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S U M M A R Y
The variation of Rayleigh ellipticity versus frequency is gaining popularity in site character-
ization. It becomes a necessary observable to complement dispersion curves when inverting
shear wave velocity profiles. Various methods have been proposed so far to extract polariza-
tion from ambient vibrations recorded on a single three-component station or with an array of
three-component sensors. If only absolute values were recovered 10 yr ago, new array-based
techniques were recently proposed with enhanced efficiencies providing also the ellipticity
sign. With array processing, higher-order modes are often detected even in the ellipticity do-
main. We suggest to explore the properties of a high-resolution beamforming where radial and
vertical components are explicitly included. If N is the number of three-component sensors, 2N
× 2N cross-spectral density matrices are calculated for all presumed directions of propagation.
They are built with N radial and N vertical channels. As a first approach, steering vectors are
designed to fit with Rayleigh wave properties: the phase shift between radial and vertical com-
ponents is either −�/2 or �/2. We show that neglecting the ellipticity tilt due to attenuation
has only minor effects on the results. Additionally, we prove analytically that it is possible to
retrieve the ellipticity value from the usual maximization of the high-resolution beam power.
The method is tested on synthetic data sets and on experimental data. Both are reference sites
already analysed by several authors. A detailed comparison with previous results on these
cases is provided.

Key words: Fourier analysis; Time-series analysis; Site effects; Surface waves and free
oscillations; Wave propagation.

1 I N T RO D U C T I O N

The dispersive property of surface waves has been used for decades
to invert shear wave (Vs) profiles (Tokimatsu 1997). Over a wide
range of frequency, ambient vibration arrays have proved their relia-
bility for measuring dispersion curves either for Love and Rayleigh
waves (Garofalo et al. 2016a). More recently, the ellipticity of
Rayleigh waves is also gaining success with substantial improve-
ments of the signal processing techniques. Hobiger et al. (2012)
provide a complete and detailed overview of the methods devel-
oped so far to retrieve the experimental ellipticities, based on single
three-component stations and arrays of three-component sensors.

For ambient vibrations, without any prior knowledge about the di-
rection of propagation, a single station processing measures at best
the absolute value of the ellipticity in a restricted frequency range,
generally when the fundamental mode dominates the wavefield (Fäh
et al. 2008; Hobiger et al. 2009). With a pair of three-component

sensors, Roueff et al. (2009) proposed a surface wave separation
method when several polarized waves are recorded. With earthquake
records on an array of three-component sensors, Boore & Toksöz
(1969) already raised the interest of combining dispersion and ellip-
ticity curve to resolve model ambiguities, even without considering
the ellipticity sign. In a more systematic way, Hobiger et al. (2013)
investigated the advantages and the limits of the inversion of the
absolute value for a number of synthetic and experimental cases.
Boaga et al. (2013) also highlighted the benefits of combining dis-
persion and ellipticity curves to correctly identify modes around
osculation points.

Three-component array processing may improve the ellipticity
resolution and bring new insights over the sign of the ellipticity and
its variation versus frequency: prograde and retrograde transitions
are critical observables that help to resolve model uncertainties (e.g.
Scherbaum et al. 2003). Poggi & Fäh (2010) showed that the ab-
solute value can be obtained from the ratio of the high-resolution
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beam power calculated on the radial and on the vertical compo-
nents. In favourable conditions, higher modes and their ellipticity
are also measured. MUSIQUE (Hobiger et al. 2012) and WaveDec
(Maranò et al. 2012, 2017) are currently the two competing methods
to calculate experimental ellipticity signs from ambient vibrations.
For MUSIQUE, slowness and direction of propagation are obtained
from a MUSIC (Schmidt 1986) analysis of a cross-spectral ma-
trix made by the sum of the one-component covariance matrices
(vertical, north, and east components). Horizontal signals are then
projected on the transverse and the radial directions. If the radial en-
ergy is higher than the transverse energy, a covariance matrix in the
quaternion space is built from the vertical and the radial components
transformed into a single quaternion signal. MUSIQUE delivers the
phase difference between Rayleigh components and their ampli-
tude ratio. Maranò et al. (2012) suggested an alternative method
not based on the cross-spectral density matrix. For WaveDec, the
wavefield is modelled by a sum of waves each characterized by
an amplitude, a phase and a wavenumber vector. Rayleigh waves
have an additional parameter for their ellipticity. Parameters are
estimated using an iterative process where the likelihood of the
statistical model versus the three-component measurements is max-
imized.

In the aforementioned references based on high-resolution beam-
forming (Capon 1969), cross-spectral matrices have always N × N
elements even if three-component wavefields are considered. We
propose to study the improvements that may be brought by 2N
× 2N cross-spectral matrices, made of radial and vertical compo-
nents under the assumption of Rayleigh plane waves. The idea of
combining all components into a single cross-spectral matrix was
first suggested by Wagner (1996). The steering matrices were con-
structed to extract polarization properties in the three directions.
Only phase shifts were considered. In addition, we are also check-
ing the feasibility of extracting the amplitude ratio between radial
and vertical components.

We first review the properties of conventional beamforming for
one to three components, before providing a high-resolution im-
plementation for three-component surface waves. For all of these
beamformers, analytical formulation is developed for a single plane
wave. A special attention is paid to the incoherent noise level that
may have a direct influence over quality of the ellipticity determi-
nation. The methodology is applied to synthetic wavefields and to
one experimental case.

2 M E T H O D S

2.1 Conventional vertical beamforming (CVBF)

Assuming an array of N vertical sensors located on a horizontal
plane at �ri where i varies from 1 to N and a single harmonic plane
wave SRz (ω) (ω is the angular frequency, subscript Rz stands for
the vertical component of a Rayleigh wave) which propagates with
wavenumber �k0, the Fourier transforms of the signals recorded at
each sensor are defined in eq. (1). XZ is a N × 1 column matrix.
Bold face characters are matrices.

XZ(ω, �k0) = SRz (ω)q(�k0) + ηZ(ω), (1)

where ηZ is the noise observed at each sensor which is incoherent
between any pair of sensors; q(�k) is a N × 1 column matrix con-
taining the phase shifts for each sensor for a wave propagation at
wavenumber �k. It is defined by

q(�k) = exp(− j�k · �ri ). (2)

Note that q∗q = N . Eq. (1) simply means that the same plane wave
is recorded at all sensors but with specific delays linked to the
magnitude and the sign of the projection of the propagation vector
on the position vector. The frequency wavenumber (f–k) power
spectral density P(ω, �k) can be estimated with P̂(ω, �k) (Capon
1969). For the sake of simplicity, we drop the hat in this paper.

P(ω, �k) = 1

N 2
E∗(�k)F(ω)E(�k), (3)

where

F(ω) = 1

M

M∑
m=1

[
XZ,m X∗

Z,m

]
. (4)

F is the cross-spectral density matrix estimated with the block
averaging method. M is the number of non-overlapping blocks; XZ,m

is the realization of XRz for block m; E(�k) = q(�k) is the steering
matrix (N × 1). If the noise ηRz is incoherent between any pair of
sensors and if M is large enough, we have according to Capon (1969,
eq. 30),

F(ω) = |SRz |2(q0q∗
0 + R I) = |SRz |2 F0, (5)

where q0 = q(�k0); R is the average ratio between the incoherent and
coherent signal assumed to be the same for all sensors. Compared
to Capon’s formulation, F is not normalized to keep track of the
original signal amplitudes along the whole process. With undis-
torted amplitudes, we show in the next sections that it is possible
to extract the ellipticity information for three-component sensors
directly from the maximization of an f–k power spectral density.
Consequently, we assume that all sensors are perfectly calibrated.
Combining eqs (3) and (5), P reduces to

P(ω, �k) = |SRz |2
N 2

[
q∗q0q∗

0q + N R

]

= |SRz |2
[
|B(�k − �k0)|2 + R

N

]
,

(6)

where |B(�k)|2 is the beamforming array response pattern normalized
by the number of sensors N and computed only from the array
geometry �ri (Capon 1969; Woods & Lintz 1973; Wathelet et al.
2008). It has a maximum value equal to unity at the origin, that
is, when �k is equal to �k0. However for a finite number of sensors,
|B(�k)|2 has also many side lobes whose amplitude may be close to
the central peak. If �k = �k0, we have

P(ω, �k0) = |SRz |2
(

1 + R

N

)
. (7)

As a reference for the following discussion, Fig. 1 shows an example
of the response for an array made of 11 vertical sensors distributed
on a circle (100 m radius) and one at the centre of the circle [kmin =
0.024 rad m–1 and kmax = 0.45 rad m–1, see Wathelet et al. (2008)
for definitions]. The wavefield is composed of a single 10 Hz wave
travelling at 300 m s–1 in the east direction. The beam pattern is
centred around �k = [0.21, 0] with a radial symmetry in agreement
with the array layout.

