre.

El mismo autor menciona que en caso de utilizar arados, estos serán de vertedera o de discos; en los lugares de topografía accidentada se usarán arados de yuntas. Luego viene el mullido o desterronado antes de la siembra, para el que se emplean rastras cruzadas. En lo posible es conveniente nivelar los campos para lograr uniformidad en la emergencia y un buen desarrollo de las plantas.

3.8.2 Siembra

Mujica (1999), menciona que la siembra se efectúa distribuyendo la semilla uniformemente a chorro continuo, ya sea con la mano o usando unos tubos con pequeñas perforaciones en la base, debiendo colocar en el fondo del surco y evitando que la semilla no esté en contacto con el fertilizante pues esta producirá daños severos en la semilla y no llegará a germinar.

Por otra parte Tapia (1979), indica que en las regiones de los Lipez, Salina de Garci Mendoza, Ladislao Cabrera y Quijarro, pertenecientes al Altiplano sur-boliviano, la siembra se hace en hoyos distanciados a un metro, cuya profundidad debe alcanzar la humedad subyacente.
3.8.3 Profundidad de siembra

La profundidad del surco, en siembra con yunta, varía entre 10 y 15 cm y el enterrado de la semilla se hace con ramas a profundidades que van de 0.5 a 2 cm (Tapia, 1979).

Mujica (1999), añade que la profundidad de enterrado de los granos de quinua no debe ser superior a los 1 ½ cm, puesto que el tamaño tan pequeño impide vencer la capa de tierra que tiene encima durante la germinación. Sin embargo, cuando se siembra en el suelo seco y arenoso es conveniente enterrar un poco más profundo hasta los 2 cm, para evitar el tostado y reventado de la semilla, sobre todo en días calurosos y asoleados.

Asimismo Mújica (1977) citado por Rodríguez (2005), señala la existencia de una relación directa entre el tamaño de la semilla, textura, humedad del suelo y densidad de siembra; en caso, de la quinua varía entre 0.5 a 1.5 y 3 cm de profundidad, las siembras muy superficiales en suelos secos corren el riesgo de deshidratación de la semilla por efecto de la radiación solar provocando marchitamiento de las plántulas, en cambio las siembras profundas perjudican la emergencia de las plántulas.

3.8.4 Densidad de siembra

Se puede utilizar desde 4 kilos por hectárea, con una buena humedad en el suelo, siembra en surcos y una semilla con alto valor de germinación. Densidades mayores se requiere en suelos poco preparados, secos, con siembra al voleo y semilla no seleccionada (Tapia, 1990).

Al respecto Mujica (1999), indica que la densidad de siembra recomendada en la sierra y el Altiplano es de 10 Kg/ha, de semilla seleccionada y procedente de semilleros, debido a que las adversidades de clima y falta de humedad pueden disminuir el porcentaje de germinación y lógicamente de emergencia, mientras que en la costa con 6 Kg/ha, se obtiene un buen establecimiento del cultivo.
Por otro lado Rodríguez (2005) utilizó una densidad de siembra de 8 kg/ha, empleando el método surco – riego – semilla, con 92% de pureza y 97% de germinación, logrado obtener una población de 128 plantas por metro cuadrado para el tamaño de grano grande (entre 2.00 – 2.50 mm de diámetro).

3.8.5 Época de siembra

Ritva (1988), indica que las épocas de siembra varían sobre todo según la zona y la variedad de la planta, de acuerdo a la disponibilidad de humedad en el suelo, temperatura y precipitaciones. En el área de Puno las primeras siembras se realizan desde mediados hasta fines de agosto, pudiendo en algunas zonas extenderse hasta octubre.

La época más oportuna de siembra dependerá de las condiciones ambientales del lugar de siembra, generalmente en la zona andina, en el Altiplano y en la costa, la fecha óptima es del 15 de septiembre al 15 de noviembre; lógicamente se puede adelantar o retrasar un poco de acuerdo a la disponibilidad de agua y a la precocidad o duración del período vegetativo de los genotipos a sembrarse. En zonas más frías se acostumbra adelantar la fecha de siembra sobre todo si se usan genotipos tardíos (FAO, 2001).

3.8.6 Rotación de cultivos

Ritva (1988), menciona que en las zonas de altura la rotación tradicional es papa – quinua – cebada. Eventualmente tratándose de suelos pobres, en el segundo año la quinua se asocia con habas; en algunas zonas de Puno se llega a repetir la quinua consecutivamente durante tres años, lo cual resta nutrientes al suelo, tratándose de restituirlos empleándose estiércol.

Al respecto Tapia (1990), indica que en las áreas ubicadas entre 3000 a 3800 msnm, el cultivo de quinua generalmente sigue a la papa en la rotación. Por debajo de estas alturas la quinua está asociada con el maíz y sobre los 3800 m sucede al cultivo de papa tolerantes a las heladas.
3.8.7 Labores culturales

3.8.7.1 Deshierbe

La frecuencia del deshierbe depende del grado de infestación de la planta, siendo el problema generalmente mayor en los terrenos regados. Es recomendable efectuar el primer deshierbe cuando las plantas tienen alrededor de 20 cm, aproximadamente 50 días después de la siembra (Ritva, 1988).

3.8.7.2 Raleo

Tapia (1979), menciona que el desahije, entresaque o raleo tiene por finalidad evitar el desperdicio y la competencia por los nutrientes y dar el espacio necesario para el desarrollo normal. Hay que eliminar las plántulas más pequeñas, débiles y enfermas; lo ideal es tener unas 10 plantas como máximo por metro lineal, es decir, 20 plantas/m² o 200000 plantas/ha. Esta labor se realiza juntamente con el deshierbe.

3.8.7.3 Aporque

Mujica (1999), menciona que en las variedades mejoradas de alto rendimiento potencial es preferible efectuar el aporque antes del estado fenológico de panojamiento, muchas veces simultáneamente con el deshierbe, debido a que estas variedades poseen un sistema radicular deficiente o un desbalance con la carga potencial de la parte aérea de la planta, en particular con la panoja que va adquiriendo mayor peso a medida que alcanza la madurez fisiológica; elevando de esta manera la tasa de caída de las plantas (tumbado).

3.8.7.4 Fertilización

En la mayor parte de la zona andina no se lleva a cabo la fertilización en el cultivo de la quinua, salvo en el caso de semilleros oficiales y en los cultivos comerciales.
Cuando se cultiva quinua después de la papa, dado que ya se ha fertilizado el cultivo de este tubérculo, no se considera necesario fertilizar la quinua. En general, aparentemente la quinua no utiliza tan eficientemente la aplicación de abonos orgánicos aplicados en el mismo año de la siembra, utilizando en cambio mejor el abonamiento químico aplicado a la papa el año agrícola anterior (Ritva, 1988).

Mujica (1999), menciona que la fertilización de la quinua, también es un factor que repercutirá en la obtención del rendimiento, sobre todo en aquellos terrenos que tengan baja fertilidad o que sigan a una rotación no recomendada; la fertilización dependerá del análisis de suelo y lógicamente de la riqueza o pobreza de nutrientes del mismo y también de las cantidades de nutrientes que extrae la quinua para una determinada producción de grano y biomasa.

3.8.7.5 Cosecha

Ritva (1988) afirma que la época apropiada para la cosecha se reconoce porque las plantas cambian de color, adquiriendo una tonalidad amarilla característica de su madurez fisiológica. Para llegar a esta fase transcurren de 5 a 8 meses, según la variedad.

A la madurez fisiológica las hojas inferiores cambian de color y son caedizas, el grano al ser presionado con las uñas ofrece resistencia que dificulta su penetración (Tapia, 1990).

3.8.7.6 Corte o siega

Mujica (1999), señala que esta labor consiste en cortar las plantas a la altura del cuello cuando hayan entrado en la madurez fisiológica, debiendo efectuarse en horas de la mañana aun cuando las plantas estén un poco húmedas y puedan retener los granos dentro de los glomérulos, puesto que cuando estos se secan con los rayos solares tienden a desprenderse y ocasionar la caída de las semillas.
3.8.7.7 Emparvado, trilla, venteado y limpieza

Como las plantas fueron segadas en la madurez fisiológica es necesario que estas pierdan aún agua para la trilla, por ello se efectúa el emparvado o formación de arcos, que consiste en formar pequeños montículos con las panojas, ordenándolas y colocando en forma de pilas alargadas o redondas, luego se protege con paja o plásticos para evitar humedecimiento por efectos de las lluvias, granizadas o nevadas extemporáneas que pueden caer y por ende malograr el grano produciendo amarillamiento, pudriciones, fermentación o germinación, lo cual acarrea pérdida de la calidad del grano (FAO, 2001).

Tapia (1990), menciona que en caso de trillarse por golpeo es conveniente aventar posteriormente, para eliminar los perigonios, hijas y tallos pequeños que quedan con el grano. Generalmente se efectúa en horas de la tarde para aprovechar el viento, de tal manera que los granos queden libres de paja y listos para su almacenamiento.

3.8.7.8 Almacenamiento del grano

Mujica (1999), menciona que la quinua una vez seca y clasificada se debe almacenar en lugares ventilados, secos y mejor en almacenes de bajas temperaturas, ya que es un grano ortodoxo, el cual mantendrá mayor viabilidad de la semilla a mayor descenso de la temperatura y menor contenido de humedad de grano.

A su vez Ritva (1988) señala que el grano de quinua debe ser previamente seleccionado para su uso posterior; el grano grande puede emplearse como semilla, el mediano para el consumo directo, y el más pequeño o quebrado para preparar por ejemplo harinas.
3.9 Usos de la quinua

La FAO (2001), indica que la quinua tiene múltiples usos y se puede emplear casi todas sus partes, para la alimentación humana y animal (forraje y concentrados), ornamental, medicinal, control de plagas y parásitos que afectan a los animales domésticos, industrial, como combustible, como tutor en siembras asociadas, como hortaliza de hoja e inflorescencia y hasta en ritos ceremoniales y creencias populares, para aclimatar a la altura animales como vacunos que viven en otras latitudes más bajas; así como para evitar el mal de altura en pollos, crianza de pavos, canarios, palomas y como ingrediente de sebos tóxicos mezclados con raticidas para controlar ratones y ratas.

3.10 Características fisiológicas

Tapia (1979), indica que la quinua ha sido clasificada como una planta de tipo C3 o ineficiente, considerándose entre aquellas que fijan el CO₂ por medio de la enzima RuDP-carboxilasa y que forman un primer compuesto estable tricarbonatado. Su sistema sería ineficiente en la fijación del CO₂, a diferencia de otros cultivos como la caña de azúcar, que son del tipo C4. Esta determinación se efectuó en base al tipo anatómico de las hojas, fundamentalmente por la ausencia de la vaina de los haces y la presencia bien definida del parénquima clorofiliano de empalizada.

Al respecto Lira (2004), señala que las plantas C-3 tienen tasas bajas de actividad fotosintética, altos puntos de compensación del dióxido de carbono (50 – 150 ppm de CO₂) y altas tasas de fotorrespiración.

3.11 Crecimiento y Desarrollo

El crecimiento y el desarrollo son una combinación de muchos eventos a diferentes niveles, desde el nivel biofísico, bioquímico hasta el organismo, que dan como resultado la producción integral de un organismo (Bidwell, 1993).
Rodríguez (1991), define el crecimiento vegetativo como un conjunto coordinado de procesos cualitativos y cuantitativos, durante los cuales las plantas sufren un aumento irreversible de tamaño, peso y volumen de una célula, tejido, órgano o individuo en forma mas o menos continua y acompañado del desarrollo de nuevos órganos de funciones especializados por lo menos en forma intermitente durante su vida.

El crecimiento es el incremento natural en tamaño de los seres orgánicos y el desarrollo es como acrecentar, dar incremento a una cosa del orden físico, intelectual o moral (Lira, 2004).

Bidwell (1993), señala que el desarrollo implica cambios y los cambios pueden ser graduales o abruptos. Ciertos eventos importantes del desarrollo tales como germinación, floración o senectud, aparecen súbitamente como un importante cambio en la vida o en el esquema de crecimiento de la planta.

El término crecimiento se refiere a una medida cuantitativa con respecto al aumento del cuerpo de un organismo, mientras que el concepto de diferenciación, es cualitativo e implica cambios estructurales que acompañan o siguen a la división y alargamiento celular (Rodriguez, 1991).

3.12 Análisis de crecimiento

Benincasa (1998), citado por Gutiérrez (2003), menciona que desde el punto de vista agronómico el análisis de crecimiento es muy importante en una investigación, más aún cuando se desea conocer diferencias funcionales y estructurales entre cultivares de una misma especie de manera que se pueda seleccionar y realizar programas de mejoramiento genético. Este tipo de análisis de crecimiento puede ser útil en el comportamiento vegetal bajo diferentes condiciones ambientales, incluyendo condiciones de cultivo.
Rodríguez (1991), indica que este análisis puede ser usado para la investigación del efecto de fenómenos ecológicos sobre el crecimiento, la adaptabilidad de especies en ecosistemas diversos, efectos de competición, diferencias genotípicas de la capacidad productiva e influencias de prácticas agronómicas sobre el crecimiento.

3.12.1 Parámetros del análisis de crecimiento

Rodriguez (1991), menciona que para llevar a cabo el análisis de crecimiento se requiere de:

- Una medición del material presente en la planta.
- Una medición de la magnitud del sistema asimilatorio del material de la planta.

Coombs et al. (1998) añade que, para el análisis de crecimiento solo se necesita de:

- El peso de la planta. Generalmente éste es el peso seco (kg) a la estufa pero puede ser la materia orgánica o el contenido de energía.
- El tamaño del sistema asimilatorio. De ordinario es el área foliar (m2), pero puede ser el contenido de proteína o de clorofila de las hojas.

3.12.1.1 Tasa o Intensidad de crecimiento

La tasa de crecimiento constituye la medida más apropiada para la evaluación del crecimiento vegetal, y se define como la cantidad de material vegetal que está acumulando una planta o un cultivo durante su crecimiento y desarrollo. La tasa de crecimiento es de dos clases (Rodriguez, 1991):

 a) Tasa de crecimiento absoluto

Se define como el incremento en peso de material vegetal que experimenta una planta o un cultivo por unidad de tiempo, y se expresa como g·dia$^{-1}$ o g·semana$^{-1}$.

b) Tasa de crecimiento relativo

Se define como el incremento en peso de material vegetal que experimenta una planta o un cultivo por unidad de material vegetal presente o por unidad de tiempo. Se expresa como \(g \cdot g^{-1} \cdot \text{día}^{-1} \) o \(g \cdot g^{-1} \cdot \text{semana}^{-1} \) (kg·kg\(^{-1}\)·día\(^{-1}\)). Definido también como la velocidad de crecimiento por unidad de peso de la planta.

3.13 Producción y rendimiento

Laguna (2003), señala que Perú y Bolivia son los principales productores de quinua. Entre los años 1982 y 1998, Bolivia dominó la producción mundial de quinua, y en la actualidad produce 23000 toneladas de las cuales el 60% es quinua Real.

El mismo autor indica que desde 1998 Perú es el principal productor de quinua con 28000 toneladas, en donde el 50% es quinua del Altiplano, Ecuador produce 1000 toneladas con tendencia a incrementar su producción sobre todo en Riobamba y Norteamérica con 200 toneladas de quinua costeña oscura.

La quinua se cultiva en diferentes lugares del altiplano de Bolivia, sobre todo en los departamentos de La Paz, Oruro y Potosí. También existe este cultivo en los valles interandinos de Cochabamba, Tarija y Chuquisaca (Ramos, 1999 citado por Gutierrez, 2003).

Por otra parte Tapia (1990), menciona que los rendimientos están muy relacionados con el nivel de fertilidad del suelo, el uso de abonos químicos, la época de siembra, la variedad empleada, el control de enfermedades y plagas y la presencia de heladas y granizadas, generalmente se obtiene de 600 a 800 kg/ha en cultivos tradicionales.
El mismo autor indica que en una evaluación del germoplasma de quinua efectuada en la Estación Experimental Belén (La Paz – Bolivia), se utilizaron 599 entradas. Los rendimientos variaron entre 200 a 2800 kg por hectárea, existiendo panojas con más de 150 g de producción individual de grano. Con plantas como éstas y una densidad no mayor de 40000 plantas por hectárea se pueden esperar 6000 kg/ha, lo cual indica el potencial productivo cuando se usa apropiadamente la técnica de cultivo.

3.14 Componentes del rendimiento

Quino (2000), señala que la mejora de cualquier cultivo está frecuentemente dirigido a incrementar su productividad, que esta influenciado por una serie de componentes que actúan en forma aditiva, o en interacción entre ellos.

El rendimiento es el producto final de la expresión de distintos caracteres, en este sentido los componentes del rendimiento, de mayor efecto directo al rendimiento, en quinua son: altura de planta, diámetro de tallo, longitud de panoja, diámetro de panoja y peso de 100 granos (Espíndola, 1980 citado por Ramos, 2000).

Por otro lado Rodriguez (2005), menciona que otra manera de analizar el rendimiento final para la quinua, es mediante la descomposición en diferentes componentes como se desarrolla en la siguiente relación:

\[
\text{Rendimiento} = (\text{Nº plantas/ha}) \times (\text{Nº granos/planta}) \times (\text{Peso medio de un grano})
\]
4. LOCALIZACIÓN

El presente estudio se realizó durante la campaña agrícola 2003 – 2004 en los predios de la Estación Experimental Belén, ubicada en la comunidad de Belén a 4 km de la localidad de Achacachi en la Provincia Omasuyos del Departamento de La Paz.

