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The sensitivity of the radar signal to the seasonal dynamics in the Sahel region is a considerable asset for
monitoring surface parameters including soil moisture. Given the sensitivity of the radar signal to vege-
tation mass production, roughness and soil moisture, the main problem has been to estimate the contri-
bution of these three parameters to the signal. This study aims to circumvent this problem by combining
radar with optical data. The DMP (Dry Mater Product) extracted from SPOT data allowed to estimate veg-
etation mass production. Surface roughness was estimated from radar data during the dry season.
Because during the dry season, radar signal is only conditioned by soil roughness in this region a
Radiative Transfer Model (RTM) was used: it consists in a microwave scattering model of layered vege-
tation based on the first-order solution of the radiative transfer equation and it accounts for multiple
scattering within the canopy, surface roughness of the soil, and the interaction between canopy surface
and soil.
This model was designed to account for the branch size distribution, leaf orientation distribution, and

branch orientation distribution for each size. In this study, the RTM has been calibrated with ESCAT
(European Radar Satellite Scatterometer) data, and has been used in order to estimate soil moisture.
The results obtained have allowed to track the spatial and temporal dynamics of soil moisture on the

one hand, and on the other hand the influence of geology and morphopedology on the spatial dynamics of
the soil moisture variability. These results are promising despite the fact that the inversed RTM often
faces difficulties to interpret the signal for saturated soils, giving an aberrant value of soil moisture more
often than not.
� 2017 National Authority for Remote Sensing and Space Sciences. Production and hosting by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
1. Introduction

Estimating and monitoring the spatial and temporal evolution
of soil moisture is of paramount importance in many areas. They
allow among other things, better monitoring of crops and agricul-
tural yields. Radar remote sensing offers strong potential for appli-
cations, due to its sensitivity to the dynamics of continental
surfaces. Indeed, some studies have underlined the strong seasonal
dependence of the radar signal in semi-arid zones, especially in the
Sahel, which makes it possible to discriminate the alternative dry
and wet seasons (Baup et al., 2007; Dubois et al., 1995; Faye
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et al., 2011; Frison and Mougin, 1996a,b; Frison et al., 1998; Jarlan
et al., 2003; Le Toan et al., 1981; Magagi and Kerr, 1997; Naeimi
et al., 2009; Pellarin et al., 2006; Wagner et al., 1999, 2000;
Woodhouse and Hoekman, 2000; Zine et al., 2005; Zribi and
Dechambre, 2002). In the Sahel region, the radar signal is sensitive
to land surface parameters: vegetation mass production, roughness
and soil moisture (Ulaby et al., 1978; Bernard et al., 1981; Bradley
and Ulaby 1981; Bruckler et al., 1988; Dobson and Ulaby 1986;
Naeimi et al., 2009). Globally radar sensors have demonstrated
their potential for the effective measurement and monitoring of
soil surface characteristics (Baghdadi et al., 2008; Rahman et al.,
2008; Thoma et al., 2008; Anguela et al., 2010; Pandey and
Pandey 2010; Aubert et al., 2011; Zribi et al., 2011; Molin and
Faulin, 2013; Castaldi et al., 2014; Gorrab et al., 2015).

In fact the temporal evolution of the radar signal is strongly cor-
related with the increase in soil moisture and the development of
vegetation (Faye et al., 2011; Zine et al., 2005; Zribi and
Dechambre, 2002). In the past two decades some studies have
aimed to estimate soil moisture from radar remote sensing data,
(Baghdadi et al., 2012; Castaldi et al., 2014; Wagner et al., 2000)
and data acquired with Synthetic Aperture Radar (SAR) yielded
fairly consistent results (Zribi and Dechambre, 2002; Zribi et al.,
2014).

The purpose of this work was to estimate soil moisture in semi-
arid areas of Senegal by using the ENVISAT ASAR (Advanced Syn-
thetic Aperture Radar) data and a Radiative Transfer Model
(RTM), which is a backscattering model based on the first-order
solution of the radiative transfer equation (Karam et al., 1992).
However, considering the dependence of the radar signal on the
Fig. 1. Land use, land cover of th
three surface parameters (soil moisture, surface roughness and
biomass) the main difficulty encountered was how to determine
the singular contribution of each parameter to the radar response.

