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Wild bonobos host geographically restricted
malaria parasites including a putative new Laverania
species
Weimin Liu1, Scott Sherrill-Mix1,2, Gerald H. Learn1, Erik J. Scully3,4, Yingying Li1, Alexa N. Avitto1,

Dorothy E. Loy1,2, Abigail P. Lauder2, Sesh A. Sundararaman1,2, Lindsey J. Plenderleith5, Jean-Bosco N. Ndjango6,

Alexander V. Georgiev3,7, Steve Ahuka-Mundeke8, Martine Peeters9, Paco Bertolani10, Jef Dupain11,

Cintia Garai12, John A. Hart12, Terese B. Hart12, George M. Shaw1,2, Paul M. Sharp 5 & Beatrice H. Hahn1,2

Malaria parasites, though widespread among wild chimpanzees and gorillas, have not been

detected in bonobos. Here, we show that wild-living bonobos are endemically Plasmodium

infected in the eastern-most part of their range. Testing 1556 faecal samples from 11 field

sites, we identify high prevalence Laverania infections in the Tshuapa-Lomami-Lualaba (TL2)

area, but not at other locations across the Congo. TL2 bonobos harbour P. gaboni, formerly

only found in chimpanzees, as well as a potential new species, Plasmodium lomamiensis sp.

nov. Rare co-infections with non-Laverania parasites were also observed. Phylogenetic rela-

tionships among Laverania species are consistent with co-divergence with their gorilla,

chimpanzee and bonobo hosts, suggesting a timescale for their evolution. The absence of

Plasmodium from most field sites could not be explained by parasite seasonality, nor by

bonobo population structure, diet or gut microbiota. Thus, the geographic restriction of

bonobo Plasmodium reflects still unidentified factors that likely influence parasite

transmission.
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African apes are highly endangered, requiring noninvasive
approaches to study infectious agents in wild-living
communities. To elucidate the origins and evolution of

human malaria parasites, we1–3 and others4–6 have developed
PCR-based methods that permit the faecal-based detection and
molecular characterisation of related parasites in wild-living apes.
Such studies have shown that chimpanzees (Pan troglodytes) and
western gorillas (Gorilla gorilla) harbour a plethora of Plasmo-
dium parasites, which fall into two major groups7. One group
(subgenus Plasmodium) includes several Plasmodium species
infecting monkeys as well as ape parasites that are closely related
to human P. malariae, P. ovale and P. vivax7. Of these, ape P.
vivax is known to infect both chimpanzees and gorillas, while
contemporary human P. vivax represents a lineage that emerged
from these parasites as it spread out of Africa2. The other group
(subgenus Laverania) includes ape parasites that are most closely
related to human P. falciparum7. There are currently six described
ape Laverania species, which appear to exhibit strict host speci-
ficity in wild ape populations1,3–5. These include P. reichenowi
(also termed C1), P. gaboni (C2), and P. billcollinsi (C3), which
infect chimpanzees, as well as P. praefalciparum (G1), P. adleri
(G2), and P. blacklocki (G3), which infect western gorillas. Of
these, only the gorilla parasite P. praefalciparum has crossed the
species barrier to humans, resulting in the emergence of P. fal-
ciparum1,7,8. Although initially based primarily on mitochondrial
sequences1, this taxonomy of Laverania species has subsequently
been confirmed by analysis of multiple nuclear gene sequences3,9.

Laverania infections have been documented at multiple loca-
tions throughout the ranges of chimpanzees and western lowland
gorillas (G. g. gorilla), with estimated prevalence rates in infected

communities ranging between 22 and 40%7. Similarly, ape
P. vivax is found in all chimpanzee subspecies as well as western
and eastern gorillas (G. beringei), although estimated prevalence
rates are lower, ranging between 4 and 8%7. Studies of Asian
primates have shown that the distribution and prevalence of
Plasmodium infections depends on a number of ecological vari-
ables, such as forest cover10, population density11, vector capa-
city12 and environmental conditions13, many of which are
interrelated. Although the factors that promote and sustain
malaria transmission in wild apes remain largely unknown, it is
clear that Plasmodium species are not uniformly distributed
among them. For example, eastern gorillas harbour ape P. vivax,
but do not seem to carry Laverania parasites1,2. More strikingly,
bonobos (Pan paniscus) appear to be free of all known ape
Plasmodium species, despite the screening of multiple
communities1,2.

The seeming absence of Plasmodium infections from wild
bonobos has remained a mystery. Anopheles vectors, including
forest species such as A. moucheti, A. marshallii and A. vinckei,
which are known to carry ape Plasmodium parasites14,15 appear
to be distributed throughout the bonobo range16. Bonobos are
also very closely related to chimpanzees, suggesting a similar
susceptibility to Plasmodium infection. Finally, there is no evi-
dence that bonobos are inherently resistant to Plasmodium
parasites, since human P. falciparum and P. malariae have been
detected in the blood of several captive individuals17. Reasoning
that previous studies may have missed infected communities, we
conducted a more extensive survey, increasing both the number
and geographic diversity of sampled bonobo populations. Here,
we show that wild bonobos are, in fact, susceptible to a wide
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Fig. 1 Plasmodium infections of wild-living bonobos. Ape study sites are shown in relation to the ranges of the bonobo (P. paniscus, dashed red) and the
eastern chimpanzee (P. t. schweinfurthii, dashed blue), with white dots indicating sites where no Plasmodium infection was found (see Table 1 and
Supplementary Table 3 for a list of all field sites and their code designation). The Tshuapa–Lomami–Lualaba (TL2) site where bonobos are endemically
infected with multiple Plasmodium species, including a newly discovered Laverania species (B1), is shown in red with two dots indicating sampling on both
sides of the Lomami River. Eastern chimpanzee field sites with endemic P. reichenowi, P. gaboni and/or P. billcollinsi infections are shown in yellow. A red
circle highlights one bonobo (KR) and one chimpanzee (PA) field site where B1 parasite sequences were detected in a single faecal sample. Forested areas
are shown in dark green, while arid or semiarid areas are depicted in brown. Major lakes and rivers are shown in blue. Dashed yellow lines indicate national
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variety of Plasmodium parasites, including a previously unknown
Laverania species that appears specific to bonobos. However,
endemic infection was only detected in the eastern-most part of
the bonobo range, indicating that most wild-living communities
have lost these parasites.