4.1 Ubicación geográfica

Geodésicamente esta localizada a 16º 01’ 12” de Latitud Sur y 68º 42’ 02” de Longitud Oeste, a una altitud de 3816 m.s.n.m., con una precipitación promedio anual de 420 mm, temperatura promedio anual de 9,2 ºC y humedad relativa de 62% (Estación Experimental Belén, 2003).

4.2 Descripción de la zona

4.2.1 Clima

Unzueta (1975), de acuerdo a la clasificación de las zonas de vida, menciona que la zona corresponde a bosque húmedo montano subtropical, indicando que es el más favorable en términos de bioclima para la agricultura y ganadería.

4.2.2 Vegetación

La influencia del lago Titicaca y la Cordillera Oriental de los Andes crea un microclima con humedad adecuada para el desarrollo de especies cultivadas tales como: papa (*Solanum tuberosum*), tarwi (*Lupinus mutabilis*), quinua (*Chenopodium quinoa*), cañahua (*Chenopodium pallidicaule*), oca (*Oxalis tuberosa*), papaliza (*Ullucus tuberosum*), cebada (*Hordeum vulgare*), haba (*Vicia faba*), arveja (*Pisum sativum*), entre otros.
En esta región es frecuente encontrar especies nativas tales como: kiswara (*Buddleia coriaceae*), thola (*Parasthrepia cuadrangulare*), paja brava (*Stipa ichu*), reloj reloj (*Erodium cicutarium*), ajara (*Chenopodium sp.*), cebadilla (*Bromus unioloides*) y especies exóticas como: eucalipto (*Eucaliptus globulus*), ciprés (*Cupresus macrocarpa*), pino (*Pinus sp.*), olmo (*Ulmus procera*), alamo (*Populus sp.*), mostaza (*Brassica campestris*) y alfa alfa (*Medicago sativa*).

4.2.3 Fisiografía y suelos

Sandagorda (1975) citado por Quispe (1997), menciona que la zona en estudio presenta un paisaje fisiográfico de planicie levemente ondulado, con pendientes desde 2% hasta 5% y suelos de origen aluvial.

Presenta un suelo superficial de material franco, de color grisáceo, de estructura terronosa y consistencia desmenuzable (Cardozo, 1974).

Unzueta (1975), añade que son suelos normalmente profundos con permeabilidades que varían de moderado a muy poco permeables en todo el perfil, débilmente lixiviados con un contenido bajo de materia orgánica que decrece aún más con la profundidad.
5. MATERIALES Y MÉTODOS

5.1 Materiales

5.1.1 Biológico

El material biológico utilizado fue constituido por diez variedades de quinua de diferentes lugares de origen.

- **Chucapaca (V01).** Selección del Programa Patacamaya (IBTA), alcanza una altura de 130 cm, ciclo vegetativo de 170 días (semitardío), de coloración rosado a la madurez fisiológica, tipo de panoja glomerulado, tolerante a heladas y medianamente tolerante a granizos, con un rendimiento promedio de 1100 kg/ha (Bonifacio, 2002).

- **Surumi (V02).** Selección del Programa Patacamaya (IBTA), alcanza una altura de planta a la madurez de 130 cm, con 175 días de ciclo vegetativo (semitardío), a la maduración la planta adquiere un color rosado suave, tipo de panoja glomerulado, de grano dulce, tolerante a heladas, medianamente tolerante a granizos y rendimiento promedio de 1100 kg/ha (Bonifacio, 2002).

- **Kamiri (V03).** Selección del Programa Patacamaya (IBTA), hábito de crecimiento erecto de coloración verde, ciclo vegetativo de 167 días (semitardío), tipo de panoja glomerulada, susceptible a enfermedades y resistente a las heladas (-4 ºC), con rendimientos promedio de 1200 kg/ha (IBTA/DNS, 1996 citado por Morales, 2000).

- **Huganda (V04).** Obtenida a través del seguimiento de segregantes por cruzamiento en la Estación Experimental Belén, Provincia Omasuyos, ciclo vegetativo de 160 días, alcanza una altura promedio de 100 cm, ramificado, con una longitud de panoja de 45 cm y diámetro de 10 cm, con un peso de grano por planta de 55 gramos (Est. Exp. Belén, 2003).
- **Jiwaki (V₀₅).** Obtenida a través del seguimiento de segregantes por cruzamiento en la Estación Experimental Belén, ciclo vegetativo de 150 días, alcanza alturas promedio de 100 cm, ramificado, con una longitud de panoja de 40 cm y diámetro de 12 cm y un peso de grano por planta de 45.9 gramos (Est. Exp. Belén, 2003).

- **Agro 2000 (V₀₆).** Obtenida a través del seguimiento de segregantes por cruzamiento en la Estación Experimental Belén, ciclo vegetativo de 150 días, alcanza una altura promedio de 90 cm, ramificado, con 10 cm de diámetro de panoja y longitud de 45 cm, con un peso de grano por planta de 37.5 gramos (Est. Exp. Belén, 2003).

- **Toledo naranja (V₀₇).** Originario de la comunidad de Lía, Ayllu Huatari, Provincia L. Cabrera, ciclo vegetativo de 184 días (tardío), alcanza una altura de 126.8 cm, ramificado con ramas cortas, tipo de panoja amarantiforme compacta con una longitud de 24.4 cm y diámetro de 5.4 cm, con un rendimiento de 650 kg/ha (Aroni et. al., 2003).

- **Real blanca (V₀₈).** Originaria de la comunidad de Pacocollo, zona intersalar (Uyuni – Coipasa), ciclo vegetativo de 184 (tardío), con una altura de planta de 112.4 cm, ramificado con ramas cortas, tipo de panoja amarantiforme compacta con un largo de 27 cm y un diámetro de 4.8 cm, rendimiento a nivel agricultor de 650 – 800 kg/ha (Aroni et. al., 2003).

- **Toledo rojo (V₀₉).** Procedente de la comunidad de Lía, Ayllu Huatari, con 185 días de ciclo vegetativo (tardío), ramificado con ramas cortas, con una altura de 125 cm, tipo de panoja amarantiforme compacta y color rojo a la madurez, rendimiento a nivel agricultor de 650 kg/ha (Aroni et. al., 2003).

- **K’ellu (V₁₀).** Originaria de la comunidad de Lía, Ayllu Huatari, zona intersalar (Uyuni – Coipasa), ciclo vegetativo de 181 días (tardío), alcanza una altura promedio de 121.2 cm, ramificado con ramas cortas, tipo de panoja amarantiforme compacta con una longitud de 34 cm y un diámetro de 5 cm, rendimiento de 650 – 700 kg/ha a nivel del agricultor (Aroni et. al., 2003).
5.1.2 De campo

Se utilizaron: un tractor agrícola para el roturado del suelo, rastrillos para el nivelado, wincha de 100 m para la delimitación del experimento, estacas para la demarcación de las unidades experimentales, lienzos y chontillas para la apertura de surcos, marbetes, planillas de registro de datos, bolsas plásticas y sobres para el traslado de las muestras, equipo de registro de datos de temperatura y precipitación, balanza para el pesaje de las muestras, calibrador y flexómetro para la toma y registro de datos.

5.1.3 De laboratorio

Se utilizaron: una balanza de precisión (0.01 g), cajas petri para la prueba de germinación, venteador de granos, bandejas de metal, mufla con termostato incorporado para el secado de muestras, cámara digital para la toma de fotos a las hojas y tamices de diferentes diámetros: 2.5, 2.0, 1.4 y 1.0 mm.

5.1.4 De gabinete

Para el trabajo de gabinete se utilizaron: una computadora con los programas Microsoft Office 2000, Adobe PhotoDelux 3.0, Camedia Master 2.5, SigmaScan 5.0 Pro y Mstatc versión 1.4 (paquete estadístico).

5.2 Metodología

5.2.1 Procedimiento experimental

5.2.1.1 Diseño Experimental

El experimento fue analizado bajo el diseño de Bloques Completos al Azar, propuesto por Rodríguez (1991), con 10 variedades y 4 repeticiones, haciendo un total de 40 unidades experimentales distribuidos aleatoriamente.
Este diseño responde al siguiente modelo lineal aditivo:

\[Y_{ij} = \mu + \sigma_i + \beta_j + \varepsilon_{ij} \]

Donde:

- \(Y_{ij} \) = Una observación cualquiera.
- \(\mu \) = Media de la población.
- \(\sigma_i \) = Efecto de la i-ésima variedad.
- \(\beta_j \) = Efecto del j-ésimo bloque.
- \(\varepsilon_{ij} \) = Error experimental.

5.2.1.2 Dimensión de la unidad experimental

La dimensión usada en las parcelas experimentales son las siguientes:

- Área total del Ensayo : 2537 m²
- Área Útil del Ensayo : 2000 m²
- Área de cada Unidad Experimental : 50 m²
- Largo del Ensayo : 59 m
- Ancho del Ensayo : 43 m
- Largo de cada Unidad Experimental : 10 m
- Ancho de cada Unidad Experimental : 5 m
- Número de surcos por Unidad Exp. : 20
- Número de bloques : 4
- Total de Unidades Experimental : 40
5.2.2 Variables de respuesta

5.2.2.1 Variables agronómicas

- **Porcentaje de germinación en laboratorio.** Para esta prueba se utilizaron 50 cajas petri y papel sábana con adecuada humedad que sirvió de cama húmeda para las semillas.

Se contaron 100 semillas por 5 repeticiones para las diez variedades, haciendo un total de 500 semillas por variedad, esto para facilitar el cálculo del porcentaje de germinación con la ayuda de la fórmula:

\[
\%G = \frac{\text{Nº de semillas germinadas}}{\text{Nº de semillas totales}} \times 100
\]
• **Tasa de emergencia en campo.** Para la evaluación de esta variable se fue registrando por semana el número de plantas desde el momento en que éstas emergieron del suelo hasta la fase de seis hojas verdaderas. Se contaron el número de plantas totales emergidas en tres surcos con un metro lineal por surco de cada variedad en las 40 unidades experimentales.

• **Número de hojas y porcentaje de defoliación.** Estas dos variables se las evaluaron en tres variedades: Chucapaca, Jiwaki y Real blanca, seleccionadas de cada grupo de variedades de distintos lugares de origen, donde se eligieron cinco plantas por unidad experimental en los cuatro bloques y a partir de los 50 dds se fue registrando el número de hojas y cicatrices en el tallo principal una vez por semana, para su cálculo se utilizaron las siguientes relaciones:

\[
N^0H = H + Cic. \quad \%D = \frac{Cic.}{(Cic. + H)} \times 100
\]

Donde:
- \(N^0H\) = Número de hojas totales en el tallo principal.
- \(\%D\) = Porcentaje de defoliación.
- \(H\) = Total de hojas en el tallo principal.
- \(Cic.\) = Total de cicatrices en el tallo principal.

5.2.2.2 **Variables fisiotécnicas**

La evaluación de las variables fisiotécnicas se las realizó solo en tres variedades: Chucapaca, Surumi y Kamiri ya que la densidad de planta por unidad experimental, en las demás variedades, no fue lo suficiente para realizar las mediciones respectivas, producto de una baja emergencia de plantas en la primera generación. La distribución irregular de lluvias (sequía) principalmente en el momento de la siembra fue la causa por la cuál se registraron dos fechas diferentes de emergencia denominadas para mejor comprensión como dos generaciones.
• **Peso seco de plantas por metro cuadrado.** Para la evaluación del peso seco total por metro cuadrado, se registró el peso fresco (g) de cada órgano: hojas del tallo principal (HTP), tallo principal (TP), hojas y tallos de las ramificaciones (RAM) y panoja (PAN) del total de plantas de un metro lineal en cuatro surcos diferentes en tres variedades: Chucapaca, Surumi y Kamiri a los 60, 90 y 120 dds. Posteriormente se separaron cinco plantas representativas por variedad para la obtención de un coeficiente de materia seca en base a los datos del peso fresco y seco (g) de los diferentes órganos de la planta, y que posteriormente se aplicó al peso fresco de cada metro lineal.

Posteriormente mediante la siguiente relación se calculó el peso seco total por metro cuadrado.

\[
Peso \ seco \ total/m^2 = \frac{Peso \ seco \ de \ 4 \ m \ lineales}{4 \ m \times 0.5 \ m}
\]

• **Peso seco de los diferentes órganos de la planta: HTP, TP, PAN y RAM e Incremento del peso seco de la planta.** Del total de plantas cortadas en un metro lineal de cuatro surcos diferentes se escogió cinco plantas representativas por variedad, posteriormente se realizó la separación de los diferentes órganos de la planta para realizar el pesaje y registro del peso fresco de las hojas del tallo principal (HTP), el tallo principal (TP), hojas y tallos de las ramificaciones (RAM) y panojas (PAN) en tres variedades: Chucapaca, Surumi y Kamiri a los 60, 90 y 120 dds.

Posteriormente las muestras individuales se las llevaron a una mufia para ser secadas a 65 ºC durante 48 horas, se registró el peso seco de los diferentes órganos de la planta y se realizaron los cálculos respectivos para cuantificar el incremento del peso seco de la planta a lo largo de su ciclo vegetativo.

• **Análisis de crecimiento y fórmulas para su cálculo.** Para estimar y calcular las tasas de crecimiento absoluto y relativo en tres variedades: Chucapaca, Surumi y Kamiri a los 60, 90 y 120 dds, Rodriguez (1991), propone las siguientes fórmulas:
a) Tasa de crecimiento absoluto (TCA)

\[
TCA = \frac{dP}{dt}
\]

Donde:
- \(TCA \) = Tasa de crecimiento absoluto de una planta o cultivo.
- \(dP \) = Incremento de peso en g.
- \(dt \) = Intervalo de tiempo.

b) Tasa de crecimiento relativo (TCR)

\[
TCR = \frac{\ln P_2 - \ln P_1}{t_2 - t_1}
\]

Donde:
- \(TCR \) = Tasa de crecimiento relativo.
- \(P_1 \) = Peso seco de la planta en \(t_1 \).
- \(P_2 \) = Peso seco de la planta en \(t_2 \).
- \(t_1 - t_2 \) = Fase de tiempo considerado en días.

- Índice de área foliar (IAF). Para la evaluación del índice de área foliar se empleó la metodología utilizada por Gutierrez (2003), para tal efecto primero se determinó el área foliar de la planta.

Se tomaron 20 plantas al azar en tres variedades de todo el experimento, en las cuales se cortaron las hojas del rango 10, 12, 15, 18 y 21esima hoja del tallo principal, para realizar el cálculo del área foliar de cada hoja.

Una vez secadas las hojas a una temperatura de 65 °C, se fueron tomando fotografías a todas las hojas cortadas con una cámara digital Camedia juntamente con un calibre de diámetro conocido.
Recuperadas las fotos en la computadora se las transformó a blanco y negro con el programa Adobe PhotoDeluxe 3.0, luego se realizó el cálculo del área en píxeles de cada hoja con el programa SigmaScan Pro 5.0. Posteriormente se procedió a la transformación del área en mm2, a partir de los píxeles calculados de las hojas, mediante la relación siguiente:

$$ \text{Área de la hoja (mm}^2) = \frac{\text{Área conocida del calibre (mm}^2)}{\text{Área calculada del calibre (píxeles)}} \times \text{Área calculada de la hoja (píxeles)} $$

Para determinar el área foliar específica, previamente se secaron las hojas a 65 ºC por 24 horas para registrar el peso seco, conociendo el peso seco de las hojas sin peciolos (mg) y su respectiva área (mm2) se calculó el área foliar específica, mediante la fórmula citada por Rodriguez (1991).

$$ \text{AFE} = \frac{A}{PF} $$

Donde:
- AFE = Área foliar específica.
- A = Área de la hoja (mm2)
- PF = Peso seco de la hoja (mg)

Para estimar el área foliar total de una planta entera se procedió a multiplicar el coeficiente del área foliar específica por el peso seco total de las hojas del tallo principal (HTP), sin peciolos, y de las ramificaciones (RAM) de cada planta. Conocida el área foliar total de una planta y el número de plantas en la superficie de terreno que ocupan éstas, se determinó el índice de área foliar.

Rodriguez (1991), define al índice de área foliar como la relación entre el área foliar de la planta y la superficie del suelo ocupada por la planta, y puede ser calculada por la fórmula siguiente:

$$ \text{IAF} = \frac{\text{Área foliar por planta}}{\text{Área del suelo por planta}} = \frac{m^2}{m^2} \text{ (adimensional)} $$
5.2.2.3 Evaluación de la incidencia de la helada en el cultivo

La evaluación de la incidencia de la helada en el cultivo se la realizó en las diez variedades y en las plantas de la segunda generación. Para tal efecto se tomaron seis surcos al azar por cada unidad experimental, de los cuales se eligieron 2 metros lineales en cada surco, donde se contaron el número de plantas afectadas por la helada, tomando el siguiente criterio de clasificación según su efecto:

- Nota 1: planta sana o intacta, sin ningún daño.
- Nota 2: planta afectada, con el 50% de las hojas quemadas.
- Nota 3: planta muy afectada, con el 80% de las hojas y el ápice quemado.
- Nota 4: planta muerta y/o caída, con el 100% de las hojas quemadas y el tercio superior de la planta doblada (Foto 4, A-12).