For this reason, we calculated soil roughness from dry season
radar data and vegetation mass from the Dry Mater Productivity
(DMP) product derived from the SPOT VEGETATION-2 optical sen-
sor data on SPOT-5 satellite (Bégué, 2002; Kumar and Monteith,
1981; Varlet-Grancher et al., 1982; ftp. www.vito-eodata.be/).
2. Data and methods

2.1. Study areas

The study area was in Senegal, covering the Sylvo-Pastoral zone
of the Ferlo region and the northern groundnut basin. It expands to
the coastal fringe (Fig. 1). The western part of the study area, which
covers a large part of the coastal fringe, is characterized by a shal-
low aquifer, fairly extensive tree/shrub vegetation over a sandy
soil, while the eastern part lays in the Ferlo region (Fig. 1) and is
characterized by a water table that reaches up to 100 m deep.
The annual rainfall is estimated to be between 200 and 500 mm,
with a high inter-annual variability.

The western area and a large part of half of the northern area
are dominated by a shrub steppe with sparse trees. Rainfed agricul-
ture occupies the western and southern part of the study area,
whereas irrigated crops dominate in the northwest, along with
some marshy meadows. The southeast with a shrub savannah is
a pasture zone.
e study area (PNAT, 1986).

http://www.vito-eodata.be/
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The geological formations that condition the type of soil whose
moisture is studied are presented here. These are alluvial or beach
sands along the western coast, continental sand dunes in the cen-
ter and north and silty sands with outcrops of limestone, marl and
kaolinic clay in the East (Fig. 2, Table 1, PNAT, 1986).

The area includes sand dune formations that are generally
poorly developed or degraded Sahelian domain soils. These are
tropical ferruginous soils in the south, alternating with brown
red soils in the north. Hydromorphic soils are found along the val-
leys. In the East, there are subaridal brown soils, lithosols and
poorly developed soils. Some mudflats develop in the north-
eastern part, in the vicinity of the delta (PNAT, 1986).
2.2. Data description

Two types of data sets were used: remote sensing data and field
measurements for calibrating the Radiative Transfer Model.
2.2.1. Field data
The in situ vegetation mass measurements were collected from

the Centre de Suivi Ecologique (CSE) database. Indeed, at the end of
the rainy season, during peak vegetation levels, the CSE conducts
field measurements of herbaceous production (www.cse.sn, Diouf
et al., 1998). These measurements make it possible to determine
the amplitude of the temporal simulations of the vegetation from
the Sahelian Transpiration Evaporation and Production model
(STEP; Mougin et al., 1995). Rainfall measurements from the
National Agency for Civil Aviation and Meteorology ANACIM
(Agence Nationale de l’Aviation Civile et de la Météorologie) are also
used. In this study, we used daily rainfall data of Linguere station,
Fig. 2. Localization and geological ma
which is the only station that measures all climate data (tempera-
ture, rainfall, etc.) in the study area.

2.2.2. Radar data
Two radar data sets, both acquired at C band, were analyzed:

data acquired by the scatterometer (ESCAT) onboard ERS-1/2
(European Radar Satellite), and other data acquired by ASAR
onboard ENVISAT that are highly sensitive to surface parameters
dynamics, mainly soil moisture and crop production.

To calibrate the model, series of long-term observations
through ESCAT (1992–2007) were used. Considering the need for
the finest resolution possible and higher temporal repeatability,
the ENVISAT-ASAR sensor data (2008–2011) from a 101-min revo-
lution period with a 35-day orbital cycle were used. It provides HH
and VV polarization images with a spatial resolution of 1 km. On
average, 2–3 images in VV polarization are obtained per month
in the study area.

2.2.3. Optical data
The DMP extracted from SPOT-VEGETATION data by the Flem-

ish Institute for Technological Research (VITO; ftp. www.vito-
eodata.be/), was used to estimate total vegetation mass produc-
tion. In fact, the VEGETATION-2 sensor on board the SPOT-5 is an
imaging system operating in the 4 spectral bands (Red, Green, Blue
and Near Infrared) with a spatial resolution of about 1 km and a
daily repeatability.