2.2 Conventional radial beamforming (CRBF)

In this section we develop the radial projection for a conventional
beamforming. It follows the original ideas proposed by Fäh et al.
(2008) and Poggi & Fäh (2010) for a high-resolution beamforming.
The f–k power spectrum is also computed with N sensors but the
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Figure 1. Vertical f–k power P obtained for a circular array made of 11
sensors on a circle with a radius of 100 m and one at the centre. A 10 Hz
plane wave is travelling at 300 m s–1 (grey circle) in the east direction (grey
line). The small black circle indicates the wavenumber with the highest
power. All points outside of a radius of 0.45 rad m–1 are partially masked.
It corresponds to the aliasing limit of the array (kmax).

vertical component is replaced by a projection of the horizontal east
and north components (usually aligned to the local magnetic north)
on the direction of propagation (�k).

We consider a wavefield made of a Rayleigh wave and a Love
wave propagating in a 1-D layered medium. Rayleigh wave is dis-
tributed on the vertical component (Rz ) and on the radial component
(Rh ) while the Love wave is only on the horizontal transverse com-
ponent (L). The Rayleigh and Love waves travel at wavenumbers
�k0 and �k1, respectively. Hence, we can define XRh and XL as the
Fourier transforms of the horizontal Rayleigh wave and the Love
wave, respectively.

XRh (ω, �k0) = SRh (ω)q(�k0) = SRh (ω)q0,

XL(ω, �k1) = SL(ω)q(�k1) = SL(ω)q1.
(8)

SRh and SRz are linked by the Rayleigh ellipticity e0. According
to Boore & Toksöz (1969), for perfectly elastic materials, Rayleigh
ellipticity is an imaginary number either positive (prograde) or neg-
ative (retrograde). Inelasticity induces a tilt of the ellipticity with
a small real part. For an extreme case (Qp = 10, Qs = 4 and a
Poisson’s ratio equal to 0.28), Boore & Toksöz (1969) found that
the tilt is only 2 deg. From the equations provided by these authors,
when Poisson’s ratio tends to 0.5, the tilt vanishes. If we consider
the general case where the ellipticity of the incoming wave is a
complex number with a non-null real part, we have

SRh (ω)

SRz (ω)
= −e0(ω)(τ0(ω) + j), τ0(ω) ∈ �, e0(ω) ∈ �, (9)

where e0(ω) is the imaginary part of the ellipticity and τ 0(ω) is the
ratio between the real and the imaginary parts. The dependency to ω

is dropped further in the text for conciseness. For a tilt of 2 deg, τ 0

= 0.035. Contrary to the usual definition found in Boore & Toksöz
(1969), a minus sign is present in front of the ellipticity e0 in our
formulation. SRh is oriented in the direction of propagation and SRz

is pointing upwards to match with the usual convention followed by
the sensor manufacturers (e.g. Lennartz electronic GmbH), while a
vertical axis pointing downwards is generally adopted in the liter-
ature about theoretical dispersion curve computation (e.g. Dunkin
1965). It can be easily checked that a negative e0 in eq. (9) produces
a retrograde elliptical particle motion.

For both experimental and numerically simulated wavefields, the
radial component is not obtained through a direct observation. In-
stead, it is mixed with transverse motion in horizontal components
that may have an arbitrary orientation compared to the Rayleigh
wave direction of propagation. We define the projections of the
Rayleigh and the Love waves on the east and the north components:

XE = cos(θ0)XRh − sin(θ1)XL + ηE

XN = sin(θ0)XRh + cos(θ1)XL + ηN,
(10)

where ηE and ηN are some random noise observed at each sensor
on the horizontal components; θ0 and θ 1 are the propagation angles
for the Rayleigh and the Love waves, respectively. The radial com-
ponents are estimated by projecting X E and X N on any arbitrary
direction θ = atan2(ky, kx).

X̂Rh = cos(θ)XE + sin(θ )XN

= XRh

�k0 · �k
|�k0||�k| + XL

(�k1 × �k)z

|�k1||�k| + kx

|�k|ηE + ky

|�k|ηN

= αXRh + αL XL + αEηE + αNηN.

(11)

A hat is added to X̂Rh because the quantity defined in eq. (11) is not
the pure radial component of the Rayleigh wave (XRh ) but only an
estimation that contains also a Love term. For conciseness, we define
α(�k0, �k) and αL(�k1, �k) the projection functions for the Rayleigh and
Love waves, respectively.

The cross-spectral density matrix is constructed in the same way
as for a one-component beamforming, replacing XRz by X̂Rh . From
the results developed in Appendix A, we have

FRadial(ω, �k) = 1

M

M∑
m=1

X̂Rh,m X̂
∗
Rh,m

= α2e2
0(1 + τ 2

0 )|SRz |2(F0 + β F1),

(12)

where

β(�k) = αL(�k)2|SL|2
α(�k)2e2

0(1 + τ 2
0 )|SRz |2

,

F1 = q1q∗
1 + R I .

(13)

The conditions specified for eq. (5) also apply here. Additionally,
the noise ηE and ηN must be uncorrelated for any pair of sensors
including two components at the same location. The average ratios
of incoherent over coherent signal at each sensor are the same for
all components. FRadial may be estimated for a discrete number
of directions (�k) to save computation time (e.g. 72 directions over
2π ). This approximation introduces very limited errors given that
cos (2π /72) ≈ 0.99619. The resulting uncertainty is of the same
order as the error on sensor orientation for which the maximum
acceptable level is around 10 deg (Fäh et al. 2008).

The radial f–k spectral density becomes:

PRadial(ω, �k) =

α2e2
0(1 + τ 2

0 )|SRz |2
N 2

⎡⎣q∗q0q∗
0q + N R + β(q∗q1q∗

1q + N R)

⎤⎦
= α2e2

0(1 + τ 2
0 )|SRz |2

⎡⎣|B(�k − �k0)|2 + β|B(�k − �k1)|2 + R

N
(1 + β)

⎤⎦.

(14)

If �k1 is aligned with �k0 (αL = 0 and β = 0), we have

PRadial(ω, �k0) = e2
0(1 + τ 2

0 )|SRz |2
(

1 + R

N

)
. (15)
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2.3 Conventional Rayleigh three-component
beamforming (CRTBF)

In a similar way as in eq. (3) we define a f–k power spectral density
PR specific to Rayleigh waves. For a Rayleigh wavefield, 2N compo-
nents (X̂Rh and XRz ) are available instead of just N like the common
beamforming technique presented in Section 2.1. The definition of
PR is given in eq. (16).

PR(ω, �k, e) = 1

N 2
E∗

R(�k, e)FR(ω, �k)ER(�k, e), (16)

where e ∈ R is the presumed Rayleigh ellipticity. The steering
matrices do not include any ellipticity tilt due to attenuation, though
the incoming wavefield has one (τ 0). We show in the following that
τ 0 has almost no influence over the final results. We can define the
steering matrix ER including ellipticity in two ways: either shift
the radial components or the vertical components. We call ERh and
ERz , the steering matrices attached to the shift of radial and vertical
components, respectively.

ERh =
( − j

e q
q

)
, ERz =

(
q

jeq

)
(17)

The cross-spectral density matrix is constructed block-wise with
the same order as ER, that is, first the radial components, followed
by the vertical ones.

FR(ω, �k) = 1

M

M∑
m=1

[(
X̂Rh,m(�k)

XZ,m

)(
X̂

∗
Rh,m(�k) X∗

Z,m

)]
. (18)

X̂Rh,m and XZ,m are column matrices built from the Fourier trans-
form of block m for the radial and the vertical components, respec-
tively. Combining eqs (1), (8), (9), (11) and (18), we have

FR(ω) = |SRz |2

×
(

α2e2
0(1 + τ 2

0 )(F0 + β F1) −αe0(τ0 + j)q0q∗
0

−αe0(τ0 − j)q0q∗
0 F0

)
.

(19)

The conditions specified for eq. (5) also apply here. Additionally,
the noise ηRz , ηE and ηN must be uncorrelated for any pair of sensors
including two components at the same location. The average ratios
of incoherent over coherent signal at each sensor are the same for all
components. Substituting FR and ER in eq. (16) by their respective
values defined in eqs (17) and (19), we have

PRz (ω, �k, e) = |SRz |2
[

((αe0 + e)2 + α2e2
0τ

2
0 )|B(�k − �k0)|2

+ βα2e2
0(1 + τ 2

0 )|B(�k − �k1)|2

+ R

N
(α2e2

0(1 + τ 2
0 )(1 + β) + e2)

]
PRh (ω, �k, e) = PRz

e2
,

(20)

using ERz and ERh as steering matrices, respectively. The relation
between PRh and PRz is true for any wavefield and not only for the
particular case considered here. If the Love wave (�k1) travels in the
same direction as the Rayleigh wave (�k0), for example, produced by
a common source in the far field, β vanishes for any �k aligned with
�k0 and PR can be approximated by the first term in the neighbour-
hood of the direction pointed by �k0 and an incoherent noise term.
The Rayleigh f–k power is thus the product of the beam pattern,
maximum at �k = �k0, and a factor controlled by e and �k (through α).
α is maximum and is equal to 1 when �k is in the right direction.