Posteriormente se procedió a calcular el porcentaje de incidencia de cada nota mediante la siguiente relación:

\[
\text{Nota 1,2,3 o 4 (\%) = \frac{\text{Número de plantas afectadas de la Nota respectiva}}{\text{Número de plantas totales en los seis surcos}} \times 100}
\]

5.2.2.4 Variables morfológicas registradas a la cosecha

Para el registro de las variables morfológicas a la cosecha y las variables para el rendimiento se tomaron en cuenta las diez variedades inicialmente planteadas, ya que en la primera generación se registró el material vegetal suficiente para la evaluación de las variables que a continuación se detallan.

- **Altura de planta.** Para la evaluación de esta variable se registró la altura de cinco plantas, a la cosecha, por unidad experimental desde la base del cuello hasta la parte apical de la panoja con una regla graduada en centímetros.

- **Diámetro de tallo.** Se registró el diámetro de tallo a la cosecha, con un calibrador, en la parte inferior de la base del tallo principal de cinco plantas por unidad experimental.
• **Longitud de panoja.** Se registró la longitud de la panoja de cinco plantas desde la base hasta el ápice de la panoja con una regla graduada en cm, cuando las plantas llegaron a la madurez fisiológica.

• **Diámetro de panoja.** Registrada en el tercio medio inferior de la panoja de cinco plantas con un calibrador una vez terminada el ciclo vegetativo de las plantas.

5.2.2.5 **Variables para el Rendimiento**

• **Peso de 100 semillas.** Se contaron 100 semillas por cinco repeticiones de cada variedad por unidad experimental para luego registrar su peso correspondiente en una balanza de precisión.

• **Rendimiento de grano por planta individual.** Esta variable se la determinó una vez terminada la trilla, venteado y limpieza de cinco plantas por unidad experimental, para lo cuál se registro el peso de grano por cada planta individual en una balanza de precisión.

• **Volumen de la panoja.** Para la evaluación del volumen de la panoja de las diez variedades, se realizó una similitud entre la forma de la panoja con la forma de la figura geométrica siguiente:

Con las mediciones de la longitud y diámetro de panoja a la cosecha, se realizó el cálculo para estimar el volumen de la panoja de las diez variedades de quinua, mediante la aplicación de la fórmula del cono circular.
\[V = \left[\frac{\pi}{3} \left(\frac{D}{2} \right)^2 \left(\frac{H}{2} \right) \right] ^2 \]

Donde:

- \(V \) = Volumen de la panoja
- \(D \) = Diámetro de panoja
- \(H \) = Longitud de panoja

- **Diámetro de grano.** Para la clasificación de los granos de acuerdo a las clases diametrales, se utilizaron la semilla de cinco plantas cosechadas individualmente por cada unidad experimental, luego se realizó la medición y separación con una tamizadora eléctrica para 100 g de semillas aproximadamente para una buena selección, de acuerdo a los tamices con diámetros de: mayores a 2.5 mm, entre 2.5 y 2.00 mm, entre 2.00 y 1.40 mm y menores a 1.40 mm.

- **Índice de Cosecha.** Una vez realizada la trilla, venteado y limpieza de los granos de las plantas individuales, se procedió a realizar el cálculo del Índice de cosecha mediante la fórmula siguiente:

\[IC = \frac{PS}{Pt} \cdot 100 \]

Donde:

- \(IC \) = Relación del índice de cosecha.
- \(PS \) = Peso seco del grano.
- \(Pt \) = Peso total de la planta (peso del grano y de la broza) sin la raíz.

5.2.3 Desarrollo del ensayo

5.2.3.1 Preparación del terreno

El terreno fue preparado en el mes de octubre luego de realizar un riego profundo por inundación, en una superficie en donde se cultivó papa en la gestión agrícola anterior. Esta operación fue realizada utilizando un tractor agrícola con sus implementos para el roturado, rastrado y emparejado del terreno experimental.
5.2.3.2 Siembra

La siembra se realizó el 11 de noviembre de 2003, en forma manual y a chorro continuo, empleando una densidad de siembra de 10 kg/ha y profundidad de surco aproximado de 10 cm, con 5 m de largo del surco y 0.50 m de distancia entre surcos (Foto 1, A-12).

Para la siembra se emplearon 50 g de semilla con diámetro superior a los 2 mm, distribuidos en 20 surcos para cada unidad experimental con una superficie de 50 m2 (5 m de ancho x 10 m de largo), es decir, 2.5 g de semilla para cada surco.

5.2.3.3 Labores culturales

A medida que se desarrollaba del cultivo se realizaron deshierbes por la presencia de malezas tales como: reloj reloj (*Erodium cicutarium*), ajara (*Chenopodium sp.*), cebadilla (*Bromus unioloides*), bolsa de pastores (*Capsella bursa-pastoris*) y mostaza (*Brassica campestris*) principalmente.

Debido a la presencia de una mayor población de plantas en las unidades experimentales, se realizó el raleo de las plantas más pequeñas, débiles y enfermas, paralelamente a la actividad del deshierbe, esto con la finalidad de evitar competencia por los nutrientes y para dar espacio necesario para un desarrollo normal de las plantas.

Respecto a las enfermedades se pudo apreciar la presencia de mildiú (*Peronospora farinosa*) por la elevada humedad registrada en el mes de enero con una precipitación acumulada de 112.9 mm, para su control se utilizó Ridomil a razón de 50 g/20 L (una mochila). Antes de la aplicación del producto se realizó el calibrado de la mochila, que consistió en una fumigación previa con agua para calcular la superficie a fumigar con una mochila de 20 L. Se llegó a calcular que para 20 L (una mochila) de producto, se fumigó una superficie de 450 m2, y para todo el ensayo (2537 m2) se utilizaron 122.76 L de producto, es decir, 5.64 mochilas.
Respecto a las plagas, el cultivo no tuvo ningún tipo de problemas, pese a la presencia de algunos pájaros especialmente en la fase de madurez fisiológica.

5.2.3.4 Cosecha

Esta actividad se realizó en forma manual, a partir de la tercera semana del mes de mayo, una vez alcanzada la fase de madurez fisiológica. Se reconoce esta fase claramente cuando las hojas inferiores cambian de color, se secan y se caen, y toda la planta adquiere un color amarillo característico al final del ciclo vegetativo de las plantas.

Se realizaron dos tipos de cosecha: una mediante el corte de cinco planta por unidad experimental con una podadora y la segunda mediante el corte con una hoz de todas las plantas de cada unidad experimental. A continuación se embolsaron y se separaron por variedades todo el material cosechado para posteriormente realizar la limpieza de los granos.

5.2.3.5 Trilla y limpieza de la semilla

Estas operaciones se las realizaron en forma manual. La trilla se realizó mediante el pisoteo de las plantas sobre un mantel, con la finalidad de separar los granos del resto de la planta, posteriormente se realizó el venteado para separar el “jipi” del grano. Una vez obtenida el grano limpio se procedió al pesaje del mismo. De igual forma se realizó la trilla, venteado y limpieza de cada planta individual de las muestras de cinco plantas por unidad experimental. Después de realizar dichas operaciones las muestras se las embolsaron y se etiquetaron para registrar el peso de grano (g) por planta individual y realizar los respectivos análisis.

5.2.4 Análisis Estadístico

- **Análisis de varianza (ANVA).** Luego del registro de los datos de campo, se procedió al análisis de varianza (ANVA), mediante la utilización del paquete estadístico Mstatc versión 1.4 para todas las variables registradas.
• **Comparación de Medias.** Para la Comparación de Medias en el presente trabajo se utilizó la Prueba de Rango Múltiple de Duncan al 5% de significancia, propuesto por Rodriguez (1991), de acuerdo a la siguiente fórmula:

\[\text{RMS} = \alpha \overline{Sx} \]

Donde:
- \(\text{RMS} \) = Rango Múltiple de Duncan.
- \(\alpha \) = Es el valor extraído de una tabla especial de rangos “estudiantizados”, con los grados de libertad del error y con la disposición relativa de las medias en el arreglo.
- \(\overline{Sx} \) = Es el producto de \(\sqrt{S^2/r} \) donde \(S^2 \) es el cuadrado medio del error, y \(r \) es el número de repeticiones.

• **Coeficiente de correlación (r).** Para determinar el grado de asociación entre características como: longitud y diámetro de panoja, y entre el volumen de panoja y la producción de granos, se determinó los coeficientes de correlación lineal simple, mediante las relaciones de sumas de cuadrados y productos de las variables X e Y propuesto por Steel y Torrie (1992).

\[r = \frac{\delta(x_i, x_j)}{\sqrt{\delta^2(x_i) \delta^2(x_j)}} \]

Donde:
- \(r \) = Coeficiente de correlación
- \(\delta(x_i, x_j) \) = Covarianza entre caracteres \(x_i \) y \(x_j \).
- \(\delta^2(x_i) \) = Varianza de componentes del carácter \(x_i \).
- \(\delta^2(x_j) \) = Varianza de componentes del carácter \(x_j \).
6. RESULTADOS Y DISCUSIÓN

6.1 Aspectos climáticos

6.1.1 Temperatura

La Figura 2, nos muestra las variaciones de las temperaturas máximas, mínimas y medias registradas durante el ciclo vegetativo del cultivo, donde la temperatura extrema más alta se registró en el mes de diciembre con 21.1 ºC, y para el mes de febrero se registró una temperatura máxima de 10.5 ºC. Respecto a las temperaturas mínimas, el mes de mayo presentó la temperatura extrema más baja con –8.7 ºC y en el mes de febrero se registró 7.2 ºC como temperatura mínima.

En la misma figura, se puede apreciar que durante el ciclo vegetativo del cultivo se registraron tres fechas con descensos de temperatura (heladas); el primero al inicio del cultivo con una temperatura de –3,4 ºC (18-11-03), el segundo a los 115 días después de la siembra con –2,1 ºC (29-02-04) y el tercero a los 160 días después de la siembra con -1,8 ºC (13-04-04).

![Figura 2. Temperaturas máximas, mínimas y medias registradas durante el ensayo](image-url)
6.1.2 Precipitación

En la Figura 3 se observa la comparación entre las precipitaciones mensuales acumuladas durante el ciclo vegetativo del cultivo en la gestión 2003 – 2004 frente al promedio de 12 años comprendido entre 1990 – 2002, se puede apreciar que las mayores precipitaciones fueron registradas durante los meses de enero y febrero con 112.9 y 95 mm respectivamente y las menores precipitaciones se presentaron en los meses de noviembre, diciembre, mayo y junio con 16.6, 59.9, 3.6 y 0.0 mm respectivamente, con una precipitación acumulada total de 341.9 mm durante el ciclo vegetativo del cultivo.

![Diagrama de Precipitación](image)

El comportamiento de la precipitación en la gestión 2003 – 2004 no se asemeja a las precipitaciones registradas desde 1990 – 2002, puesto que el mes de noviembre fue en donde se registró un déficit en la precipitación de 26 mm afectando a la germinación y emergencia de las plantas.

En este sentido, para tener una idea exacta sobre el exceso o déficit de lluvia y su efecto sobre el cultivo, Ledesma (2000) citado por Rodríguez (2005), propone la clasificación de los datos diarios de precipitación en fases de cinco días, dada la importancia de la lluvia en el crecimiento y desarrollo de las plantas.
De forma general, en la Figura 4, se puede advertir que una semana antes de la siembra (11-11-03) se registro una escasa precipitación (7.8 mm/cinco días), perjudicando la germinación de las semillas y produciendo un bajo porcentaje de emergencia en campo. Como resultado se registraron dos fechas de emergencia (dos generaciones), la primera el 11 de noviembre y la segunda el 2 de enero (Foto 2, A-12).

También se puede advertir que se presentaron dos semanas con elevada precipitación: las semanas del 05 al 09 de enero y del 14 al 18 de febrero con 38.2 y 56.0 mm respectivamente. La excesiva humedad registrada en estas fechas favoreció la presencia del mildiú (Peronospora farinosa) que no afectando al cultivo; por el contrario la presencia de granizadas en dos oportunidades provocaron daños: la primera el 08 de enero afectando a la emergencia de la segunda generación y la segunda el 14 de marzo afectando a las hojas de la primera generación.

![Figura 4. Comportamiento de la precipitación en periodos de cinco días en la gestión agrícola 2003 - 2004](image-url)
6.2 Suelos

De acuerdo al Cuadro 1, sobre el análisis físico – químico de la capa arable del terreno de experimentación (horizonte 1 – 20 cm), nos muestra que se trata de un suelo de textura franco arcillo limoso, con un pH de 6.5 clasificado como ligeramente ácido, con un porcentaje alto de materia orgánica y nitrógeno total de 4.76% y 0.24% respectivamente, ya que se trata de un suelo donde se cultivó papa en la gestión agrícola 2002 – 2003 y se aplicó abono orgánico mejorando la fertilidad, textura y estructura del suelo, con una alta capacidad de intercambio catiónico y conductividad eléctrica de 0.15 mMhons/cm, lo que significa que no tiene problemas de sales solubles en el extracto del suelo, según la clasificación propuesta por Chilón, (1997).

<table>
<thead>
<tr>
<th>Cuadro 1. Análisis físico – químico del suelo de experimentación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parámetros</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>Arcilla (%)</td>
</tr>
<tr>
<td>Limo (%)</td>
</tr>
<tr>
<td>Arena (%)</td>
</tr>
<tr>
<td>Textura</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

* Suelo Franco Arcilloso Limoso

6.3 Variables agronómicas

6.3.1 Porcentaje de germinación en laboratorio

El análisis de varianza para la prueba de germinación en laboratorio (Cuadro 2) evaluadas a las 12, 36 y 72 horas, muestran diferencias estadísticamente significativas entre las variedades a un nivel del 5% de significancia. Los coeficientes de variación obtenidos nos indican que los datos son confiables.
Cuadro 2. Análisis de varianza para la prueba de germinación en laboratorio

<table>
<thead>
<tr>
<th>Variedades</th>
<th>Fuentes de Variación</th>
<th>12 horas</th>
<th>36 horas</th>
<th>72 horas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CM</td>
<td>Fc</td>
<td>Ft (5%)</td>
</tr>
<tr>
<td>4 (Huganda)</td>
<td>Variedades</td>
<td>200.49</td>
<td>32.34</td>
<td>2.17</td>
</tr>
<tr>
<td>9 (Toledo rojo)</td>
<td></td>
<td>6.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 (Agro 2000)</td>
<td>Error</td>
<td>19.86 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 (Kamiri)</td>
<td>CV</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

La prueba de Duncan al 5% de significancia para el porcentaje de germinación en laboratorio (Cuadro 3), nos muestra que a las 12 horas de evaluación se presentaron seis grupos; donde, no se encontraron diferencias significativas entre las variedades 4 (Huganda), 9 (Toledo rojo) y 6 (Agro 2000) que fueron las que registraron los mayores porcentajes de germinación 21.2, 19.8 y 17% respectivamente, la variedad 3 (Kamiri) fue la que registró un porcentaje bajo de germinación 1.2%.

A las 36 horas de evaluación, se registraron cuatro grupos, donde no se encontraron diferencias significativas entre las variedades 5 (Jiwaki), 4 (Huganda), 7 (Toledo naranja) y 9 (Toledo rojo) las que registraron los mayores porcentaje de germinación en un rango de 98.4 a 94.6%, mientras las variedades 8 (Real blanca) y 1 (Chucapaca) mostraron los menores porcentajes de germinación 80.6 y 79.6% respectivamente, las demás variedades registraron porcentajes en un rango de 92.2 a 88.2%.

A las 72 horas de evaluación, se presentaron cuatro grupos, donde no se encontraron diferencias significativas entre las variedades 5 (Jiwaki), 4 (Huganda), 9 (Toledo rojo), 10 (K'ellu), 7 (Toledo naranja), 3 (Kamiri) y 1 (Chucapaca) las cuales mostraron porcentajes en un rango de 99.2 a 94.6%, la variedad 8 (Real blanca) fue la que registró un menor porcentaje 86.4%, las demás variedades registraron valores en un rango de 94 a 92.8%.
Cuadro 3. Prueba de Duncan para el porcentaje de germinación
de las diez variedades de quinua en laboratorio

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Relación (SG/TS)</th>
<th>Duncan (5%)</th>
<th>Variedad</th>
<th>Relación (SG/TS)</th>
<th>Duncan (5%)</th>
<th>Variedad</th>
<th>Relación (SG/TS)</th>
<th>Duncan (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V04 Huganda</td>
<td>0.212</td>
<td>a</td>
<td>V05 Jiwaki</td>
<td>0.984</td>
<td>a</td>
<td>V05 Jiwaki</td>
<td>0.992</td>
<td>a</td>
</tr>
<tr>
<td>V09 Tol. rojo</td>
<td>0.198</td>
<td>a</td>
<td>V04 Huganda</td>
<td>0.976</td>
<td>a</td>
<td>V04 Huganda</td>
<td>0.992</td>
<td>a</td>
</tr>
<tr>
<td>V06 Agro 2000</td>
<td>0.170 a b</td>
<td>V07 Tol. naranja</td>
<td>0.952 a b</td>
<td>V09 Tol. rojo</td>
<td>0.982 a b</td>
<td>V07 Tol. naranja</td>
<td>0.974 a b</td>
<td></td>
</tr>
<tr>
<td>V05 Jiwaki</td>
<td>0.152 b c</td>
<td>V09 Tol. rojo</td>
<td>0.946 a b</td>
<td>V10 K’ellu</td>
<td>0.976 a b</td>
<td>V07 Tol. naranja</td>
<td>0.974 a b</td>
<td></td>
</tr>
<tr>
<td>V08 R. blanca</td>
<td>0.146 b c</td>
<td>V10 K’ellu</td>
<td>0.922 b c</td>
<td>V03 Kamiri</td>
<td>0.958 a b c</td>
<td>V03 Kamiri</td>
<td>0.958 a b c</td>
<td></td>
</tr>
<tr>
<td>V07 Tol. naranja</td>
<td>0.070 d e</td>
<td>V06 Agro 2000</td>
<td>0.882 c</td>
<td>V02 Surumi</td>
<td>0.900 c</td>
<td>V02 Surumi</td>
<td>0.940 b c</td>
<td></td>
</tr>
<tr>
<td>V01 Chucapaca</td>
<td>0.062 e</td>
<td>V08 R. blanca</td>
<td>0.806 d</td>
<td>V06 Agro 2000</td>
<td>0.928 c</td>
<td>V06 Agro 2000</td>
<td>0.928 c</td>
<td></td>
</tr>
<tr>
<td>V03 Kamiri</td>
<td>0.012 f</td>
<td>V01 Chucapaca</td>
<td>0.796 d</td>
<td>V08 R. blanca</td>
<td>0.864 d</td>
<td>V08 R. blanca</td>
<td>0.864 d</td>
<td></td>
</tr>
</tbody>
</table>

Al finalizar la prueba de germinación en laboratorio se puede apreciar que las diez variedades evaluadas registraron porcentajes de germinación por encima del 90%, excepto la variedad 8 (Real blanca) que fue la que registró un menor porcentaje (86.4%), atribuible a las características genéticas de cada variedad ya que no existió la influencia de otros factores como el ambiente o la temperatura que fueron constantes y homogéneos durante la prueba.

