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A B S T R A C T

The parasitic protozoan Trypanosoma brucei is the causative agent of human African trypanosomiasis (sleeping
sickness) and nagana. Current drug therapies have limited efficacy, high toxicity and/or are continually ham-
pered by the appearance of resistance. Antimicrobial peptides have recently attracted attention as potential
parasiticidal compounds. Here, we explore circular bacteriocin AS-48's ability to kill clinically relevant blood-
stream forms of T. brucei gambiense, T. brucei rhodesiense and T. brucei brucei. AS-48 exhibited excellent anti-
trypanosomal activity in vitro (EC50= 1–3 nM) against the three T. brucei subspecies, but it was innocuous to
human cells at 104-fold higher concentrations. In contrast to its antibacterial action, AS-48 does not kill the
parasite through plasma membrane permeabilization but by targeting intracellular compartments. This was
evidenced by the fact that vital dye internalization-prohibiting concentrations of AS-48 could kill the parasite at
37 °C but not at 4 °C. Furthermore, AS-48 interacted with the surface of the parasite, at least in part via VSG, its
uptake was temperature-dependent and clathrin-depleted cells were less permissive to the action of AS-48. The
bacteriocin also caused the appearance of myelin-like structures and double-membrane autophagic vacuoles.
These changes in the parasite's ultrastructure were confirmed by fluorescence microscopy as AS-48 induced the
production of EGFP-ATG8.2-labeled autophagosomes. Collectively, these results indicate AS-48 kills the parasite
through a mechanism involving clathrin-mediated endocytosis of VSG-bound AS-48 and the induction of au-
tophagic-like cell death. As AS-48 has greater in vitro activity than the drugs currently used to treat T. brucei
infection and does not present any signs of toxicity in mammalian cells, it could be an attractive lead compound
for the treatment of sleeping sickness and nagana.

1. Introduction

African trypanosomes are protozoan parasites responsible for ne-
glected tropical diseases that affect both humans and livestock with
devastating consequences. They threaten the lives of nearly 70 million
people across more than 36 sub-Saharan African countries (Vreysen
et al., 2013; Welburn et al., 2009). In humans, Trypanosoma brucei
gambiense and T. brucei rhodesiense produce sleeping sickness or Human
African Trypanosomiasis (HAT), whereas T. brucei brucei causes nagana
in cattle, one of the main causes of poverty in sub-Saharan Africa
(Reinhardt, 2008). These parasites have a digenetic life cycle that

includes procyclic forms (PCF), which reside in the insect vector (the
tsetse fly), and bloodstream forms (BSF), which replicate in the mam-
malian host and cause the disease. There are several differences be-
tween the two forms. For example, BSF express the variant surface
glycoprotein (VSG) that forms a densely packed surface coat (David
Barry and McCulloch, 2001; Natesan et al., 2007) which is lost during
differentiation to PCF. In addition, BSF endocytosis is clathrin depen-
dent and 10-fold faster than in PCF (Morgan et al., 2001; Pal et al.,
2002). Drugs currently used to treat HAT have limited efficacy, they are
toxic and/or are hampered by the continual appearance of resistance
and, therefore, there is an urgent need for new medications (Cullen and
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Mocerino, 2017). Ideally, to avoid cross-resistance phenomena, any
new drugs must have a different uptake mechanism and/or action than
those in use today.

Antimicrobial peptides (AMPs) have recently attracted attention as
potential parasiticidal compounds. They constitute a family of small
polypeptides, with diverse spectra, modes of action, molecular weights,
genetic origins, and biochemical properties (Riley and Wertz, 2002). A
few AMPs from mammalian (Gonzalez-Rey et al., 2006; McGwire et al.,
2003), insect (Hu and Aksoy, 2006) or synthetic (Haines et al., 2003)
origins has been assayed against Trypanosoma sp., with a positive effect
in the low micromolar range, highlighting their potential in HAT
treatment (McGwire et al., 2003). Bacteriocins are a family of riboso-
mally synthesized AMPs secreted by bacteria that inhibit the growth of
closely related species (narrow spectrum) or across genera (broad
spectrum). They are biotechnologically very relevant since they show
low eukaryotic toxicity and so they can be used as natural preservatives
in the food industry (Ramu et al., 2015). Furthermore, some bacter-
iocins have a remarkable therapeutic potential in terms of local and
systemic infections, highlighting the potential value of the these natural
molecules as alternatives to antibiotics and other drugs (Montalban-
Lopez et al., 2011). They are of even greater interest since the in-
creasing incidence of multidrug-resistant microorganisms has become a
growing risk to global public health. One of the best characterized
bacteriocin is AS-48, a 70-residue circular peptide produced by some
strains of Enterococcus faecalis (Maqueda et al., 2004). AS-48 exerts a
bactericidal/lytic action on sensitive cells (most Gram-positive and
some Gram-negative bacteria). Its primary target is the bacterial
membrane, in which it forms pores, leading to dissipation of the proton
motive force and cell death; a similar mechanism to the one proposed
for defensins and other cationic antibacterial peptides. This feature,
together with its remarkable stability and solubility over a wide pH
range, suggests that this bacteriocin could be a good candidate for
clinical and veterinary applications (Montalban-Lopez et al., 2011).
Although AS-48 has no activity against the majority of eukaryotes,
some protozoa with anionic phospholipids exposed on the parasite
surface allow the interaction with this type of strongly cationic pep-
tides. Indeed, the leishmanicidal activity of AS-48 at low micromolar
concentrations has recently been demonstrated by inducing both
plasma membrane permeabilization and a fast bioenergetic collapse
leading to apoptotic parasite death (Abengózar et al., 2017).