The DMP is an indicator that reflects daily increase in dry plant
biomass. It is calculated from NDVI and meteorological data such
as global solar radiation and temperature provided by ECMWF
(European Centre for Medium-Range Weather Forecasts; Bégué,
2002; Kumar and Monteith 1981; Varlet-Grancher et al. 1982).
p of the study area (PNAT, 1986).

http://www.cse.sn
http://www.vito-eodata.be/
http://www.vito-eodata.be/


Table 1
Codification of geological layers in the study area.

Geological layers Code

Recent fluviatile Alluvium F2
Beach sands and dune seams: coastal barrier Bl
Shellfish vase and sand of slikkes, schorres and interdistributary

lagoons
M

Interdunary humus sand, locally peaty, shelly: black soil of the
Niayes

T

Rubified sand of continental dunes/White clay and marls with
attapulgite and silicate phosphate-glauconic horizons

D/e4b

Rubified sand of continental dunes/Limestones and marls with
nummilites, phosphate in the west

D/e5–6

Rubified sand of continental dunes/Alternations of marls with
discocyclines and yellow limestone with molluscs, sea
urchins and algaes

D/e5c

Rubified sand of continental dunes/Lacastrine limestone D/L
Rubified sand from of continental dunes/Bioturbated sandstone

and kaolinic clays for burrows and molluscs/White clays and
marls with attapulgite and silicate phosphate-glauconic
horizons

D/m/e4b

Rubified sand of continental dunes/Bioturbated sandstone and
kaolinic clays with burrows and molluscs/Limestones and
marls with phosphate nummilites in the west

D/m/e5–6

Rubified sand of continental dunes/Bioturbated and kaolinic
clays with burrows and molluscs/Alternations of marls with
discocyclines and yellow limestones with molluscs, sea
urchins and algae

D/m/e5c

Rubified sand from continental dunes/Bioturbated sandstones
and kaolinic clays for burrows and molluscs/Limestones,
marls and ocher-yellow clay with attapulgite, fossiliferous
and phosphate horizon

D/m/e5d

Shellfish limestone with molluscs e2–3
Lacustre limestone L
Limestones, marls and ocher-yellow clays with attapulgite,

fossiliferous and phosphate horizons
e5d

Alternations of marls with discocyclines and yellow limestone
with molluscs, sea urchins and algae

e5c

Clays and white marls with attapulgite and silicate
phosphate-glauconic horizons

e4b

Bioturbated sandstones and kaolinite clays for burrows and
molluscs/White clay and marls with attapulgite and silicate
phosphate-glauconic horizons

m/e4b

Bioturbated sandstones and kaolinic clays for burrows and
molluscs/Limestones and marls with nummulites;
phosphaties to the west

m/e5–6

Bioturbated sandstones and kaolonic clays for burrows and
molluscs/Alternations of discocycline marls and yellow
limestone with molluscs, sea urchins and algae

m/e5c

Sandstones and clays c5–6
Tertiary and quaternary volcanic products

(dolerites, basanites, basalts, tuff)
Beta
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The DMP products have a spatial resolution of 1 km and a decadal
time step. They represent the average daily productivity for each
decade. To obtain the total vegetation mass productivity of each
decade, it is necessary to multiply by ten. Then total vegetation
mass available for a given decade is calculated by adding the dec-
adal vegetation mass productivity, the beginning of rainy season
being fixed in the first decade of June.

2.3. Methodology

In Sahelian zone, the radar signal in C band depends mainly on
three parameters: soil moisture, surface roughness and vegetation
mass (Frison et al., 1998; Jarlan et al., 2002; Zine et al., 2005).
Knowing two of these parameters makes it possible to estimate
the third one. The Radiative Transfer Model (RTM) is an electro-
magnetic model which enables us to simulate the interaction of
an electromagnetic wave with a terrestrial surface (Karam et al.,
1992). It allows the simulation of the radar signal from the surface
parameters (vegetation cover, roughness, dielectric constant which
is highly dependent on soil moisture). Consequently, the influence
of the vegetation cover and soil parameters (roughness, dielectric
constant) can be analyzed. The input data of the model are plant
production, soil roughness and soil moisture.