Gutierrez (2003), reportó porcentajes de germinación del 93 y 98% para la variedad Surumi y Blanca de Yanamuyu respectivamente, menor al reportado en el presente trabajo respecto a la variedad Surumi con 94%, atribuyendo las diferencias a las características genéticas en cuanto al proceso germinativo.

En la Figura 5 podemos ver la evolución de la germinación en laboratorio de las diez variedades evaluadas a tres diferentes horas, entre las 12 y 36 horas existió un mayor número de semillas germinadas para todas las variedades con un promedio de 77% de germinación, a partir de este tiempo se registró un incremento en la germinación del 15% para la variedad 1 (Chucapaca) hasta la finalización de la evaluación, es decir hasta las 72 horas, en cambio las demás variedades se mantuvieron casi constantes con un incremento del 4%, en este sentido se puede

1 Para calcular el porcentaje de germinación (%G) a las diferentes horas, se debe multiplicar la relación (SG/TS) por 100, donde: SG = semilla germinada y TS = total de semillas sembradas.
mencionar que el proceso germinativo terminó a las 36 horas para las diez variedades, debido a que a las 36 horas de evaluación se registraron los mayores porcentajes de germinación para todas las variedades.

Figura 5. Evolución de la germinación en laboratorio a las 12, 36 y 72 horas de diez variedades de quinua

La diferencia del porcentaje de germinación a las 12 horas es un buen criterio para indicar cuál será la variedad más apta para germinar rápidamente en un suelo con sequía, en este caso la variedad 3 (Kamiri) tiene un comportamiento diferente de la variedad 4 (Huganda).

6.3.2 Porcentaje de germinación en campo

6.3.2.1 Cantidad de semilla sembrada

Para cuantificar la cantidad aproximada de semilla contenida en un peso promedio de 2.5 g, sembrada en un surco de 5 m lineales a una densidad de siembra de 10 kg/ha y con un determinado peso de 100 granos, se utilizó la siguiente relación:

\[
N^o\ de\ gramos\ en\ 5\ m = \frac{2.5\ g \times 100\ gramos}{Peso\ de\ 100\ granos}
\]
La elección del parámetro 10 kg/ha como densidad de siembra para cualquier variedad nos conduce a una densidad de planta por metro lineal diferente entre las diez variedades, debido al tamaño y peso de la semilla, que determina la mayor o menor cantidad de granos sembrados en un metro lineal (Cuadro 4), este hecho se demuestra en la variedad 1 (Chucapaca) que demostró poseer un tamaño de grano menor a 2 mm y un peso de 100 semilla de 0.2463 g y por tanto registró mayor cantidad de granos sembrados, en comparación con las demás variedades que poseen un tamaño de grano mayor a 2 mm y un peso 100 semillas de 0.4398 g en promedio, consecuentemente una menor cantidad de semilla sembrada.

Al respecto Rodriguez (2005), menciona que la semilla de tamaño grande (de 2.0 – 2.5 mm) presenta una menor cantidad de granos sembrados en un metro lineal (432 granos), debido a su peso y diámetro, mientras que en las semillas de tamaño pequeño (de 1.0 a 1.4 mm) presentan una mayor cantidad de granos sembrados en un metro lineal (984 granos).

Cuadro 4. Cantidad aproximada de semilla sembrada de diez variedades de quinua

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Nº de granos en 5 metros lineales</th>
<th>Nº de granos en 1 metro lineal</th>
</tr>
</thead>
<tbody>
<tr>
<td>V01: Chucapaca</td>
<td>1071</td>
<td>214</td>
</tr>
<tr>
<td>V02: Surumi</td>
<td>649</td>
<td>130</td>
</tr>
<tr>
<td>V03: Kamiri</td>
<td>617</td>
<td>123</td>
</tr>
<tr>
<td>V04: Huganda</td>
<td>589</td>
<td>118</td>
</tr>
<tr>
<td>V05: Jiwaki</td>
<td>608</td>
<td>122</td>
</tr>
<tr>
<td>V06: Agro 2000</td>
<td>600</td>
<td>120</td>
</tr>
<tr>
<td>V07: Toledo naranja</td>
<td>551</td>
<td>110</td>
</tr>
<tr>
<td>V08: Real blanca</td>
<td>585</td>
<td>117</td>
</tr>
<tr>
<td>V09: Toledo rojo</td>
<td>642</td>
<td>128</td>
</tr>
<tr>
<td>V10: K’ellu</td>
<td>538</td>
<td>108</td>
</tr>
</tbody>
</table>

6.3.2.2 Tasa de emergencia en campo

En la Figura 6 se presenta la evolución de la emergencia en campo de las diez variedades estudiadas, donde la variedad 1 (Chucapaca) fue la que registro un mayor número de plantas emergidas desde los siete hasta los 42 días después de la siembra; debido a que se sembró una mayor cantidad de semillas,
posteriormente se advierte que existe un comportamiento similar en la evolución de la emergencia en campo de las variedades 7 (Toledo naranja), 3 (Kamiri), 9 (Toledo rojo), 4 (Huganda), 10 (K'ellu), 5 (Jiwaki), 2 (Surumi) y 8 (Real blanca) durante la evaluación.

La variedad 6 (Agro 2000) fue la que registró un menor número de plantas emergidas en campo, durante toda la fase de evaluación, probablemente debido a las características genéticas propias de la misma, ya que la evaluación se la realizó en las mismas condiciones de clima y de suelo.

También se puede observar en la Figura 6 y Cuadro 5, que entre los 21 a 28 días después de la siembra, fue en donde se registraron los mayores números de plantas emergidas, entre 40 y 41 plantas, para las diez variedades con un porcentaje de emergencia entre 19% (V_{06} Agro 2000) a 35% (V_{07} Toledo naranja), a partir del cuál el porcentaje de emergencia en campo fue disminuyendo probablemente a la ausencia de lluvias que produjo la marchitez de las plantas emergidas, así como también a la presencia de pájaros que fueron cortando los cotiledones de las plantas que emergían provocando su posterior muerte.

Figura 6. Evolución de la emergencia a nivel de campo de diez variedades de quinua
Los porcentajes de emergencia obtenidos en el Cuadro 5, no se asemejan a los resultados obtenidos sobre el porcentaje de germinación en laboratorio, atribuibles principalmente a las condiciones ambientales en donde se llevó el experimento, la textura y estructura del suelo, profundidad de siembra y humedad del suelo, que podrían haber interferido en el proceso germinativo de la semilla y consecuentemente en la emergencia, ya que el 96% de la siembra germina a los 3 días después de la siembra (dds) en las condiciones de laboratorio y el 11% de la siembra germina a los 7 dds en condiciones de campo, para las diez variedades.

Al respecto Jacobsen et al. (1994) citado por Berti et al. (1998), indican que las pruebas normalmente usadas para determinar el porcentaje de germinación en laboratorio son inadecuadas para la quinua, y que las causas de la baja germinación de campo deberían ser estudiadas con mayor profundidad.

Cuadro 5. Porcentaje de emergencia en campo evaluadas a diferentes días después de la siembra (dds)

<table>
<thead>
<tr>
<th>Variedades</th>
<th>Porcentaje de emergencia (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7 dds</td>
</tr>
<tr>
<td>V01: Chucapaca</td>
<td>17</td>
</tr>
<tr>
<td>V02: Surumi</td>
<td>9</td>
</tr>
<tr>
<td>V03: Kamiri</td>
<td>15</td>
</tr>
<tr>
<td>V04: Huganda</td>
<td>13</td>
</tr>
<tr>
<td>V05: Jiwaki</td>
<td>11</td>
</tr>
<tr>
<td>V06: Agro 2000</td>
<td>2</td>
</tr>
<tr>
<td>V07: Toledo naranja</td>
<td>16</td>
</tr>
<tr>
<td>V08: Real blanca</td>
<td>7</td>
</tr>
<tr>
<td>V09: Toledo rojo</td>
<td>12</td>
</tr>
<tr>
<td>V10: K'ellu</td>
<td>13</td>
</tr>
</tbody>
</table>

6.3.3 Número de hojas en el tallo principal

En la Figura 7 se puede observar el desarrollo creciente en cuanto al número de hojas emitidas en el tallo principal en las variedades Chucapaca, Jiwaki y Real blanca a lo largo del ciclo vegetativo del cultivo, a partir de los 50 dds (fase de 13 hojas verdaderas) hasta los 165 dds (fase de madurez fisiológica).
De forma general se observa que no existen diferencias en cuanto al desarrollo en el número de hojas emitidas en el tallo principal entre las tres variedades, donde el número máximo de hojas presentado por la variedad Chucapaca fue de 40 hojas a los 151 dds, para la variedad Jiwaki 39 hojas a los 158 dds y la variedad Real blanca desarrollo 39 hojas registrada a los 151 dds.

Figura 7. Evolución del número de hojas emitidas en el tallo principal en tres variedades de quinua

6.3.4 Porcentaje de defoliación del tallo principal

La defoliación o caída de las hojas es un proceso normal de envejecimiento de las mismas, que indica el cambio de nuevas hojas, también puede ser causada por efecto de los granizos, heladas o pueden ser provocadas por la presencia de plagas y enfermedades.

La Figura 8 nos muestra el porcentaje de defoliación del tallo principal presentado en tres variedades, donde se aprecia que a los 50 dds las tres variedades registraron bajos porcentajes de defoliación, 9 y 6% para las variedades Jiwaki y Chucapaca y para la variedad Real blanca 0% de defoliación.
A medida que fueron desarrollando mayor cantidad de hojas, el porcentaje de defoliación fue aumentando, es así que a los 165 dds (fase de madurez fisiológica) se presentó la máxima caída de hojas y por tanto un mayor porcentaje de defoliación, en esta fase la variedad Chucapaca registró una menor defoliación con 72%, en cambio que las variedades Jiwaki y Real blanca registraron mayor defoliación 93 y 91% respectivamente.

![Gráfico de defoliación (%) en función de los días después de la siembra para tres variedades de quinua.](image)

Figura 8. Porcentaje de defoliación del tallo principal en tres variedades de quinua

6.4 Variables Fisiotécnicas

La ausencia de lluvias en fases críticas como la siembra y consecuencia de esto la carencia de plantas para la evaluación de la biomasa fresca y seca, como se puede apreciar en el registro de la precipitación en fases de cinco días (Figura 4), fue la causa del registró de dos fechas de emergencia (dos generaciones); en este sentido se realizó la selección de tres variedades de la primera generación (primera emergencia): Chucapaca, Surumi y Kamiri, con material vegetal suficiente para el registro de la biomasa fresca y seca a diferentes etapas de crecimiento y desarrollo, es decir a los 60, 90 y 120 días después de la siembra (dds).
6.4.1 Peso seco de plantas por metro cuadrado

La acumulación del peso seco total por metro cuadrado, se muestra en la Figura 9, en la que se observa que a los 60 y 90 dds existió una mayor acumulación de peso seco por parte de la variedad Kamiri con 299.97 y 779.92 g/m2, debido a que presentó un mayor número de plantas por metro cuadrado (33 y 21 plantas/m2 respectivamente), en comparación con la variedad Surumi que registro 20 y 15 plantas/m2 y una biomasa seca de 195.62 y 623.90 g/m2 respectivamente.

En cambio la variedad Chucapaca registró el mismo número de plantas que la variedad Kamiri pero una acumulación menor de peso seco por metro cuadrado con 193.15 y 507.77 g/m2 a los 60 y 90 dds, debido a que el peso seco por planta individual registrado por la variedad Chucapaca fue menor a las registradas por las variedades Kamiri y Surumi producto de un menor desarrollo de las plantas, no afectando el número de planta por metro cuadrado en el incremento del peso seco.

A los 120 dds, se nota una reducción en la biomasa seca por parte de las variedades Kamiri y Chucapaca con 554.16 y 299.48 g/m2 respectivamente, por la disminución en el número de plantas por metro cuadrado (14 y 7 plantas), y un incremento notorio por parte de la variedad Surumi con 617.30 g/m2, a causa de un mayor peso seco individual registrada por esta variedad producto del mayor desarrollo de los diferentes órganos de la planta.

\[
\begin{align*}
&\text{Chucapaca} & \text{Surumi} & \text{Kamiri} \\
&\text{Días después de la siembra} & \text{Peso seco total (g/m2)} & \text{Peso seco total (g/m2)} & \text{Peso seco total (g/m2)} \\
&60 & 100,00 & 200,00 & 300,00 \\
&90 & 400,00 & 500,00 & 600,00 \\
&120 & 700,00 & 800,00 & 900,00 \\
\end{align*}
\]

Figura 9. Acumulación del peso seco (g/m2) a los 60, 90 y 120 dds de tres variedades de quinua
6.4.2 Incremento del peso seco de la planta

El incremento del peso seco de una planta se muestra en la Figura 10, donde se puede observar que al inicio de la evaluación, 60 dds, las variedades Surumi, Kamiri y Chucapaca presentaron pesos secos individuales de 10.17, 10 y 6.15 g respectivamente, a los 90 dds, existió un incremento notorio en el peso seco por parte de la variedad Surumi hasta los 120 dds donde registro un peso seco de 149.42 g superior a las variedades Chucapaca y Kamiri con 51.19 y 45.73 g respectivamente.

El número de plantas por metro cuadrado registrado por la variedad Surumi a los 120 dds fue determinante para el incremento del peso seco individual, ya que registró una menor densidad de plantas (4 plantas) en comparación con las variedades Kamiri y Chucapaca (14 y 7 plantas), favoreciendo al desarrollo de las ramificaciones y consecuentemente incrementando el peso seco en la variedad Surumi.

![Figura 10. Incremento del peso seco (g) de una planta individual de tres variedades de quinua](image-url)
6.4.3 Peso seco de las hojas del tallo principal (HTP)

La Figura 11 muestra el comportamiento del peso seco de las hojas del tallo principal, donde a los 60 dds las variedades Kamiri y Surumi registraron pesos secos de 6.04 y 5.87 g por planta respectivamente, superiores al registrado por la variedad Chucapaca (5.38 g), probablemente al mayor desarrollo en cuanto a la altura de planta y por tanto a la presencia de un mayor número de hojas en ambas variedades.

En la misma figura se puede observar que a los 90 y 120 dds la variedad Surumi acumuló mayor peso seco de hojas del tallo principal con 9.39 y 9.59 g por planta respectivamente; en cambio las variedades Chucapaca y Kamiri registraron una disminución en la acumulación del peso seco de las hojas a los 120 dds con 7.5 y 6.78 g respectivamente, esto a causa de una menor altura alcanzada por ambas variedades (107.5 cm en promedio) y por la caída de las hojas característica de la fase de grano lechoso – pastoso; en cambio que la variedad Surumi llegando a la misma fase siguió con el proceso de acumulación de materia seca en las hojas del tallo principal.

Figura 11. Evolución del peso seco (g) de las hojas del tallo principal de tres variedades de quinua
6.4.4 Peso seco del tallo principal (TP)

La evolución del peso seco del tallo principal de las tres variedades se muestra en la Figura 12, donde se observa igual desarrollo del tallo principal por parte de las tres variedades hasta la fase de inicio de floración, es decir a los 90 dds.

A partir de la fase de grano lechoso, a los 120 dds se registró una menor acumulación en el peso seco del tallo principal por parte de la variedad Kamiri (22.9 g), ya que registró una menor altura a la cosecha (102.05 cm), en cambio las variedades Surumi y Chucapaca alcanzaron las mayores alturas (115 cm en promedio) y por tanto registraron los mayores pesos secos del tallo principal (46.01 y 44.67 g respectivamente), si bien se registraron diferencias numéricas en cuanto al diámetro de tallo entre las tres variedades, esta variable no influyó en la acumulación de peso seco en el tallo principal por parte de la variedad Kamiri.

Por otro lado, las variedades Surumi y Chucapaca al llegar a la fase de grano lechoso siguieron con la acumulación de material vegetal en el tallo principal, lo que no ocurrió con la variedad Kamiri.

![Figura 12. Evolución del peso seco (g) del tallo principal de tres variedades de quinua](image-url)
6.4.5 Peso seco de la panoja (PAN)

El registro del peso seco de la panoja se empezó a evaluar a partir de la fase de ramificación e inicio de panojamiento, es decir a los 60 dds.