Figure 2. Conventional Rayleigh three-component beamforming (CRTBF)
for the same circular array as in Fig. 1. A 10 Hz Rayleigh wave travels at
300 m s–1 in the east direction (grey line). The small black circle indicates
the wavenumber with the highest power. All points outside of a radius of
0.45 rad m–1 are partially masked as in Figs 1(a) and (b) Rayleigh f–k power
PR for e = −1 and e = 1, respectively. (c) Rayleigh f–k power PR± . (d) Sign
of the ellipticity: grey is positive and white is negative.

At �k = �k0 and neglecting all Love wave contributions, we have

PRz (ω, �k0, e) = |SRz |2

×
[

(e0 + e)2 + τ 2
0 e2

0 + R

N
(e2

0(1 + τ 2
0 ) + e2)

]
.

(21)

PR is maximum if the sign of e is the same as the sign of the true
ellipticity e0, even if R is large, if there are only a few sensors and/or
if the real part of the true ellipticity (τ 0e0) cannot be neglected. It
is not possible to retrieve the ellipticity value when maximizing PR

with any of the two proposed steering matrices ERh and ERz . How-
ever, under the restriction that e = ±1, looking for the maximum
of PR provides both k0 and the sign of e0. The two options for the
steering matrix are equivalent if e is forced to be ±1. To display the
values of PR, we may use PR± defined as:

PR± (ω, �k) = max
e=±1

PR(ω, �k, e). (22)

Fig. 2 shows PR, PR± , and the sign of the ellipticity e for the same
array as in Section 2.1 with a wavefield composed of a pure 10 Hz
Rayleigh wave (e0 = 1) travelling in the east direction at 300 m s–1.
Comparing Figs 1 and 2(c), the same pattern is observed except for
side lobes that are not in the vicinity of the direction of propagation
(�k0). They are vanishing around the north axis as already observed
from eq. (20). The main peak being in the middle of a large area
with all positive ellipticities (Fig. 2d), the extraction of the ellipticity
sign is robust against any small error of the velocity estimation.

Let us now consider a more realistic case including a Love
wave travelling in the same direction as the Rayleigh wave but
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at 320 m s–1. CRBF and CRTBF are shown in Figs 3(a) and (b). The
patterns look similar but the relative amplitudes of peaks are differ-
ent. The location of the highest peak is close to the true wavenum-
ber for CRTBF while it is erroneous for CRBF. The peak with
the true wavenumber is much lower than the highest side lobes in-
fluenced by the dominant Love wave. The influence of the Love
wave can be observed by comparing Figs 2(c) and 3(b) (peaks
around north axis). The ellipticity sign pattern is sharper for the
case without any Love wave (Figs 2d and 3c), but the sign re-
mains correct in the vicinity of the beamforming peak when a
Love wave is present. CRTBF is performing slightly better than
CRBF. If we note that Pradial is equal to PRz at e = 0, the ellip-
ticity e adds a little more weight to the Rayleigh wave relative to
the incoherent noise term (R/N) in eq. (20) compared to a radial
beamforming (RBF). This advantage disappears if the amplitude
of Love wave increases to 3 or more while Rayleigh amplitude
remains at 1.

In Fig. 4, still with the same circular array, we check the capa-
bilities of retrieving the correct properties of many waves travelling
with similar velocities and whose azimuth are equally distributed
from 90 to 140 deg. Love waves are travelling at 240 m s–1, Rayleigh
waves at 200 and 220 m s–1 with ellipticities of −0.5 and 2, respec-
tively. All sources have the same amplitude. The ratio of incoherent
noise over coherent waves is fixed to 12 per cent. 48 blocks are av-
eraged in all cases to compute the cross-spectral density matrix. For
all cases the image appears relatively blurred. For CVBF (Fig. 4a),
the two Rayleigh modes are visible but all incident plane waves
are not fully recovered and aliasing side lobes have almost similar
amplitudes even in the restricted area shown in Fig. 4. Many side
lobes exist outside the visible area with the same intensity as the
maxima in the visible area. CRBF (Fig. 4b) is much clearer with
respect to side lobes even including those outside of the visible
area, but the second Rayleigh mode (at 200 m s–1) is not visible
at all. Only the mode with the highest absolute value of elliptic-
ity is evidenced. Positive CRTBF [PR with e = 1, Fig. 4(c)] looks
very similar to CRBF, dominated by the Rayleigh wave with the
strongest energy on the horizontal component (220 m s–1 and e =
2). The side lobes outside of the visible area are smaller than for
CRBF. If the ellipticity sign is forced to –1, Fig. 4(e) shows that the
Rayleigh mode with the lowest absolute ellipticity (at 200 m s–1)
can still be extracted with a prior information about the direc-
tion. Strong side lobes are observed in the opposite direction, out-
side of the visible area. The ellipticity sign (Fig. 4e) confirms that
the positive ellipticity dominates the f–k spectrum. Nevertheless
negative patches are visible for all waves at 200 m s–1. The same
case will be processed with high-resolution techniques in the next
sections.

In this section, we show that, even for a conventional beamform-
ing, combining vertical and radial components inside the beam-
forming itself is a good way to retrieve the sign of the ellipticity.
The assessment of phase slownesses is of the same quality as a
usual one-component processing (vertical or radial). The CPU cost
of such procedure remains reasonable. For instance, to process 1
hr of ambient vibrations with 14 sensors, it takes approximately
33 s for CVBF and about 100 s for CRTBF, keeping exactly the
same parameters and on the same 16-core machine with similar
CPU loads. The conventional beamforming used so far in this paper
suffers strong limitations. Among others, we cannot determine the
absolute value of ellipticity. Though it can be circumvented by com-
bining our results with the absolute ellipticity values obtained with
the method proposed by Poggi & Fäh (2010), we show in the next
section that a high-resolution algorithm used with a combination

of vertical and radial components offers very interesting properties,
solving both the sign and the absolute value issues for ellipticity.

2.4 High-resolution vertical beamforming (VBF)

According to Capon (1969) the high-resolution f–k power spectral
density is

P ′(ω, �k) =
[

E∗(�k)[F(ω)]−1 E(�k)

]−1

, (23)

where F is defined by eq. (4). The number M of non-overlapping
blocks used to compute F must be larger than N, the number of
sensors in the array.

For a wavefield composed of a plane wave propagating at �k0, F
reduces to F0 (eq. 5). The inverse of F0 is based on Capon (1969,
eq. 31).

F−1
0 = 1

R

[
I − q0q∗

0

N + R

]
. (24)

Hence,

P ′(ω, �k) = |SRz |2
R

N

[
1 − |B(�k − �k0)|2

1 + R
N

]−1

, (25)

which is equivalent to eq. (32) in Capon (1969). At �k = �k0,

P ′(ω, �k0) = |SRz |2(1 + R

N
) = P(ω, �k0). (26)

2.5 High-resolution radial beamforming (RBF)

As in Poggi & Fäh (2010), a high-resolution f–k power can be
defined by injecting the definition of FRadial (eq. 12) in eq. (23).
For the sake of simplicity, we do not consider any Love waves
in the following analytical developments, but numerical tests will
show that it has almost no influence over the determination of �k in
accordance with the conclusions drawn by Capon (1969) when two
waves are present in the wavefield.

P ′
Radial(ω, �k) = α2e2

0(1 + τ 2
0 )|SRz |2

R

N

[
1 − |B(�k − �k0)|2

1 + R
N

]−1

. (27)

The absolute value of ellipticity can be obtained by dividing P ′
Radial

by P
′

(Poggi & Fäh 2010). From eq. (27), it comes that

|e| =
√

P ′
Radial

P ′ = |α(�k)e0|
√

1 + τ 2
0 . (28)

For a 2 deg tilt, the square root equals to 1.0006, which may intro-
duce a very small distortion. The obtained ellipticity is correct if �k
is in the same direction as �k0 (α ≈ 1), even if the absolute value of
the velocity estimation is false. The ellipticity estimator is relatively
robust to small errors on the direction of propagation, for example,
for an angle of 20 deg between �k and �k0, the error on the ellipticity
is limited to about 5 per cent. In the method proposed by Poggi
& Fäh (2010), �k is retrieved independently from either the verti-
cal or the radial component, and both results are generally plotted
together. The quality of the ellipticity determination depends only
upon the efficiency of these beamformers to properly decompose
the wavefield and to extract the correct direction of propagation.
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Figure 3. CRBF and CRTBF for a wavefield composed of Love (320 m s–1) and Rayleigh (300 m s–1) waves with amplitudes 2 and 1, respectively. The array is
the same circle as in Fig. 1. Phase differences between Love and radial Rayleigh wave are random across the 20 blocks used to build the cross-spectral density
matrix. (a) CRBF. (b) CRTBF. (c) The ellipticity sign deduced from CRTBF (grey is positive, white is negative).