The results of these simulations were then compared with the
measured radar signal for proper calibration of the model (we
named this step: direct model). This model has been validated in
two semi-arid zones of the Sahel (Frison et al., 1998; Jarlan et al.,
2002; Zine et al., 2005). These authors have shown that, from a
knowledge of surface parameters over Sahelian regions, the mea-
sured radar signal can be reconstructed.

Given the lack of in situ data at a daily rate, the Sahelian Tran-
spiration Evaporation and Production (STEP) model, (Mougin
et al., 1995), describing the temporal evolution of the scene was
used to simulate daily vegetation mass and soil moisture to cali-
brate RTM. STEP is a relatively simple ecosystem model which
describes the relevant processes of soil-vegetation atmosphere sys-
tem to simulate herbaceous vegetation growth and soil water
dynamics. The model runs on a daily time step and is a scale com-
patible with coarse resolution satellite remote sensing. STEP has
been previously validated in two regions of the Sahel, namely the
Ferlo (Senegal) and the Gourma (Mali) with field data acquired
during the period 1976–1992 (Frison et al., 1998). Moreover, struc-
tural parameters such as vegetation cover fraction Vc, leaf area
index (LAI), and canopy height hc, which are essential parameters
for coupling with physical models of reflectivity, are also stimu-
lated. Combined with an appropriate reflectance model, STEP was
able to simulate temporal profile of vegetation indices which have
been successfully compared with real satellite data (Lo Seen et al.,
1995). In the following work, the STEP model is used to simulate
the vegetation mass production and the volumetric water content
in the upper soil profile.

To estimate these parameters, STEP model used soil texture, cli-
mate data (daily rain and temperature) maximum vegetation mass
at the end of the rainy season (September).

Vegetation mass production, soil moisture estimates from STEP
and soil roughness (estimated from the dry season radar data) and
radar data are used to calibrate RTM (Optimization Step, Fig. 3).

After calibration of the RTM, we used it to estimate soil mois-
ture from C-band radar data, daily vegetation mass production
and soil roughness (inversion step, Fig. 3). To do this, a back-
propagation algorithm was associated with the RTM. This algo-
rithm looks for the values of the three parameters for which the
same value as the radar coefficient is obtained. In fact, the main
constraint has always been that one could get several triplets
allowing to have the same value as the radar coefficient.

To solve this problem we used the Dry Mater Productivity
(DMP) derived from the VEGETATION-2 optical sensor on SPOT-5
satellite, to estimate vegetation mass. The roughness was calcu-
lated from dry season radar data since it is the only parameter that
influences the radar signal during this period. In fact, during the
dry season, plant production is almost non-existent on the dry soil
and only the surface roughness influences the radar response.
Knowing these two parameters, the retro-propagation algorithm
seeks the soil moisture level allowing the Radiative Transfer Model
to restore the same value as the radar coefficient (we named this
step: inversed model).

Then, the inversion of the model permits to calculate the soil
moisture from radar data using the vegetation mass data from
the DMP. Fig. 3 presents a summary of the sequences of the use
of these two models (STEP and RTM).

Spatial-temporal variability of the estimated soil moisture is
discussed regarding geology maps of the zone.

One part of the radar data used was measured during the day
and the other part at night. We found it necessary to take only
night measurements to minimize the effects of sunshine on
humidity.



Fig. 3. Flow chart showing the various steps of estimating soil moisture.
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To eliminate outliers, the following conditions were used in the
model. This involves replacing the aberrant soil moisture Index
values with a constant. We decided to replace all aberrant soil
moisture Index by �3.33, a constant chosen arbitrary in order to
facilitate cartography. These are pixels:

- having aberrant radar values (positives radar value in dB);
- having no radar value (not covered by the image);
- having a radar response high than �5.5 dB, so that the model
fails to find for them a normal soil moisture value. Because in
the Sahelian zone, with as much vegetation as possible, the
maximum of signal is always lower than �5 dB (Faye et al.,
2011; Frison and Mougin, 1996b; Frison et al., 1998; Jarlan
Fig. 4. Comparison of the measure
et al., 2002, 2003; Zine et al., 2005). Then, the high value of
signal is probably due to the contribution of other factors
not related to vegetation, soil moisture and roughness. And
it is difficult to interpret these other contributions with the
model.