Results
Bonobos are naturally Laverania infected. Bonobos are found in
the rain forests of the Congo Basin in the Democratic Republic of
the Congo (DRC). Separated from eastern chimpanzees (P. t.
schweinfurthii) and eastern lowland gorillas (G. b. graueri) by the
Congo River, their range extends from the Lualaba River in the
east, to the Kasai and Sankuru Rivers in the south, and the Lake
Tumba and Lake Mai-Ndombe regions in the west (Fig. 1). Initial
studies failed to identify Plasmodium infections in wild bonobos,
but were conducted at only two locations (LK and KR)1.
Although subsequent surveys included additional bonobo field
sites (ML, LA, IK, BN, BJ, TL2), faecal samples were only tested
for P. vivax-like parasites2. Here, we screened these (n= 646) as
well as newly collected (n= 803) faecal samples from the same
(LA, IK) and additional (LG, BX, MZ) study sites for Laverania
infection (Fig. 1). Using conventional (diagnostic) PCR to amplify
a 956 bp mitochondrial cytochrome B (cytB) fragment1, we failed
to detect parasite sequences in 1418 samples from 10 of these 11
locations (Table 1). Surprisingly, however, 16 of 138 faecal spe-
cimens from the Tshuapa-Lomami-Lualaba (TL2) project site
were Laverania positive as determined by direct amplicon
sequencing (Table 1).
Reasoning that conventional PCR screening may have

missed low-level Laverania infection, we retested all available
cytB-negative faecal specimens by subjecting them to an
intensified PCR protocol. Since most ape faecal samples contain
limited quantities of parasite DNA, we reasoned that testing
multiple aliquots of the same DNA preparation would increase
the likelihood of parasite detection. To avoid PCR contamination,
only initially negative samples were re-tested using the intensified
approach. Performing 8 to 10 independent PCR reactions for
each DNA sample, we identified 17 additional faecal samples
from TL2 to contain cytB sequences, resulting in a total of

33 positive specimens from 24 different apes (Table 1).
Although in most cases only one or a few replicates yielded an
amplification product (Supplementary Table 1), the intensified
PCR approach more than doubled the number of positives at the
TL2 site, revealing an overall Laverania prevalence of 38%
(Table 1). However, this was not observed for other bonobo field
sites. Intensified PCR of the remaining 1105 samples identified
only a single additional positive specimen from the Kokolopori
Reserve (KR). Thus, malaria parasites are either absent or below
the limits of faecal detection at the vast majority of bonobo field
sites.

A new bonobo-specific Laverania species. Having identified
Laverania-positive bonobo samples, we next sought to molecu-
larly characterise the infecting parasites. Since apes are frequently
co-infected with multiple Plasmodium species, we used limiting
dilution PCR, also called single genome amplification (SGA), to
generate mitochondrial cytB sequences (956 bp) devoid of Taq
polymerase-induced artefacts such as in vitro recombination18.
Using this approach, we generated 166 limiting dilution-derived
cytB sequences from 34 Laverania-positive bonobo samples,
including a unique haplotype from the single positive KR speci-
men (Supplementary Table 2). Phylogenetic analysis showed that
these bonobo parasites fell into two well-supported clades within
the Laverania subgenus (Fig. 2). One of these comprised a sub-
lineage of P. gaboni (C2E) previously found in eastern chim-
panzees (P. t. schweinfurthii) in the DRC3. Within this sublineage,
bonobo and chimpanzee parasite sequences were completely
interspersed, indicating that P. gaboni productively infects both of
these Pan species (Fig. 2 and Supplementary Fig. 1). The other
clade represented a distinct Laverania lineage (B1) that included
only bonobo parasites, except for a single cytB sequence pre-
viously identified3 in an eastern chimpanzee sample (PApts368)
east of the Congo/Lualaba River (Fig. 1).
To determine whether B1 parasites were more widespread

among eastern chimpanzees than previously recognised, we
used regular and intensified PCR to screen faecal samples
(n= 562) from nine study sites located closest to the bonobo
range (Fig. 1). Although this analysis yielded twice as many

Table 1 Noninvasive screening of wild-living bonobo communities for Laverania infections

Field sitesa Conventional cytB screen Intensified cytB screenb

Samples
testedc

Samples
positived

Detection rate
(%)

Samples
testedc

Samples
positived

Detection rate
(%)

Combined detection
rate (%)

Balanga (BN) 84 0 0 84 0 0 0
Bananjale (BX) 1 0 0 1 0 0 0
Bayandjo (BJ) 2 0 0 2 0 0 0
Ikela (IK) 465 0 0 432e 0 0 0
Kokolopori (KR) 69 0 0 69 1 1.4 1.4f

Lingunda-Boyela (LG) 25 0 0 25 0 0 0
Lomako (LA) 307 0 0 289e 0 0 0
Lui-kotal (LK) 38 0 0 38 0 0 0
Malebo (ML) 262 0 0 n/a n/a n/a n/a
Manzana (MZ) 165 0 0 165 0 0 0
Tshuapa–Lomami–Lualaba
(TL2)

138 16 11.6 122 17 13.9 23.9f

n/a not available
aField sites are designated by a two- or three-letter code (their location is shown in Fig. 1). Regular cytB screening data for KR and LK sites have previously been reported2
bSamples initially negative by conventional (diagnostic) cytB PCR were subsequently retested by intensified PCR, performing 8–10 additional amplification reactions per faecal DNA (see Supplementary
Table 1 for details)
cThe host species origin of all faecal samples was confirmed by mitochondrial DNA (D-loop) analysis. As previously reported, the number of individuals tested at the KR, LK and TL2 sites was 38, 17 and
63, respectively3
dAll amplification products were sequence confirmed to represent Laverania parasites
eOnly a subset of the originally screened IK and LA samples were available for intensified PCR
fOf a total of 38 and 63 bonobos at the KR and TL2 sites1, 2, 1 and 24 were Laverania infected, indicating a prevalence of 2.6% and 38%, respectively
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Laverania positive samples as conventional PCR (Supplementary
Table 3), none of the newly derived cytB sequences fell within
the B1 clade (Supplementary Table 4). Instead, eastern chimpan-
zees were exclusively infected with P. reichenowi (C1), P. gaboni
(C2) and P. billcollinsi (C3) (Supplementary Fig. 1). These

data indicate that TL2 bonobos harbour a form of P. gaboni
that is highly prevalent in neighbouring eastern chimpanzees
as well as a second Laverania species that seems unique to
bonobos.
To characterise the newly identified bonobo parasites in other

regions of their genomes, we used SGA to target additional
organelle and nuclear loci for analysis (Supplementary Table 2).
These included 3.4 and 3.3 kb mitochondrial DNA (mtDNA)
fragments, which together span the entire mitochondrial genome;
a 390 bp caseinolytic protease M (clpM) gene fragment from the
apicoplast genome; and three nuclear loci, including portions of
genes encoding the erythrocyte binding antigens 165 (eba165;
790 bp) and 175 (eba175; 394 bp), and the gametocyte surface
protein P47 (p47; 800 bp). Phylogenetic analyses of 134 newly
derived parasite sequences yielded very similar results (with
respect to the clustering of parasites into major clades) in all
genomic regions (Fig. 3 and Supplementary Fig. 2). Except for a
single C1 eba175 sequence indicative of a rare P. reichenowi
infection (Supplementary Fig. 2d), all other bonobo-derived
sequences fell either within P. gaboni or the B1 clade
(Supplementary Table 2). This new clade was supported by high
bootstrap values in all genomic regions analysed, except for the
short eba175 fragment. It also consistently grouped as a sister
clade to P. reichenowi. These findings, along with the extent of
genetic divergence between P. reichenowi and the newly identified
bonobo parasite clade, argue strongly for the existence of an
additional Laverania species that is specific for bonobos (Figs. 2
and 3 and Supplementary Figs. 1 and 2). The finding of B1 cytB
(Fig. 2) and eba165 (Fig. 3a) parasite sequences in a single
chimpanzee faecal sample collected 280 km east of TL2 does
not argue against this, since it shows that B1 parasites reached
this geographic region, but failed to spread in the resident
chimpanzee population (Supplementary Table 4). We propose to
name the new bonobo parasite species Plasmodium lomamiensis
sp. nov. to highlight its discovery in Lomami National Park,
using faecal-derived mitochondrial, apicoplast and nuclear
parasite sequences as the type material (Supplementary Data 1)
19. Although classifying ape Laverania species solely on the
basis of genetic information has been controversial3,17,20, there
are no obvious alternatives given the endangered status of wild
apes, the prevalence of mixed Laverania species infections
(Supplementary Table 2) and the cryptic nature of these
parasites3,9,21.
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ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01798-5