La Figura 13, muestra la evolución de la panoja del tallo principal de tres variedades evaluadas a diferentes etapas de crecimiento, donde a los 60 dds comenzó a registrar un incremento en el peso seco de la panoja en las tres variedades (0.104 g en promedio), este incremento fue notorio a los 90 dds, fase de inicio de floración, donde la variedad Kamiri superó a las demás variedades con un peso seco de 5.94 gramos.

En cambio a los 120 dds, fase de grano lechoso, se observa que las variedades Kamiri y Surumi registraron pesos secos de 31.86 y 31.05 g respectivamente, superiores a la registrada por la variedad Chucapaca que tan solo acumuló 20.12 g. Los análisis de varianza realizados para la longitud y diámetro de panoja (Cuadros 11 y 13) nos indican que no existen diferencias estadísticamente significantes entre las tres variedades, por tanto estas variables no influyeron en la acumulación de peso seco de la panoja.

![Figura 13. Evolución del peso seco (g) de la panoja de tres variedades de quinua](image)
6.4.6 Peso seco de las ramificaciones (RAM)

Para la evaluación del peso seco de las ramificaciones se consideró el total de ramas y hojas presentes en las ramificaciones de cinco plantas en promedio, donde se puede observar que a los 60 dds (Figura 14), las variedades Kamiri y Surumi registraron pesos secos de 4.41 y 3.34 g respectivamente, superiores respecto a la variedad Chucapaca que registró 1.32 gramos.

A los 90 dds se puede observar un incremento en la acumulación del peso seco de las ramificaciones de 6.98 g en promedio, donde no se registraron diferencias en las tres variedades, pero estas diferencias fueron notorias a los 120 dds, ya que se observa un notable incremento por parte de la variedad Surumi que registró 37.45 g; en esta etapa de evaluación esta variedad registro una baja densidad de plantas por metro cuadrado (4 plantas) favoreciendo al desarrollo de las ramificaciones, influenciada también por la mayor capacidad de generar ramificaciones, lo que no ocurrió con las variedades Kamiri y Chucapaca que registraron una mayor densidad de plantas (14 y 7 plantas/m2 respectivamente) y por tanto registraron menores pesos secos de las ramificaciones, entre 18.48 g (Chucapaca) y 14.95 g (Kamiri).

Figura 14. Evolución del peso seco (g) de las ramificaciones de tres variedades de quinua
6.4.7 Repartición de la biomasa seca total entre las diferentes partes

En la Figura 15 se puede observar la repartición de las diferentes partes de la planta (%) en la biomasa seca total de una planta, a lo largo del ciclo vegetativo del cultivo; en el cuál se aprecia que a los 60 dds existe mayor aporte en la biomasa seca total por parte de las hojas del tallo principal (HTP) en la variedad Chucapaca con 54.9%, en cambio que en las variedades Kamiri y Surumi existe un aporte de 43.2 y 45.1% respectivamente. A los 90 dds se aprecia un mayor aporte en la biomasa seca total por parte del tallo principal para las tres variedades Chucapaca, Kamiri y Surumi con 56.8, 56.7 y 55.7% respectivamente.

A los 120 dds en la variedad Chucapaca existe un mayor aporte en la biomasa seca total por parte del tallo principal con 49.2%, seguida de la panoja (PAN) con 22.2%, en cambio para la variedad Kamiri la panoja es la que aporta más a la biomasa seca total con 41.6%, seguida del tallo principal (TP) con 29.9%. En la variedad Surumi se aprecia un mayor aporte en la biomasa seca total por parte del tallo principal (TP) con 37% seguida de las ramificaciones (RAM) con 30.2%, ya que esta variedad al llegar a esta etapa registró un mayor peso seco de ramificaciones (37.45 g) en comparación a las variedad Chucapaca y Kamiri que tan solo registraron 18.48 y 14.95 g respectivamente.

Figura 15. Porcentaje de repartición de los diferentes órganos en la biomasa seca total por planta
6.4.8 Tasa de crecimiento absoluto (TCA)

La tasa de crecimiento absoluto (TCA) de las tres variedades de quinua en tres etapas de evaluación se muestra en la Figura 16, y expresa el incremento de materia seca que experimenta una planta o un cultivo por unidad de tiempo.

De forma general en la fase de evaluación de 60 a 90 dds se puede observar que existe un incremento en peso similar para las tres variedades, con ganancia de peso de 1.10 g/día para la variedad Kamiri, 1.09 g/día para la variedad Chucapaca y 1.07 g/día para la variedad Surumi. Al respecto Mamani (1997) menciona que en esta fase existe un elevado incremento de peso en las plantas de quinua debido a las precipitaciones.

Durante la fase de evaluación de 90 a 120 dds, entrando a la fase de grano lechoso – pastoso, se advierte un decremento en la ganancia en peso en la variedad Kamiri producto de la disminución en la actividad fotosintética de sus hojas; en cambio las variedades Surumi y Chucapaca registraron mayores ganancias en peso lo que indica que entrando a esta fase, estas variedades continuaron con el proceso fotosintético registrando 2.63 y 1.61 g/día como incremento en peso superior a la variedad Kamiri que sólo registró 0.98 g/día.

![Gráfico de la Tasa de crecimiento absoluto de tres variedades de quinua](image)
6.4.9 Tasa de crecimiento relativo (TCR)

La tasa de crecimiento relativo (TCR) de las tres variedades en las tres etapas de evaluación, se presenta en la Figura 17, e indica el incremento de peso seco que experimenta una planta o un cultivo por unidad de materia seca presente y por unidad de tiempo.

La Figura 17 muestra un decremento continuo de la tasa de ganancia de materia seca en las tres variedades, debido a la disminución en la actividad de las hojas producto de su defoliación natural. Entre los 60 y 90 dds, la variedad Chucapaca presenta una ganancia de 0.049 g/g/día, superior a las variedades Surumi y Kamiri que presentaron ganancias de 0.041 y 0.040 g/g/día respectivamente. En cambio, entre los 90 y 120 dds, la variedad Surumi fue la que presento una mayor ganancia con 0.034 g/g/día a comparación de las variedades Chucapaca y Kamiri, mismas que presentaron las menores ganancias de materia seca (0.025 y 0.016 g/g/día respectivamente).

Figura 17. Evolución de la tasa de crecimiento relativo de tres variedades de quinua
Al respecto Ramos (2000), reportó ganancias de peso seco por parte de las variedades Jiskito y Chucapaca de 0.020 y 0.005 g/g/día respectivamente entre las fases de grano masoso y madurez fisiológica, valores que se encuentran por debajo de los reportados en el presente trabajo, como es el caso de la variedad Chucapaca que registro 0.025 g/g/día; además menciona que el comportamiento decreciente, desde las fases iniciales de la quinua hasta la madurez fisiológica es característico en variedades tardías.

6.4.10 Índice de área foliar (IAF)

En principio se determinó el área foliar total de una planta, a partir de la estimación del área foliar específica, multiplicando estos valores por el peso seco total de las hojas del tallo principal y de las ramificaciones en las tres fases de evaluación.

La Figura 18 nos muestra la evolución del área foliar total de una planta, donde a los 60 dds no se observan diferencias, registrándose valores de 0.059, 0.059 y 0.063 m²/planta para las variedades Chucapaca, Surumi y Kamiri. Sin embargo, a los 90 dds se advierte un incremento notable por parte de las tres variedades, la variedad Chucapaca superó a las demás variedades al registrar la mayor área foliar alcanzando un valor máximo de 0.114 m²/planta, por el mayor crecimiento de las hojas, en cambio las variedades Surumi y Kamiri registraron áreas foliares de 0.103 y 0.092 m²/planta.

A los 120 dds se advierte una disminución en el área foliar por parte de las variedades Chucapaca y Kamiri que registraron 0.107 y 0.096 m²/planta, en cambio la Variedad Surumi registró un incremento notable llegando a alcanzar un área foliar de 0.157 m²/planta superior a las demás variedades.
Una vez obtenida el área foliar total de una planta en m^2 y teniendo el número de plantas por metro cuadrado de superficie, se procedió a determinar el Índice de área foliar (IAF) como se observa en la Figura 19.

El IAF de la variedad Surumi presentó los valores más bajos, influenciado por el número de plantas por metro cuadrado de 20, 15 y 4 plantas/m2 para los 60, 90 y 120 dds respectivamente, menores a los registrados por las variedades Chucapaca y Kamiri que presentaron 33, 21 y 11 plantas/m2 en promedio. El IAF tiene un incremento apreciable a los 90 dds para la variedad Surumi, llegando a registrar un índice de 1.54, a partir del cuál fue disminuyendo hasta llegar a un valor de 0.63 a los 120 dds.

El máximo de IAF alcanzado por la variedad Kamiri fue a los 60 dds con 2.08 y a los 90 dds con 2.39 para la variedad Chucapaca, a partir del cuál este índice fue disminuyendo hasta los 120 dds llegando a registrar índices de 1.35 y 0.75 para las variedades Kamiri y Chucapaca, respectivamente.
6.5 Evaluación de la incidencia de la helada en el cultivo

En fecha 29 de febrero de 2003 se presentó una helada provocando daños a la segunda generación del cultivo que se encontraba entre las fases de cinco y 13 hojas alternas (Foto 3, A-12). La Figura 20 muestra la evolución de la helada registrada por tres captores de temperatura instalados; el primero en el cultivo al nivel del suelo, el segundo a un metro de altura y el tercero en la caseta meteorológica, donde se observa que a horas 6:50 A.M. fue donde se registró las temperaturas más bajas con –2.3 ºC en promedio entre los tres captores.
En este sentido de realizó el análisis de varianza (Cuadro 6) sobre el efecto de la helada en el ensayo, donde muestra que existe diferencias significativas entre bloques debido a la heterogeneidad del terreno; así como también, existen diferencias significativas entre las diez variedades de quinúa, a un nivel del 5% de significancia.

El coeficiente de variación para este análisis nos indica que existe una variación del 32.36% de los datos respecto a la media, es decir, existe una variabilidad en los datos obtenidos, debido a la heterogeneidad del efecto del frío, además esta evaluación fue realizada por seis personas para la toma de datos en los diferentes bloques. Por tanto los resultados obtenidos deben ser tomados con precaución ya que no son muy confiables.

<table>
<thead>
<tr>
<th></th>
<th>FV</th>
<th>GL</th>
<th>SC</th>
<th>CM</th>
<th>Fc</th>
<th>Ft (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td>203.24</td>
<td>67.746</td>
<td>4.49</td>
<td>2.96*</td>
<td></td>
</tr>
<tr>
<td>Variedad</td>
<td>9</td>
<td>610.98</td>
<td>67.887</td>
<td>4.50</td>
<td>2.25*</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>407.56</td>
<td>15.095</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>39</td>
<td>1221.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CV = 32.36%

La comparación de medias de Duncan al nivel del 5% (Cuadro 7) nos indica que existen diferencias significativas entre las variedades 1 (Chucapaca) y el resto de las variedades estudiadas; es decir, que existe un mayor efecto de la helada sobre la variedad 1 (Chucapaca) que registro una media de 23 plantas afectadas en comparación con las demás variedades. No se encontraron diferencias significativas entre las variedades 9 (Toledo rojo), 3 (Kamiri), 4 (Huganda), 8 (Real blanca), 5 (Jiwaki), 7 (Toledo naranja), 6 (Agro 2000) y 2 (Surumi) las cuales mostraron promedios en un rango de 12 a 9 plantas afectadas por unidad experimental.
Cuadro 7. Prueba de Duncan para el efecto de la helada

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Medias (pl)</th>
<th>Duncan (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V₀₁ Chucapaca</td>
<td>23</td>
<td>a</td>
</tr>
<tr>
<td>V₁₀ K'ellu</td>
<td>13</td>
<td>b</td>
</tr>
<tr>
<td>V₀₉ Toledo rojo</td>
<td>12</td>
<td>b c</td>
</tr>
<tr>
<td>V₀₃ Kamiri</td>
<td>12</td>
<td>b c</td>
</tr>
<tr>
<td>V₀₄ Huganda</td>
<td>11</td>
<td>b c</td>
</tr>
<tr>
<td>V₀₈ Real blanca</td>
<td>11</td>
<td>b c</td>
</tr>
<tr>
<td>V₀₅ Jiwaki</td>
<td>11</td>
<td>b c</td>
</tr>
<tr>
<td>V₀₇ Toledo naranja</td>
<td>10</td>
<td>b c</td>
</tr>
<tr>
<td>V₀₆ Agro 2000</td>
<td>9</td>
<td>c</td>
</tr>
<tr>
<td>V₀₂ Surumi</td>
<td>9</td>
<td>c</td>
</tr>
</tbody>
</table>

Según el Cuadro 7, la variedad 1 (Chucapaca) es la más susceptible a las heladas, en cambio las variedades 10 (K’ellu), 9 (Toledo rojo), 3 (Kamiri), 4 (Huganda), 8 (Real blanca), 5 (jiwaki), 7 (Toledo naranja), 6 (Agro 2000) y 2 (Surumi) son las que mejor soportaron el efecto de la helada; es decir, son las variedades que se pueden considerar como las más tolerantes.

La Figura 21 muestra la relación porcentual de plantas afectadas en cada Nota, donde se observa que existe un mayor porcentaje de plantas afectadas en la Nota 2 (planta afectada) con 49.24% en promedio entre las diez variedades, seguida de la Nota 3 (planta muy afectada) con 30.83%, Nota 1 (planta sana o intacta) con 11.36% y finalmente de la Nota 4 (planta muerta y/o caída) con 8.57% registradas en los cuatro bloques respectivos.

También nos muestra que en la Nota 1 (planta sana o intacta) existe mayor porcentaje de plantas correspondientes a la variedad 2 (Surumi) con 29.71%. En la Nota 2 (planta afectada con el 50% de las hojas quemadas) la variedad 6 (Agro 2000) es la que registro mayor porcentaje de plantas con 66.05%, en cambio en la Nota 3 (planta muy afectada con el 80% de las hojas quemadas) la variedad 1 (Chucapaca) fue la que obtuvo mayor porcentaje de plantas con 46.34%, y finalmente en la Nota 4 (planta muerta y/o caída) la variedad que mayor porcentaje de plantas registró fue la variedad 1 (Chucapaca) con 21.89%, seguida muy cerca por la variedad 7 (Toledo naranja) con 19.17%.
6.6 Variables morfológicas registradas a la cosecha

En esta parte se considera las variables morfológicas evaluadas a la cosecha de las diez variedades en estudio.

6.6.1 Altura de planta

El análisis de varianza para la altura de planta se muestra en el Cuadro 8, donde se observa que no existen diferencias significativas en cuanto a los bloques; pero si existen diferencias significativas entre variedades a un nivel del 5%. También se puede considerar que los datos son confiables ya que se obtuvo un coeficiente de variación del 6.36%.

Cuadro 8. Análisis de varianza para la altura de planta

<table>
<thead>
<tr>
<th></th>
<th>FV</th>
<th>GL</th>
<th>SC</th>
<th>CM</th>
<th>Fc</th>
<th>Ft (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td>315.51</td>
<td>105.171</td>
<td>2.35</td>
<td>2.96</td>
<td>ns</td>
</tr>
<tr>
<td>Variedad</td>
<td>9</td>
<td>5259.01</td>
<td>584.334</td>
<td>13.03</td>
<td>2.25</td>
<td>*</td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>1210.72</td>
<td>44.841</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>6785.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CV = 6.36%
Para establecer diferencias estadísticas entre los promedios de las alturas de planta de las diez variedades, se realizó la prueba múltiple de Duncan al 5% de significancia (Cuadro 9), en el cual se muestra que existen cinco grupos diferentes para la altura de planta, la variedad 4 (Huganda) registro una mayor altura (130.90 cm) en comparación con las demás variedades, en cambio la variedad que registró una menor altura fue la variedad 8 (Real blanca) con un promedio de 90.00 cm, las demás variedades registraron alturas en un rango de 116.95 a 94.95 centímetros.

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Medias (cm)</th>
<th>Duncan (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V04 Huganda</td>
<td>130.88</td>
<td>a</td>
</tr>
<tr>
<td>V02 Surumi</td>
<td>116.95</td>
<td>b</td>
</tr>
<tr>
<td>V01 Chucapaca</td>
<td>113.07</td>
<td>b c</td>
</tr>
<tr>
<td>V05 Jiwaki</td>
<td>104.83</td>
<td>c d</td>
</tr>
<tr>
<td>V09 Toledo rojo</td>
<td>103.73</td>
<td>c d</td>
</tr>
<tr>
<td>V03 Kamiri</td>
<td>102.05</td>
<td>d</td>
</tr>
<tr>
<td>V06 Agro 2000</td>
<td>100.03</td>
<td>d e</td>
</tr>
<tr>
<td>V07 Toledo naranja</td>
<td>96.23</td>
<td>d e</td>
</tr>
<tr>
<td>V10 K’ellu</td>
<td>94.95</td>
<td>d e</td>
</tr>
<tr>
<td>V08 Real blanca</td>
<td>90.00</td>
<td>e</td>
</tr>
</tbody>
</table>

La expresión de una mayor altura por parte de la variedad 4 (Huganda) y de las demás variedades se justifica por la influencia de las características genéticas y condiciones ambientales que se presentaron durante todo el ciclo vegetativo del cultivo, mostrando que las diez variedades tuvieron buena adaptabilidad a las condiciones del lugar de experimentación.