The current study explores the efficacy of the circular bacteriocin
AS-48 against the complex T. brucei causative agent of HAT and nagana.
The results show AS-48 efficiently kills in vitro BSF of T. brucei in the
low nanomolar range. It is taken up by clathrin-mediated endocytosis
and induces an autophagic-related cell death. These results suggest AS-
48 is a promising new trypanocidal agent.

2. Materials and methods

2.1. Strains and culture conditions

‘Single marker’ (S16) T. brucei (Lister 427, antigenic type MiTat 1.2,
clone 221a) BSF and T. brucei 449 PCF were cultured as previously
described (Wirtz et al., 1999; Cabello-Donayre et al., 2016). T. brucei
rhodesiense (EATRO3 ETat1.2 TREU164) and T. brucei gambiense
(ELIANE strain) BSF were grown at 37 °C, 5% CO2 in HMI-9 medium
supplemented with 20% heat-inactivated fetal bovine serum (hiFBS,
Invitrogen). To generate clathrin depleted cell lines, the plasmid
p2T7TiCLH was transfected into the T. b. brucei S16 cell line (Allen
et al., 2003). The human MRC-5 cell line (fibroblasts derived from lung
tissue) was cultured in DMEM (Invitrogen) medium plus 10% hiFBS.
The producer AS-48 Enterococcus faecalis UGRA-10 strain (Cebrián
et al., 2012) was growth in Brain Hearth Infusion (BHI) or Brain Hearth
Agar (BHA) (Merck) media at 37 °C without aeration. For AS-48 pro-
duction, UGRA-10 strain was cultured at 28 °C in Esprion 300 (E−300,
DMV Int., Veghel, Netherland) plus 1% glucose (E−300-G) following

the conditions established by Ananou et al. (2008).

2.2. Drug susceptibility assay

AS-48 susceptibility was performed as previously described
(Carvalho et al., 2015). Briefly, T. b. rhodesiense, T. b. gambiense and T.
b. brucei S16 BSF (104 cells) were incubated in 96-well plates with in-
creasing concentrations of AS-48 (0.1–50 nM) for 72 h at 37 °C, 5% CO2

in culture medium. Cell proliferation was determined using the ala-
marBlue® assay (Räz et al., 1997). T. b. brucei PCF (106 cells) and MRC-
5 cells (2× 103 cells) were incubated in 96-well plates with AS-48
(0.01–12.5 μM) for 72 h at 28 °C or 37 °C, respectively. Cell proliferation
was determined using the MTT colorimetric assay as previously de-
scribed (Pérez-Victoria et al., 2006).

2.3. Bacteriocins purification and FITC labelling

AS-48 was purified to homogeneity from cultures of enterococcal
producer strains in the conditions established previously (Ananou et al.,
2008) and lyophilized until its use, when it was dissolved in PBS.
Fluorescein-labeled AS-48 (FITC-AS-48) was obtained as described
(Abengózar et al., 2017).

2.4. Determination of plasma membrane permeabilization

Plasma membrane integrity was tested using SYTOX® green dye as
described elsewhere (Carvalho et al., 2015). Briefly, T. b. brucei BSF
(1×107mL−1) were incubated with 0.05, 0.1 or 0.5 μM AS-48 during
10, 30 or 60min at 4 or 37 °C. Then, 5 nM SYTOX® green was add for
10min at 4 °C. Washed parasites were analyzed in a FACScan flow
cytometer (Becton Dickinson, CA, USA). Triton™ X-100 (0.1%) (Sigma)
was used as control of permeabilization.

