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Abstract
Decadal climate predictability in the North Atlantic is largely related to ocean low frequency variability, whose sensitiv-
ity to initial conditions is not very well understood. Recently, three-dimensional oceanic temperature anomalies optimally 
perturbing the North Atlantic Mean Temperature (NAMT) have been computed via an optimization procedure using a linear 
adjoint to a realistic ocean general circulation model. The spatial pattern of the identified perturbations, localized in the North 
Atlantic, has the largest magnitude between 1000 and 4000 m depth. In the present study, the impacts of these perturba-
tions on NAMT, on the Atlantic meridional overturning circulation (AMOC), and on climate in general are investigated in a 
global coupled model that uses the same ocean model as was used to compute the three-dimensional optimal perturbations. 
In the coupled model, these perturbations induce AMOC and NAMT anomalies peaking after 5 and 10 years, respectively, 
generally consistent with the ocean-only linear predictions. To further understand their impact, their magnitude was varied 
in a broad range. For initial perturbations with a magnitude comparable to the internal variability of the coupled model, the 
model response exhibits a strong signature in sea surface temperature and precipitation over North America and the Sahel 
region. The existence and impacts of these ocean perturbations have important implications for decadal prediction: they can 
be seen either as a source of predictability or uncertainty, depending on whether the current observing system can detect them 
or not. In fact, comparing the magnitude of the imposed perturbations with the uncertainty of available ocean observations 
such as Argo data or ocean state estimates suggests that only the largest perturbations used in this study could be detectable. 
This highlights the importance for decadal climate prediction of accurate ocean density initialisation in the North Atlantic 
at intermediate and greater depths.

Keywords Decadal climate predictability · Initial condition uncertainties · Linear optimal perturbations · North Atlantic 
variability · Atlantic meridional overturning circulation · IPSL-CM5A

1 Introduction

The North Atlantic is one of the regions where near-term cli-
mate predictions are most promising (Kirtman et al. 2013). 
Such near-term climate predictions, on interannual to dec-
adal timescales, have a strong potential to influence our soci-
ety with benefits to agriculture (Hammer et al. 2001), energy 
supply strategies, adaptation to global change, etc. However, 
these applications depend on the accuracy and reliability of 
the predictions (Slingo and Palmer 2011). In turn, the latter 
depend on a careful assessment of prediction uncertainty. 
Indeed, in a perfect and therefore reliable prediction system, 
prediction uncertainties and forecast errors are expected to 
be equal on average (Palmer et al. 2006). For lead times 
shorter than a few decades, internal variability and model 
imperfections have been shown to be the major contributors 
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to the climate projection uncertainty in contrast to the uncer-
tainty arising from emission scenarios for greenhouse gases 
(Hawkins and Sutton 2009). Near-term climate prediction 
experiments strive to reduce the projections uncertainty 
by carefully initialising the climate system (Meehl et al. 
2013). However, even for small errors in the initial state, 
a large uncertainty may arise from the non-linearity of the 
system (Lorenz 1963). This source of uncertainty is usually 
taken into account by performing ensemble predictions with 
slightly perturbed initial conditions.

Several ensemble generation techniques based on atmos-
pheric perturbations only, extending from random perturba-
tions (e.g. Griffies and Bryan 1997; Persechino et al. 2013) 
and shifting atmospheric state by a few days (e.g. Collins 
and Sinha 2003; Collins et al. 2006; Yeager et al. 2012), 
to more elaborated methods designed to generate optimal 
initial perturbations, such as atmospheric singular vectors 
(e.g. Hazeleger et al. 2013) and breeding vectors (e.g. Ham 
et al. 2014), have been used for decadal predictions and pre-
dictability analyses. Although, all of these methods generate 
ensemble spread in the whole climate system, they neglect 
uncertainties in the ocean initial state that need to be taken 
into account at seasonal and decadal timescales. This may 
result in insufficiently dispersive ensembles, thereby lead-
ing to overconfident and therefore unreliable forecasts (e.g. 
Ho et al. 2013). Despite these generally accepted ideas, the 
inclusion of ocean state uncertainties in the initial ensemble 
spread remains challenging.

Germe et al. (2017) compared the impact of random 
atmospheric perturbations vs oceanic perturbations mim-
icking random oceanic uncertainties and found that the 
latter have the same impact on the future evolution of the 
ensemble as atmospheric-only perturbations after the first 
3 months in the IPSL-CM5A-LR climate model. However, 
Du et al. (2012) showed that oceanic perturbations aris-
ing from different assimilation runs do affect the ensemble 
spread of oceanic-related variables. This latter result can 
be accounted for by the differences between initial oceanic 
states of individual ensemble members that have pronounced 
three-dimensional (3D) structure, contrasting the homoge-
neous white noise perturbations applied by Germe et al. 
(2017).

Ocean initial condition uncertainties and their impacts 
on climate prediction have been also addressed through 
bred vectors (Baehr and Piontek 2014) and anomaly trans-
form methods (Romanova and Hense 2015) yielding a 
weak improvement of prediction reliability at seasonal 
timescales. Recently, Marini et al. (2016) have achieved a 
greater ensemble spread for sea surface temperature (SST) 
during the first 3 years of simulations when oceanic singu-
lar vectors are used rather than atmospheric-only perturba-
tions. However, for more integrated measures, such as the 
North Atlantic SST or the Atlantic Meridional Overturning 

Circulation (AMOC), the ensemble spread is overestimated 
initially and decreases over time.

Several studies highlight the strong impact of the 3D 
structure of ocean state initial errors and emphasize the 
sensitivity of North Atlantic decadal variability to initial 
conditions in the deep ocean (Zanna et al. 2011; Palmer and 
Zanna 2013; Sévellec and Fedorov 2013a, b, 2017). These 
analyses, based on the singular vectors decomposition (SVD, 
e.g. Zanna et al. 2011; Palmer and Zanna 2013) or the linear 
optimal perturbations framework (LOP; Sévellec et al. 2007; 
Sévellec and Fedorov 2013b, 2017), compute small initial 
perturbations that induce the maximum response in the sys-
tem after a specific time. While the SVD method requires 
solving an eigenvalue problem, the LOP method relies on 
an optimization problem producing the maximum linear 
growth of a chosen climatic variable. By construction, both 
SVD and LOP methods, as applied to the ocean, are based 
on a linearization of the primitive equations of motion and 
neglect potential effects of the ocean–atmosphere coupling 
together with stochastic noise arising from atmospheric syn-
optic variability. Therefore, assessing the impact of these 
structures within the full ocean–atmosphere climate system 
is necessary to better understand their potential for climate 
prediction.