Figure 4. Comparison of several conventional beamforming techniques: (a) CVBF, (b) CRBF, (c) CRTBF with positive ellipticity (PR with e = 1), (d) CRTBF
with negative ellipticity (PR with e = −1) and (e) ellipticity sign from PR± (grey is positive, white is negative). The level of incoherent noise is 12 per cent
( R

N = 0.01). 48 blocks are used in all cases to evaluate the cross-correlation matrices. The wavefield is composed of six Rayleigh waves at 220 m s–1 and e =
2, 6; Rayleigh waves at 200 m s–1 and e = −0.5 and 6 Love waves at 240 m s–1. All waves have a unitary intensity. The small subplots in panels (a) to (d) show
the full wavenumber space between −0.33 and 0.33 rad m–1. The colour scales are normalized in each plot to the maximum value of the f–k power spectrum
in the visible area. The straight lines indicate the direction of propagation that vary from 90 to 140 deg. The circles are located at the theoretical velocities:
240, 220 and 200 m s–1 (from left to right in the main plots).
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2.6 High-resolution Rayleigh three-component
beamforming (RTBF)

As detailed in the previous section, the N radial and the N vertical
components can be considered as part of a super array made of 2N
single-component sensors. We propose to check the properties of
a high-resolution Rayleigh beam power computed with 2N signals
instead of just N. Following the high-resolution beam power defined
by Capon (1969, eq. 18), we have

P ′
R(ω, �k, e) =

[
E′∗

R (�k, e)[FR(ω)]−1 E′
R(�k, e)

]−1

. (29)

FR is estimated by the means of eq. (19) with M non-overlapping
blocks, M being larger than 2N. We can define the steering matrices
E′

R including ellipticity in two ways like in the previous section.
We call E′

Rh
and E′

Rz
, the steering matrices attached to the shift of

radial and vertical components, respectively.

E′
Rh

=
(− jeq

q

)
, E′

Rz
=

(
q
j

e
q

)
. (30)

These matrices differ from those defined in eq. (17) because the
high-resolution beam power is computed with the inverse of the
cross-spectral density matrix. At e = e0, the steering matrices in
eq. (17) are equalizing the amplitudes of the vertical and the ra-
dial components of the cross-spectral density matrix. Intuitively,
the radial components in a high-resolution beam power must be
multiplied by the presumed ellipticity e instead of being divided to
achieve a similar equalization. The proof is provided below.

For a wavefield composed of a Rayleigh plane wave propagat-
ing at �k0 and with ellipticity e0, we now show that P ′

R(ω, �k, e) is
maximum when �k = �k0 and e = e0. As in Section 2.5 no Love
wave is considered. We develop a similar approach as Capon (1969,
eq. 26) but generalized to three-component sensors and without FR
normalization. According to Henderson & Searle (1981, eq. 8), the
block-wise inverse of FR can be written as

F−1
R = 1

|SRz |2
(

α2e2
0(1 + τ 2

0 )F0 −αe0(τ0 + j)q0q∗
0

−αe0(τ0 − j)q0q∗
0 F0

)−1

= 1

α2e2
0(1 + τ 2

0 )|SRz |2

×
(

F−1
0 + F−1

0 q0q∗
0 A−1q0q∗

0 F−1
0 αe0(τ0 + j)F−1

0 q0q∗
0 A−1

αe0(τ0 − j)A−1q0q∗
0 F−1

0 α2e2
0(1 + τ 2

0 )A−1

)
,

(31)

where A = F0 − q0q∗
0 F−1

0 q0q∗
0 and the inverse of A can be sim-

plified to

A−1 = 1

R

[
I − q0q∗

0

2N + R

]
. (32)

Hence,

F−1
R = 1

Rα2e2
0(1 + τ 2

0 )|SRz |2

×

⎛⎜⎜⎝
[

I − q0q∗
0

2N + R

]
αe0(τ0 + j)

q0q∗
0

2N + R

αe0(τ0 − j)
q0q∗

0

2N + R
α2e2

0(1 + τ 2
0 )

[
I − q0q∗

0

2N + R

]
⎞⎟⎟⎠.

(33)

Using E′
Rh

in eq. (29), it comes that

P ′
Rh

(ω, �k, e) =
R

N

α2(1 + τ 2
0 )|SRz |2

( e2

e2
0

+ α2(1 + τ 2
0 )) − (( e

e0
+ α)2 + α2τ 2

0 )
|B(�k − �k0)|2

2 + R
N

. (34)

In a similar way, using ERz in eq. (29), we obtain

P ′
Rz

(ω, �k, e) = e2 P ′
Rh

(ω, �k, e). (35)

As in Section 2.3 the two steering matrices ERh and ERz lead to
similar f–k power spectral densities for any wavefield. Hence, it is
not necessary to compute the two steering matrices explicitly. P ′

Rz

can be computed by multiplying P ′
Rh

by the square of the presumed
ellipticity.

The roots of the derivatives of P ′
Rh

and P ′
Rz

versus e corresponding
to maxima are found at

êh = e0α
|B(�k − �k0)|2

2 + R
N − |B(�k − �k0)|2

êz = e0α
(1 + τ 2

0 )
[
2 + R

N − |B(�k − �k0)|2]
|B(�k − �k0)|2 ,

(36)

where êh and êz are the values of ellipticity inferred from the max-
imum of P ′

Rh
and P ′

Rz
, respectively. When �k = �k0 (α = 1), P ′

Rh

becomes

P ′
Rh

(ω, �k0, e) =|SRz |2
R

N
(2 + R

N
)

× 1 + τ 2
0(

e
e0

− 1
)2 + τ 2

0 + R
N

(
e2

e2
0

+ 1 + τ 2
0

) .
(37)

At �k = �k0 and e = e0, neglecting τ 2
0 , we have

P ′
Rh

(ω, �k0, e0) ≈ |SRz |2(1 + R

2N
), (38)

which is a clear reduction of the incoherent noise term by a factor
2 compared to P

′
(eq. 26). The variation of P ′

R versus the presumed
ellipticity e is shown in Fig. 5 for two true ellipticities: −0.5 (a)
and 2 (b). All the continuous lines (low noise and/or high number
of sensors) have a sharp and well-defined peak at the true ellipticity
value. At �k = �k0, the estimated ellipticities êh and êz are

êh = e0

1 + R
N

êz = e0(1 + R

N
)(1 + τ 2

0 ).

(39)

The position of the maximum of P ′
Rh

is not influenced by the real
part (τ 0) of the true ellipticity. As shown in Fig. 5, P ′

Rh
and P ′

Rz
are

almost not affected by an increase of the tilt from 0 to 2 deg (Boore
& Toksöz 1969). In Fig. 5 and in eq. (39) the maxima of P ′

Rh
(green)

and P ′
Rz

(orange) are moving in opposite directions when the noise
increases, providing a biased estimation of e0. The sharpness of
the peak is also lost. Therefore the ratio between the results of two
steering matrices is a marker of the noise level and we can define
an estimated noise level by R̂, neglecting any ellipticity tilt.

R̂ = N

[√
êz

êh
− 1

]
(40)

For experimental cases and noisy data, the true velocity may not
be accurately resolved. In this case �k is slightly different from �k0

(|B|2 < 1) in eq. (34). Let us consider the case |B|2 = 0.5. For a
direction of �k in the neighbourhood of the direction of �k0 so that α

≈ 1, the retrieved ellipticities becomes

êh = e0
1

3 + 2 R
N

êz = e0(3 + 2
R

N
)(1 + τ 2

0 ).

(41)
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Figure 5. P ′
Rh

(�k0, e) and P ′
Rz

(�k0, e) for (a) e0 = −0.5 and (b) e0 = 2. P ′
Rh

is shown with blue (τ 0 = 0) and green (τ 0 = 0.035, a 2 deg tilt) lines. P ′
Rz

is shown

with red (τ 0 = 0) and orange (τ 0 = 0.035) lines. Continuous lines have a ratio R
N = 0.01 and dashed lines have a ratio R

N = 0.1. Blue and red curves are
slightly visible only around the peaks, elsewhere they are almost the same as the green and the orange curves, respectively.