2.5. Determination of AS-48 uptake

T. b. brucei BSF (1×107mL−1) were incubated at 4 or 37 °C with
FITC-AS-48 (0.2 μM) for 10, 30, 45 and 60min and analyzed by flow
cytometry as described above.

2.6. TbClathrin RNAi

p2T7TiCLH transfected cells were selected with 2.5 μgmL−1 G418
and 5 μgmL−1 Hygromycin. Clones were induced with 5 μgmL−1

doxycycline and selected for growth defect and human transferrin (HT)
uptake decrease (Bart et al., 2015). The effect of AS-48 on the growth
was performed in triplicate with cells induced for 4 h.

2.7. Analysis of the interaction between VSG and AS-48

VSG from T. b. brucei Lister 427, antigenic type MiTat 1.2, clone
221a was purified as described (Cross, 1984; Navarro and Cross, 1996).
The interaction between AS-48 and VSG was determined by ELISA as
previously described in (Gonzalez-Rey et al., 2007) but with some
modifications. Briefly, 96-well ELISA plate was coated with 100 μl/well
of purified VSG (10 μgmL−1 in phosphate buffer 0.1M pH 9.0) and
incubated overnight at 4 °C. Wells were washed four times with 200 μl
of washing buffer (PBS containing 0.01% Tween-20), then blocked with
fetal bovine serum at room temperature during 2 h. After four further
rinses with washing buffer, 100 μl AS-48 (10 μgmL−1 in PBS pH 7.4)
were added and incubated 4 h at 37 °C (control wells received only
PBS). Wells were washed four times as above described, and 100 μl anti-
AS-48 (rabbit antibodies) (Maqueda et al., 1993) was added to each
well (diluted 1/100) and incubated for 2 h at 37 °C and then, the plate
was washed again four times and 100 μL/well of horseradish peroxidase
(HRP)-conjugated anti-rabbit IgG antibodies (Abcam) was added during
2 h at 37 °C. After eight further rinses with washing buffer, color was
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developed using ABTS (2,2′-azino-di-[3-ethyl-benzothiazoline-6 sul-
fonic acid] diammonium salt) as substrate of HRP and the absorbance
was measured at 450 nm.

2.8. Fluorescence microscopy

T. b. brucei BSF (2×106 cells) were harvested and washed with
TDB-glucose, resuspended in 1mL in the same buffer and incubated for
10min at 37 °C. Then, 1 μM of FITC-AS-48 were added and immediatley
cells were fixed for one hour at 4 °C in 2% paraformaldehyde (PFA)
diluted in cold PBS. Parasites were finally washed twice with PBS and
labeled cells were analyzed in microscope system (Cell R IX81;
Olympus).

2.9. Wide field microscopy

BSF parasites (2×106 cells) were fixed (2% PFA for one hour),
washed and stained with DAPI (4,6-diamidino-2-phenylindole) (Sigma)
to label DNA. Samples were visualized under differential interference
contrast (DIC) optics. Images acquisition were performed with a mo-
torized microscope system (Cell R IX81; Olympus) with a 100×NA 1.4
oil objective (Olympus), a MT20 illumination system, and a charge-
coupled device camera (Orca; Hamamatsu Photonics). Images dis-
playing maximum intensity projections (Z stack= 0.2 μm) from 3D
image data sets were processed using an ImageJ software v. 1.43
(National Institutes of Health). Time-lapse microscopy video showing
BSF trypanosomes was recorded under control conditions (37 °C and
5% CO2). Frames collected using a 63×NA 1.4 oil objective are dis-
played at a rate of 10 frames/s.

2.10. Transmission electron microscopy (TEM)

BSF parasites (2× 106mL−1) were incubated with 0.1 μM AS-48 at
37 °C for 30min. Parasites were then fixed and treated as described
elsewhere (Pérez-Victoria et al., 2006). Ultrathin sections of 500 Å were
cut on Ultracent S Leica microtome, counterstained with uranyl acetate
and lead citrate. Samples were imaged in a Zeiss 902 transmission
electron microscope.

2.11. Determination of autophagy

To generate the EGFP-ATG8.2 (Tb927.7.5910) fused protein, a PCR
fragment was amplified using the oligonucleotides AAGCTTATGAGTA
AAAAAGATAGCAAGTAC and GGATCCTTAGCATCCAAATGTCGCCTC.
The vector, pLew100 (kindly provided by Dr Duszenko, University of
Tübingen, Germany) was digested with HindIII and BamHI, and the
ATG8.2 was cloned using the same restriction sites. The HindIII site was
used for fusing the EGFP at the N-terminal. For integration, the plasmid
was linearized with NotI and transfected as described (Cabello-Donayre
et al., 2016). Cloned transgenic cells lines were selected on 5 μg
mL−1phleomycin and the cells were induced with 5 μgmL−1 of dox-
ycycline. EGFP-ATG8.2 BSF parasites (concentrated to 107mL−1) were
treated with 100 nM AS-48 during 30 and 60min at 37 °C, washed and
fixed as above described. Autophagy was monitored by fluorescence
microscopy after counting the number of autophagosomes labeled with
EGFP-ATG8.2 per cell (more than 200 cells were observed in each
condition).