In this study, we investigate for the first time the impact of 
LOPs on climate variability in a fully coupled earth system 
model IPSL-CM5A-LR (Dufresne et al. 2013). We apply the 
LOP framework maximizing changes in the North Atlantic 
mean temperature (NAMT) as described in Sévellec and 
Fedorov (2017). In the ocean model they used, the most 
efficient LOP induces a NAMT anomaly that reaches its 
maximum after 10 years. The optimization problem made 
use of the tangent linear forward and adjoint versions of the 
ocean component of IPSL-CM5A-LR.

The LOPs dynamics are ultimately related to the excita-
tion of an ocean basin mode identified in the same linear 
model by Sévellec and Fedorov (2013b). This oscillatory 
mode involves the westward propagation of subsurface den-
sity anomalies across the North Atlantic basin. This propa-
gation impacts the AMOC via thermal wind balance and 
basin-scale variations of the zonal density gradient. There 
is evidence of a similar westward propagation in the North 
Atlantic observations of sea-level height (e.g. Tulloch et al. 
2009; Vianna and Menezes 2013), subsurface temperature 
(Frankcombe et al. 2008), and SST (Feng and Dijkstra 2014) 
with a comparable basin-crossing time (~ 10 years) as esti-
mated by Sévellec and Fedorov (2013b). It has been also 
identified in nearly 20 models of the CMIP5 database (Muir 
and Fedorov 2016). In IPSL-CM5A-LR in particular this 
oceanic mode exhibits interaction with convective activity, 
sea ice, and atmospheric circulation (Ortega et al. 2015).

In the present analysis, climate response to the LOP is 
investigated in terms of changes in NAMT, the AMOC 
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strength, SST, and atmospheric temperature and precipita-
tion. We use ensemble experiments in order to extract the 
signal of the LOP response from the atmospheric stochastic 
noise in a perfect model configuration, therefore avoiding 
pollution of the signal by model drift, and model imper-
fections. The ensemble experiments, the coupled system 
and the LOP are described in more detail in Sect. 2. The 
response of the system to the oceanic perturbations is then 
described in Sect. 3, while implications for near-term cli-
mate prediction are discussed in Sect. 4. Finally concluding 
remarks are given in the last section.

2  Method

2.1  Model

We use the IPSL-CM5A-LR climate model (Dufresne et al. 
2013). It includes the atmospheric general circulation model 
LMD5A (Hourdin et al. 2013) with a 1.875° × 3.75° hori-
zontal resolution and 39 vertical levels. It is coupled with 
the oceanic model NEMOv3.2 (Madec 2008) in the ORCA2 
configuration corresponding to a nominal resolution of 2°, 
enhanced over the Arctic and subpolar North Atlantic as 
well as around the Equator. There are 31 vertical levels for 
the ocean with the highest resolution in the upper 150 m. It 
also includes the sea ice model LIM2 (Fichefet and Maqueda 
1997) and the biogeochemistry model PISCES (Aumont and 
Bopp 2006). The coupling between the oceanic and atmos-
pheric components is achieved via OASIS3 (Valcke 2006). 
The reader is referred to the special issue of Climate Dynam-
ics (volume 40, issue 9–10) for a full discussion of various 
aspects of this climate model. The characteristics of the oce-
anic component of the coupled model are also discussed in 
Mignot et al. (2013).

This model has been used for several decadal prediction 
studies. In a perfect model context, it exhibits an average 
predictability limit for the annual AMOC of about 8 years 
with variations depending on the AMOC initial state (Per-
sechino et al. 2013). The longest potential predictability 
of SST reaches up to 2 decades and is found in the North 
Atlantic Ocean. It is related to decadal AMOC fluctuations. 
These fluctuations are successfully initialized by nudging 
the SST field to observations (Swingedouw et al. 2013; Ray 
et al. 2014). This initialization could be further improved, 
in a perfect model framework, by additionally nudging sea 
surface salinity (SSS) (Servonnat et al. 2014) and taking 
into account the mixed layer depth when specifying the 
amplitude of the restoring coefficients (Ortega et al. 2017). 
Hindcasts starting from the SST nudged simulations exhibit 
a prediction skill up to one decade in the extratropical North 
Atlantic for SST and in the tropical and subtropical North 
Pacific for the upper-ocean heat content (Mignot et al. 2016).

2.2  General approach

Firstly, we select a 20-year interval (model years 1991–2010) 
within the 1000-year long pre-industrial control simulation 
(thereafter CTL) of the IPSL-CM5A-LR model. This spe-
cific period is chosen because it does not exhibit strong vari-
ability either for the AMOC or NAMT, which both remain 
within one standard deviation from their 1000-year means. 
This is necessary to avoid internal variations that may com-
plicate analysing the response to the applied perturbations. 
Seven ensembles of simulations are conducted using one 
single starting date—the 1st of January of this time period 
(model year 1991). All the ensembles are integrated for-
ward for 20 years with a constant pre-industrial external 
forcing. All ensembles have a random noise disturbance 
applied to the SST field of the coupler. The applied noise 
is identical for all ensembles. As this perturbed SST field 
is only used when SST is passed to the atmosphere during 
the integration first time step, this perturbation is consid-
ered as an atmospheric-only perturbation, as described in 
Persechino et al. (2013). Germe et al. (2017) showed that 
this method is equivalent to applying a random white noise 
to the whole oceanic temperature field. In addition to this 
atmospheric perturbation, six ensembles utilize full-depth 
oceanic temperature perturbations. The pattern of these per-
turbations corresponds to the LOP as computed by Sévellec 
and Fedorov (2017) using the tangent linear forward and 
adjoint versions of the same ocean model as in the coupled 
run. The six ensembles differ only by the magnitude and/or 
sign of the oceanic perturbation pattern as described below 
(see Table 1 for details). The seventh ensemble, without any 
perturbation to the oceanic temperature field, is taken as a 
benchmark to assess the impact of oceanic perturbations in 
the other ensembles and will be further referred to as ATM.