Por otro lado, el número de plantas por metro lineal es también un factor que se debe considerar ya que Berti et al. (1998) reportaron que la variedad Faro revela una leve tendencia a disminuir la altura conforme aumenta el número de plantas por metro lineal, debido probablemente a un aumento de la competencia entre plantas.
6.6.2 Diámetro de tallo

El análisis de varianza para el diámetro del tallo (Cuadro 10), indica que no existen diferencias significativas entre bloques, tampoco existen diferencias significativas entre variedades a un nivel del 5%. Por otro lado, el coeficiente de variación obtenido es de 8.6% que expresa la confiabilidad de los datos.

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SC</th>
<th>CM</th>
<th>Fc</th>
<th>Ft (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td>2.59</td>
<td>0.864</td>
<td>0.31</td>
<td>2.96 ns</td>
</tr>
<tr>
<td>Variedad</td>
<td>9</td>
<td>40.28</td>
<td>4.475</td>
<td>1.59</td>
<td>2.25 ns</td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>75.95</td>
<td>2.813</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>118.82</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CV = 8.67%

En la Figura 22 se observan los diámetros de tallo registrados por las diez variedades, donde las variedades 2 (Surumi) y 5 (Jiwaki) fueron las que registraron los mayores diámetros con 21.28 y 20.66 mm respectivamente. En cambio la variedad 1 (Chucapaca) registró el menor diámetro de tallo con 17.91 mm; los diámetros de tallo de las demás variedades oscilaron entre 19.85 y 18.32 milímetros.

![Figura 22. Diámetro de tallo (mm) de las diez variedades de quinua (m ± DE)]
Gutierrez (2003), registró diámetros de 13.7 y 9.6 mm para las variedades Surumi y Blanca de Yanamuyu, valores que se encuentran por debajo al registrado por la variedad Surumi (21.28 mm) en el presente trabajo, mencionando que es característico de la variedad Surumi tener un tallo grueso.

No se notaron los efectos de las características genéticas de cada variedad, ya que no se registraron diferencias en el diámetro de tallo, probablemente las condiciones ambientales influyeron en una mayor producción de materia verde y por tanto una mayor acumulación de productos elaborados en las células de tallo favorecieron el engrosamiento de este órgano, influenciados también por la heterogeneidad de la emergencia en las unidades experimentales.

Por otro lado Morales (2000), concluye que es importante destacar que las líneas y variedades de mayor altura de planta tienen mayor desarrollo vegetativo, mayor vigor en el crecimiento y por lo tanto mayor diámetro de tallo, aspecto importante para poder contrarrestar los fuertes vientos que suelen presentarse en la zona de estudio.

6.6.3 Correlación entre el diámetro de tallo y altura de planta

Para establecer la existencia de relaciones entre el diámetro de tallo y la altura de planta se realizó la correlación correspondiente; en la Figura 23 se presenta la no existencia de una correlación entre el diámetro de tallo y la altura de planta para las diez variedades en estudio, puesto que el coeficiente de correlación (r) obtenido fue de 0.052 y el coeficiente de determinación (r^2) fue de 0.27%, es decir que, las variables en estudio no están asociadas y no existe una relación funcional entre ellas.
6.6.4 Longitud de panoja

La longitud y el diámetro de panoja son los principales componentes de rendimiento de la quinua, ya que a partir de estas variables se podrá conocer la productividad de un determinado cultivo, en este caso de la quinua.

El análisis de varianza para la longitud de panoja (Cuadro 11), nos permite apreciar que no existen diferencias significativas entre los bloques pero sí existen diferencias significativas entre variedades a un nivel de significancia del 5%. El coeficiente de variación de 8.03 % expresa la confiabilidad de los datos obtenidos y el manejo del experimento.

| Cuadro 11. Análisis de varianza para la longitud de panoja |
|----------------|-----|-----|-----|-----|-----|-----|
| FV | GL | SC | CM | Fc | Ft (5%) |
| Bloque | 3 | 23.17 | 7.725 | 1.48 | 2.96 ns |
| Variedad | 9 | 422.51 | 46.946 | 8.97 | 2.25 * |
| Error | 27 | 14.28 | 5.233 | | |
| Total | 39 | 586.97 | | | |

CV = 8.03%
El Cuadro 12, muestra la prueba múltiple de Duncan al 5% de significancia, se distinguen dos grupos en donde no se encontraron diferencias significativas entre las variedades 4 (Huganda), 2 (Surumi), 5 (Jiwaki), 1 (Chucapaca), 3 (Kamiri) y 6 (Agro 2000) que alcanzaron longitudes de 32.78 a 29.35 cm. No se encontraron diferencias significativas entre las variedades 7 (Toledo naranja), 9 (Toledo rojo), 8 (Real blanca) y 10 (K’ellu) que registraron entre 25.28 a 23.93 cm de longitud de panoja.

Se puede advertir, que el segundo grupo esta conformado netamente por variedades originarias del Ayllu Huatari y de la zona intersalar (Uyuni- Coipasa). Este hecho probablemente se justifica por la influencia de los caracteres morfogenéticos propios de cada variedad, expresando una menor longitud de panoja (24.72 cm en promedio) con relación a las demás variedades evaluadas que registraron mayores longitudes de panoja (31.03 cm en promedio) y tuvieron una mejor adaptabilidad a las condiciones ambientales del lugar.

Los resultados encontrados demuestran una relación directa con la altura de planta, ya que las variedades que registraron las mayores longitudes de panoja también registraron las mayores alturas de planta.

Cuadro 12. Prueba de Duncan para la longitud de panoja

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Medias (cm)</th>
<th>Duncan (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V04 Huganda</td>
<td>32.78</td>
<td>a</td>
</tr>
<tr>
<td>V02 Surumi</td>
<td>32.38</td>
<td>a</td>
</tr>
<tr>
<td>V05 Jiwaki</td>
<td>31.00</td>
<td>a</td>
</tr>
<tr>
<td>V01 Chucapaca</td>
<td>30.70</td>
<td>a</td>
</tr>
<tr>
<td>V03 Kamiri</td>
<td>29.95</td>
<td>a</td>
</tr>
<tr>
<td>V06 Agro 2000</td>
<td>29.35</td>
<td>a</td>
</tr>
<tr>
<td>V07 Toledo naranja</td>
<td>25.28</td>
<td>b</td>
</tr>
<tr>
<td>V09 Toledo rojo</td>
<td>25.20</td>
<td>b</td>
</tr>
<tr>
<td>V08 Real blanca</td>
<td>24.48</td>
<td>b</td>
</tr>
<tr>
<td>V10 K’ellu</td>
<td>23.93</td>
<td>b</td>
</tr>
</tbody>
</table>
6.6.5 Diámetro de panoja

El Cuadro 13, muestra el análisis de varianza para el diámetro de panoja, la cuál nos indica que existen diferencias significativas tanto entre los bloques como entre las variedades al 5% de significancia. El coeficiente de varianza obtenido fue de 7.56% lo que implica que los valores obtenidos en la evaluación del ensayo son confiables.

<table>
<thead>
<tr>
<th>FV</th>
<th>GL</th>
<th>SC</th>
<th>CM</th>
<th>Fc</th>
<th>Ft (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td>4.15</td>
<td>1.384</td>
<td>7.26</td>
<td>2.96</td>
</tr>
<tr>
<td>Variedad</td>
<td>9</td>
<td>5.71</td>
<td>0.635</td>
<td>3.33</td>
<td>2.25</td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>5.15</td>
<td>0.191</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CV = 7.56%

El cuadro de la prueba múltiple de Duncan para el diámetro de panoja (Cuadro 14) determinó tres grupos diferentes, de los que se destaca la variedad 1 (Chucapaca) con 6.35 cm, en cambio la variedad 10 (K’ellu) fue la que registró el menor diámetro de panoja con 5.20 cm, las demás variedades registraron diámetros entre 6.14 y 5.33 centímetros.

Las variedades 8 (Real blanca), 9 (Toledo rojo), 7 (Toledo naranja) y 10 (K’ellu) originarias del Ayllu Huatari y de la zona intersalar (Uyuni - Coipasa) registraron los menores diámetros de panoja (5.37 cm en promedio), en comparación con las demás variedades que registraron los mayores diámetros de panoja (6.04 cm en promedio) como respuesta favorable a las condiciones ambientales que influyeron en el desarrollo de las plantas, adaptándose mejor y presentando panojas mayores en diámetro y consiguientemente mayor cantidad de grano.

Cuadro 14. Prueba de Duncan para el diámetro de panoja

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Medias (cm)</th>
<th>Duncan (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V₀₁ Chucapaca</td>
<td>6.35</td>
<td>a</td>
</tr>
<tr>
<td>V₀₆ Agro 2000</td>
<td>6.14</td>
<td>a b</td>
</tr>
<tr>
<td>V₀₂ Surumi</td>
<td>6.13</td>
<td>a b</td>
</tr>
<tr>
<td>V₀₄ Huganda</td>
<td>6.12</td>
<td>a b</td>
</tr>
<tr>
<td>V₀₅ Jiwaki</td>
<td>5.82</td>
<td>a b c</td>
</tr>
<tr>
<td>V₀₃ Kamiri</td>
<td>5.71</td>
<td>a b c</td>
</tr>
<tr>
<td>V₀₈ Real blanca</td>
<td>5.48</td>
<td>b c</td>
</tr>
<tr>
<td>V₀₉ Toledo rojo</td>
<td>5.46</td>
<td>b c</td>
</tr>
<tr>
<td>V₀₇ Toledo naranja</td>
<td>5.33</td>
<td>c</td>
</tr>
<tr>
<td>V₁₀ K’ellu</td>
<td>5.20</td>
<td>c</td>
</tr>
</tbody>
</table>

6.6.6 Correlación entre la longitud y diámetro de panoja

Para establecer relaciones entre la longitud y el diámetro de panoja, se realizó la correlación correspondiente entre ambas variables (Figura 24), donde existe una correlación positiva muy alta entre las variables: longitud y diámetro de panoja para las diez variedades en estudio, ya que se obtuvo un coeficiente de correlación (r) de 0.87, variando ambas variables en el mismo sentido, es decir, al aumentar una variable aumenta la otra y al disminuir una disminuye la otra, debido a que existe un alto grado de dependencia y asociación lineal entre ambas variables. Por otro lado se obtuvo un coeficiente de determinación (r^2) de 76.25%, este valor expresa que el 76.25% de la variación de la variable dependiente, se debe a la variable independiente.

En la misma figura se puede apreciar que las variedades 7 (Toledo naranja), 8 (Real blanca), 9 (Toledo rojo) y 10 (K’ellu) originarias de las comunidades del Ayllu Huatari y de la zona intersalar (Uyuni – Coipasa) fueron las que registraron las menores longitudes y diámetros de panoja, debido al desarrollo inadecuado en el medio en donde se las evaluaron y a las características genéticas de las variedades mencionadas.
6.7 Variables para el Rendimiento

6.7.1 Peso de 100 semillas

El peso de 100 semillas es de mucha utilidad en el campo de la agronomía, ya que conociendo este valor y el número de semillas por kilogramo se podrá estimar y recomendar la cantidad de semilla a utilizarse; es decir, nos ayudará a recomendar la densidad de siembra para cada variedad. También se constituye en una característica para apreciar la calidad del producto final.

El Cuadro 15 nos muestra el análisis de varianza para el peso de 100 semillas, donde se encontró que no existen diferencias significativas entre los bloques, existiendo diferencias estadísticamente significantes entre las variedades a un nivel del 5%, con un coeficiente de variación de 5.24% que expresa la confiabilidad de los datos.
La prueba de rango múltiple de Duncan (Cuadro 16) al 5% de confianza encontró tres grupos diferentes, donde las variedades 7 (Toledo naranja) y 3 (Kamiri) registraron los mayores pesos de 0.526 y 0.519 g respectivamente; al contrario la variedad 1 (Chucapaca) registró el menor peso de 100 semillas con 0.412 g, el resto de las variedades registraron pesos en un rango de 0.469 a 0.428 gramos.

Se puede advertir que la variedad 7 (Toledo naranja) registró el mayor peso de 100 granos (0.526 g), pese a no registrar mayor rendimiento en grano por planta, debido a que obtuvo un mayor porcentaje de granos mayores a 2.5 mm influyendo en el peso de 100 granos, este mismo hecho se presentó en la variedad 3 (Kamiri) ambas con 12.75% y 10.72% de granos mayores a 2.5 mm respectivamente.

La variedad 4 (Huganda), a pesar de que obtuvo un rendimiento mayor por planta individual (64.65 g), solo registró 0.457 g como peso de 100 semillas, apreciándose que el peso de 100 semillas no influyó en el rendimiento por planta en esta variedad. En cambio no ocurrió lo mismo con la variedad 3 (Kamiri), ya que en este caso el peso de 100 semillas está asociado con el rendimiento por planta, de la misma forma se presenta en la variedad 1 (Chucapaca) que registró el menor de los pesos de 100 semillas (0.412 g) y también registró un menor rendimiento por planta con 35.03 gramos.

Al respecto Morales (2000) y Ramos (2000) coinciden en que el peso de 100 semillas está estrechamente relacionado con el tamaño de las mismas.
Cuadro 16. Prueba de Duncan para el peso de 100 semillas

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Medias (g)</th>
<th>Duncan (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V07 Toledo naranja</td>
<td>0.5265</td>
<td>a</td>
</tr>
<tr>
<td>V03 Kamiri</td>
<td>0.5193</td>
<td>a</td>
</tr>
<tr>
<td>V08 Real blanca</td>
<td>0.4691</td>
<td>b</td>
</tr>
<tr>
<td>V02 Surumi</td>
<td>0.4634</td>
<td>b c</td>
</tr>
<tr>
<td>V06 Agro 2000</td>
<td>0.4588</td>
<td>b c</td>
</tr>
<tr>
<td>V04 Huganda</td>
<td>0.4567</td>
<td>b c</td>
</tr>
<tr>
<td>V05 Jiwaki</td>
<td>0.4549</td>
<td>b c</td>
</tr>
<tr>
<td>V10 K’ellu</td>
<td>0.4473</td>
<td>b c</td>
</tr>
<tr>
<td>V09 Toledo rojo</td>
<td>0.4277</td>
<td>b c</td>
</tr>
<tr>
<td>V01 Chucapaca</td>
<td>0.4116</td>
<td>c</td>
</tr>
</tbody>
</table>

Para realizar una comparación en cuanto a la calidad del grano en base a su peso, se realizó el pesaje de 100 semillas a la siembra y a la cosecha que se presenta en el Cuadro 17, donde se observa que en todas las variedades existe un aumento de 0.052 g en promedio, excepto para la variedad 10 (K’ellu) que fue la que registró una disminución en su peso de 0.036 g respecto al peso de 100 semillas a la siembra.

Cuadro 17. Comparación del peso de 100 semillas (g) a la siembra y el peso se 100 semillas (g) a la cosecha

<table>
<thead>
<tr>
<th>Variedades</th>
<th>Siembra (g)</th>
<th>Cosecha (g)</th>
<th>Incremento (g) (cosecha-siembra)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V01 Chucapaca</td>
<td>0.2463</td>
<td>0.4116</td>
<td>0.1653</td>
</tr>
<tr>
<td>V02 Surumi</td>
<td>0.4050</td>
<td>0.4634</td>
<td>0.0584</td>
</tr>
<tr>
<td>V03 Kamiri</td>
<td>0.4182</td>
<td>0.5193</td>
<td>0.1011</td>
</tr>
<tr>
<td>V04 Huganda</td>
<td>0.4458</td>
<td>0.4567</td>
<td>0.0109</td>
</tr>
<tr>
<td>V05 Jiwaki</td>
<td>0.4343</td>
<td>0.4549</td>
<td>0.0206</td>
</tr>
<tr>
<td>V06 Agro 2000</td>
<td>0.4509</td>
<td>0.4588</td>
<td>0.0079</td>
</tr>
<tr>
<td>V07 Toledo naranja</td>
<td>0.4823</td>
<td>0.5265</td>
<td>0.0442</td>
</tr>
<tr>
<td>V08 Real blanca</td>
<td>0.4276</td>
<td>0.4691</td>
<td>0.0415</td>
</tr>
<tr>
<td>V09 Toledo rojo</td>
<td>0.4100</td>
<td>0.4277</td>
<td>0.0177</td>
</tr>
<tr>
<td>V10 K’ellu</td>
<td>0.4837</td>
<td>0.4473</td>
<td>-0.0364</td>
</tr>
</tbody>
</table>
6.7.2 Rendimiento de grano por planta individual

Conociendo el peso de grano por planta individual y el número de plantas por hectárea, se podrá estimar el rendimiento total por superficie cultivada.

En este sentido el Cuadro 18 muestra el análisis de varianza para el rendimiento de grano por planta individual, donde se observa que no existen diferencias significativas entre bloques pero si existen diferencias significativas en cuanto a las variedades a un nivel del 5% de significancia. El coeficiente de variación obtenido es de 26.78%, valor que se encuentra dentro del rango permitido para la experimentación, los datos obtenidos son confiables pero deben ser manejados con precaución.