2.12. Statistical analysis

Experiments were performed three times in duplicate. All data are
presented as mean and standard deviation (S.D.). Statistical significance
was determined by Student's t-test. Significance was considered as
p < 0.05.

3. Results and discussion

3.1. AS-48 efficiently kills BSF T. brucei in the low nanomolar range

We first investigated bacteriocin AS-48's ability to kill the mam-
malian infective stage (BSF) of three subspecies of T. brucei that cause
HAT and/or nagana. AS-48 exhibited a high capacity to inhibit the in
vitro proliferation of BSF at low nanomolar range concentrations (Fig. 1
and Table 1). Thus, the EC50 (50% efficacy concentration) ranged from
1.70 ± 0.19 nM for T. brucei rhodesiense, 2.61 ± 0.08 nM for T. brucei
gambiense to 3.12 ± 0.15 nM for T. brucei brucei S16. By contrast, we
did not observe any cytotoxic effect against MRC-5 (control), a non-
tumoral human cell line extensively used as a control of drug toxicity
(De Rycker et al., 2013; Sánchez-Fernández et al., 2015; Belmonte-
Reche et al., 2016; Pham et al., 2017), at 12.5 μM AS-48, whereas only
22% growth inhibition was described at 50 μM AS-48 in the murine
monocytic cell line Raw 264.7 (Abengózar et al., 2017). The selectivity

Fig. 1. AS-48 kills BSF of T. brucei (a) AS-48 inhibits the proliferation of T.
brucei. PCF (open circles) or BSF (filled circles) of T. brucei and control MRC-5
human cells (filled triangles) were incubated with increasing concentrations of
AS-48 at 37 °C and for 72 h. Cell viability was determined using an alamarBlue®-
based assay and expressed as the percentage of untreated control samples. The
results show the mean ± SD for one of the three independent experiments
performed in triplicate. (b) Cytocidal effect of AS-48 on BSF of T. brucei. BSF of
T. brucei were incubated with 100 nM AS-48 for 60min at 37 °C and the cells
were fixed and stained with DAPI (left panel). The middle panel corresponds to
Nomarsky (DIC) images and the right panel shows the images once merged.
Scale bar: 2 μm.
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index of AS-48 was therefore higher than 1.6-3×104 fold. Our EC50

values in BSF were even lower than those described for trypanocidal
agents currently in use, such as suramin, pentamidine or melarsoprol
(Bakunova et al., 2009). Indeed, the AS-48 trypanocidal effect was
stronger than the cidal effect described against bacteria: the most

Table 1
AS-48 activity on HAT and nagana-causing T. brucei subspecies. The results
are the mean ± SD of three independent experiments performed in triplicate.
EC50: 50% inhibitory concentration of AS-48.

EC50 (nM)

BSF PCF Human cells

T. brucei
rhodesiense

T. brucei
gambiense

T. brucei brucei T. brucei brucei MRC-5

1.7 ± 0.2 2.6 ± 0.1 3.1 ± 0.2 140.0 ± 57.0 No growth
inhibition at
12,500

Table 2
Trypanocidal concentrations of AS-48 do not permeabilize the parasite
plasma membrane. The effect of AS-48 on plasma membrane permeability was
determined by flow cytometry using SYTOX® Green as described in Materials
and Methods. Intracellular fluorescence after 0.1% Triton™ X-100 treatment
was used as a control of 100% permeabilization. Parasite death under the same
conditions was monitored using optical microscopy to calculate the percentage
of non-motile parasites.

AS-48
(μM)

Time
(min)

4 °C 37 °C

Intracellular
fluorescence (%
of control)

Cell
death
(%)

Intracellular
fluorescence (%
of control)

Cell death (%)

0.05 10 <2 <10 <2 12.0 ± 3.4
30 <2 <10 <2 26.2 ± 20.8
60 <2 <10 <2 34.6 ± 4.8

0.1 10 <2 <10 <2 9.4 ± 3.4
30 <2 <10 <2 37.6 ± 26.0
60 <2 <10 <2 63.4 ± 12.5

0.5 10 < 2 <10 <2 26.6 ± 13.9
30 <2 <10 3.3 ± 3.1 86.0 ± 12.4
60 <2 <10 7.1 ± 0.5 95.5 ± 2.5

Fig. 2. The trypanocidal effect of AS-48 is temperature-dependent. BSF of T. brucei were incubated with 100 nM AS-48 for 30 and 60min at 4 °C and 37 °C,
respectively. Parasites were then fixed and stained with DAPI (upper panel). The middle panel shows the DIC images and the lower panel shows the merged images.
Scale bar: 2 μm. These images are representative of four independent experiments performed in duplicate.