Throughout this analysis, the AMOC strength is defined 
as the maximum value of the annual, zonal-mean stream-
function within 0°N–60°N and 500–2000 m, while NAMT 
is defined as a full depth average of the annual oceanic tem-
perature over the North Atlantic within 30°N–70°N. The 

Table 1  Summary of the characteristics of the ensembles

Oceanic 
perturbation 
scaling

Number of 
members

Start date Length

ATM 0 10 1st of January 1991 20 years
P01 1 5 – –
P05 5 5 – –
P10 10 5 – –
P20 20 10 – –
N10 − 10 5 – –
N20 − 20 10 – –
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mean state and variability of CTL is assessed from the inter-
annual average and standard deviation for the entire 1000-
year time series.

2.3  Oceanic perturbation pattern

The specific pattern of the 3D global oceanic tempera-
ture field used to perturb the oceanic initial state of each 
ensemble was computed by Sévellec and Fedorov (2017) 
as optimally perturbing NAMT through the LOP method-
ology. In the analysis they used the adjoint of the tangent 
linear version of the oceanic component of IPSL-CM5A-LR. 
More precisely, it was an earlier version of the ocean com-
ponent (OPA8.2) for which the adjoint version was avail-
able at the time of the LOP computation but this difference 
should not affect the results. This LOP has been rationalized 
as the efficient stimulation of the least damped oscillatory 
eigenmode of the tangent linear version of NEMO, fully 
described in Sévellec and Fedorov (2013a). In particular, its 
location at depth, away from strong velocities and density 
gradients (limiting mean- and self-advection, respectively), 
allows for a long persistence of the anomaly and efficient 
stimulation of the eigenmode. This eigenmode corresponds 
to a 24-year oscillatory mode of both the AMOC and the 
NAMT related to the westward propagation of large-scale 
temperature anomalies in the North Atlantic. The basin 
scale propagation influences the AMOC through its impact 
on the zonal density gradient. Ortega et al. (2015) showed 

that in the IPSL-CM5A-LR coupled model, this ocean-only 
mode is maintained by a coupling with a surface mode of 
variability and potentially excited by the atmosphere. Such 
coupling allows the intensification of the damped internal 
mode through the excitation of the deep convection (Sévellec 
and Fedorov 2015).

By stimulating this internal mode, the LOP provides the 
most efficient way to generate an anomaly of the NAMT. 
The LOP pattern depends on the chosen time scale for 
the transient growth. In this study, we use the LOP maxi-
mizing the NAMT response after 14 years in the linear 
model. In accordance with the lag identified in Sévellec 
and Fedorov (2013a), corresponding to the time needed for 
the AMOC to influence the NAMT, we expect an associ-
ated maximum response of the AMOC after 8 years. The 
LOP pattern exhibits the largest magnitudes in the North 
Atlantic region (Fig. 1), especially in the deep ocean (top 
versus bottom panels in Fig. 1). These strongest magni-
tudes of the LOP are furthermore roughly co-located with 
the areas of strongest temperature variability in the North 
Atlantic in CTL (black lines in Fig. 1). In Sévellec and 
Fedorov (2017), both temperature and salinity perturbation 
patterns are identified. They have a constructive effect on 
the density anomaly field. In this study, we use only the 
temperature perturbation as the primary step to understand 
the response of the coupled system to the LOP. The magni-
tude of the LOP shown in Fig. 1 leads, in the linear model, 
to a NAMT response of approximately 43.8 × 10−3 °C after 

Fig. 1  The spatial structure 
of the imposed linear optimal 
temperature perturbations (LOP, 
in °C, colour shading) at the 
ocean surface (top left panel), 
and at 217 m (top right panel), 
1033 m (bottom left panel) and 
2768 m (bottom right panel). 
The amplitudes shown here 
correspond to the original LOP, 
i.e. scaled by a factor of 1 (see 
text for details). Black contours 
indicate interannual stand-
ard deviation of local ocean 
temperature in the 1000-year 
long CTL simulation at these 
depths. The contours are spaced 
by 0.4 °C within the range from 
0.4 to 2 °C at the surface and 
at 217 m depth, by 0.1 °C from 
0.1 to 0.5 °C at 1033 m, and by 
0.02 °C from 0.02 °C to 0.12 °C 
at 2768 m
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14 years, which corresponds to roughly one standard devi-
ation of NAMT in the CTL run (not shown). As the LOP 
is determined by a linear model analysis, its magnitude 
can be scaled linearly. Scaling factors of 1, 5, 10, 20, − 10 
and − 20 are applied, which allow, at the initial date, to 
sample the whole range of CTL variability in terms of the 
NAMT index. These six values correspond to the six last 
ensembles listed in Table 1. The naming of the ensemble 
reflects this protocol. For example, P20 applies the LOP 
as shown in Fig. 1, but with its magnitude multiplied by 
20 (with a positive sign), while N20 uses a scaling factor 
of − 20 (negative sign). P01 is therefore the ensemble that 
uses the LOP exactly as described in Fig. 1, which would 
lead to one standard deviation response of NAMT after 
14 years in the linear ocean-only model (similarly, ATM 
can be interpreted as LOP0).

3  Impact on climate variability

3.1  Ocean response

The climate model ensembles show that the LOP induces 
a NAMT anomaly reaching its maximum value roughly 
10 years later (Fig. 2, top left panels). In qualitative agree-
ment with the adjoint model analysis, it is preceded by a 
maximum anomaly of the AMOC 5 years earlier (Fig. 2, 
bottom left and middle panels). The link between these two 
responses will be detailed below. For both the NAMT and 
AMOC indices, the magnitude of the response increases lin-
early with the magnitude of the perturbation (Fig. 2, right 
panels). The response is significantly different from the 
ATM ensemble—according to a t test at the 99% confidence 
level—only for the largest perturbations, i.e. N20 and P20 
(Fig. 2, middle and right panels). However, the linearity of 
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Fig. 2  Left panels: The response of NAMT (top) and AMOC (bot-
tom) to the imposed perturbations for different LOPs’ amplitudes. 
Colour lines show the time evolution of the ensemble mean for each 
experiment. The black curve corresponds to the CTL simulation 
and horizontal dashed lines indicate ± one standard deviation. Mid-
dle panels: the same but only for P20 (red line), N20 (blue line) and 
ATM (grey line), with shading indicating the 99% confidence inter-
val (according to a t test). The vertical black lines in the middle pan-
els indicate the dates that were used to evaluate the magnitude of the 
response displayed in the right panels. These dates correspond to a 