P ′
Rh

and P ′
Rz

are no longer maximum for e = e0 even for a very

small amount of incoherent noise. As the distance between �k and
�k0 increases, |B|2 tends to 0 and êh decreases to 0 while êz tends
to ±∞. Thus an accurate determination of �k and a low level of
incoherent noise are required to obtain an accurate ellipticity, which
is likely to be impossible for real data sets. Alternatively, we pro-
pose to estimate the quantity P ′

Rs
defined by the product of P ′

Rh

and P ′
Rz

.

P ′
Rs

(ω, �k, e) = P ′
Rh

P ′
Rz

= e2(P ′
Rh

)2, (42)

which has two maxima at the presumed ellipticities (see Ap-
pendix B)

ês = ±|e0||α|
√

1 + τ 2
0
. (43)

This is the same formula as in eq. (28) for the ellipticity calculated
from the ratio of the radial and vertical f–k power spectral densities.
The ellipticity estimation is no longer influenced by the amount
of incoherent noise or the number of sensors. As noted earlier
when commenting about eq. (28), the alignment of �k and �k0 is
the most important factor controlling the accuracy of the ellipticity
measurement. Contrary to the method proposed by Poggi & Fäh
(2010) where only the absolute value can be retrieved, we have here
two maxima of the f–k power spectral density that may have distinct
amplitudes. From eqs (37) and (42), we have at �k = �k0

P ′
Rs

(ω, �k0, e) =|SRz |4
R2

N 2
(2 + R

N
)2

× (1 + τ 2
0 )2e2

[( e
e0

− 1)2 + τ 2
0 + R

N ( e2

e2
0

+ 1 + τ 2
0 )]2

.
(44)

At |B|2 = 0.5 and assuming that �k is still sufficiently aligned with
�k0 so that α ≈ 1,

P ′
Rs

(ω, |B|2 = 0.5, e) = |SRz |4
R2

N 2
(2 + R

N
)2

× 4(1 + τ 2
0 )2e2

[( e
e0

− 1)2 + τ 2
0 + (2 + 2 R

N )( e2

e2
0

+ 1 + τ 2
0 )]2

.
(45)

In both eqs (44) and (45), the sign of e only influences the first term
of the denominator, which is null for e = e0 and positive when e
= −e0. Hence the maximum at e = e0 is always higher than the

maximum at e = −e0. The difference tends to zero when the noise
level increases. For |B|2 = 0.5, the noise term is larger than at �k = �k0

. An example of variations of P ′
Rs

versus e is given in Fig. 6 which
confirms that the ellipticity value and its sign are robust against the
amount of incoherent noise and the inaccuracy of �k. If equivalent
maxima for the positive and the negative ellipticity are observed, it
is a clear indication that the velocity measure is not accurate or that
the noise level is too large.

In Fig. 7, with the same circular array and the same wavefield as in
Fig. 4, we check the capabilities of retrieving the correct properties
from high-resolution techniques with multiple sources. In Figs 7(a)
and (b), the f–k power is a two-parameter function while a three-
parameter function must be shown in Fig. 7(c). Hence, values of
P ′S

Rxy
(�k) defined by eq. (46) are displayed instead of a complex 3-

D plot. In Fig. 6, P ′
Rs

(�k0) has always two maxima, one at the true
ellipticity and the other at the opposite ellipticity. Keeping only the
maximum value for a fixed kx and ky has the advantage of focusing
only on the highest of the two peaks that is supposed to appear at
the true ellipticity. These conclusions were drawn from the single
source wavefield but we can extrapolate them to multiple sources in
the neighbourhood of the true wavenumbers when the array properly
separates the propagating waves.

P ′S
Rxy

(�k) = max
e

P ′
Rs

(�k, e). (46)

Compared to conventional techniques, the peaks of the f–k power
spectra are better defined and clearly higher than aliasing side lobes.
For the vertical beamforming (VBF, Fig. 7a), the two Rayleigh
modes are visible but many aliasing patterns are also present outside
of the visible area. For the RBF (Fig. 7b) all peaks of the first
Rayleigh mode (at 220 m s–1) are clearly identified, but the second
Rayleigh mode (at 200 m s–1) is not visible at all. Only the mode with
the highest ellipticity absolute value is evidenced as in Fig. 4(b).
The Rayleigh beamforming (Fig. 7c) correctly identifies all waves
for the two Rayleigh modes with a low level for all side lobes,
in a better way than other techniques. The absolute values of the
ellipticity are plotted in Figs 7(d) and (e), comparing results from
Poggi’s method and from RTBF, respectively.

Highest peaks are automatically extracted from the results in
Figs 7(a)–(c) considering the complete wavenumber space. We start
with a coarse grid search in kx and ky with the appropriate powers
(for Figs 7a and b) or the function defined in eq. (46) (for Fig. 7c),
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Figure 6. Variations of P ′
Rs

versus the presumed ellipticity e: (a) for e0 = −0.5 and (b) for e0 = 2. Plain and dashed lines have a ratio R
N equal to 0.01 and 0.1,

respectively. Black and grey lines are computed at |B|2 equal to 1 (�k = �k0) and 0.5, respectively.

Figure 7. Comparison of several high-resolution beamforming techniques: (a) VBF, (b) RBF and (c) RTBF. (d) Ellipticities calculated with the method
proposed by Poggi & Fäh (2010). (e) Absolute values of the ellipticities calculated with RTBF. The same wavefield as in Fig. 4 is used. The level of incoherent
noise is 12 per cent ( R

N = 0.01). 48 blocks are used in all cases to evaluate the cross-correlation matrices. The small subplots in panels (a)–(c) show the full
wavenumber space between −0.33 and 0.33 rad m−1. The colour scales are normalized in each plot to the maximum value of the f–k power spectrum in the
visible area. The straight lines indicate the direction of propagation that vary from 90 to 140 deg. The circles are located at the theoretical velocities: 240, 220
and 200 m s–1 (from left to right in the main plots).
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Figure 8. Histograms of velocity values picked in Fig. 7. (a) VBF, (b) RBF
and (c) RTBF.

Table 1. Properties of the power peaks automatically picked in Fig. 7(c) and
part of the two main spikes in Fig. 8(c). Directions are counted clockwise
from north (y axis).

Power Velocity (m s–1) Direction (deg) Ellipticity Poggi Ell.

3.44 220 90 1.88 1.87
2.73 220 100 1.90 1.99
3.86 220 110 1.92 2.08
2.75 220 120 1.94 1.98
3.19 220 130 1.92 2.01
3.37 220 140 1.87 1.68
0.26 200 90 −0.72 0.71
0.36 200 100 −0.73 0.76
0.32 200 110 −0.76 0.81
0.32 200 120 −0.72 0.77
0.31 200 130 −0.73 0.78
0.29 200 140 −0.69 0.75
0.37 201 387 −1.74
0.29 202 302 −1.74

itself calculated with a coarse sampling of arctan e from −�/2 to
�/2 with a constant step of �/20. Then, we refine the peak location
in the 2-D (kx and ky) or 3-D space (kx, ky and arctan e) down to a
relative precision of 10−5. Only the peaks with an amplitude above
5 per cent of the maximum amplitude are selected. Histograms of
the corresponding velocity values are shown in Fig. 8. For RTBF
two clear spikes are visible at 200 and 220 m s–1 while no particular
velocity can be identified from the vertical and radial histograms. All
peaks which are part of the two spikes are selected and summarized
in Table 1. All 12 velocities and their directions are retrieved with an
accuracy of less than 1 m s–1 and 1 deg, respectively. Two aliasing
peaks are also extracted with matching velocities (last two lines
in Table 1). RTBF correctly extracts the sign of the ellipticity for
all 12 individual Rayleigh waves. The ellipticity of the waves at
200 m s–1 (e = −0.5) and 220 m s–1 (e = 2) are retrieved with a
systematic relative error of about 50 and 5 per cent, respectively.
The uncertainty is higher for the waves with the ellipticity having
the lowest absolute value. Assuming that velocities and directions
are perfectly determined, the ellipticities obtained by the method

proposed by Poggi & Fäh (2010) are compared with those obtained
from RTBF in Table 1. In Fig. 7(e), the spots at 220 m s–1 are
larger than those found in Fig. 7(d). The ellipticities deduced from
Fig. 7(e) are thus more robust than those obtained from Fig. 7(d)
in case of errors of the velocity and direction measurements. If we
reduce the noise level (e.g. R = 0.001), the ellipticity obtained with
RTBF is tending to the true ellipticity even for the waves having
the ellipticity with the smallest absolute value. No improvement
can be observed with Poggi’s method in the case of low noise by
comparison with the results of Table 1.