In the following, three soil moisture indices were calculated for
each pixel for the four-years period 2008–2011:

- Maximum soil moisture index obtained during this period (Max
SMI);

- Minimum soil moisture index obtained during this period (Min
SMI);
d and simulated radar signal.
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- Average soil moisture index obtained during this period (Av
SMI).

For this, we took the series of values (Soil moisture Index)
obtained during this four-year period and calculated the maximum
(Max SMI), the minimum (Min SMI) and mean (Av SMI).

For example: Av SMI of September = mean (all values obtained
in September 2008 + all values obtained in September 2009 + all
Table 2
Annual amplitudes of measured and simulated coefficients.

Years r�amp

measured
(dB)

r�amp

simuled
(dB)

Ecart relatif (%) (Measures �
simulations)/simulations

1992 4,37 4,91 11,00%
1993 4,72 4,89 3,48%
1994 4,83 4,78 1,05%
1995 4,38 4,05 8,15%
1996 5,08 5,05 0,59%
1997 4,00 3,76 6,38%
1998 4,73 5,66 16,43%
1999 5,94 4,98 19,28%
2004 5,46 4,49 21,60%
2006 5,54 4,50 23,11%
2007 4,87 4,57 6,56%
Moyenne 5,21 4,69 10,69%

Fig. 5. Evolution of vegetation mass production estimated from SPTO
values obtained in September 2010 + all values obtained in
September 2011).

For a better interpretation of the spatial dynamics observed for
these indices, a first analysis was made to determine their sensitiv-
ity to the seasonal trend. Subsequently, a second analysis consisted
in comparing the geological and geomorphological parameters
with the indices. These two analyses permitted us to understand
the spatial variability of these indices. Indeed, geology and geo-
morphology can influence the run-off/ infiltration.
3. Results

3.1. Radar signal simulation

The first part of this work relates to the optimization of the
Radiative Transfer Model using the long-term series of ESCAT data
on board ERS-1 and ERS-2. Fig. 3 shows the comparison of the tem-
poral signatures observed with the ESCAT scatterometer and the
simulations by the direct model, after optimization (Fig. 4). Overall,
good correlation was observed between the simulations and radar
measurements, with an average error of 10% between the yearly
amplitudes of r� (Table 2). However, there were some small dis-
crepancies between the amplitude of the measured signal and
the simulated one, a consequence of the limit of the RTM. These
results show that the model manages to restore the measured
-VGT DMP data over the study area during the growing season.
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signal from the surface parameters (soil moisture, roughness and
vegetation mass production) with 90% of precision.

3.2. Vegetation mass dynamic during the season

Fig. 5 shows the evolution of plant production calculated from
DMP products. The month of June, corresponding to the beginning
of the rainy season is marked by a very low plant production. This
increases during the rainy season following a south-north gradient,
before reaching its peak at the end of September.
June J

August S

October

L
S

Fig. 6. Map of soil moistures e
3.3. Soil moisture dynamic

Given the low number of ASAR data covering the entire area, a
monthly average of all survey years was made (e.g., June humidity
is the average of moisture data for June of 2008, 2009, 2010 and
2011). We normalized the soil moisture values between 0 to 1,
with 0 corresponding to completely dry soil and 1 a saturated soil.
As the plant production, Fig. 6 show that soil moisture increases
during the rainy season following a south-north gradient between
June to September and decreases during October.
uly

eptember
egend:
oil moisture Index

stimated from radar data.
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3.4. Analyze of soil moisture index

3.4.1. Maximum of soil moisture index
There is a strong north-south gradient of maximum soil mois-

ture (Fig. 7a) showing strong correlation with the rainfall gradient.
This high correlation results from the fact that soil moisture is
often maximal just after it rains. The strong north-south gradient
of rainfall in this area conditioned the spatial variability of the
maximum moisture content. This limits the possibilities of con-
fronting this indicator with the soil parameters.

3.4.2. Minimum of soil moisture index
Contrary to the maximum, the minimum soil moisture is not

influenced by the rainfall gradient (Fig. 7b). Low values are
Fig. 7. Soil moisture
observed in the central zone and especially in the north of the
study area. The high values are encountered in the southeast of
the study area but also and especially along the coast, with an
extension towards the south. Such variability can be the result of
several factors, notably soil characteristics.