4 NATURE COMMUNICATIONS | 8:  1635 |DOI: 10.1038/s41467-017-01798-5 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


TL2 bonobos also harbour non-Laverania parasites. SGA of
bonobo faecal DNA also yielded rare sequences from non-
Laverania parasites that resulted from primer cross-reactivity
(Supplementary Table 2). One such cytB sequence clustered with
a previously characterised parasite sequence from a chimpanzee
sample (DGptt540), forming a well-supported lineage that was
only distantly related to human and ape P. malariae (Fig. 4a),
while two other clpM sequences clustered with ape and human P.
vivax parasites (Fig. 4b). To search for additional non-Laverania
infections, we used P. vivax- and P. malariae-specific primers to
rescreen bonobo faecal samples from the BX (n= 1), KR (n= 69),
LA (n= 199) and TL2 (n= 138) field sites using intensified PCR.
This analysis confirmed P. vivax infection in one bonobo sample,
and identified P. vivax and P. ovale curtisi sequences in two
additional samples, all from the TL2 site (Fig. 4c). Further
characterisation revealed that the P. ovale curtisi-positive sample

also contained ape P. vivax sequences (Fig. 4d). Thus, of the 24
Laverania-positive bonobos at the TL2 site, 3 also harboured
P. malariae-, P. vivax- and/or P. ovale-related parasites, while an
additional bonobo exhibited a P. vivax monoinfection (Supple-
mentary Table 2). Although the recovered sequences were too
short to differentiate human- and ape-specific parasite lineages,
the results show that bonobos, like chimpanzees and gorillas, are
frequently infected with multiple Laverania and non-Laverania
species1,5,7. However, unlike chimpanzees and gorillas, bonobos
harbour these parasites in only one particular part of their range.

The Lomami River is not a barrier to malaria transmission.
Analysing mtDNA sequences to determine the population
structure of wild bonobo populations, two previous studies
reported that the Lomami River, but not other tributaries of the
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binding antigen 165 (eba165; 790 bp) and b the gametocyte surface protein P47 (p47; 800 bp) of Laverania parasites. Sequences are labelled and coloured as
in Fig. 2 (identical sequences from different samples are shown; identical sequences from the same sample are excluded). C1, C2 and C3 represent the
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Congo River, represents a geographical barrier to bonobo gene
flow22,23. We thus considered the possibility that bonobos in the
western and central regions of the DRC had acquired a malaria
protective trait that had not spread to bonobo populations east of
the Lomami River. To investigate this, we subjected Plasmodium-
positive and -negative samples from TL2 to the same host
mtDNA analysis (Supplementary Data 2) and compared the
resulting haplotypes to all previously reported bonobo mtDNA
sequences (Fig. 5a and Supplementary Fig. 3). Phylogenetic
analysis showed that most of the newly derived mtDNA
sequences from TL2 (blue) fell into two clades that were exclu-
sively comprised of sequences from bonobos sampled east of the
Lomami River (Supplementary Fig. 3b)22,23. However, 4 new TL2
haplotypes representing 15 faecal samples, including 4 Laverania-
positive specimens, did not fall within these two 'eastern' clades
(arrows in Fig. 5a and Supplementary Fig. 3a). Analysis of their
GPS coordinates revealed that they were all collected west (TL2-
W) of the Lomami River (Fig. 5b). These results thus confirm and
extend previous findings showing that bonobos east of the
Lomami River represent a genetically (at least matrilineally)

isolated population22,23. However, this isolation does not explain
the geographic restriction of bonobo malaria, since Laverania-
positive individuals were found on both sides of the Lomami
River. Although it remains unknown how far the Plasmodium
endemic area extends beyond TL2 in the eastern Congo, it seems
clear that the Lomami River itself does not represent a barrier to
malaria transmission.

Climate does not explain the distribution of bonobo malaria.
Because climatic factors such as ambient temperature and
rainfall are known to influence malaria transmission
in humans24–26, we asked whether seasonal differences in
Plasmodium prevalence could explain the lack of parasite detec-
tion at the majority of bonobo study sites. Comparison of
sample dates across all field sites revealed no obvious association
between faecal parasite positivity and the month of specimen
collection (Table 2). For example, samples collected in
November and December at the TL2 site included a large fraction
of malaria-positive specimens, but this was not the case for
samples collected during these same months at the IK, KR and LA
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Fig. 4 Bonobo infections with non-Laverania parasites. Maximum likelihood phylogenetic trees are shown for mitochondrial and apicoplast gene sequences
of non-Laverania parasites. Ape-derived a cytB (956 bp), b clpM (327 bp), c cox1 (296 bp) and d clpM (574 bp) sequences are labelled and coloured as in
Fig. 2 (identical sequences from different samples are shown; identical sequences from the same sample are excluded). Human and monkey parasite
reference sequences from the database are labelled by black squares and circles, respectively. Brackets indicate non-Laverania species, including P.
malariae, P. vivax, P. ovale curtisi and P. ovale wallikeri (available sequences are too short to differentiate ape- and human-specific lineages) as well as the
monkey parasites P. inui and P. hylobati. Newly identified bonobo parasite sequences are indicated by arrows, all of which are from the TL2 site. One TL2
cytB sequence clusters with a previously reported parasite sequence from a chimpanzee sample (DGptt540), forming a well-supported lineage that is only
distantly related to human and ape P. malariae, and thus likely represents a new P. malariae-related species. The trees were constructed using PhyML58 with
GTR+G (a), TRN+I (b, d) and TIM2+I (c) as evolutionary models. Bootstrap values over 70% are shown for major nodes only (the scale bar represents
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field sites. To examine the impact of climatic variation on bonobo
parasite detection more directly, we used a statistical model
shown to be strongly predictive of spatiotemporal variation in
Laverania infection among wild-living chimpanzees (Erik Scully,
unpublished results). This model, which was parameterised using
PCR screening data from 2436 chimpanzee faecal samples col-
lected at 55 locations across equatorial Africa7, showed that
ambient temperature, daily temperature fluctuations and forest
cover, but not rainfall, each influenced the probability of Laver-
ania detection.

Using only specimens with known sampling dates and GPS
coordinates for which land surface temperature and forest cover
data were also available (Supplementary Table 5), we estimated
the probability of Laverania infection for each of the 11 bonobo
field sites. Assuming similar climatic influences on chimpanzee
and bonobo parasite development and transmission, this analysis
showed that at seven sites for which a sufficiently large number
of samples were available, bonobos were significantly less

frequently Laverania infected than predicted by the climate
model. For the BN, IK, LA, LK and MZ sites, the model predicted
a less than one in a million probability that a positive sample
would not be detected if bonobos at these sites exhibited similar
infection patterns as chimpanzees. Moreover, for the KR site,
where only one sample was Laverania positive, seasonal variation
could not explain this very low detection rate (Table 2). The
rate of parasite detection at the TL2 site, where 27 of 113 samples
with climate data were positive, was lower than, but not
significantly different from, that predicted for a chimpanzee
study site with similar ecological conditions. The very small
sample sizes at BJ and BX sites lacked statistical power to detect
differences, and the low predicted probability of infection at
the ML site indicated that more sampling during months of
higher infection probabilities would be necessary to confidently
reject the climate model. Nevertheless, our sampling density at
most sites was sufficient to conclude that the scarcity of infection
in bonobos was not caused by biased sampling during seasonal