Cuadro 18. Análisis de varianza para el rendimiento de grano por planta individual

<table>
<thead>
<tr>
<th></th>
<th>FV</th>
<th>GL</th>
<th>SC</th>
<th>CM</th>
<th>Fc</th>
<th>Ft (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td>557.51</td>
<td>185.838</td>
<td>1.18</td>
<td>2.96 ns</td>
<td></td>
</tr>
<tr>
<td>Variedad</td>
<td>9</td>
<td>6648.93</td>
<td>738.770</td>
<td>4.69</td>
<td>2.25 *</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>4256.41</td>
<td>157.645</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>11462.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CV = 26.78%

La prueba de rango múltiple de Duncan al 5% de significancia (Cuadro 19) identificó a cuatro grupos, donde existen diferencias estadísticamente significativas entre ellos. No se encontraron diferencias significativas entre las variedades 4 (Huganda), 3 (Kamiri), 2 (Surumi), 6 (Agro 2000) y 5 (Jiwaki) que fueron las variedades que registraron los mayores pesos de grano en un rango entre 64.65 a 53.03 g/planta. A su vez no se encontraron diferencias significativas entre las variedades 9 (Toledo rojo), 7 (Toledo naranja), 1 (Chucapaca), 10 (K’ellu) y 8 (Real blanca) que fueron las que registraron pesos de grano menores con valores que oscilan entre 42.73 y 28.65 g/planta.
Cuadro 19. Prueba de Duncan para el peso de grano por planta

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Medias (g/pl)</th>
<th>Duncan (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V04 Huganda</td>
<td>64.65</td>
<td>a</td>
</tr>
<tr>
<td>V03 Kamiri</td>
<td>63.29</td>
<td>a</td>
</tr>
<tr>
<td>V02 Surumi</td>
<td>58.11</td>
<td>a b</td>
</tr>
<tr>
<td>V06 Agro 2000</td>
<td>54.49</td>
<td>a b c</td>
</tr>
<tr>
<td>V05 Jiwaki</td>
<td>53.03</td>
<td>a b c</td>
</tr>
<tr>
<td>V09 Toledo rojo</td>
<td>42.73</td>
<td>b c d</td>
</tr>
<tr>
<td>V07 Toledo naranja</td>
<td>39.70</td>
<td>b c d</td>
</tr>
<tr>
<td>V01 Chucapaca</td>
<td>35.03</td>
<td>c d</td>
</tr>
<tr>
<td>V10 K’ellu</td>
<td>29.17</td>
<td>d</td>
</tr>
<tr>
<td>V08 Real blanca</td>
<td>28.65</td>
<td>d</td>
</tr>
</tbody>
</table>

En las variedades 4 (Huganda), 3 (Kamiri), 2 (Surumi), 6 (Agro 2000) y 5 (Jiwaki), el mayor registró de longitud, diámetro de panoja y la presencia de ramificaciones con panojas secundarias fueron los principales factores por los que obtuvieron mayores pesos de grano por planta individual, ya que son componentes directos del rendimiento, en cambio que las variedades 9 (Toledo rojo), 7 (Toledo naranja), 1 (Chucapaca), 10 (K’ellu) y 8 (Real blanca), aun con la presencia de ramificaciones con panojas secundarias, reportaron menores longitudes y diámetros de panoja por consiguiente registraron menores pesos de grano por planta individual.

La producción de panojas secundarias, producto del desarrollo de ramificaciones, y como consecuencia mayor peso de grano por planta individual, se observa en la Figura 25, donde la variedad 5 (Jiwaki) fue la que registró 15.85 g/panojas secundarias, seguida de la variedad 6 (Agro 2000) con 14.05 g/panojas secundarias, en cambio la variedad 1 (Chucapaca) fue la que registro el menor peso de grano con 2.78 g/panojas secundarias.

Respecto al peso de grano de la panoja principal, se advierte que las variedades 4 (Huganda), 3 (Kamiri), 2 (Surumi), 6 (Agro 2000) y 5 (Jiwaki) fueron las que registraron los mayores pesos de grano con 52.49, 52.48, 48.05, 40.44 y 37.18 g/panoja principal respectivamente, en contraste a la variedad 8 (Real blanca) que tan solo registro 19.43 g/panoja principal; además se puede advertir que en esta
variedad existe un aporte notable del 32.18% del peso de granos de las panojas secundarias en el peso de grano total por planta.

En forma general se puede advertir que existe un efecto de las características genéticas propias de cada variedad en el rendimiento de grano por planta individual asociada a la influencia que tiene el medio ambiente en donde se desarrollaron.

Figura 25. Comparación entre el peso de grano/planta, el peso de grano de la panoja principal y el peso de grano de las panojas secundarias

6.7.3 Correlación entre el volumen de la panoja y la producción de granos

De forma general, en la figura 26 se observa que existe una correlación positiva entre el volumen de la panoja y el peso de grano de la panoja principal para las diez variedad, ya que el coeficiente de correlación (r) obtenido es de 0.66, lo que nos indica que existe un grado de dependencia o asociación lineal aceptable entre ambas variables. El coeficiente de determinación (r^2) es de 43.5%, este valor nos indica que el 43.5% de la variación de la variable dependiente, peso de grano de la panoja principal, se debe a la variable independiente, es decir, al volumen de la panoja.
Respecto al volumen de la panoja principal, se encontró que la variedad 1 (Chucapaca) registró un volumen de 324.44 cm3, mayor al registrado por las demás variedades; en cambio que la variedad 10 (K’ellu) fue la que registro el menor de los volúmenes con un valor de 169.17 cm3, las demás variedades registraron volúmenes entre 187.98 (V$_{07}$: Toledo naranja) y 320.80 cm3 (V$_{04}$: Huganda).

Si bien la variedad 1 (Chucapaca) registró el mayor volumen de la panoja principal (324.44 cm3), debido al mayor diámetro de la misma, este parámetro no se expresó en la producción de granos ya que esta variedad registró un menor peso de granos de la panoja principal (32.25 g), lo que no ocurrió con la variedad 10 (K’ellu) que registro el menor de los volúmenes de panoja (169.17 cm3) y a su vez registro un menor peso de granos de la misma panoja (22.95 g), producto de un menor desarrollo de la longitud y diámetro de panoja.

Figura 26. Correlación entre el volumen de panoja (cm3) y la producción de granos (g) de quinua
6.7.4 Diámetro de grano

La importancia de esta variable radica en la clasificación que se le da a los granos de quinua, ya que se tiene granos con diámetros mayores a 2 mm considerados de primera o comerciales (exportación) y granos con diámetros menores a 1.8 mm considerados granos de segunda o no comerciales (Riquelme, 1998).

La Figura 27 nos muestra la clasificación de los granos de acuerdo a su peso y a las clases diametrales, donde se puede advertir que existe una agrupación mayor de los pesos de grano de las diez variedades en la clase diametral de 2.5 – 2.0 mm (granos comerciales o de primera) y de 2.0 – 1.4 mm, considerados granos no comerciales o de segunda. En la clase diametral de 2.5 – 2.0 mm se destacan las variedades 4 (Huganda) y 3 (Kamiri), que registraron pesos de 49.83 y 45.88 g respectivamente, por lo que reportaron los mayores rendimientos por planta individual; en contraste a las variedades 1 (Chucapaca) y 8 (Real blanca) que fueron las que registraron pesos de 18.31 y 18.30 g respectivamente y por tanto registraron los menores rendimientos.

Respecto a la clase diametral 2.0 – 1.4 mm se advierte que las variedades 9 (Toledo rojo) y 5 (Jiwaki) superaron en el peso de grano con 18.85 y 18.18 g respecto a las demás variedades, en cambio que la variedad 8 (Real blanca) registro el menor peso de grano con 7.97 gramos.

Se puede considerar que la variedad 3 (Kamiri) es la que posee granos mayores a 2.5 mm, en peso, ya que esta variedad superó a las demás variedades al registrar un peso de 6.55 g, en contraste a la variedad 1 (Chucapaca) que registró 0.27 g respecto al mismo diámetro de grano.
En la Figura 28 se muestra el porcentaje de repartición de granos seleccionados de acuerdo a las clases diametrales por cada variedad, donde se puede apreciar que la variedad 4 (Huganda) registró un porcentaje de 77.06% respecto al diámetro 2.5 – 2.0 mm, la variedad 1 (Chucapaca) solamente registró 52.27%. A su vez las variedades 1 (Chucapaca) y 9 (Toledo rojo) registraron los mayores porcentajes respecto al diámetro 2.0 – 1.4 mm con 46.73 y 44.11%, en cambio la variedad 4 (Huganda) solamente registro 14.02%.

Respecto a los granos mayores a 2.5 mm, se encontró que la variedad 7 (Toledo naranja) obtuvo un porcentaje de 13.76%, es decir que del 100% de los granos totales de esta variedad, el 13.76% corresponden a granos mayores a 2.5 mm, este parámetro influyó en gran medida al registrar el peso de 100 semillas, en cambio que la variedad 1 (Chucapaca) fue la que obtuvo tan solo 0.77% respecto al mismo diámetro.

La variedad 8 (Real blanca) registró el mayor porcentaje respecto a los granos menores a 1.4 mm con 0.56% y la variedad 4 (Huganda) fue la que registró 0.09% respecto al tamaño de los mimos granos.
6.7.5 Índice de cosecha

El análisis de varianza para el índice de cosecha (Cuadro 20), indica que no existen diferencias significativas entre bloques, pero sí existen diferencias significativas entre las diez variedades a un nivel de significancia del 5%. Los datos obtenidos son confiables ya que se obtuvo un coeficiente de variación de 20.97%.

Cuadro 20. Análisis de varianza para el índice de cosecha

<table>
<thead>
<tr>
<th></th>
<th>FV</th>
<th>GL</th>
<th>SC</th>
<th>CM</th>
<th>Fc</th>
<th>Ft (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque</td>
<td>3</td>
<td>0.00</td>
<td>0.000</td>
<td>0.11</td>
<td>2.96</td>
<td>ns</td>
</tr>
<tr>
<td>Variedad</td>
<td>9</td>
<td>0.09</td>
<td>0.010</td>
<td>3.17</td>
<td>2.25</td>
<td>*</td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>0.08</td>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CV = 20.97%
Para una interpretación más precisa se realizó la prueba múltiple de Duncan (Cuadro 21), el cual muestra diferencias significativas entre la variedad 4 (Huganda) y el resto de las variedades en estudio (Figura 29), esta variedad superó a las demás variedades, alcanzando un índice de cosecha de 38.8%. No se encontraron diferencias significativas entre las variedades 3 (Kamiri), 9 (Toledo rojo), 7 (Toledo naranja), 2 (Surumi), 6 (Agro 2000), 5 (Jiwaki), 1 (Chucapaca), 8 (Real blanca) y 10 (K’ellu) las cuales mostraron índices de cosecha en un rango de 29.7 a 22%.

Cuadro 21. Prueba de Duncan para el índice de cosecha

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Medias (%)</th>
<th>Duncan (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V04 Huganda</td>
<td>38.8</td>
<td>a</td>
</tr>
<tr>
<td>V03 Kamiri</td>
<td>29.7</td>
<td>b</td>
</tr>
<tr>
<td>V09 Toledo rojo</td>
<td>27.3</td>
<td>b</td>
</tr>
<tr>
<td>V07 Toledo naranja</td>
<td>27.0</td>
<td>b</td>
</tr>
<tr>
<td>V02 Surumi</td>
<td>25.3</td>
<td>b</td>
</tr>
<tr>
<td>V06 Agro 2000</td>
<td>24.8</td>
<td>b</td>
</tr>
<tr>
<td>V05 Jiwaki</td>
<td>24.5</td>
<td>b</td>
</tr>
<tr>
<td>V01 Chucapaca</td>
<td>23.0</td>
<td>b</td>
</tr>
<tr>
<td>V08 Real blanca</td>
<td>22.4</td>
<td>b</td>
</tr>
<tr>
<td>V10 K’ellu</td>
<td>22.0</td>
<td>b</td>
</tr>
</tbody>
</table>

El índice de cosecha registrado por la variedad 4 (Huganda) nos indica que para 100 g de materia seca producida por esta variedad, el 38% son distribuidos a los granos, en cambio que para el resto de las variedades, por cada 100 g de materia seca producida, sólo el 22 – 29.7% van dirigidos a los granos; es decir, que a partir de las mismas condiciones ambientales y de suelo, la variedad 4 (Huganda) valora más los factores de producción como la luz solar, agua y minerales del suelo, y el resto de la variedades valoran menos los mismos factores.

El desarrollo de las ramificaciones no se notaron en la variedad 4 (Huganda) ya que presento un mayor número de plantas por metro lineal y por tanto no permitió el desarrollo de las mismas, reduciéndose el peso total de la planta y realizando la relación peso de grano por peso de la planta se registró un aumento en el índice de cosecha.
Sin embargo, Berti et al. (1998) encontraron que el parámetro de índice de cosecha está influenciado por el genotipo, la distancia entre hileras y no por el número de plantas por metro lineal.

Figura 29. Índice de cosecha correspondiente a cada variedad (m ± DE)
7. CONCLUSIONES

De acuerdo a los resultados obtenidos en el presente trabajo, se llega a las siguientes conclusiones:

- De las tres variedades seleccionadas para la evaluación de la biomasa fresca y seca a los 60, 90 y 120 dds, la variedad Surumi fue la que registró mayor peso seco por metro cuadrado con 623.90 g/m2, y registró un mayor incremento del peso seco por planta (149.92 g); la variedad Chucapaca fue la que registró menor peso seco por metro cuadrado (299.48 g/m2) y la variedad Kamiri registró el menor incremento de peso seco por planta con 45.73 g, evaluados a los 120 dds.

- En la tasa de crecimiento absoluto y relativo, la variedad Surumi registró la mayor ganancia de peso (2.63 g/día), y una mayor TCR con 0.034 g/g/día, la variedad Kamiri registró la menor TCA con 0.98 g/día, y una menor TCR de 0.016 g/g/día.

- La variedad Surumi registró los menores valores del IAF a los 60, 90 y 120 dds, con índices de 1.07, 1.35 y 0.36 respectivamente, en cambio la variedad Chucapaca registro el mayor IAF a los 60 y 90 dds, con índices de 1.87 y 2.06 respectivamente, a los 120 dds la variedad Kamiri fue la que registro el mayor IAF con 0.95.

- Las diez variedades de quinua registraron diferencias en el comportamiento agronómico, debido principalmente a la influencia de factores climáticos y la expresión genética de cada variedad. En este sentido la variedad 4 (Huganda) fue la que se destacó en el ensayo, registrando mejores resultados en altura de planta (130.88 cm), longitud de panoja (32.78 cm), rendimiento en grano por planta individual (65.72 g) e índice de cosecha (38.8%), y por tanto fue la que mejor se adaptó a las condiciones ambientales en estudio.
- De las diez variedades evaluadas, las variedades 8 (Real blanca) y 10 (K’ellu) fueron las que registraron los menores promedios en altura de planta (90 y 94.95 cm), longitud de panoja (24.48 y 29.93 cm), rendimiento de grano por planta individual (28.65 y 29.17 g/pl) y volumen de panoja (192.35 y 169.17 cm3) respectivamente.

- Con relación al diámetro de tallo se encontró que no existen diferencias estadísticas en cuanto a este carácter pero sí existen diferencias numéricas donde la variedad 2 (Surumi) presentó el mayor diámetro con 2.13 cm y la variedad 1 (Chucapaca) registro el menor diámetro de tallo (1.79 cm).

- Respecto al diámetro y volumen de panoja, la variedad 1 (Chucapaca) se destacó al registrar una media de 6.35 cm, y un volumen de panoja de 324.44 cm3; en cambio la variedad 10 (K’ellu) fue la que registró menor diámetro (5.20 cm) y volumen de panoja (169.17 cm3).

- Con relación al diámetro de grano, se encontró que las diez variedades en estudio presentaron mayor peso de grano con diámetros entre 2.5 – 2.00 mm, seguido de 2.0 – 1.4 mm, y la variedad 3 (Kamiri) presentó mayor peso de granos mayores a 2.5 mm.

- Considerando la relación entre el diámetro y longitud de panoja se encontró que las variedades originarias de las comunidades del Ayllu Huatari y de la zona intersalar (Uyuni – Coipasa), variedades 7 (Toledo naranja), 8 (Real blanca), 9 (Toledo rojo) y 10 (K’ellu), registraron los valores más bajos, donde la variedad 9 (Toledo rojo) fue la que se destacó, ya que registró mayor altura de planta (103.73 cm), peso de grano por planta (42.73 g) y volumen de la panoja principal (196.25 cm3).

- Respecto al peso de 100 semillas, la variedad 7 (Toledo naranja) registró el mayor de los pesos (0.527 g), por la presencia de semillas mayores a 2.5 mm incrementando su peso, y la variedad 1 (Chucapaca) registro el menor peso de 100 semillas (0.412 g).
8. RECOMENDACIONES

- Se recomienda realizar estudios sobre el comportamiento agronómico de las mismas variedades, en distintos lugares, para validar los resultados obtenidos en el presente ensayo, con el fin de aportar con datos para el mantenimiento de las variedades.

- Se sugiere realizar trabajos donde se pueda evaluar parámetros que nos conduzcan a obtener resultados sobre la baja germinación y emergencia en campo, y las pérdidas causadas por éstas en la cantidad de plantas por unidad de terreno.