Fig. 7b shows that the spatial extent of the minimum moisture
content of the soil follows the geological contours in the south-
eastern part of the study area where limestone sands with lime-
stone outcrops, marls and kaolinic clays are present. Though to a
lesser extent, this situation is also visible along the coastline and
on the south-western part where alluvial and beach sands are
encountered. However, in the central zone, there is no clear rela-
tionship between the spatial variation of the minimum soil mois-
ture Index and the geological contours. The reason is that sand
Index dynamic.



Fig. 8. Variation of soil moisture index (minimum and average) according to the geological layers.
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dunes in the center have a high infiltration rate, which causes the
very quick disappearance of soil moisture, leaving a dry soil in
place. On the contrary, loamy sands with outcrops of limestone,
marls and kaolinic clay have a high-water retention capacity, thus
greater persistence of soil moisture after the rain. This is more the
reason that this area hosts many temporary pools that retain water
even during much of the dry season.
3.4.3. Mean of soil moisture index
High spatial variability in soil moisture values is observed with

high values in the southwest (Fig. 7c). The south-eastern part also
has fairly high values, contrary to the north-central region where
humidity averages are very low. Like minimum humidity, this
strong spatial dynamic may result from the characteristics of the
superficial geological layers of the zone.

Furthermore, as in the case of the minimum humidity, a strong
correlation between the dynamics of the average soil moisture and
the geological contours in the southeast and on the coast, is
observed in Fig. 7c. It is also found that in the central zone, charac-
terized by dune sands, the spatial variability of mean humidity is
related to the lithology. Average soil moisture depends on geology
in some places although the dune sands have a high infiltration
rate.

The low variability of the minimum moisture content for dune
sand (layers beginning with the letter D in Fig. 8 and Table 1)
observed confirms the observations in Fig. 7 where there was no
relationship between the minimum moisture and geological con-
tours. For the other layers, we notice strong dynamic materializing
the correlation between the geology and minimum humidity.

The saw tooth variation of the mean moisture shows that this
index is strongly dependent on geology.
4. Discussion

The seasonal variability of the radar signal amplitude indicates
the dynamic character of annual crop production in the Sahel.
However, in this area, plant production is mainly dependent on
rainfall, which is very variable. The seasons are characterized by
a north-south gradient with a FIT moving from south to north. This
results in very low or no humidity at all in the northern half of the
study area at the beginning of the rainy season (i.e., June). It then
increases slightly in July, particularly in the southern half of the
zone where a high degree of humidity is observed in the extreme
southwest. This trend continues during the months of August
and September following a north-south gradient. There is a high
humidity in September in the south-eastern and south-western
parts of the zone, with some aberrant values due to the the satura-
tion of the signal. This saturation can result from two things:

- a soil saturated in places, causing a very high signal and thus
causing a misinterpretation by the Radiative Transfer Model;

- a strong roughness induced by agriculture exploitations in this
part during the rainy season. This part of the study area is an
agriculture zone, so we assumed that the roughness is constant
throughout the year.

The strong gradient of the maximum humidity observed is con-
ditioned by the spatial variability of the rainfall. This is quite nor-
mal, maximum moisture is observed in the south. As for both the
mean and minimum humidity, there is a strong correlation with
the nature of the geological formations. This situation is explained
by the fact that the ground’s water retention capacity is subject to
its geology.
5. Conclusion and perspectives

This work was based on a combination of radar and optical data
for an estimation of soil moisture and yielded promising results. In
fact, due to the sensitivity of the radar signal to plant production,
roughness and soil moisture, it has always been difficult to deter-
mine from the radar signal the contribution of each of these
parameters to deduce their respective values. The technique of cal-
culating vegetation mass from optical data, estimating roughness
from dry season radar data and then estimating their contribution
and deducing the value of soil moisture is a major step forward.
Nevertheless, there are many soil moisture values classified as
aberrant, resulting from a misinterpretation of the signal by the
Radiative Transfer Model. Using data with a good time repeat
might help filter these values.
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