mtDNA D-loop

a b
lyondji

lyondji

lyondji

lyondji
lyondji

lyondji

lyondji/KR/BN/IK
Lomako

Lomako/lyondji
KR

KR

S/Salonga
Salonga

C/IK/BN
Wamba/Lac Tumba/KR/IK/BN

C/Wamba/KR/BN/IK/LA

P. vivax

P. reichenowi

P. vivax

P. vivax

P. vivax

P. ovale -like

P. malariae -like

Salonga
Lutakala

Ohandja-Yoleko

Lomami

TL2-W

Katopa

TL2-NE

TL2-E

2 km

Salonga

C/Salonga
C/LK/KR/LA/LG

Lomako/LA

IK/BN0.99

0.99

0.95
0.94

0.93

BX
E/TL2/TL2-E/TL2-NE

TL2/TL2-E/TL2-NE

E/TL2-E/TL2-NE

TL2/BJ/TL2-NE

E/TL2/TL2-E

TL2-E/TL2-NE

TL2-E/TL2-NE

TL2/TL2-E

0.96

0.62

0.61

0.83

0.99

1

10.01

Malebo/Lac Tumba/ML
C/LK

0.86

1

East of
Lomani
clade 1

East of
Lomani
clade 2

0.72

0.68

1

C

C
1

1
1

0.62

TL2-W

TL2-W

C/TL2-W

S

C

Wamba

Wamba
KR

Lomako/LA

TL2-E

TL2-E
TL2-E

TL2-E

TL2

TL2
TL2

TL2

TL2
E

E
C/LK

KR

ML
S

S

S

C

C

LK
C/LK

C/Malebo/Lac Tumba/ML/LK

Malebo/Lac Tumba/LK/ML/MZ

Lomako
C/Salonga/LK/ML

S/lyondji/IK/BN

TL2-E

TL2-W

Malebo

ML/MZ
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troughs (Table 2). Thus, it appears that seasonal or climatic
variation in parasite prevalence can be excluded as an explanation
for the observed geographic restriction of bonobo Plasmodium
infections.

Bonobo diet is not associated with faecal parasite detection.
Wild apes consume a variety of plants, fruits, barks and piths,
some of which have been reported to have antimalarial
activity27–29. We thus asked whether our inability to detect
Plasmodium infections at most bonobo field sites was due to the
presence of certain plants, which upon ingestion would reduce
parasite titres below the limits of faecal detection. To examine this
possibility, we selected a subset of Laverania-positive (n= 18) and
-negative (n= 51) bonobo faecal samples from endemic (TL2)
and non-endemic (KR, IK, LG, LK) field sites, and characterised
their plant content by targeting two regions of the chloroplast
genome for high-throughput sequencing (Supplementary
Table 6). These comprised a 500 bp fragment of the rbcL gene and
a 750 bp fragment of the matK gene, both of which have been
used as barcodes to identify land plants30–32, including in stool
samples from endangered species33. Laverania-positive (n= 14)
and -negative (n= 15) chimpanzee faecal samples were analysed
for control (Supplementary Table 6).

Samples were sequenced to a mean depth of 16,054 matK and
21,995 rbcL paired-end reads, which were clustered into
operational taxonomic units (OTUs) and assigned to taxonomic
groups using a custom matK and rbcL reference database
(Supplementary Fig. 4). Using a permutational multivariate
analysis of variance (PERMANOVA) to compare unweighted
UniFrac distances34 as a measure of large-scale differences in
plant composition, we found small differences between faecal
samples from bonobos and chimpanzees (matK: 2.0% of variance,
p= 0.003; rbcL: 2.8% of variance, p< 10−6), but substantial
differences between faecal samples from different study sites
(matK: 19.8% of variance, p< 10−6; rbcL: 18.6% of variance, p<
10−6). However, no significant differences were observed between
Laverania-positive and -negative faecal samples (matK: 1.2% of
variance, p= 0.18; rbcL: 0.8% of variance, p= 0.71), suggesting
that the lack of parasite detection was not associated with the
abundance of certain plant phyla in the diet (Fig. 6a, b and
Supplementary Fig. 5).

We also compiled a list of 466 African plant species
(Supplementary Table 7), which have been reported to have
potential antimalarial activity29,35,36, and looked for related matK
and rbcL sequences in bonobo faecal samples from endemic and
nonendemic field sites. Although a BLAST search identified 65
matK and 490 rbcL OTUs that shared 95% sequence identity with
3 and 17 of these putative antimalarial species, respectively, none
was significantly more abundant at field sites where Laverania
infections were absent (Supplementary Fig. 6). Similar results
were obtained when the remaining plant OTUs were compared
between endemic and nonendemic bonobo field sites. Finally, no
compositional differences were observed in the plant content of
Laverania-positive and -negative chimpanzee faecal samples
(Fig. 6a, b). Although these analyses provide only a snapshot of
bonobo and chimpanzee plant diet, they failed to identify an
association between particular plant constituents and parasite
detection in faecal samples.

The faecal microbiome does not predict Laverania infection.
Plasmodium infections have been reported to influence the
bacterial communities in the gut, with certain parasites
causing intestinal dysbiosis37 and certain gut microbiota enhan-
cing the host’s anti-parasite immune responses38. To examine
potential interactions between the faecal microbiome and
Laverania infection in bonobos, we used the same samples
selected for plant analyses (Supplementary Table 6) for bacterial
16S rRNA sequencing (Laverania-positive and -negative
chimpanzee samples again served as a control). Samples were
sequenced to a mean depth of 65,132 reads, which were clustered
into OTUs and assigned to taxonomic groups (Supplementary
Fig. 7a). Examining Shannon diversity as a marker of
dysbiotic outgrowth or loss of bacterial taxa, we failed to find
significant differences in within-sample (alpha) diversity between
specimens from Laverania-positive and -negative bonobos
(or chimpanzees), or between specimens from endemic (TL2) and
nonendemic (KR, IK, LG, LK) field sites (Supplementary Fig. 8a).
Using unweighted UniFrac distance to compare between-sample
(beta) diversity34, we found that as previously reported39 bonobo
and chimpanzee faecal microbiomes differed in their bacterial
composition (Fig. 6c and Supplementary Figs. 7b and 8b). Sam-
ples from the same field site were also often compositionally more
similar to each other than to samples from other field

Table 2 Seasonal variation in parasite prevalence does not explain the geographic restriction of bonobo malaria

Site Sample collectiona Laverania
cytB

Model predictions

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Pos Total Meanb Significance cutoffc p-valued