10-year lag for NAMT (top) and a 5-year lag for the AMOC intensity 
(bottom) after the LOPs were imposed. The time axes refer to model 
years. Right panels: The magnitude of the NAMT (top) and AMOC 
(bottom) response after 10 and 5 years, respectively, as a function 
of the LOPs’ amplitude. Error bars indicate the 99%-level confident 
interval around the ensemble means. The solid black lines show the 
best linear fit. Grey shading in the top panel indicates the response 
magnitude as estimated from the linear ocean model described by 
Sévellec and Fedorov (2017)
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the response suggests that the significance for weaker mag-
nitudes can be improved by increasing the ensemble size and 
therefore the robustness of the statistical test. The AMOC 
response to the LOP looks slightly asymmetric, being 
weaker for negative (N10 and N20) than positive (P10 and 
p20) LOP. However, this asymmetry is not significant when 
taking into account the confidence interval of the ensemble 
means (Fig. 2, bottom right panel). Such linearity through 
the whole range of perturbation magnitudes in a fully cou-
pled ocean–atmosphere system, which includes a significant 
amount of non-linear processes, is noteworthy.

Although linear, the response is also damped by roughly 
a factor 3 as compared to the response of the linear ocean-
only model (Fig. 2, grey shading on the top right panel) 
and occurs slightly earlier than expected (delay of 10 years 
instead of 14 years for the NAMT). Such quantitative dif-
ferences in the response to the LOP in the fully coupled 
model as compared to the ocean-forced context are expected 
because of several factors. For example, atmospheric sto-
chastic noise is absent in the oceanic-forced context. More-
over, in the fully coupled model, the perturbation pattern 
in the surface layer is rapidly distorted and/or damped by 
air–sea interactions (Germe et al. 2017), which tend to limit 
the influence of the LOP pattern to its deeper layers. Also, 

ensemble members differ from each other by their atmos-
pheric states, which may lead to significant differences 
in air–sea interactions and in the upper ocean. Hence the 
ensemble average tends to smooth-out the signature of the 
LOP in the upper ocean. Consistently, the North Atlantic 
mean temperature of the first 300 m (NAMT300) is very 
close to the one in ATM during the first 2 and 4 years for P20 
and N20 respectively (Fig. 3, top left panel). On the other 
hand, over the full oceanic depth, NAMT diverges as early 
as the first year (Fig. 2, top left panel).

Despite the relatively weak initial perturbation in the 
upper layer, the response of NAMT300 to the LOP is as sig-
nificant as for the total NAMT (i.e. integrated over the whole 
water column) after 10 years (Fig. 3, top left panel). Its spa-
tial distribution exhibits a tripole/horseshoe shape (Fig. 3, 
middle and right panels) that resembles the fingerprint of 
the response after 5 years to an AMOC intensification in the 
model (Fig. 3, bottom left panel). This fingerprint pattern is 
consistent with what can be inferred from SST observations 
(Dima and Lohmann 2010). This suggests that this upper 
layer response is mainly driven by the AMOC maximum 
response to the LOP at 5 years forecast range (Fig. 2 bottom 
panels). The influence of the LOP on the AMOC has been 
described by Sévellec and Fedorov (2013b, 2015) in the 
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tangent linear model. As explained above, the involved mode 
of variability has also been identified by Ortega et al. (2015) 
in the control simulation using the same climate model (i.e. 
CTL in this paper). In the present experiments, the LOP 
imposed in the North Atlantic modulates the meridional 
density gradient, thereby favouring an acceleration of the 
AMOC via thermal wind balance. The interaction of the 
resulting upper-ocean northward flow and the mean meridi-
onal temperature gradient gives rise to a temperature anom-
aly in the upper North Atlantic Ocean. It is the first time that 
this effect is prognostically tested and highlighted in a fully 
comprehensive climate model. It confirms the strong sensi-
tivity of the upper ocean to temperature disturbances in the 
deep ocean, as described in Sévellec and Fedorov (2013a, b, 
2017) and validated here in a coupled model. Such impact 
on the upper ocean suggests some repercussions of the LOP 
onto the atmosphere in the North Atlantic region.

3.2  Impact on the atmosphere

The impacts of the LOP on the annual mean SST exhibit a 
tripole pattern (Fig. 4, 1st row) similar to the response of the 
vertically integrated temperature over the first 300 m (Fig. 3, 
top middle and right panels). The response to the positive 
LOP ensemble P20 is stronger and larger scale than its nega-
tive equivalent ensemble N20. This is in accordance with the 
slight asymmetric AMOC response identified in the previ-
ous section. The response to the positive LOP ensemble is 
associated with stronger atmospheric impacts as well (Fig. 4, 
2nd to 4th rows). A significant impact is found on the 2-m 
air temperature (T2M) over the ocean, but also over land in 
some areas (Fig. 4, 2nd row). Apart from the eastern part 
of North America, the continental response to the positive 
and negative LOP is not symmetric. For example, there is 
a significant response of T2M over the Scandinavia for the 
P20 ensemble, which is not found significant for N20. A 
significant impact is found over the western North Africa 
in N20, while it is found in the eastern North Africa and 
Middle East regions in P20. These impacts on T2M persist 
throughout the year but they are stronger in winter than in 
summer (Fig. 5). In P20, the T2M pattern evolves slightly 
with the forecasting year, but the warm anomaly in the North 
Atlantic region persists throughout the first 15 years of the 
forecasting period (not shown).

In accordance with previous finding based on CTL (Per-
sechino et al. 2013), AMOC associated SST anomalies have 
a significant impact on summer precipitations over the Sahel 
region (Fig. 4, 3rd row). The positive LOP consistently 
induces an increase of summer precipitation over the west-
ern African Sahel while the negative LOP impacts central 
and eastern Sahelian region. This asymmetric response is not 
very surprising considering the asymmetrical SST response. 
Nevertheless, the details of the teleconnection taking place 

in the negative case are not fully understood but are beyond 
the scope of the present study.

Despite these significant impacts on T2M and tropical 
precipitations, no significant impact could be identified on 
the major modes of atmospheric variability over the North 
Atlantic sector, namely the North Atlantic Oscillation (NAO) 
and the East Atlantic Pattern (not shown). The impact on 
the winter sea level pressure (SLP) pattern strongly var-
ies with the forecast range and a robust feature of the LOP 
impacts is difficult to identify at interannual time scales (not 
shown). When averaging over the 5–10 forecast years, we 
find a weak, but significant impact over various regions of 
the North Atlantic (Fig. 4, 4th row). Again, the pattern of 
the impact differs between the positive and negative LOP. 
In N20, the pattern has a significant positive anomaly over 
the Arctic and non-significant negative anomalies over the 
North Atlantic mid-latitudes, which may be interpreted as 
a negative NAO-like pattern. The SLP pattern identified 
for P20 exhibits a zonal dipole opposing the northeastern 
coast of America with the southeastern European region. 
This structure does not resemble any well-known large-scale 
atmospheric circulation pattern from the literature.