Fig. 3. The uptake of fluorescent AS-48 by BSF of T. brucei is temperature-
dependent. BSF were incubated at 4 °C or 37 °C with 0.2 μM of fluorescent
FITC-AS-48 for 10, 30, 45 and 60min. AS-48 accumulation was analyzed by
flow cytometry, as described in Material and Methods. The results are the
mean ± SD of three experiments. Significant differences were determined
using Student's t-test (*, p < 0.05 versus 4 °C).
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susceptible being Listeria monocytogenes (140 nM) (Mendoza et al.,
1999) and Enterococcus (500 nM) (Maqueda et al., 2004). In general, the
EC50 against T. brucei were several orders of magnitude lower than
those described for the majority of the AMPs actives against these
parasites, such as pleurocidin (3.7 μM), CP-26 (1.7 μM), attacin
(0.3 μM), stomoxyn (37 μM), indolicin (5.2 μM) or some human anti-
microbial compounds like the neuropeptide VIP (2.8 μM), adrenome-
dullin (1.8 μM) or LL-37 (1.7 μM) (Harrington, 2011). These EC50 va-
lues were even lower than those described for peptide leucinostatin A
and B (6–7 nM), which were more effective against T. b. brucei than T. b.
rhodesiense and with selectivity indexes 80-fold lower than AS-48
(Ishiyama et al., 2009; Harrington, 2011). In addition, the AS-48 effect
on BSF occurred after just a short incubation period (either in the
presence (Fig. 1b and Table 2) or absence (data not shown) of FBS),
suggesting a trypanocidal effect on the parasites. This feature is an
additional advantage of AS-48, since fast-acting trypanocidal drugs that
can eliminate the parasite in as few doses as possible are more prefer-
able than cytostatic compounds (Rycker et al., 2012).

Remarkably, AS-48 was also active against PCF of T. b. brucei
(EC50= 140 ± 57 nM) (Fig. 1 and Table 1). Although this EC50 is 45
times higher than the one for BSF, it is much lower than those reported
for other AMPs, which do not usually present any activity or only in the
high micromolar range (Harrington, 2011), with attacin being the ex-
ception (Hu and Aksoy, 2005).

Additionally, several studies have shown that AS-48 has no activity
against the majority of eukaryotic cells tested, including yeast and
parasites such as Naegleria fowleri or Acanthamoeba (Grande Burgos
et al., 2014; Maqueda et al., 2004), in agreement with the absence of
toxicity against the human cell line we assayed in this study (Fig. 1).
However, AS-48's lethality against Leishmania promastigotes and in-
tracellular amastigotes, with scarce cytotoxicity on macrophages, has
been reported recently, although the EC50 values were 103–104-fold
higher (1.3–10.2 μM) (Abengózar et al., 2017) than the ones studied
here.

Fig. 4. AS-48 is internalized by BSF of T.
brucei through clathrin-dependent en-
docytosis. (a) Clathrin-depleted cells were
incubated with 0 (control), 0.05, 0.1 and
0.5 μM AS-48 for 10, 30 and 60min and the
number of live cells counted. The data are
represented as cell survival percentages
with respect to the control (cells incubated
for 10min in the absence of AS-48).
Experiments were performed in triplicate
upon 4 h of TbCLH RNAi induction. The
results are shown as the mean ± SD of
three experiments (*, p < 0.05 versus non
depleted controls). (b) Representative DIC
pictures extracted from videos displayed in
Supplementary data (See Supp. Data). T. b.
brucei WT (upper panel) vs. TbCLT KD
(lower panel), with (right) or without (left)
AS-48.
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3.2. AS-48 has a plasma membrane pore-formation-independent killing
effect against T. brucei

According to the bactericidal mode of action described for AS-48,
wherein its primary target is the bacterial membrane (Sánchez-Barrena
et al., 2003), its effect on trypanosome may be a result of the peptide
binding to the parasite surface and subsequently forming pores in the
plasma membrane. To analyze this hypothesis, we investigated the ef-
fect of AS-48 on T. brucei plasma membrane integrity by using flow
cytometry to monitor the uptake of the vital dye SYTOX® Green
(Carvalho et al., 2015). This stain does not penetrate intact cells and
becomes fluorescent when it binds to the DNA of permeabilized cells.
The viability of the treated trypanosomes under these conditions was
checked with an optical microscope (Luque-Ortega et al., 2012; Greene
and Hajduk, 2016; Castillo-Acosta et al., 2013).