BN 49 35 0 84 28.2 17 <10–6

BX 1 0 1 0.4 0 1.0
BJ 2 0 2 0.7 0 1.0
IK 107 22 46 4 85 7 61 121 0 453 147 121 <10–6

KR 5 4 9 (1) 13 33 1 64 25.1 15 <10−6

LG 11 14 0 25 6.9 2 0.003
LA 12 43 30 73 41 0 199 54.5 39 <10−6

LK 4 6 28 0 38 14.2 7 <10−6

ML 56 86 0 142 4.1 0 0.176
MZ 5 49 9 16 57 25 0 161 22.6 12 <10−6

TL2 8 (4) 8 64 (18) 33 (5) 27 113 39.5 27 0.083

aOnly samples with known collection dates and GPS coordinates, for which land surface temperature and forest cover data could also be obtained, were included in the climate analysis (sample numbers
are thus lower than in Table 1). Numbers in brackets indicate Laverania cytB-positive samples
bThe expected mean number of positive samples predicted by the climate model
cThe significance cutoff corresponds to the 0.45% (5%, with Bonferroni correction for 11 tests) of the Poisson binomial distribution for the probabilities predicted by the climate model. Values of 0
indicate that a greater sample size is necessary to confidently reject the climate model
dA significant Bonferroni adjusted p-value (p< 0.05) indicates that climate can be rejected as the explanation for rare or absent Plasmodium infections at any particular sampling site
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sites (Supplementary Fig. 8b and c). Using PERMANOVA to
examine the sources of this variation, we found that ape species
accounted for 7.4% (p< 10−6), study site for 19.3% (p< 10−6)
and Laverania positivity for 1.2% of the variance (p= 0.043),
respectively. Considering only chimpanzee samples, study
site accounted for 17.8% (p= 0.000018) and Laverania positivity
for 4.0% of variance (p= 0.25). Comparing only samples
from TL2 bonobos, differences among three sample locations
(Fig. 5b) accounted for 14.6% (p< 10−6) and Laverania infection
for 4.5% of variance (p= 0.0023). Thus, there was a small but
significant compositional difference between the faecal micro-
biome of Laverania- positive and -negative bonobos at TL2
(the lack of significance in chimpanzees may be due to a smaller
sample size).
Using Wilcoxon rank sum tests to look for OTUs that

were driving these differences, we found one assigned to the
family Ruminococcaceae that was significantly depleted, and two
others assigned to family Lachnospiraceae and Prevotella copri
that were significantly enriched in Laverania-positive TL2
bonobo samples (Supplementary Fig. 9). However, comparing
samples from TL2 to nonendemic sites did not yield significantly
higher UniFrac distance values than comparing samples between
these nonendemic sites (Supplementary Fig. 8b). Thus, while the
abundance of some bacterial taxa differed slightly between
Laverania-positive and -negative bonobos at TL2, compositional
differences between samples from TL2 and nonendemic sites
were no greater than expected between any two random sites,
thus failing to provide a microbial signature of Laverania
infection for that site.

Discussion
A complete account of Plasmodium infections in wild African
apes, including their host associations, prevalence, geographic
distribution and vector preferences, is critical for understanding
the origins of human malaria and gauging future zoonotic
risks. Previous studies documented numerous Plasmodium
species in wild chimpanzees and gorillas, but failed to find similar
infections in wild bonobos1,2. Here, we show that bonobos har-
bour a multitude of Plasmodium species, although endemic
infection is limited to only a small part of their range east of the
Lomami River. Analyses of climate data and parasite seasonality,
as well as host characteristics, including bonobo population
structure, plant consumption and faecal microbiome composi-
tion, failed to provide an explanation for this geographic

restriction. Thus, other factors must be responsible for the uneven
distribution of bonobo Plasmodium infections, including the
possibility of a protective mutation that has not spread east of the
Lomami River.
Studies in Asia have shown that both species richness and

prevalence of primate malarias are closely linked to the habitat of
forest-dwelling Anopheles, rather than the distribution of the
primates themselves10,12. Thus, factors that negatively impact the
breeding conditions, development and distribution of transmit-
ting vectors may be responsible, at least in part, for the absence of
Plasmodium infections at most bonobo sites. Ecological factors
may also influence bonobo density or other behaviours that affect
vector exposure. For example, captive orangutans, which live in
higher group densities than their wild counterparts, also have
higher rates of Plasmodium infection11. Finally, it is conceivable
that bonobos at the Plasmodium-negative sites carry other
infections that induce cross-protective immunity or compete for
the same resources40. Bonobos are clearly susceptible to a variety
of Plasmodium species. Thus, examining why neither Laverania
nor non-Laverania infections are sustained throughout much of
the bonobo range may identify new drivers of vector dynamics or
other transmission risks that could aid malaria eradication efforts
in humans.
Although diagnostic PCR of matched blood and stool samples

from Plasmodium-infected captive macaques indicated faecal
detection rates of up to 96%41, parasite detection in wild primates
is much less sensitive due to widely varying sample quality. While
the new bonobo Laverania infections were identified by con-
ventional PCR (Table 1), we reasoned that multiple PCR repli-
cates would increase the chances of parasite detection and thus
the number of sequences for phylogenetic analyses. This was
indeed the case since 18 (of 191) bonobo and 46 (of 517)
chimpanzee samples identified as Plasmodium negative by con-
ventional PCR were subsequently found parasite positive by
intensified PCR (Table 1 and Supplementary Table 3). Using
these results (Supplementary Table 1), we estimated the sensi-
tivity of a single PCR replicate to be 16.7% (95% confidence
interval (CI): 12.9–20.8), and the sensitivity of 8 and 10 replicates
to be 76.8% and 83.9%, respectively (see Methods). Although
labour intensive, costly and prone to contamination, intensified
PCR is the method of choice for samples with low parasite levels,
such as partially degraded specimens from remote field sites, since
its increased sensitivity can detect rare, and possibly even new,
Plasmodium species.
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Fig. 6 Laverania infection of bonobos is not associated with particular faecal plant or microbiome constituents. A principal component analysis of
unweighted UniFrac distances was used to visualise compositional differences of a, b plant (matK and rbcL) and c bacterial (16S rRNA) constituents in
Laverania-positive (dark border) and -negative (light border) faecal samples from bonobos (blue) and chimpanzees (pink). The sample positions (shown
for the first two components) do not indicate separate clustering of Laverania-positive and -negative samples
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Phylogenetic analyses of over 3000 mitochondrial, apicoplast
and nuclear parasite sequences from chimpanzee and
gorilla faecal samples have consistently pointed to the existence
of six ape Laverania species1,3–6. Here, we propose a seventh
species, P. lomamiensis, on the basis of partial organelle and
nuclear gene sequences derived from faecal DNA. Unlike other
ape parasites, this species seems to be bonobo specific and
geographically restricted to the Lomami River basin. Although a
traditional full taxonomic description might seem preferable,
the highly endangered status of wild bonobos precludes blood
collection. Moreover, the cryptic nature of Laverania parasites
as well as the high frequency of mixed species infections renders a
morphological description uninformative. Indeed, P. gaboni
and P. reichenowi, which are morphologically indistinguishable
from P. falciparum, were only recently shown by full-length
genome sequencing to represent distinct, non-recombining
species9,42, and the same type of analysis uncovered that
human P. ovale comprises not one but two sympatric parasite
species43,44. Thus, a true description of cryptic Plasmodium
species must come from multilocus genetic analysis. Although we
used single template amplification to derive high-quality orga-
nelle and nuclear sequences of multiple P. lomamiensis strains,
the number of loci and samples is still limited. As DNA-only
species taxonomy is gaining wider acceptance19, it will be inter-
esting to determine how much genetic information is necessary to
reliably classify P. lomamiensis and other putative Plasmodium
species.
The newly identified bonobo parasites prompt speculation