4  Discussion: impact on near term climate 
predictions

In the previous section, it has been shown that the LOP—
although computed from the linear version of the oceanic 
component—successfully excites a subsurface variability 
mode in the fully coupled system. This mode is known to 
be associated to subsurface Rossby wave propagation and 
the associated AMOC enhancement through thermal wind 
balance. Furthermore, it has been found that the stimulation 
of this mode has a significant impact on the North Atlantic 
SST and some atmospheric variables. However, this impact 
strongly depends on the magnitude of the LOP, going from 
undetectable signal masked by the atmospheric stochastic 
noise (e.g. P01, P05) to significant heat anomalies over 
Europe during several years (P20). In this section, we re-
interpret the magnitude of the LOP in relation with the vari-
ability of the system, the observational monitoring system in 
the real world, and a few other ensemble generation strate-
gies in order to give a better insight of the potential useful-
ness of the LOP for enhancing climate prediction reliability.

4.1  The LOP in the context of IPSL‑CM5‑LR internal 
variability

As mentioned in Sect. 2, the magnitudes of the LOP tested 
in this study sample a large fraction of the NAMT index 
variability in CTL. This is highlighted in Fig. 6a, where the 
colour points, indicating the NAMT value for the different 
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Fig. 4  Ensemble-mean anomalies for different climate fields in the 
N20 (left panels) and P20 (right panels) ensembles with respect to 
ATM, averaged between years 5 to 10 of the forecast. Anomalies are 
given for annual mean SST in °C (1st row), annual mean T2M in °C 
(2nd row), summer seasonal mean (June to August) precipitation in 

kg  s−1  m−2 (3rd row) and winter (January to March) sea level pressure 
in hPa (4th row). Black dots highlight the areas where N20 or P20 
ensemble means are different from the ATM ensemble mean at a 95% 
significance level
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Fig. 5  Ensemble-mean surface 
air temperature anomalies 
(T2M, in °C) for the P20 
ensemble with respect to ATM 
for all years in the 5 to 10-year 
forecast range. Anomalies are 
computed for boreal winter 
(January to March, left panels) 
and summer (June to August, 
right panels). Black dots high-
light the areas where the P20 
and ATM ensemble means are 
different at a 95% significance 
level
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magnitudes of the LOP, are over-imposed on the grey shad-
ings that represent respectively one, two, and three standard 
deviations of NAMT in CTL at interannual timescale. We 
can see that P01 and P05 magnitudes lie within one standard 
deviation of the variability from the mean state, which cor-
responds to very frequent situations, while P20 and N20, 
on the other hand, rely within two and three standard devia-
tions, and therefore correspond to extreme, and relatively 
rare events. However, the same analysis, repeated within 4 
different oceanic layers (Fig. 6b–e) highlights strong dis-
crepancies within the water column regarding this magni-
tude. Indeed, all the six LOPs used here, averaged over the 
first 300 m on the same spatial domain ([30–70°N] in the 
Atlantic), are very weak compared to the variability of the 
averaged temperature in the same layer in CTL (Fig. 6b), 
while they spread over a larger range of the variability in 
CTL in the deeper layers (Fig. 6d–e). It is at intermediate 
depth, between 1000 and 2000 m, that the range of LOP 
magnitudes chosen here is the strongest as compared to the 
variability of the oceanic temperature in CTL (Fig. 6d). 
Indeed, within this layer, the LOP strongest magnitude (P20 
and N20) is around three standard deviation of CTL. It could 

therefore be considered as an extreme event: in the assump-
tion of a normal distribution of the NAMT in that specific 
layer, the probability of such an event would be less than 1%.

This highlights that the complex 3D pattern of the LOP 
might create locally very large perturbations as compared to 
the variability of the system, even though the strongest mag-
nitudes of the LOP are roughly co-located with the strong-
est temperature variability in the North Atlantic found in 
CTL (Fig. 1). To investigate the impact of such strong local 
perturbations, we have generated an additional ensemble, 
referred to as P20MSK, in which the initial oceanic anomaly 
is similar to P20 but saturated to 3 standard deviations of the 
local variability in CTL. The magnitude of the perturbation 
of this new ensemble in terms of NAMT index is shown in 
Fig. 6 as a black cross. The perturbation below 2000 m is 
in particular considerably reduced, although it still reaches 
3 standard deviations locally, as in the eastern part of the 
basin in particular (not shown). In fact, this reduction of the 
spatial extent of the LOP does not affect significantly the 
NAMT and AMOC responses (Fig. 2, black crosses in right 
panels). It indeed stimulates the same Rossby wave propaga-
tion mechanism. This suggests that the oceanic response to 

Fig. 6  a NAMT anomalies and uncertainty ranges, and their con-
tributions from different ocean layers computed for b 0–300  m, c 
300–1000 m, d 1000–2000 m, and e below 2000 m. Anomalies are 
from the LOP experiments (LOP, colour points and black crosses); 
uncertainty estimates are obtained from the 10-day lagged perturba-
tion patterns (LAG; range in yellow bars), ocean reanalyses (REA; 

orange bars), and the Argo data (ARGO; light green bars). See text 
for details. Note that there is no ARGO estimate in e as ARGO floats 
currently sample the water column only above 2000 m. Grey shadings 
indicate ± 1, ± 2, and ± 3 interannual standard deviations of the same 
indices in CTL
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the LOP is not directly due to its extreme integrated values 
but rather to its specifically located anomalies.

In summary, the LOPs exhibit a specific 3D pattern, 
with largest relative magnitudes at intermediate to bottom 
depths, and a relatively weak perturbation at the surface, 
when compared to the internal variability. Therefore, while 
occurrence of such anomalies is very frequent at the surface 
for all magnitudes that we have tested, their occurrences are 
extremely rare in the intermediate and deeper ocean. In that 
respect, P20 and N20 could be seen as extreme events within 
the North Atlantic Ocean. If a perturbation resembling the 
LOP was to be detected, one could suspect—although based 
on this single coupled model analysis—an AMOC anomaly 
after 5 years, followed by a NAMT anomaly and possible 
impacts over land. This brings valuable information to assess 
the North Atlantic climate a few years ahead. It also raises 
the question of the ability of current monitoring systems to 
detect such anomalies. This is especially true for the eastern 
part of the deepest layer (below 2000 m), where the pertur-
bation is very strong, but lies below the maximum depth 
covered by current Argo floats.