BSF parasites were treated with different concentrations of AS-48
(50, 100 and 500 nM) for 10, 30 and 60min at 37 °C (Table 2). We used
AS-48 concentrations that were higher than the EC50 obtained (Table 1)
because the incubation times were shorter (10–60min vs 72 h) and a lot
more cells were used (107 cells mL−1 vs 104 cells mL−1) in this ex-
periment. As shown in Table 2 and Fig. 2, AS-48 concentrations in the
order of 100 nM, that were significantly trypanocidal at 37 °C (around

40–65% cell death in 30–60min), only slightly increased SYTOX® Green
accumulation (< 2%) compared with the control for maximal cell
permeabilization, obtained using 0.1% Triton™ X-100. Furthermore,
this trypanocidal effect was temperature dependent as neither parasite
permeabilization nor death was detected at 4 °C, even at the higher
concentrations and periods tested (500 nM for 60min) (Table 2 and
Fig. 2).

Collectively these data indicate that AS-48 does not permeate the
parasite plasma membrane and therefore promote the rapid influx and
efflux of small molecules, as occurs in bacteria and even in Leishmania
(Abengózar et al., 2017; Sánchez-Hidalgo et al., 2011). T. brucei must
undergo a cell death mechanism that differs from the bactericidal me-
chanism, which usually involves ion leakage through pores formed once
AS-48 has interacted with the cell membrane.

3.3. Role of clathrin-mediated endocytosis in AS-48 internalization

As T. brucei endocytosis is mostly blocked at 4 °C (Yeaman et al.,
2001), the absence of a trypanocidal effect at this temperature could
suggest that AS-48 needs to be internalized to exert its activity, a re-
quisite already proposed for neuropeptides (Delgado et al., 2008). Al-
though T. brucei endocytosis is limited to the flagellar pocket, a small
specialized plasma membrane invagination surrounding the base of the
flagellum, this process is extremely efficient in BSF of the parasites
(Allen et al., 2003; Field and Carrington, 2009).

To explore the relationship between endocytosis and AS-48 activity,
we first studied the uptake of labeled AS-48 by BSF T. brucei. After
validating that FITC-AS-48 killed the parasites with the same potency as
the unlabeled peptide (data not shown), they were incubated with
0.2 μM FITC-AS-48 for 10, 30, 45 and 60min at physiological tem-
perature (37 °C) and also at 4 °C to inhibit endocytosis. The results
(Fig. 3) show that while FITC-AS-48 accumulation increased with time
at 37 °C, the peptide was not internalized at 4 °C. Intracellular FITC-AS-
48 accumulation at 37 °C could be even higher than the showed in
Fig. 3 as FITC fluorescence could be diminished in acidic compartments
of the endocytic pathway (Lanz et al., 1997). This suggests endocytosis
indeed plays an essential role in AS-48 uptake, and internalization is
necessary for this bacteriocin to become trypanocidally active. That
could explain the higher activity of AS-48 in BSF compared to PCF, as
the later has a reduced rate of endocitosys (Morgan et al., 2001; Pal
et al., 2002). Unfortunately, due to its high trypanocidal activity and
the low sensitivity of FITC labeling, we were unable to analyze the
intracellular presence of AS-48 by fluorescence microscopy.

In a further attempt to definitively determine the role of endocytosis
in AS-48 trypanocidal action, we decided to specifically inhibit en-
docytosis by reducing clathrin heavy chain (TbCLH) expression through
RNA interference (RNAi), since endocytosis is an exclusively clathrin-
dependent mechanism in T. brucei (Allen et al., 2003). After confirming
that human transferrin uptake by endocytosis decreased to 59% within
4 h of RNAi induction and without affecting cell growth (data not
shown), TbCLH knockdown (KD) cells were incubated at 50 or 100 nM
AS-48 and then cell survival assessed after 10, 30 and 60min. A sta-
tistically significant increase in cell survival (90% vs. 55%) was ob-
served for the TbCLH KD cells after 30min (100 nM AS-48) and 60min
(50 nM AS-48) (Fig. 4 and supplemental video), indicating that clathrin-
depleted cells were less permissive to the action of AS-48.

Supplementary video related to this article can be found at http://
dx.doi.org/10.1016/j.ijpddr.2018.03.002.