We have shown in this section that the combination of the ver-
tical component and the radial projection in the computation of
the cross-spectrum matrix offers a real advantage over classical ap-
proaches used so far with single component or single projection
processing for the determination of �k. We also provide a new way
of extracting Rayleigh ellipticity in an efficient way. For a single
far-field plane wave, the estimation is accurate even in the presence
of strong incoherent noise. For multiple waves, the separation of
12 Rayleigh waves with only 12 three-component sensors in the
presence of six Love waves is working fairly well to retrieve both
the velocity and directions of propagation. For a 12 per cent portion
of incoherent noise, about 5 per cent error is found on the ellipticity
determination for waves with the strongest ellipticity (2). For the
other waves with the lowest ellipticity (−0.5), the algorithm is not
so efficient and larger errors are observed. The errors are directly
linked to the level of incoherent noise. We also provide a way to
quantify the level of incoherent noise that can be used to assess the
reliability of the computed ellipticity values. In all cases, there is
no ambiguity on the sign of the ellipticity. The CPU cost of the
proposed method is still reasonable. For instance, 1 hr of ambient
vibrations recorded on the vertical component is processed in 49 s
on a 16-core machine. The three-component processing in the same
conditions lasts approximately 380 s, about 7 to 8 times longer. In
the following, we apply the new methodology on a synthetic and a
real case.

3 S Y N T H E T I C A M B I E N T V I B R AT I O N S

We test RTBF on model M2.1 commonly used for comparison
of methods within SESAME European Project (‘Site EffectS as-
sessment using AMbient Excitations’, Bard et al. 2004, Bonnefoy-
Claudet et al. 2006) and in particular by Fäh et al. (2008), Poggi
& Fäh (2010), Maranò et al. (2012) and Maranò et al. (2017) for
three-component processing. The propagation medium is made of
a single soft sediment layer on top of a rigid half-space, with a
strong impedance contrast. The original data set provides 405 s of
simulated noise up to 15 Hz over 38 three-component sensors with
source to receiver distances varying from 150 to 700 m. Green’s
functions were computed with the code provided by Hisada (1994)
and Hisada (1995) and they were convolved with delta-like impulse
sources having random orientations and amplitudes. The complete
description of the model can be found in the aforementioned refer-
ences. We consider only two sensor geometries: all which contain all
38 receivers of the data set (200 m aperture) and array 2 (14 sensors,
80 m aperture) which is used by Poggi & Fäh (2010) and Maranò
et al. (2017). The geometries of these arrays can be found in Bard
et al. (2004), page 9 and Poggi & Fäh (2010), Fig. 7, respectively.

To follow the recommendations of Capon (1969) about the num-
ber of non-overlapping blocks (M) for the computation of averaged
cross-spectral density matrices (M > N), much longer signals are
required to obtain a reliable dispersion curve around the frequency
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of the resonance peak observed for model M2.1 (2 Hz). For instance,
with blocks of 100 periods per block (50 s at 2 Hz) and 38 stations,
the minimum duration is 1900 s at 2 Hz without block overlapping
and M = N. Hence the same set of receivers and sources is simulated
here with a longer duration, up to 6 hr and sampled at 200 Hz. The
source spectrum is extended up to 50 Hz. The source distribution
in time is simply revised by defining a probability of occurrence of
1�at every time period. On average, each source is fired around
2140 times during 6 hr.

Sets of 4N blocks are used to compute averaged cross-correlation
matrices (2N × 2N), with N being the number of three-component
sensors. Smaller sets were tested and provide less accuracy in the
determination of dispersion and ellipticity curves. The length of
blocks is fixed to 100 periods, hence blocks are shorter in time at
high frequency than those at low frequency. For a given frequency,
if enough signal duration is available, the operation is repeated
severable times to generate a maximum of 50 estimations of the
wavefield parameters (direction, slowness, ellipticity angle, inco-
herent noise ratio and beam power), equally distributed along the
total duration. We forbid any overlap between blocks but block sets
can overlap. Neither spectral smoothing, amplitude normalization,
frequency average nor noise decomposition is performed. For each
frequency and each block set, all local maxima of the beam power
are automatically identified using the procedure described in Sec-
tion 2.6. Histograms are then built for each frequency, for dispersion
and ellipticity curves.

In Fig. 9, we show the raw results calculated with VBF and RTBF
on array all without any selection. While the fundamental mode
dispersion curve is correctly reconstructed with a good accuracy
from 2.3 to 20 Hz with both methods, the first six higher-order
modes are better defined and separated by RTBF. They can be picked
easily without any subjective expertise. Below 2.3 Hz, all methods
are losing accuracy with a strong bias around 2 Hz, the resonance
frequency of model M2.1, due to the vanishing intensity on the
vertical component. A similar phenomenon is observed at 5 Hz on
the first higher-order mode, in which ellipticity angle is changing
from −π/2 to π/2, that is, also a vanishing of the Rayleigh wave
intensity in the vertical component. A small bias is also visible
on the RTBF curve for the first higher-order mode. The second
higher-order mode apparently suffers from a similar lack of energy
at around 6 Hz.

The first four modes in Fig. 9(b) are manually and roughly picked.
All samples in which slowness falls within a 20 per cent range
around the picked curves are selected. Thanks to the cleanliness
of Fig. 9(b) there are almost no ambiguity during the selection
process. The four selected modal dispersion curves are plotted in
Figs 10(a), (d), (g) and (j). Their corresponding ellipticities and es-
timated incoherent noise ratios R̂ (eq. 40) are also shown in Fig. 10.
For the fundamental mode (Figs 10a–c), the estimated ellipticity
slightly deviates from the true ellipticity between 3.6 and 5.2 Hz
which is associated with an estimated noise ratio of above 3. The
noise ratio also increases at high frequency with a related increase of
the ellipticity uncertainty visible above 15 Hz. The first higher-order
mode (Figs 10d–f) deviates from the theoretical curves at 3.7, 5 and
8.8 Hz and in parallel, the incoherent noise ratio rises above 3 for
these frequencies. For the second and third higher-order modes the
valid range for ellipticity is rather restricted. It matches relatively
well the frequency range where values of R̂ are below 3. There-
fore a level of 3 for the estimated incoherent noise ratio appears
to be a suitable threshold to select the good ellipticity values. We
already observe in Section 2.6 that the level of incoherent noise in-
fluences the ellipticity measure especially for the case where several

Figure 9. Dispersion curves obtained by processing 6-hr long signals sim-
ulated for array all made of 38 receivers. (a) Dispersion curves retrieved
with a single-component VBF. (b) Dispersion curves produced by RTBF.
All local maxima of the beam powers are reported without any selection.
The colour scale is normalized to the maximum value of each plot keeping
the same ratio (104) between the maximum and the minimum of the scale.
The red straight lines are the theoretical array limits as specified by Wathelet
et al. (2008), from left to right: kmin/2 (plain line), kmin (dashed line), kmax/2
(dashed line), kmax (plain line). The dotted curves are the theoretical disper-
sion curves for the fundamental and the first higher-order modes.

waves with significantly different ellipticities values are propagating
together. The most affected are the ellipticities with the lowest ab-
solute values, for example, the fundamental mode between 3.6 and
5.2 Hz in which absolute value is overestimated. The fundamental
mode ellipticity is particularly well retrieved here on the flat part
between 5.2 and 25 Hz because the high number of sensors allows
a proper separation of the majority of the passing waves, reducing
to a small quantity the uncaught waves considered as uncorrelated
noise.

In Fig. 11 the dispersion and ellipticity curves are shown after a
selection of all samples with R̂ below 3. Outliers like those found
for the fundamental mode above 10 Hz can be rejected by analysing
each mode individually and recalling that one single ellipticity is al-
lowed per frequency and per mode. Dispersion curves are retrieved
accurately except at low frequency. This common feature can be
observed on all modes drifting from the true curves when reaching
their lowest frequency point, identified at 2.2 , 3.9 and 7 Hz for the
fundamental and the first two higher-order modes, respectively. In
terms of wavenumber they correspond to kmin divided by 3.9, 2.7
and 1.5 for the fundamental and the first two higher-order modes,
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Figure 10. Estimated ellipticities and incoherent noise ratios R̂ for the first four modes selected from the RTBF results in Fig. 9(b). (a–c) Dispersion, ellipticity
curve and estimated incoherent noise ratio R̂ for the fundamental mode. (d–f) First higher-order mode. (g–i) Second higher-order mode. (j–l) Third higher-order
mode. Colour scales, theoretical curves and array limits are defined in the same way as in Fig. 9.
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Figure 11. Dispersion (a) and ellipticity (b) curves obtained after a selection
of all samples with an estimated incoherent noise ratio below 3. Colour
scales, theoretical curves and array limits are defined in the same way as in
Fig. 9.

respectively. For all of them, either the vertical or the radial com-
ponent is vanishing at their low frequency end point. The proposed
criterion based on R̂ is not sufficient to reject these biased points.
Looking towards low frequencies, we can note for all modes that
whenever R̂ starts to increase, the dispersion and ellipticity curves
start to drift from the true values. The inflection points on R̂ curves
are located at 2.3, 4.1 and 7 Hz for the fundamental and the first two
higher-order modes, respectively. Hence for this case, considering
the low frequency inflection point of R̂ curves appears as a con-
servative option to select accurate dispersion and ellipticity curves
below the classical array limits based on kmin.