4.2  The LOP in the context of oceanic initial state 
uncertainties in the real word

Here we compare the LOP to basic estimations of oceanic 
state uncertainty based on two major data types commonly 
used to assess the oceanic state and variability: oceanic 
reanalyses and the Argo float data (Fig. 6, coral and green 
bars). Our first uncertainty estimation, based on the rea-
nalyses, consists in the integrated (NAMT spatial domain) 
annual mean temperature differences between GLORYS and 
ORAS4 (Balmaseda et al. 2013). We chose these reanalyses 
as they share the same ocean model (i.e. NEMO) as our cou-
pled system therefore facilitating the comparison on similar 
grids and tools. However, we reckon that this choice likely 
tends to underestimate the real uncertainties acknowledged 
in the reanalysis (e.g., Balmaseda et al. 2015; Palmer et al. 
2015). The second uncertainty estimation, more directly 
based on oceanic measurements, uses the 2°-resolution tem-
perature error field of the objective interpolated Argo float 
dataset described in Desbruyères et al. (2016). Note that to 
be comparable to the model analysis, both error estimations 
of the NAMT have been rescaled by CTL variability. The 
detailed computation of these estimations, and their absolute 
value (i.e., before rescaling) can be found in appendix 1 and 
2. The two estimations give different results, and this already 
highlights the complexity of assessing oceanic initial state 
uncertainties and the large uncertainties that remain on these 
estimations. However, it gives valuable information on the 
detectability of the LOP.

According to our estimation, in the upper ocean, even 
for the strongest LOP, magnitudes tested here could not be 

separated from uncertainty inferred from both reanalyses 
and Argo data (Fig. 6b). In contrast, at intermediate and 
deeper layers, the strongest LOPs can be distinguished: 
below 1000 m, magnitudes of P10 and P20 are larger than 
the uncertainty of reanalyses and Argo floats (only above 
2000 m for the latter). Between 300 and 1000 m, only the 
largest magnitudes (i.e., P20 and N20) could be distin-
guished from this uncertainty.

These results have strong implications for climate predict-
ability, the LOP being a source of predictability when it can 
be detected by the observations. Indeed, in that case, the ini-
tial conditions can be correctly assessed in order to phase the 
subsurface variability mode with the observations, inducing 
the accurate prediction of its impacts on the surrounding 
climate. On the other hand, for magnitudes lying below the 
detectability limit, analysing the LOP’s impact in the climate 
model may help anticipate uncertainties in climate predic-
tions. These uncertainties could be decreased by extending 
the monitoring system in the specific regions highlighted 
by the LOP pattern. In particular, the ocean and the climate 
were shown to be strongly sensitive to anomalies located 
below 2000 m, below the current depth of Argo float sam-
pling. This suggests that the deployment of deep Argo floats 
in the North Atlantic could lead to significant improvements 
for decadal prediction skills for the North Atlantic region.

Note that the uncertainty estimation done here corre-
sponds to the error on the annual mean oceanic state, while 
the LOPs correspond to an instantaneous perturbation of the 
initial state. However, persistence of the LOP can be seen 
from Fig. 2b: the initial perturbation persists for more than 
1 year before generating the anomaly response. Therefore, 
although it is likely to underestimate the uncertainties on the 
instantaneous initial state, this comparison still gives useful 
operational information.

4.3  The LOP for ensemble generation 
(perturbation) strategies

Taking into account the LOP in the prediction uncertain-
ties can be achieved by perturbing the initial state directly 
with the LOP to generate an ensemble. However, other per-
turbation methods might take into account the uncertainty 
arising from the variability mode associated to the LOP, 
depending on how the perturbation pattern projects onto 
the LOP (Sévellec et al. 2017). Random perturbation of the 
3D oceanic temperature field arising from white noise local 
perturbations in each grid box—like used in Germe et al. 
(2017)—rapidly goes to zero when averaged on a large spa-
tial domain. We have shown in Germe et al. (2017) that this 
method does not adequately take into account possible deep 
density structures in the initial state uncertainties. It is thus 
likely to underestimate the ensemble spread arising from the 
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subsurface variability mode stimulated by the LOP. Another 
commonly used perturbation strategy of the ocean initial 
state in near-term climate predictions is based on lagging the 
oceanic state by a few days (e.g. Hazeleger et al. 2013). We 
have estimated the magnitude of such perturbations in terms 
of NAMT using daily time series of the oceanic temperature 
in CTL. In practice, for each daily oceanic temperature, we 
compute the difference with the oceanic temperature occur-
ring 10 days before. Then, we compute the NAMT on these 
instantaneous anomaly fields and take their minimum and 
maximum values as the range of the initial perturbations 
arising from this ensemble generation strategy. According 
to this analysis, the perturbation of the oceanic state due to 
a 10-day lagged temperature anomaly field is much larger 
in the surface layer (Fig. 6b, yellow bar) than in the deeper 
layers where it remains very close to zero, especially below 
2000 m (Fig. 6e, yellow bar). This is consistent with the 
much stronger high frequency variability of the upper ocean. 
Therefore, the lagging methodology is very unlikely to gen-
erate perturbation patterns that project onto the LOP, and 
thus to excite the subsurface variability mode.