These results strongly imply that clathrin-mediated endocytosis is
involved in AS-48 internalization within the parasite. This mode of
action targeting the trypanosome's interior is considered to be an at-
tractive drug development strategy (Alsford et al., 2013; Barrett et al.,
2007). Indeed endocytosis also mediates the targeting of a natural
trypanocide such as ApoL1 (Vanhollebeke et al., 2008), and trypano-
cidal drugs, e.g., suramin (Alsford et al., 2012), into trypanosomes.

Fig. 5. AS-48 binds VSG at the surface of BSF of T. brucei (a) FITC-AS48
binds to the surface of the parasites. 1 μM FITC-AS-48 was added to BSF
parasites and cells were immediately fixed before being observed by fluores-
cence microscopy. The representative image shows how FITC-AS-48 label the
plasma membrane in most cells. Scale bar: 5 μm (b) AS-48 interact with isolated
VSG. 96-well ELISA plate coated with purified VSG were incubated with AS-48
or PBS (control), and the peptide bound to VSG was detected with anti-AS-48
(rabbit), HRP-conjugated anti-rabbit IgG antibodies and the HRP substrate
ABTS. The results shows ELISA well absorbance at 450 nm and are the
mean ± SD of two independent experiments performed in triplicate.
Significant differences were determined using Student's t-test (* p < 10−5

versus control).
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3.4. AS-48 interact with VSG at the surface of the parasite

Although we were yet to determine which kind of endocytosis was
responsible for the uptake of the cationic bacteriocin AS-48, it was
tempting to think that it could take place once it had interacted with
anionic residues on the outer surface of the parasite (Souto-Padrón
et al., 1990), as suggested for the neuropeptide VIP, another cationic
trypanocidal peptide believed to bind to negatively charged glycopro-
teins such as VSG (Gonzalez-Rey et al., 2006).

To explore this possibility, first we analyzed whether labeled AS-48
interacted with the surface of the parasites. Fig. 5a shows that after
adding high concentration (1 μM) of FITC-AS-48 to the parasites and
proceed to their immediate fixation, the peptide was mainly located at
the plasma membrane in most cells, evidencing a direct interaction with
the surface of the parasite. Then, we monitoryze the ability of AS-48 to
interact with purified VSG using an ELISA-like assay. To asses that, VSG
was first affixed to a ELISA plate through passive adsorption and then,
AS-48 was applied (except in controls wells) so that it could bind to
VSG. After washing the plate to eliminate free peptide, AS-48 was de-
tected using polyclonal antibodies against AS-48 and a secondary an-
tibody covalently linked to HRP, that produces a detectable absorption
signal in the presence of a HRP substrate. Fig. 5b shows the significative
absorbance at 450 nm detected only when AS-48 was added to the VSG-
containing wells, indicating a specific interaction between VSG and AS-
48.

These results strongly suggest that AS-48 is endocytosed after its
interaction with VSG. The high number of VSG copies on the parasitic
surface (107 molecules per cell) and its extremely rapid internalization
and recycling by endocytosis (the VSG coat is completely internalized in
12.5 min) (Engstler et al., 2004) could explain the AS-48's efficiency
and specificity against T. brucei. Interestingly, this mechanism could
also help prevent resistance developing through reduced drug uptake
(Alsford et al., 2013) because endocytosis is essential for the parasite
(Field and Carrington, 2009) and possibly also explain our inability to
generate AS-48-resistant parasites (MMG et al., unpublished results).

3.5. AS-48 kills Trypanosoma brucei by inducing autophagy

In any case, once AS-48 has combined and reacted with the surface,
then it is internalized and subsequently interacts with the intracellular
components. To further explore its intracellular effects, AS-48-treated
parasites were examined by transmission electron microscopy (TEM),
during which we observed profound ultrastructural alterations (Fig. 6).
Incubation with 100 nM AS-48 for 30min did not affect plasma mem-
brane integrity but rather induced an extensive increase in the number
of vesicular structures within the cytosol, including the presence of
double-membrane vesicles resembling autophagic vacuoles (Fig. 6c, f, h
and i), myelin-like structures (Fig. 6b, d, g and i), multivesicular
structures (Fig. 6d) and even alterations of the nuclear envelope with
regions of the outer nuclear membrane separated from the inner

Fig. 6. Ultrastructural alterations on BSF cells caused by AS-48. Representative transmission micrographs of ultrathin resin sections of BSF parasites before (a) or
after (b–i) treatment with 100 nM AS-48 for 60min; note the morphological features of autophagic cell death. Autophagic-like vacuoles (av), myelin-like structures
(mls), multivesicular structures (mvs) and dilated nuclear membrane (dnm) are shown with black arrows. f, flagellum; fp, flagellar pocket; m, mitochondrion; n,
nucleus; Ac, acidocalcisome. Scale bars are indicated on the images.
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nuclear membrane (Fig. 6f and g). The high frequency and wide variety
of autophagic-like vacuoles and related structures observed in parasites
after treatment with AS-48 strongly indicate that treated cells die pri-
marily by autophagy. Indeed, similar ultrastructural alterations were
observed after treatment with compounds that induce autophagic cell
death in Trypanosoma brucei (at much higher concentrations) such as
dihydroxyacetone (DHA) (at 3mM) (Uzcátegui et al., 2007) and the
neuropeptide VIP (at 40 μM) (Gonzalez-Rey et al., 2006).