- Se recomienda realizar ensayos sobre la estabilidad fenotípica de las variedades evaluadas en el presente ensayo con el propósito de obtener resultados más confiable acerca de su adaptación, y para contar con una amplia información sobre el comportamiento fenotípico de variedades bajo diferentes condiciones ambientales y de suelo.
9. BIBLIOGRAFÍA

ANEXOS
A-1. Mapa de ubicación del ensayo
A-2. Análisis físico – químico del suelo

<table>
<thead>
<tr>
<th>Variable</th>
<th>Valores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argile (< 2 μm)</td>
<td>370 g/kg (37%)</td>
</tr>
<tr>
<td>Limon (2/50 μm)</td>
<td>470 g/kg (47%)</td>
</tr>
<tr>
<td>Sable (50/200 μm)</td>
<td>160 g/kg (16%)</td>
</tr>
<tr>
<td>Carbone (C) organique</td>
<td>27.70 g/kg</td>
</tr>
<tr>
<td>Azote (N) total</td>
<td>3.04 g/kg (0.30 %)</td>
</tr>
<tr>
<td>C/N</td>
<td>9.10</td>
</tr>
<tr>
<td>Matière organique</td>
<td>47.65 g/kg (4.76 %)</td>
</tr>
<tr>
<td>PH</td>
<td>6.50</td>
</tr>
<tr>
<td>Calcaire (CaCO3) total</td>
<td>1.0 g/kg</td>
</tr>
<tr>
<td>Phosphore (P2O5)</td>
<td>0.074 g/kg</td>
</tr>
<tr>
<td>Capacité d'échange cationique méthode Metson</td>
<td>17.35 cmol+/kg</td>
</tr>
<tr>
<td>Magnésium (Mg) échangeable à l'acétate d'ammonium (AAF)</td>
<td>0.713 g/kg</td>
</tr>
<tr>
<td>Potassium (K) échangeable à l'acétate d'ammonium (EAF)</td>
<td>0.491 g/kg</td>
</tr>
<tr>
<td>Sodium (Na) échangeable à l'acétate d'ammonium (EAF)</td>
<td>0.107 g/kg</td>
</tr>
<tr>
<td>Azote minéral (N de NO3- et N de NH4+) sur sol frais</td>
<td>0.585 mg/kg</td>
</tr>
<tr>
<td>Azote ammoniacal (N de NH4)</td>
<td>32.71 mg/kg</td>
</tr>
<tr>
<td>Conductivité totale sur extrait 1/5 (m/v) à 25 ºC (méth. INRA)</td>
<td>0.15 mS/cm</td>
</tr>
</tbody>
</table>
A-3. Precipitación media registrada desde 1990 a 2002

<table>
<thead>
<tr>
<th>Est. Exp. "Belén"</th>
<th>ENE</th>
<th>FEB</th>
<th>MAR</th>
<th>ABR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AGO</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitación Mensual (mm)</td>
<td>103.2</td>
<td>69.2</td>
<td>61.0</td>
<td>20.1</td>
<td>8.5</td>
<td>8.5</td>
<td>8.3</td>
<td>15.7</td>
<td>23.4</td>
<td>29.7</td>
<td>42.6</td>
<td>65.3</td>
</tr>
</tbody>
</table>

A-4. Promedio de datos para la altura de planta (cm)

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Bloque</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>V₀₁: Chucapaca</td>
<td>115.36</td>
<td>113.07</td>
</tr>
<tr>
<td>V₀₂: Surumi</td>
<td>101.10</td>
<td>116.95</td>
</tr>
<tr>
<td>V₀₃: Kamiri</td>
<td>110.30</td>
<td>102.05</td>
</tr>
<tr>
<td>V₀₄: Huganda</td>
<td>134.30</td>
<td>130.88</td>
</tr>
<tr>
<td>V₀₅: Jiwaki</td>
<td>102.00</td>
<td>104.83</td>
</tr>
<tr>
<td>V₀₆: Agro 2000</td>
<td>94.60</td>
<td>100.03</td>
</tr>
<tr>
<td>V₀₇: Toledo naranja</td>
<td>103.50</td>
<td>96.23</td>
</tr>
<tr>
<td>V₀₈: Real blanca</td>
<td>90.10</td>
<td>90.00</td>
</tr>
<tr>
<td>V₀₉: Toledo rojo</td>
<td>93.70</td>
<td>103.73</td>
</tr>
<tr>
<td>V₁₀: K’ellu</td>
<td>87.20</td>
<td>94.95</td>
</tr>
</tbody>
</table>

A-5. Promedio de datos para el diámetro de tallo (mm)

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Bloque</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>V₀₁: Chucapaca</td>
<td>18.82</td>
<td>17.91</td>
</tr>
<tr>
<td>V₀₂: Surumi</td>
<td>21.24</td>
<td>21.28</td>
</tr>
<tr>
<td>V₀₃: Kamiri</td>
<td>20.82</td>
<td>19.36</td>
</tr>
<tr>
<td>V₀₄: Huganda</td>
<td>19.32</td>
<td>18.91</td>
</tr>
<tr>
<td>V₀₅: Jiwaki</td>
<td>17.20</td>
<td>20.66</td>
</tr>
<tr>
<td>V₀₇: Toledo naranja</td>
<td>18.28</td>
<td>18.32</td>
</tr>
<tr>
<td>V₀₈: Real blanca</td>
<td>20.38</td>
<td>19.75</td>
</tr>
<tr>
<td>V₀₉: Toledo rojo</td>
<td>19.68</td>
<td>18.54</td>
</tr>
<tr>
<td>V₁₀: K’ellu</td>
<td>19.86</td>
<td>18.88</td>
</tr>
</tbody>
</table>
A-6. Promedio de datos para la longitud de panoja (cm)

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Bloque</th>
<th></th>
<th></th>
<th></th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>V01: Chucapaca</td>
<td>I</td>
<td>35.20</td>
<td>28.30</td>
<td>32.40</td>
<td>26.90</td>
</tr>
<tr>
<td>V02: Surumi</td>
<td>II</td>
<td>33.20</td>
<td>29.20</td>
<td>33.60</td>
<td>33.50</td>
</tr>
<tr>
<td>V03: Kamiri</td>
<td>III</td>
<td>33.10</td>
<td>28.70</td>
<td>28.70</td>
<td>29.30</td>
</tr>
<tr>
<td>V04: Huganda</td>
<td>IV</td>
<td>35.00</td>
<td>32.50</td>
<td>32.90</td>
<td>30.70</td>
</tr>
<tr>
<td>V05: Jiwaki</td>
<td>Promedio</td>
<td>30.70</td>
<td>29.80</td>
<td>32.20</td>
<td>31.30</td>
</tr>
<tr>
<td>V06: Agro 2000</td>
<td></td>
<td>26.20</td>
<td>28.10</td>
<td>31.60</td>
<td>31.50</td>
</tr>
<tr>
<td>V07: Toledo naranja</td>
<td>28.50</td>
<td>25.10</td>
<td>24.90</td>
<td>22.60</td>
<td>25.28</td>
</tr>
<tr>
<td>V08: Real blanca</td>
<td>27.20</td>
<td>21.90</td>
<td>24.50</td>
<td>24.30</td>
<td>24.48</td>
</tr>
<tr>
<td>V09: Toledo rojo</td>
<td>21.00</td>
<td>27.00</td>
<td>27.00</td>
<td>25.80</td>
<td>25.20</td>
</tr>
<tr>
<td>V10: K'ellu</td>
<td>22.70</td>
<td>25.30</td>
<td>24.50</td>
<td>23.20</td>
<td>23.93</td>
</tr>
</tbody>
</table>

A-7. Promedio de datos para el diámetro de panoja (cm)

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Bloque</th>
<th></th>
<th></th>
<th></th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>V01: Chucapaca</td>
<td>I</td>
<td>7.14</td>
<td>6.12</td>
<td>6.69</td>
<td>5.46</td>
</tr>
<tr>
<td>V02: Surumi</td>
<td>II</td>
<td>5.88</td>
<td>6.41</td>
<td>6.17</td>
<td>6.05</td>
</tr>
<tr>
<td>V03: Kamiri</td>
<td>III</td>
<td>6.24</td>
<td>6.32</td>
<td>5.12</td>
<td>5.16</td>
</tr>
<tr>
<td>V04: Huganda</td>
<td>IV</td>
<td>6.08</td>
<td>6.84</td>
<td>5.88</td>
<td>5.66</td>
</tr>
<tr>
<td>V05: Jiwaki</td>
<td>Promedio</td>
<td>6.07</td>
<td>6.52</td>
<td>5.27</td>
<td>5.41</td>
</tr>
<tr>
<td>V07: Toledo naranja</td>
<td>4.85</td>
<td>5.50</td>
<td>5.94</td>
<td>5.03</td>
<td>5.33</td>
</tr>
<tr>
<td>V08: Real blanca</td>
<td>6.24</td>
<td>6.00</td>
<td>4.68</td>
<td>4.99</td>
<td>5.48</td>
</tr>
<tr>
<td>V09: Toledo rojo</td>
<td>5.54</td>
<td>5.86</td>
<td>4.99</td>
<td>5.43</td>
<td>5.46</td>
</tr>
<tr>
<td>V10: K'ellu</td>
<td>5.82</td>
<td>5.04</td>
<td>5.19</td>
<td>4.75</td>
<td>5.20</td>
</tr>
</tbody>
</table>

A-8. Promedio de datos para el peso de 100 semillas (g)

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Bloque</th>
<th></th>
<th></th>
<th></th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>V01: Chucapaca</td>
<td>I</td>
<td>0.3775</td>
<td>0.4327</td>
<td>0.4170</td>
<td>0.4194</td>
</tr>
<tr>
<td>V02: Surumi</td>
<td>II</td>
<td>0.4704</td>
<td>0.4679</td>
<td>0.4598</td>
<td>0.4556</td>
</tr>
<tr>
<td>V03: Kamiri</td>
<td>III</td>
<td>0.5234</td>
<td>0.5367</td>
<td>0.5142</td>
<td>0.5029</td>
</tr>
<tr>
<td>V04: Huganda</td>
<td>IV</td>
<td>0.4015</td>
<td>0.4613</td>
<td>0.4895</td>
<td>0.4743</td>
</tr>
<tr>
<td>V05: Jiwaki</td>
<td>Promedio</td>
<td>0.4633</td>
<td>0.4515</td>
<td>0.4803</td>
<td>0.4246</td>
</tr>
<tr>
<td>V06: Agro 2000</td>
<td></td>
<td>0.4656</td>
<td>0.4597</td>
<td>0.4693</td>
<td>0.4406</td>
</tr>
<tr>
<td>V07: Toledo naranja</td>
<td>0.5388</td>
<td>0.5410</td>
<td>0.5468</td>
<td>0.4796</td>
<td>0.5265</td>
</tr>
<tr>
<td>V08: Real blanca</td>
<td>0.4887</td>
<td>0.4531</td>
<td>0.4557</td>
<td>0.4791</td>
<td>0.4691</td>
</tr>
<tr>
<td>V09: Toledo rojo</td>
<td>0.4278</td>
<td>0.4079</td>
<td>0.4479</td>
<td>0.4274</td>
<td>0.4277</td>
</tr>
<tr>
<td>V10: K'ellu</td>
<td>0.3890</td>
<td>0.4792</td>
<td>0.4570</td>
<td>0.4638</td>
<td>0.4473</td>
</tr>
</tbody>
</table>
A-9. Promedio de datos para el rendimiento por planta individual (g)

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Bloque</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>V01: Chucapaca</td>
<td></td>
<td>41.45</td>
<td>26.89</td>
<td>39.46</td>
<td>32.31</td>
<td>35.03</td>
</tr>
<tr>
<td>V02: Surumi</td>
<td></td>
<td>50.57</td>
<td>42.49</td>
<td>78.93</td>
<td>60.43</td>
<td>58.10</td>
</tr>
<tr>
<td>V03: Kamiri</td>
<td></td>
<td>83.68</td>
<td>70.24</td>
<td>46.91</td>
<td>52.34</td>
<td>63.29</td>
</tr>
<tr>
<td>V04: Huganda</td>
<td></td>
<td>64.63</td>
<td>76.58</td>
<td>67.98</td>
<td>49.42</td>
<td>64.65</td>
</tr>
<tr>
<td>V05: Jiwaki</td>
<td></td>
<td>39.68</td>
<td>60.91</td>
<td>74.23</td>
<td>37.28</td>
<td>53.03</td>
</tr>
<tr>
<td>V06: Agro 2000</td>
<td></td>
<td>67.35</td>
<td>36.91</td>
<td>74.76</td>
<td>38.95</td>
<td>54.49</td>
</tr>
<tr>
<td>V07: Toledo naranja</td>
<td></td>
<td>32.52</td>
<td>49.39</td>
<td>41.31</td>
<td>35.47</td>
<td>39.67</td>
</tr>
<tr>
<td>V08: Real blanca</td>
<td></td>
<td>36.84</td>
<td>20.38</td>
<td>21.88</td>
<td>35.49</td>
<td>28.65</td>
</tr>
<tr>
<td>V09: Toledo rojo</td>
<td></td>
<td>33.96</td>
<td>39.54</td>
<td>45.99</td>
<td>51.43</td>
<td>42.73</td>
</tr>
<tr>
<td>V10: K’ellu</td>
<td></td>
<td>24.53</td>
<td>34.83</td>
<td>31.45</td>
<td>25.87</td>
<td>29.17</td>
</tr>
</tbody>
</table>

A-10. Promedio de datos para el volumen de la panoja (cm\(^3\))

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Promedio (cm(^3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>V01: Chucapaca</td>
<td>324.44</td>
</tr>
<tr>
<td>V02: Surumi</td>
<td>318.49</td>
</tr>
<tr>
<td>V03: Kamiri</td>
<td>255.51</td>
</tr>
<tr>
<td>V04: Huganda</td>
<td>320.80</td>
</tr>
<tr>
<td>V05: Jiwaki</td>
<td>274.76</td>
</tr>
<tr>
<td>V06: Agro 2000</td>
<td>289.16</td>
</tr>
<tr>
<td>V07: Toledo naranja</td>
<td>187.98</td>
</tr>
<tr>
<td>V08: Real blanca</td>
<td>192.35</td>
</tr>
<tr>
<td>V09: Toledo rojo</td>
<td>196.25</td>
</tr>
<tr>
<td>V10: K’ellu</td>
<td>169.17</td>
</tr>
</tbody>
</table>

A-11. Promedio de datos para el índice de cosecha (%)

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Bloque</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>V01: Chucapaca</td>
<td></td>
<td>26.2</td>
<td>21.7</td>
<td>18.0</td>
<td>26.1</td>
<td>23.0</td>
</tr>
<tr>
<td>V02: Surumi</td>
<td></td>
<td>21.8</td>
<td>17.2</td>
<td>31.7</td>
<td>30.5</td>
<td>25.3</td>
</tr>
<tr>
<td>V03: Kamiri</td>
<td></td>
<td>39.1</td>
<td>29.1</td>
<td>22.5</td>
<td>28.0</td>
<td>29.7</td>
</tr>
<tr>
<td>V04: Huganda</td>
<td></td>
<td>42.1</td>
<td>30.9</td>
<td>38.6</td>
<td>43.6</td>
<td>38.8</td>
</tr>
<tr>
<td>V05: Jiwaki</td>
<td></td>
<td>26.9</td>
<td>23.3</td>
<td>27.9</td>
<td>19.9</td>
<td>24.5</td>
</tr>
<tr>
<td>V06: Agro 2000</td>
<td></td>
<td>29.4</td>
<td>26.5</td>
<td>24.5</td>
<td>18.7</td>
<td>24.8</td>
</tr>
<tr>
<td>V07: Toledo naranja</td>
<td></td>
<td>22.8</td>
<td>30.9</td>
<td>28.2</td>
<td>26.0</td>
<td>27.0</td>
</tr>
<tr>
<td>V08: Real blanca</td>
<td></td>
<td>22.0</td>
<td>30.9</td>
<td>15.3</td>
<td>21.6</td>
<td>22.4</td>
</tr>
<tr>
<td>V09: Toledo rojo</td>
<td></td>
<td>20.8</td>
<td>25.2</td>
<td>30.7</td>
<td>32.4</td>
<td>27.3</td>
</tr>
<tr>
<td>V10: K’ellu</td>
<td></td>
<td>17.6</td>
<td>28.2</td>
<td>19.2</td>
<td>22.8</td>
<td>22.0</td>
</tr>
</tbody>
</table>
Foto 1. Siembra del ensayo, a la izquierda: apertura de los surcos y a la derecha: siembra realizada a chorro continuo.

Foto 2. Vista de las dos generaciones, a la izquierda: emergencia de la segunda generación y a la derecha: plantas de la primera y segunda generación. Nótese la diferencia existente en cuanto a la altura de planta entre las dos generaciones.
Foto 3. Efecto de la helada en plantas de la segunda generación, *a la izquierda*: planta afectada por la helada con el tercio superior doblado y *a la derecha*: plantas correspondientes a la Nota 4 (planta muerta y/o caída).

Foto 4. Evaluación del efecto de la helada en la segunda generación del ensayo: *a) Nota 1* (planta sana o intacta), *b) Nota 2* (planta afectada con el 50% de las hojas quemadas), *c) Nota 3* (planta muy afectada con el 80% de las hojas y el ápice quemados) y *d) Nota 4* (planta muerta y/o caída).
Foto 5. Efecto de la sequía en la primera generación, a la izquierda: baja densidad de plantas por unidad experimental y a la derecha: diferencias en cuanto al desarrollo de las plantas en comparación a la segunda generación (plantas pequeñas).

Foto 6. Vista general del ensayo (primera generación), a la izquierda: vista del ensayo a los 144 días después de la siembra y a la derecha: vista del ensayo antes de la cosecha a los 170 días después de la siembra.
Foto 7. Panojas de variedades del Programa Patacamaya (IBTA).

Foto 8. Panojas de variedades obtenidas en la Estación Experimental "Belén".

Foto 9. Panojas de variedades originarias de las comunidades del Ayllu Huatari y de la zona intersalar (Uyuni – Coipasa).