Thus, generating decadal prediction ensemble through 
LOPs would sample a very different range of initial state 
uncertainties than other, more traditional methods illustrated 
in Fig. 6. Practically, this can be achieved by using LOPs of 
both sign, in addition to atmospheric perturbation for the 
ensemble generation. In this analysis, the ensemble result-
ing from merging N10 and P10 exhibits a larger ensemble 
spread than ATM for the forecast range near the maximal 
response to the LOP, i.e. 5 and 10 years for the AMOC and 
NAMT, respectively (not shown). However, this assessment 
is limited by the fact that the LOP is designed for a specific 
metric and a specific timescale. Therefore, an ensemble 
generation based on LOPs as defined in our study is only 
properly designed to create the largest ensemble spread for 
the AMOC and NAMT after 5 and 10 years, respectively. 
This might create an under- or overdispersive predictions 
regarding other metrics, in particular in other regions, or 
time scales. This issue is shared with oceanic singular vec-
tors ensemble generation, since the singular vectors also 
depend on a chosen norm and time scale. In Marini et al. 
(2016), they found that using oceanic singular vectors gives 
a better spread for locally assessed metrics during the first 
year as compared to atmospheric perturbations ensemble 
generation, while this spread is overestimated for integrated 
properties such as the AMOC or area-averaged SST. In their 
analysis, the 3D pattern of singular vectors used to generate 
the ensemble is not fully described at depth, but their Fig. 3 
shows local values of the initial ensemble spread around 
0.25 °C in the North Atlantic Ocean at intermediate depth, 
which is comparable to our local values of interannual stand-
ard deviation in CTL. Therefore, prediction uncertainties 

arising from initial subsurface density uncertainties pattern 
as identified by the LOP are potentially taken into account 
by this method.

5  Conclusions

The impact of linear optimal perturbations (LOPs) of the 3D 
oceanic temperature field for the North Atlantic temperature 
and for the large-scale meridional overturning circulation 
has been analysed in a series of model ensembles simula-
tions performed with the IPSL-CM5A-LR climate model. 
It has been found that the LOPs, as identified in the adjoint 
version of the tangent linear model of the IPSL-CM5A-LR 
oceanic component, induce a similar response in terms of 
oceanic mean temperature and circulation anomalies in the 
coupled model as in the linear forced ocean model. The 
response is nevertheless weaker (roughly by a factor 3) and 
occurs earlier than expected from the linear ocean model. 
This can be explained by non-linearities in the fully coupled 
system and the damping terms arising from ocean–atmos-
phere interactions, which are both absent in the linear ocean 
model. The computation of LOPs in a fully coupled system 
would be very challenging. Indeed, it would imply taking 
into account atmospheric baroclinic and smaller-scale con-
vective instabilities. Within the linear framework used for 
computing LOPs, such instabilities would not saturate and 
would dominate the solution, thus contaminating the large-
scale ocean response and preventing the determination of 
the climatically relevant large-scale solutions sought here.

Nevertheless, although the LOPs are based on a linear 
forced ocean model and have a maximal signature at inter-
mediate depths, they induce a strong SST change and affect 
atmospheric surface temperature, precipitation and, to a 
lesser degree, sea level pressure at a 5 to 10-year forecast 
range. Previous studies based on idealized ocean model 
configurations have already highlighted the impact of deep 
oceanic anomalies on the AMOC (e.g. Zanna et al. 2011); 
however, our study is the first to confirm and quantify such 
impact in a fully coupled general circulation model. Further-
more, even though our experimental design is rather simple, 
these results have strong implications in terms of decadal cli-
mate predictability. Indeed, they highlight that anomalies in 
the deep ocean could have significant consequences for the 
upper ocean and the atmosphere on timescales ranging from 
interannual to decadal. The fact that the largest amplitudes of 
the perturbation are found in the deep ocean can be related 
with the longer persistence of such anomalies in the deeper 
ocean, where they remain isolated from mean- and self-
advection, as well as from damping induced by interactions 
the ocean mixed layer and the atmosphere. These anoma-
lies persist sufficiently long to maintain the meridional flow 
and amplify the transient change of the AMOC, which may 
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explain why they are detected as optimal perturbations for 
this circulation (Sévellec and Fedorov 2015).

The impact of LOPs on ocean heat content is rather linear, 
whereas the response of SST and atmospheric variables is 
strongly asymmetric. Regarding the AMOC, its response 
exhibits a weak asymmetry. Although not significant in our 
case, this asymmetry has already been observed in the non-
linear ocean forced model as a response to SSS optimal per-
turbations (Sévellec et al. 2008). As explained in Sévellec 
et al. (2008), this asymmetry may arise from the feedback 
of density anomalies on ocean vertical mixing. Indeed, a 
positive (negative) density anomaly will enhance (reduce) 
vertical mixing and therefore the deep-water formation, 
resulting in a stronger (weaker) AMOC. Depending on the 
stratification before perturbation, the positive and negative 
perturbations may have a different impact that may induce 
the asymmetry. Here, even though we selected the initial 
state from a neutral period regarding the NAMT and AMOC 
variability (cf. section 2), perfect neutrality is nearly impos-
sible to find. Therefore, the asymmetry found in the response 
might result from the initial state being closer to one sign 
version of the LOP than the other. Evaluating the impact of 
particular initial states on the AMOC response would require 
extensive additional computations. This will be the subject 
of future work. Likewise, even though an asymmetrical 
response of the system to LOPs may arise from non-linear 
feedbacks or more generally from the non-linear interaction 
of the stimulated linear response with other modes of vari-
ability or through non-linear atmospheric and air–sea–ice 
interaction feedbacks, we cannot reach strong conclusions 
from our experiments on that aspect.

The SST response to positive LOPs resembles a horse-
shoe pattern identified in both the IPSL-CM5A-LR model 
and the observations by Gastineau et al. (2013) as influ-
encing the North Atlantic Oscillation (NAO) in winter. 
It also resembles the North Atlantic Multidecadal vari-
ability (AMV) pattern identified in the same coupled sys-
tem (Gastineau et al. 2013). The AMV, also known as the 
Atlantic Multidecadal Oscillation (AMO; Delworth and 
Mann 2000; Solomon et al. 2011), is known to influence the 
climate in the North Atlantic region and in particular hur-
ricanes activity (Goldenberg et al. 2001), and precipitations 
over North America, Europe, and Sahel (Sutton and Hodson 
2005; Knight et al. 2006). A large part of its influence over 
the Euro-Atlantic region seems to be related to its tropical 
component with a weaker influence of the extratropical SST 
anomalies (Davini et al. 2015; Peing et al. 2015). However, 
Gastineau et al. (2016) found a large oceanic influence of 
the subpolar SST anomaly on the NAO in the IPSL-CM5A-
LR model. While the SST pattern associated with the LOP 
strongly resembles the SST anomaly pattern associated with 
a negative NAO-like response in Gastineau et al. (2016), we 
could not identify a clear impact of the LOPs onto the NAO. 

This could come from a signal to noise ratio issue. Indeed, 
ensembles of 75-members were used in their analysis, while 
we are using here 10 members at the most. This highlights 
the complexity of the influence of the North Atlantic SST 
on the surrounding climate.