about the causes and timescale of Laverania diversification. When
the only Laverania species characterised were P. falciparum and
P. reichenowi, it was widely assumed that these two species had
co-diverged with their hosts45,46, placing their common ancestor
at the same time as the common ancestor of humans and
chimpanzees around 6–7Mya47. This hypothesis was under-
mined by the finding of additional Laverania species, in particular
the discovery that P. falciparum resulted from the recent host
switch of the gorilla parasite P. praefalciparum1. However, P.
praefalciparum and P. reichenowi could have co-diverged with the
ancestors of gorillas and chimpanzees. The phylogenetic position
(Figs. 2 and 3) of the newly described bonobo parasite, P.
lomamiensis (B1), which is more closely related to P. reichenowi
(C1) than to P. praefalciparum (G1), provides a triad of parasite
species with the same relationships as their hosts (Supplementary
Fig. 10). It is thus tempting to speculate that this clade arose
through host–parasite co-divergence. Under this scenario, the
common ancestor of P. reichenowi and P. praefalciparum would
have existed approximately 8–9Mya47, an estimate that is 2 to 4
times older than some have concluded from molecular clock
analyses for the equivalent divergence of P. reichenowi and P.
falciparum48,49. P. reichenowi and P. lomamiensis would have
diverged around 2Mya47. Molecular clocks for Laverania species
may not be very precise: for example, P. reichenowi and P.
praefalciparum are clearly not 4 times more divergent than P.
reichenowi and P. lomamiensis (Figs. 2 and 3). However, given
that P. reichenowi and P. gaboni are about 3 times more divergent
than P. reichenowi and P. praefalciparum9, it is possible that the
common ancestor of the entire Laverania clade existed around
25–30 Mya.
The co-divergence scenario also predicts that the ancestor of

today’s bonobos was infected with the ancestor of P. lomamiensis,
which was subsequently lost from most bonobo populations. The
Congo River, which forms the boundary between the ranges of
chimpanzees and bonobos (Fig. 1), is thought to have existed
since long before the divergences among African apes50; yet,
somehow the ancestor of bonobos reached the left bank of the
Congo. This may have happened during one of several periods of

aridity when river levels might have been low enough to permit
the crossing in the northeast of the current bonobo range50.
Furthermore, mitochondrial DNA analyses suggest that there
may have been an early population split between the ancestors of
bonobos now found east and west of the Lomami River51. Thus,
the loss of P. lomamiensis from western populations may have
occurred early in bonobo history. It should be noted that the
infection status of bonobos at sites other than TL2 east of the
Lomami (e.g., BJ and BX; Fig. 1) remains unknown, because too
few samples have been collected. However, bonobos immediately
west of the Lomami at TL2 must have reacquired P. lomamiensis,
indicating that the river is not a barrier to mosquitoes from the
east, and that western bonobos as a whole do not share a
genetically based resistance to infection. The co-divergence sce-
nario also implies that a related parasite was lost from the human
lineage, which might have been due to an early human population
bottleneck, an ancestral hunter–gatherer lifestyle52 and/or the loss
of the gene that synthesises N-glycolylneuraminic acid (Neu5Gc),
which may have affected the ability of the parasite to infect
human erythrocytes53.

The extent of divergence (Figs. 2 and 3) between P. gaboni (C2)
and P. adleri (G2) is similar to that between P. reichenowi and P.
praefalciparum, suggesting that the former pair may also have co-
diverged with their hosts. Within the C2/G2 clade there is again
no human parasite species, and the only bonobo parasites in this
lineage clearly reflect recent transmissions of P. gaboni from
eastern chimpanzees, rather than co-divergence. In this case, the
loss of a putative B2 lineage from bonobos is not surprising given
the loss of P. lomamiensis from most of the bonobo range. The
lack of close relatives of P. billcollinsi (C3) and P. blacklocki (G3)
would also be indicative of past losses of parasite lineages from
particular ape hosts. Although the processes that contributed to
the emergence of today’s Laverania lineages remain unknown, it
seems likely that both co-divergence and cross-species transmis-
sion events shaped their evolutionary history, as has been
observed for many other pathogens.
One characteristic of Laverania parasites infecting wild apes is

their highly specific host tropism. This species specificity is not
shared by non-Laverania parasites, such as P. vivax, which infects
bonobos, humans, chimpanzees and gorillas2,54. However, even
within the Laverania subgenus, host specificity is not absolute.
Bonobos at TL2 are commonly infected with the chimpanzee
parasite P. gaboni, which appears to have crossed the Lualaba
River on multiple occasions (Fig. 2). Bonobos are also susceptible
to the chimpanzee parasite P. reichenowi (Supplementary Fig. 2d),
while eastern chimpanzees appear susceptible to the bonobo
parasite P. lomamiensis (Figs. 2 and 3), although both of these
cross-infections appear to reflect rare events that fail to result in
onward transmission. Thus, on the one hand, Laverania species
are extremely host specific, implying strong barriers to cross-
species transmission, and on the other hand there is evidence that
on occasion these barriers can be overcome. Given the very close
genetic relationship of chimpanzees and bonobos, examples of
cross-infections are perhaps not surprising. However, the finding
that in captive settings bonobos can become infected with human
P. falciparum17, while chimpanzees can harbour gorilla parasites
and vice versa55, indicates that Laverania host specificity goes
beyond incompatibilities of receptor–ligand interactions during
erythrocyte invasion56. While ape Laverania parasites have not
yet been detected in humans8,57, it seems clear that the
mechanisms governing host specificity are complex and that
some barriers are more readily surmountable than others. Given
the new bonobo data, it will be critical to determine exactly how
P. praefalciparum was able to jump the species barrier to humans,
in order to determine what might enable one of the other ape
Laverania parasites to do the same.
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Methods
Ape samples. Faecal samples from wild-living bonobos and eastern chimpanzees
were obtained from existing specimen banks, or were newly collected at previously
reported1–3 as well as new study sites (LG, BX, MZ) in the DRC (Fig. 1). While all
available bonobo samples (n= 1556) were analysed, eastern chimpanzee specimens
(n= 580) were selected from 9 field sites most proximal to the bonobo range.
All samples were obtained noninvasively from apes in remote forest areas, pre-
served (1:1 vol/vol) in RNAlater, transported at ambient temperatures and stored at
−80 °C. Faecal DNA was extracted using the QIAamp Stool DNA mini kit (Qiagen)
and all specimens were subjected to host mtDNA analysis to confirm their species
and subspecies origin1–3. The latter analysis also gave an indication of sample
quality, which confirmed that samples from Laverania-negative field sites were
not any more degraded than samples from TL2. For the KR, LK and TL2 field sites,
the number of sampled individuals has previously been determined by micro-
satellite analyses2. All samples were obtained with approval from the Ministries of
Scientific Research and Technology, the Department of Ecology and Management
of Plant and Animal Resources of the University of Kisangani, the Ministries of
Health and Environment, and the National Ethics Committee in the DRC, and
shipped in compliance with Convention on International Trade in Endangered
Species of Wild Fauna and Flora regulations and country-specific import and
export permits.