The dispersion curves computed for array 2 with VBF and RBF
(VRBF) by Poggi & Fäh (2010) are compared to the dispersion
curves obtained with RTBF, using the original SESAME data set
lasting only 6 min and 45 s. We run RTBF with the same parameters
as for the 6 hr of signal described here above, except that a block
overlap of 75 per cent is tolerated to circumvent the lack of data. A
suboptimal efficiency is expected for high-resolution techniques but
this is the price of a fair comparison with other methods available
in the literature. All samples with R̂ higher than 3 are filtered
out. Outliers are not removed. In Fig. 12 we show RTBF results
with the same display parameters as those used in Poggi & Fäh
(2010, fig. 8c1). The low frequency inflection point of R̂ curve is
around 2.4 Hz. For the first high-order mode the inflection point is
around 4.3 Hz (not shown). All slowness values above these cut-off
frequencies are accurate for the fundamental mode and only slightly

Figure 12. Results obtained with RTBF on array 2 from the original
SESAME data set lasting 6 min and 45 s. (a) Dispersion and (b) R̂ curves.
The axis scales are the same as in Poggi & Fäh (2010, fig. 8c1). A linear
colour map is also chosen as in Poggi & Fäh (2010) except that the maximum
of the colour scales is set to one-tenth of the maximum density. Theoretical
curves and array limits are defined in the same way as in Fig. 9.

biased for the first higher-order mode. Slowness uncertainties for the
fundamental mode are smaller with RTBF than with VRBF. High
probability density are achieved with RTBF between 2 and 4 Hz,
preventing the usage of a truly normalized linear colour scale like in
Poggi & Fäh (2010). The aliasing features visible above 5 Hz with
VRBF disappear with RTBF. The second and the third higher-order
modes are not properly separated by VRBF while RTBF detects the
second higher-order mode without ambiguity with the third higher-
order mode.

With a wavefield decomposition (WaveDec), Maranò et al. (2017)
computed the signed ellipticity for array 2, using also the original
SESAME data set. Dispersion and ellipticity curves obtained with
RTBF are shown in Figs 13(a) and (b) with the same display pa-
rameters as in Maranò et al. (2017, Figs 4c–f). Dispersion curves
are retrieved in a similar way for the two methods. However with
RTBF, the range extends to higher frequencies, the separation of the
fundamental and the first higher-order mode between 4 and 5 Hz is
effective, the second higher-order mode is detected, the uncertain-
ties are about twice smaller [e.g. standard deviations are explicitly
calculated for the fundamental mode in Fig. 13(a)], and the variation
of the mean values versus frequency is smoother.

WaveDec and RTBF nicely delineate the fundamental mode el-
lipticity from 2.3 to 10 Hz (Fig. 13b), except when the horizontal
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Figure 13. Results obtained with RTBF on array 2 from the original
SESAME data set lasting 6 min and 45 s. (a) Dispersion, (b) ellipticity
and (c) R̂ curves obtained with RTBF. The axis scales are the same as in
Maranò et al. (2017, Fig. 4). In panel (a) yellow dots with black error bars are
the statistics calculated from the background probability density (RTBF).
Colour scales and theoretical curves are defined in the same way as in Fig. 9.

component is vanishing around 3.8 Hz. RTBF does not provide any
samples in this region while WaveDec provides reliable values. The
first higher-order mode is also well retrieved by the two methods.
The second higher-order mode is approximately recovered by RTBF.
Mean ellipticity curves are extracted for all modes above the inflec-
tion point of R̂ curves and shown in Fig. 14 on a classical log–log
ellipticity plot. WaveDec better follows the sharpness of the theo-
retical ellipticity at the trough of the fundamental curve and at the
peak of the first higher-order mode. WaveDec also better fit the flat
part of the fundamental mode. However, RTBF accurately retrieves
the right flank of the main peak of the fundamental mode for all
calculated ellipticity values while WaveDec overestimates the ellip-
ticity below 3 Hz. In Fig. 14 the results from RayDec (Hobiger et al.
2009) are also compared with RTBF mean curves. A good match

Figure 14. Absolute value of ellipticity curves calculated for array 2 with
various methods. The axis scales are the same as in Maranò et al. (2017,
Fig. 4b). The black dotted curves are the theoretical ellipticity curves for
the first three modes. The coloured circles are the mean values calculated
with RTBF results (red, green and blue for the fundamental and the first two
higher-order modes, respectively). The grey curves (mean and standard de-
viation with plain and dashed lines, respectively) are obtained with RayDec
(Hobiger et al. 2009).

is found from 2.4 to 3.3 Hz. Below this range, RayDec curves are
biased. Comparing Fig. 14 and Poggi & Fäh (2010, fig. 8c2), we can
observe similar results except that RTBF provides the ellipticity at
a lower frequency, 2.4 Hz instead of 3 Hz. The values found with
VRBF slightly overestimates the ellipticity between 3 and 3.5 Hz
while RTBF appears to be unbiased in that range.

For a simulated wavefield containing also Love and body waves,
we have shown in this section that RTBF is able to provide accurate
results for dispersion and ellipticity curves above the resonance
frequency with a better resolution than VBF. A bias at low frequency
is a common issue with any f–k technique. For conventional f–k
there are some widely admitted limits (e.g. Wathelet et al. 2008).
For high-resolution techniques no precise rules exist to limit the
interpretation for large wavelengths. The two selection criteria based
on R̂ are efficient on the M2.1 case either for the full data set all
or for the subset array 2. With further tests on other synthetic cases
and experimental data sets, they may help to go beyond the strict
limitations kmin proposed by Wathelet et al. (2008).

4 E X P E R I M E N TA L C A S E : M I R A N D O L A ,
I TA LY

During InterPACIFIC project (Garofalo et al. 2016a,b), three sites in
western Europe were densely investigated with ambient vibration
arrays and borehole techniques. Among them, Mirandola (Italy)
located on soft sediments is chosen here to test the capabilities
of RTBF. The location, the array geometries and the acquisition
parameters are described in Garofalo et al. (2016b). We use the data
sets called PC1 to PC4, with apertures from 30 to 810 m.

In Figs 15(a) and (b), we show the dispersion and ellipticity
curves obtained with RTBF with the same processing parameters
as in the previous section, except for the automatic picking of f–
k peaks and for the block overlap. We accept only the f–k peaks
with an amplitude above 50 per cent of the maximum amplitude at
each frequency and time. For the largest aperture, we are forced
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Figure 15. Results obtained with RTBF on Mirandola data sets PC1 to
PC4. (a) Dispersion curves, (b) ellipticity curves, (c) R̂ for mode 1 and
(d) R̂ for mode(s) 2. In panels (a) and (b), the brightest colours represent
the probability densities of the samples selected with a maximum R̂ of 3.
The faded colours in the background are the probability densities of all
samples without any limit on R̂. The small circles with error bars are the
statistics calculated on the fundamental mode curves provided by the 14
participants of InterPACIFIC project (Garofalo et al. 2016b; Fig. 3). The
higher-order mode curves provided by two InterPACIFIC teams (G03 and
G12) are also shown below the fundamental. The straight black lines in panel
(a) are the theoretical array limits for the largest data set PC4 as specified
by Wathelet et al. (2008): kmin/2 (plain line), kmin (dotted line). The colour
scale is normalized to the maximum value of each plot keeping the same
ratio (104) between the maximum and the minimum of the scale. The grey
curves in panel (b) (mean and standard deviation with plain and dashed
lines, respectively) are obtained with RayDec (Hobiger et al. 2009).

to introduce an overlap of 50 per cent between blocks to generate
results down to 0.65 Hz with only 2 hr of recordings.

The selection of the maximum R̂ has little influence over the qual-
ity of the dispersion curve determination. The retrieved dispersion
curve for the fundamental mode (labelled mode 1) compares very
well with the results from InterPACIFIC project. Only two teams
over 14 provided the higher-order modes (G03 and G12). Between
3 and 10 Hz we observe discrepancies between RTBF results, that
suggest the presence of several modes, and the previous results. For
the ellipticity, a large part of the fundamental mode is rejected at
low frequency. The selection also slightly increases the mean values
of the higher-order mode(s) (labelled mode(s) 2 because the exper-
imental curve may be a compound of several higher-order modes).
In Fig. 15(c), at low frequency for the fundamental mode, we note
the same variation of R̂ as in the synthetic case M2.1: a relatively
low noise section that quickly increases towards low frequencies.
The low frequency inflection point can be located around 0.8 Hz.
Dispersion and ellipticity curves should be disregarded below that
frequency. The peak of the H/V curve is around 0.75 Hz. Above
0.8 Hz RTBF and Raydec results are in good agreement.