However, our results suggest that density anomalies in the 
deep North Atlantic could be an oceanic decadal precursor 
for the AMV and its climatic consequences. This highlights 
the potential of correct initialization of the full 3D oceanic 
state to improve climate prediction. Indeed, detecting such 
anomalies in the real deep ocean could provide a consider-
able source of predictability for the AMV. Predicting its cli-
matic consequences requires that the AMV impacts, over the 
continents and in the atmosphere, are correctly represented 
in the climate models used to perform the predictions. The 
validity of this latter assumption remains unclear given, for 
instance the response to an AMV-like pattern is believed 
to be poorly simulated (Hodson et al. 2009). The upcom-
ing CMIP6/DCPP protocol (Boer et al. 2016) will allow to 
better evaluate the skill of new generation climate models 
to represent such teleconnections between the Atlantic SST 
variations and the atmospheric dynamics. Given the large 
impacts of the AMV inferred from statistical analysis of the 
observations, it is possible that a better representation of 
these teleconnections in future climate models could further 
enhance the potential climate impact and utility of a precise-
enough measurements of deep ocean anomalies.

A comparison of the LOPs with an estimation of the 
oceanic state uncertainties based on oceanic reanalyses and 
Argo float data reveals that even the largest magnitudes used 
here cannot be detected by current monitoring systems in 
the upper ocean, where the perturbations are the weakest. 
In contrast, in intermediate and deepest layers, the largest 
magnitudes (i.e. N20 and P20) stand out of the uncertainty 
range assessed from observations and reanalyses, suggesting 
that they could be detected by these systems and therefore 
initialized in climate predictions.

Finally, our results suggest that a climate prediction start-
ing from an initial state corresponding to an extreme event 
in terms of the density anomaly in the deep North Atlantic 
would benefit from using the optimal structure determined 
in the ocean-only model in the initialization, therefore poten-
tially increasing the prediction skill compared to the average 
skill in the North Atlantic region. On the other hand, if simi-
lar density anomalies were not detected in the observations, 
they would become a substantial source of uncertainty that 
needs to be taken into account in climate prediction systems. 
The best practical way to incorporate these results into dec-
adal prediction experiments will be discussed in future work.
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Appendix 1: Estimates of oceanic state 
uncertainties from reanalyses

This estimation is based on comparing the GLORYS2V3 
and ORAS4 (Balmaseda et al. 2013) reanalyses. We com-
puted the yearly NAMT and its layer components from 
both datasets over the common period 1993–2014. Both 
reanalyses have been re-gridded on the ORCA2 grid to 
share the exact same spatial and vertical domain for tem-
perature average. These two time series are then normal-
ized and rescaled by CTL variability. Finally the error 
estimation is given by the root mean square error between 
these two time series.

This estimation is very likely to depend on the chosen 
reanalyses. The main objective is here to give an order of 
magnitude of the differences between two state-of-the-art 
ocean reanalyses.

Appendix 2: Estimates of oceanic state 
uncertainties from Argo floats data

We have used a 2° horizontal resolution × 20 db vertical 
resolution gridded temperature and temperature error field 
based on the optimal interpolation of Argo float data. The 
interpolation procedure is fully described in Desbruyères 
et al. (2016). This dataset covers the 2000–2015 period, but 
we have restricted our analysis to the 2004–2015 period due 
to non-representative poor sampling during the first years. 
We have computed the NAMT index of the temperature 
field on raw data (Fig. 7a: black line) and its annual mean 
(Fig. 7b: black line). The NAMT index computation can be 
written as: 

where Ti is the temperature in the grid cell i, and wi is the 
weight related to the volume of the grid cell i as compared to 
the total volume of the ocean. The computation of the error 
on this index is based on the propagation of uncertainties as 
described in Taylor (1997). Yet, as the local errors �Ti can-
not be considered as independent, these local uncertainties 
induce uncertainties on the NAMT index that is larger than 
the expected uncertainty: 

(1)NAMT =
∑

i

wiTi,

(2)�NAMT ⩽

∑

i

wi�Ti.
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Fig. 7  The NAMT index based on the Argo float dataset (surface 
to 2000 m) from a 10-day averaged data and b annual means. Grey 
shading gives the upper bound on the error based on the study of Tay-

lor (1997). Red shading gives the annual mean estimation of the error 
when considering time steps within a year as independent
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This error is shown in Fig. 7a as grey shading. This error 
estimation considers all grid cells as independent and there-
fore gives an upper bound of the error that is likely to over-
estimate the real uncertainty.

When considering the annual means, the same propaga-
tion of error could be used. However, this approach very 
likely strongly overestimates this uncertainty as the result-
ing error is found to be larger than the variability of the 
NAMT index (Fig. 7b: grey shading). In fact, the assump-
tion that the local uncertainties are independent becomes 
difficult to hold at the annual timescale. In the aim of giv-
ing more realistic error estimation, we have considered 
each realization as independent for the computation of the 
annual mean. In that case, still following the propagation 
of uncertainties described by Taylor (1997), the error on 
the annual mean NAMT can be written: 

where Nt is the number of values in a given year. This more 
restrictive estimation is highlighted in Fig. 7b in red shad-
ing. In that case, considering each time step as independent 
in a given year is a strong assumption that is likely to give 
an underestimation of the uncertainties. This highlights the 
complexity of assessing the uncertainty on a regional mean 
temperature from in situ measurement and the large remain-
ing uncertainty on this estimation. As this paper is not dedi-
cated to the estimation of in situ measurement errors we use 
the red shading estimation in the main paper, which appears 
as a reasonable assumption.

Finally, to compare the error estimation to the LOP in the 
context of the IPSL-CM5A-LR variability we rescale this 
estimation by the variability in CTL. Therefore, the Argo 
error value used in Fig. 2 is given by the following equation: 

where NAMTCTL and NAMTargo are the annual time series 
of the NAMT index from CTL and Argo floats data 

(3)�NAMT =
1

Nt

√∑

t

�NAMTt
2,

(4)�Argo =
mean(⟨�NAMT⟩)
std(NAMTArgo)

× std(NAMTCTL),

respectively; < 𝛿NAMT > is the error on NAMTargo (Fig. 7b: 
red shading). The error estimation before rescaling, here 
called raw error (mean ⟨�NAMT⟩ ) and the normalized error 
(σArgo) are compared in Table 2 for three vertical layers.
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