Conventional and intensified PCR. Bonobo and chimpanzee faecal samples were
first screened for Laverania parasites by conventional (diagnostic) PCR, targeting a
956 bp mitochondrial cytB fragment using primers DW2 (5′-TAATGCCTAGACG
TATTCCTGATTATCCAG-3′) and DW4 (5′-TGTTTGCTTGGGAGCTGTAATC
ATAATGTG-3′) in the first round, and Pfcytb1 (5′-CTCTATTAATTTAGTTAAA
GCACA-3′) and PLAS2a (5′-GTGGTAATTGACATCCWATCC-3′) in the second
round of PCR as previously described1. Since this approach tests only a single
aliquot of each faecal DNA, we reasoned that parasites present in low concentra-
tions may have been missed. To increase the sensitivity of parasite detection, we
thus tested 8 to 10 aliquots of the same DNA preparation using the same primers
and amplification conditions. To guard against false positives, only samples that
were negative by conventional PCR were subjected to the intensified PCR
screening. Assuming that PCR amplification was 100% specific, that all PCR
reactions were independent with a fixed probability of detecting a positive sample,
and that samples found negative in all PCR replicates could still be Plasmodium
positive, we expected that the number of positive PCR reactions for a faecal sample
would follow a zero-truncated binomial distribution and that the likelihood of the
data would be the product over all samples with a positive reaction for this
intensified PCR approach. Therefore, we used numerical optimisation to find the
maximum likelihood estimate of sensitivity for these data and determined 95% CIs
using likelihood ratios. Using intensified PCR data from both bonobo and chim-
panzee samples (Supplementary Table 1), we estimated the sensitivity of a single
PCR replicate to be 16.7% (95% CI: 12.9–20.8), and thus the sensitivity of 8 and 10
independent PCR reactions to be 76.8% and 83.9%, respectively. Separate analyses
of chimpanzee and bonobo samples yielded similar sensitivity estimates for single
PCR replicates: 17.5% (95% CI: 13.0–22.5) for eastern chimpanzees and 14.6%
(95% CI: 8.47–22.3) for bonobos. Intensified PCR was also used to screen 199
bonobo faecal samples from the TL2, KR and LA field sites for non-Laverania
infections using parasite-specific primer sets. P. vivax primers targeted a 296 bp
cox1 fragment using Pv2768p (5′-GTATGGATCGAATCTTACTTATTC-3′)
and Pv3287n (5′-AATACCAGATACTAAAAGACCAACAATGATA-3′) in the
first round, and Pv2856p (5′-CTTATTACAAATTGCAATCATAAAACTTT
AGGT-3′) and Pv3185n (5′-TCCTCCAAATTCTGCTGCTG TAGATAAAA
TG-3′) in the second round of PCR as previously described8. P. malariae specific
primers targeted a 600 bp mitochondrial cytB fragment using Pm4659p (5′-ATTT
ATTATCTTCAATTCCAGCACTT-3′) and Pm5501n (5′-GCATGTTAACTCGA
TAAATACTAA-3′) in the first round, and Pm4740p (5′-ATTACATTTTATA
CTTCCATTTGTTGC-3′) and Pm5369n (5′-TTCAGAAATATCGTCTTATCG
TAGC-3′) in the second round of PCR. P. vivax-specific primers detected both
P. vivax and P. ovale, while P. malariae-specific primers amplified only positive
control samples (one P. malariae-positive sample was detected due to the cross-
reactivity of regular cytB primers; Fig. 4a). All amplicons were sequenced directly
without interim cloning.

Single genome amplification. To derive Plasmodium sequences devoid of PCR-
induced errors, all PCR-positive bonobo and chimpanzee faecal samples were
subjected to SGA as previously described1,2,18. According to the Poisson dis-
tribution, the DNA dilution that yields PCR products in no more than 30% of wells
contains one amplifiable template per positive reaction more than 80% of the time.
Faecal DNA was thus end point diluted in 96-well plates, and the dilution that
yielded <30%-positive wells was used to generate single template-derived
sequences. For Laverania-positive bonobo samples, mitochondrial (cytB; 3.4 and
3.3 kb mitochondrial half genomes), apicoplast (clpM) and nuclear (eba165, eba175
and p47) gene regions were amplified using previously reported primer sets and
amplification conditions (Supplementary Table 2)1–3,8,56. For Laverania-positive
chimpanzee samples, only the 956 bp mitochondrial cytB fragment was amplified
(Supplementary Table 4). One bonobo faecal sample (TL2.3874) positive for P.

ovale curtisi by conventional PCR also yielded a P. vivax-specific 574 bp apicoplast
clpM fragment when subjected to SGA analysis.

Phylogenetic analyses. Sequences were aligned using CLUSTAL W (version 2.1),
visually inspected and regions that could not be unambiguously aligned were
removed from subsequent analyses. Maximum likelihood phylogenetic trees and
bootstrap support were estimated using PhyML (version 3.0)58, which infers
evolutionary model parameters and phylograms concurrently. Evolutionary models
were selected using jModelTest (version 2.1.4)59. Bayesian posterior probabilities
were determined using MrBayes (version 3.2.4)60 using two simultaneous inde-
pendent analyses with a 25% burn-in. Convergence was determined when the
average deviation of split frequencies was <0.01.

Climate model of ape Laverania infection. To evaluate whether the absence or
low prevalence of Laverania infection at most bonobo sampling sites could be
explained by seasonal variation in parasite transmission, we developed a logistic
generalised linear mixed model to infer the probability of parasite detection for
each sample relative to the climatic variables observed at the time of specimen
collection. Briefly, this model, which incorporates mean ambient temperature (AT),
daily temperature variation (TV) and percent forest cover (FC), was parameterised
using 2436 chimpanzee faecal samples from 55 sampling sites across equatorial
Africa7 and found to be strongly predictive of Laverania infection in wild chim-
panzees (Erik Scully, unpublished results). Assuming similar relationships between
climatic variables and infection probability in chimpanzees and bonobos, and
including only samples for which climate data were available, we inferred the
predicted probability of Laverania infection for each bonobo sample using the
equation:

Predicted Probability ¼ 1

1þ e� interceptþ0:355 ´AT�0:164 ´AT2þ0:032 ´ FCþ0:208 ´TVð Þ

where intercept is −2.538 for samples screened using conventional PCR (i.e., one
replicate) and −1.374 for those screened using intensive PCR (i.e., 8–10 replicates),
and AT, TV and FC are each corrected by subtracting the means of the chimpanzee
data set (23.4 for AT, 9.1 for TV and 77.2 for FC). For each bonobo sample, we
used MODerate Resolution Imaging Spectroradiometer (MODIS) and daytime and
night-time land surface temperature (LST) data sets61,62 in one-day temporal
resolution (MOD11A1) after applying the minimum/maximum air temperature
transformations as previously described24 to derive (1) the mean ambient air
temperature and (2) the mean daily air temperature fluctuation. Each of the
temperature variables was calculated as the average of LST measurements taken
during the period 30 days prior to sample collection. Forest cover data were
extracted from high-resolution global maps as previously described63. For each
sampling site, the mean and ranges of these ecological variables are summarised in
Supplementary Table 5. Assuming that each specimen is independent and has a
probability of detected infection as assigned by the climate model, the number of
positives observed at a given site will be a sum of Bernoulli variables with varying
probabilities and thus should follow the Poisson binomial distribution64. We cal-
culated the cumulative probability of seeing less than or equal the observed number
of positive samples64 given the set of climate estimates for each site to generate p-
values and used Bonferroni correction to account for multiple comparisons. A low
p-value indicates that climatic variation is very unlikely to account for the observed
scarcity of infection.