5 C O N C LU S I O N S

From the assumption that the ambient wavefield is dominated by
surface waves, we have investigated the properties of a beamforming
based on a compound cross-spectral matrix built with vertical and
radial components. For a single plane wave, we have shown analyt-
ically that a high-resolution beamformer can resolve the following
wavefield parameters: the velocity, the direction of propagation, the
sign and the absolute value of the Rayleigh ellipticity. In that simple
case, the ellipticity values can be determined even in the presence
of strong incoherent noise. The conclusions have been extended to
multiple incident plane waves, except that the quality of the results
are no longer independent of incoherent noise intensity. We also
provide a way to quantify the level of the incoherent noise for each
estimation of the wavefield parameters.

The RTBF is applied to a synthetic ambient wavefield, model
M2.1 from SESAME project. The results are compared with single-
component beamforming on a dense array made of 38 sensors and
with long recordings (6 hr). RTBF offers a real advantage with a
clear identification of all excited modes, especially at high frequen-
cies where classical methods usually fail due to aliasing. However
at low frequency in the neighbourhood of the resonance frequency
or when any of the components is vanishing a bias in slowness and
ellipticity values cannot be avoided like any other f–k methods. We
have suggested two criteria based on R̂ to select accurate samples.
They are found to be efficient for the M2.1 case. With further tests
on other synthetic cases and experimental data sets, they may help
to go beyond the strict limitations kmin proposed by Wathelet et al.
(2008).

We have also processed the Mirandola data set (InterPACIFIC
project). The retrieved fundamental dispersion curve is compatible
with previous results. Higher-order modes that roughly match previ-
ous results are also clearly detected. Note that further improvements
of RTBF results could be reached with a proper diagonal loading
as proposed by Li et al. (2003). More detailed analysis of the rela-
tionships between the experimental dispersion and ellipticity curves
would be required, which will be the subject of future works related
to applications of RTBF to experimental data sets.
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Boore, D.M. & Toksöz, M.N., 1969. Rayleigh wave particle motion and
crustal structure, Bull. seism. Soc. Am., 59(1), 331–346.

Capon, J., 1969. High-resolution frequency-wavenumber spectrum analysis,
Proc. IEEE, 57(8), 1408–1418.

Dunkin, J.W., 1965. Computation of modal solutions in layered, elastic media
at high frequencies, Bull. seism. Soc. Am., 55(2), 335–358.

Fäh, D., Stamm, G. & Havenith, H.-B., 2008. Analysis of three-component
ambient vibration array measurements, Geophys. J. Int., 172(1), 199–213.

Garofalo, F. et al., 2016a. Interpacific project: comparison of invasive and
non-invasive methods for seismic site characterization. Part ii: inter-
comparison between surface-wave and borehole methods, Soil Dyn.
Earthq. Eng., 82, 241–254.

Garofalo, F. et al., 2016b. Interpacific project: comparison of invasive
and non-invasive methods for seismic site characterization. Part i: intra-
comparison of surface wave methods, Soil Dyn. Earthq. Eng., 82, 222–
240.

Henderson, H.V. & Searle, S.R., 1981. On deriving the inverse of a sum of
matrices, SIAM Rev., 23(1), 53–60.

Hisada, Y., 1994. An efficient method for computing Green’s functions for a
layered half-space with sources and receivers at close depths, Bull. seism.
Soc. Am., 84(5), 1456–1472.

Hisada, Y., 1995. An efficient method for computing Green’s functions for
a layered half-space with sources and receivers at close depths (part 2),
Bull. seism. Soc. Am., 85(4), 1080–1093.

Hobiger, M., Bard, P.-Y., Cornou, C. & Le Bihan, N., 2009. Single station
determination of Rayleigh wave ellipticity by using the random decrement
technique (RayDec), Geophys. Res. Lett., 36(14), 0–4.

Hobiger, M., Le Bihan, N., Cornou, C. & Bard, P.-Y., 2012. Multicomponent
signal processing for Rayleigh wave ellipticity estimation: application to
seismic hazard assessment, IEEE Signal Process. Mag., 29(3), 29–39.

Hobiger, M. et al., 2013. Ground structure imaging by inversions of Rayleigh
wave ellipticity: sensitivity analysis and application to European strong-
motion sites, Geophys. J. Int., 192(1), 207–229.

Li, J., Stoica, P. & Wang, Z., 2003. On robust capon beamforming and
diagonal loading, IEEE Trans. Signal Process., 51(7), 1702–1715.
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A P P E N D I X A : R A D I A L
C RO S S - S P E C T R A L D E N S I T Y M AT R I X
F O R R AY L E I G H A N D L OV E WAV E S

We develop the analytical expression of the radial cross-spectral
density matrix for a wavefield made of one Rayleigh and one Love
plane waves. Replacing XRz by X̂Rh in eq. (4) and from the definition
of X̂Rh in eq. (11), we have

1

M

M∑
m=1

X̂Rh,m X̂
∗
Rh,m = 1

M

M∑
m=1

[
α2 XRh X∗

Rh
+ α2

L X L X∗
L

+α2
EηEη∗

E + α2
NηNη∗

N

+ααL XRh X∗
L + ααL X L X∗

Rh
+ ...

]
. (A1)

If M is sufficiently large, the Rayleigh and Love waves are not
correlated with the random noise on horizontal sensors (ηE and ηN )
and the unspecified terms in eq. (A1) can be neglected. Rayleigh
and Love waves are also produced by random sources (i.e. random
phases) that may be considered as uncorrelated. Hence the last two
specified terms can be disregarded as well. We also assume that
the average incoherent noise intensity is the same for all horizontal
components and for all locations, that is,

1

M

M∑
m=1

ηEη∗
E = 1

M

M∑
m=1

ηNη∗
N = |NH|2 I, (A2)

where |NH|2 is the incoherent noise energy for any arbitrary hor-
izontal direction θ . The coherent signals for this direction for the
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Rayleigh and Love waves are, respectively,

|SRh |2θ = α2|SRh |2
|SL|2θ = α2

L |SL|2. (A3)

If the ratio of incoherent noise over the coherent signals for hori-
zontal components is the same as for vertical components (R), we
can write that

|NH|2 = R(α2|SRh |2 + α2
L|SL|2). (A4)

From eq. (8), the cross-products become

1

M

M∑
m=1

X̂Rh,m X̂
∗
Rh,m = α2|SRh |2q0q∗

0 + α2
L|SL|2q1q∗

1 + |NH|2 I

= α2|SRh |2(q0q∗
0 + R I)

+ α2
L|SL|2(q1q∗

1 + R I)

= α2e2
0(1 + τ 2

0 )|SRz |2(q0q∗
0 + R I)

+ α2
L |SL|2(q1q∗

1 + R I).

(A5)

A P P E N D I X B : M A X I M A O F P′
Rs

V E R S U S
T H E P R E S U M E D E L L I P T I C I T Y

In this section we calculate the maxima of P ′
Rs

by checking the roots
of its derivative versus the presumed ellipticity e.

P ′
Rs

= C
e2

A2
, (B1)

where C is a constant that does not depend upon e,

A(e) =
(e2

e2
0

+ α2(1 + τ 2
0 )
)

−
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0
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2 + R

N

.

(B2)

dP ′
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de
= C

2eA2 − 2e2 A dA
de

A4
, (B3)

where

dA
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= 2e
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0

− 2

e0
(

e

e0
+ α)γ. (B4)

We first show that A is never null and has a quadratic form.

A = e2

e2
0

(1 − γ ) − 2
e

e0
αγ + α2(1 + τ 2

0 )(1 − γ ). (B5)

The discriminant 
 is
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0

γ 2 − 4α2(1 + τ 2
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Because |B|2 is varying from 0 to 1, γ is always less than 0.5. Hence
the factor inside the bracket is always negative and A has no root
for e ∈ R.

The derivative can be simplified to

dP ′
Rs

de
= 2Ce

A3
(γ − 1)

[
e2

e2
0

− α2(1 + τ 2
0 )

]
, (B7)

which has roots at e = 0 and at e = ±|e0||α|
√

1 + τ 2
0 . For a null e,

P ′
Rs

is also null while it is positive for any other value. Hence this

root corresponds to a minimum. The other two roots correspond to
maxima of P ′

Rs
because the continuous function P ′

Rs
tends to 0 when

e tends to ±∞.