To definitively confirm the role of autophagy in the AS-48-induced
cell death mechanism, we assessed autophagy occurring in AS-48-
treated parasites by monitoring the formation of ATG8.2-containing
autophagosomes. ATG8.2 is a ubiquitin-like protein required for au-
tophagosome membrane formation (Proto et al., 2014). A soluble form
is present in the cytosol of cells. However, in conditions that favor
autophagy, ATG8.2 is recruited into the membrane of autophagosomes,

and their number can be monitored by fluorescence microscopy after
labeling ATG8.2 with a fluorescent tag (Proto et al., 2014). So we first
cloned ATG8.2 with an EGFP tag at the N-terminal of the gene. Then,
EGFP-ATG8.2 transfected BSF parasites were incubated with 100 nM
AS-48 for 30 and 60min, and the number of labeled autophagosomes
(EGFP-ATG8.2 puncta) per cell was quantified by fluorescence micro-
scopy. In most control cells (99.5%), EGFP-ATG8.2 was mainly dis-
tributed throughout the cytoplasm (63%) or in a single punctate
structure (36%), whereas almost no parasite (0.5%) contained more
than one autophagosome (Fig. 7). Contrastingly, AS-48 treated para-
sites showed a significant increase in the number of autophagosomes
per cell, with around 60% of the parasites containing two or more
autophagosomes, whereas only a minority of cells presented no EGFP-
ATG8.2 puncta (15%) (Fig. 7). In fact the mean number of autopha-
gosomes per cell increased from 0.38 to 2.01 after AS-48 treatment.
These findings help shed light on the bacteriocin AS-48-induced au-
tophagy that occurs in BSF of T. brucei.

Notably, this lethal mechanism is different from the one recently put
forward to explain the leishmanicidal effect of AS-48 (Abengózar et al.,
2017). In Leishmania, AS-48 produced partial plasma membrane per-
meabilization and mitochondrial dysfunction leading to apoptotic cell
death. In T. brucei, AS-48 does not form pores at the plasma membrane
but it is taken up through clathrin-mediated endocytosis after its in-
teraction with VSG at the parasite surface, generating AS-48 containing
phagosomes. The bacteriocin could then alter the normal structure of
these membranous vesicles from the endocytic pathway, as AS-48 is a
membrane-interacting peptide that, once accumulated in the mem-
brane, changes to a different dimeric conformation (from DF-I to DF-II)
which produces membrane-damaging pores (Jenssen et al., 2006;
Sánchez-Barrena et al., 2003). Indeed the myelin-like structures, au-
tophagic vacuoles and multivesicular structures observed after AS-48
treatment could develop after these endocytic membranes damaged by
AS-48 are degraded by autophagy (Dezfuli et al., 2006; Uzcátegui et al.,
2007). This is probably indicative of a reparative cell response to the
damage AS-48 causes to membrane structure and function, as already
suggested for the case of the trypanocidal agent DHA (Uzcátegui et al.,
2007). AS-48 could eventually lead to an exacerbated increase in au-
tophagy resulting in parasite death, as also proposed in the case of DHA
(Uzcátegui et al., 2007). Regardless, as the causal-effect relationship of
autophagy and cell death is not well understood in T. brucei, specially in
BSF, we can not rule out that while autophagy can be triggered to
rescue cell death caused by AS-48, this pathway of autophagy itself may
not lead to cell death (Li et al., 2012).

4. Conclusions

AS-48, the first bacteriocin reported to have activity against T.
brucei, kills the BSF of different subspecies of this parasite at lower
concentrations than those required for drugs currently used to treat
HAT. AS-48 is also innocuous to human cells, presenting a selectivity
index of more than 104-fold. Unlike its bactericidal mechanism of ac-
tion, AS-48 does not kill the parasite through permeabilization of its
plasma membrane. In contrast, it is taken up by clathrin-mediated en-
docytosis afer its interaction with VSG at the surface of the parasite and
induces autophagic cell death. As AS-48 is a very stable circular peptide
that exhibits high resistance to exopeptidases and very low im-
munogenicity, our results suggest that this bacteriocin could represent
an attractive lead compound against T. brucei.
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