Characterisation of faecal plant composition. Chloroplast ribulose bisphosphate
carboxylase large chain (rbcL) and maturase K (matK) gene regions are widely
used as bar codes for land plants30–32 and were thus selected to characterise
plant components in Laverania-positive and negative bonobo (n= 78) and chim-
panzee (n= 20) faecal samples (Supplementary Table 6). Faecal DNA was extracted
using the PowerSoil-htp 96 Well Soil DNA Isolation Kit (MO BIO Laboratories,
Carlsbad, CA, USA). We modified rbcL primers previously reported to have high
plant discriminatory ability32 for MiSeq sequencing by adding an Illumina adapter
(underlined). These included rbcLbF (5′-AGACCTWTTTGAAGAAGGTTCW
GT-3′) and rbcLbR (5′-TCGGTYAGAGCRGGCATRTGCCA-3′) for the first
round of PCR, and R1_rbcL634F (5′-TCGTCGGCAGCGTCAGATGTGTATAAG
AGACAGATGCGTTGGAGAGACCGTTTC-3′) and R2_rbcLbR (5′-GTCTCGT
GGGCTCGGAGATGTGTATAAGAGACAGTCGGTYAGAGCRGGCATRTGC
CA-3′) for the second round of PCR. We also modified matK primers recently
improved to achieve high PCR success rates31 in a similar fashion, using matK390F
(5′-CGATCTATTCATTCAATATTTC-3′) and matK1326R (5′-TCTAGCACACG
AAAGTCGAAGT-3′) in the first round of PCR, and R1_matK472F (5′-TCGTCG
GCAGCGTCAGATGTGTATAAGAGACAGCCCRTYCATCTGGAAATCTTGG
TTC-3′) and R2_matK1248R (5′-GTCTCGTGGGCTCGGAGATGTGTATAAGA
GACAGGCTRTRATAATGAGAAA GATTTCTGC-3′) in the second round of
PCR.

Amplification for both rbcL and matK gene regions was performed using 2.5 μl
of sample DNA in a 25 μl reaction volume containing 0.5 μl dNTPs (10 mM of each
dNTP), 10 pmol of each first round primer, 2.5 μl PCR buffer, 0.1 μl BSA solution
(50 μg/ml), and 0.25 μl Expand Long Template enzyme mix (Expand Long
Template PCR System) for the first round of PCR. Cycling conditions included
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an initial denature step of 2 min at 94 °C, followed by 15 cycles of denaturation
(94 °C, 10 s), annealing (45 °C, 30 s) and elongation (68 °C, 1 min), followed by
25 cycles of denaturation (94 °C, 10 s), annealing (48 °C, 30 s) and elongation
(68 °C, 1 min; with 10 s increments for each successive cycle), followed by a final
elongation step of 10 min at 68 °C. For the second round PCR, 2 μl of the first
round product was used in 25 μl reaction volume. Cycling conditions included
an initial denature step of 2 min at 94 °C, followed by 25 cycles of denaturation
(94 °C, 10 s), annealing (52 °C, 30 s) and elongation (68 °C, 1 min), followed by a
final elongation step of 10 min at 68 °C. For each faecal sample, rbcL and matK
gene regions were amplified in duplicate, the products were pooled, purified
using QIAquick Gel Extraction Kit and sequenced using the Illumina Miseq v2
(500 cycle).

Sequence reads were separated by barcode, quality filtered for an expected
number of errors <1 and an exact match to primer sequences, and the 5′ and 3′
reads of each pair were concatenated after trimming off primer sequences. OTUs
were formed using Swarm65, and OTUs containing only a single read discarded.
Representative sequences of each OTU were aligned using MAFFT66 and a
phylogenetic tree was inferred using FastTree67. To create a database for taxonomic
assignment, all reads matching the search terms 'matK' or 'rbcL' were downloaded
from the European Nucleotide Archive and indexed in a BLAST database. This
database was searched using a representative sequence from each OTU, and
taxonomy was assigned as the most specific taxonomic rank shared by all BLAST
hits with a total bit score within 98% of the best hit. Samples with <5000 reads were
removed from the analysis.

Characterisation of faecal bacterial constituents. The same faecal DNA
samples used for plant analyses were also subjected to bacterial 16S rRNA gene
sequencing (Supplementary Table 6). The 16S rRNA gene amplification was
performed as previously described68, using 5 μl of faecal DNA, the AccuPrime
Taq DNA Polymerase High Fidelity System (Thermo Fisher), and V1V2 region
primers containing Illumina adapters, barcode and linker regions. Each faecal
sample was amplified in four independent reactions, with the products pooled
and purified using AMPure XP beads (Beckman Coulter) before sequencing
using Illumina MiSeq v2 (500 cycle). Sequences were separated by barcode,
and paired reads were merged using bbmerge69. Reads were clustered into
OTUs using a cutoff of 97% identity and taxonomically assigned using QIIME
v1.9.1 and the Greengenes database70,71. OTUs formed from single reads were
discarded. Samples with <15,000 sequences per sample were removed from the
analysis.

Statistical analyses. All analyses were performed in R v3.3.372. Within-sample
(alpha) diversity was calculated using the Shannon diversity index73. Between-
sample (beta) diversity of matK and rbcL data was calculated using unweighted
UniFrac distances after rarefaction to 5000 reads per sample34. Between-sample
diversity of 16S rRNA data was also calculated using unweighted UniFrac, but after
rarefaction to 15,000 reads per sample34. We opted to use unweighted distance
values because they permit the examination of rare taxa that might be related to the
phenotype examined; however, weighted UniFrac as well as weighted and
unweighted Bray–Curtis dissimilarity values gave comparable results (matk: all
Mantel tests r > 0.34, p < 10−6; rbcl: all Mantel tests r > 0.68, p < 10−6; 16S: all
Mantel tests r> 0.77, p < 10−6). Unweighted UniFrac distances were also used for
principal coordinates analysis74, t-distributed stochastic neighbour embedding75

and permutational analysis of variance (http://CRAN.R-project.org/
package=vegan)76. Analyses of 16S rRNA data revealed that TL2 bonobo samples
formed three distinct clusters (Supplementary Fig. 8c), corresponding to three
different sampling locations west (TL2-W) and east (TL2-E and TL2-NE) of the
Lomami River (Fig. 5b). To control for site-specific differences in faecal plant
composition, we measured depletion of matK and rbcL OTUs between samples
from TL2-E, TL2-NE and TL2-W and three non-endemic LK, KR and IK field sites
using Wilcoxon rank sum tests. The p-values from the nine pairwise comparisons
were combined using Fisher’s method with the test statistic and degrees of freedom
divided by 3 to control for correlation between tests. Changes in bacterial OTU
proportions between TL2 Laverania-positive and -negative samples were measured
using Wilcoxon rank sum tests.

Nomenclatural acts. This published work and the nomenclatural acts it contains
have been registered in ZooBank, the proposed online registration system for the
International Code of Zoological Nomenclature (ICZN). The ZooBank LSIDs (Life
Science Identifiers) can be resolved and the associated information viewed through
any standard web browser by appending the LSID to the prefix 'http://zoobank.org/
'. The LSID for this publication is: urn:lsid:zoobank.org:act:BF143A7B-DA74-
469D-B44C-40B5EF82B2DB.

Code availability. Analysis code is archived on Zenodo (https://zenodo.org/
record/886174) at DOI: (http://doi.org/10.5281/zenodo.886174).

Data availability. Newly derived Laverania and non-Laverania parasite sequences
as well as bonobo mtDNA haplotypes have been deposited in GenBank under
accession numbers KY790455-KY790593 (also see Supplementary Data 1 and 2).

High-throughput plant and microbiome sequences are archived in the NCBI
Sequence Read Archive (SRA) under BioProject PRJNA389566.
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