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S U M M A R Y
We investigated the construction of diffraction kernels (DKs) for surface waves using two-
point convolution and/or correlation from land active seismic data recorded in the context
of exploration geophysics. The high density of controlled sources and receivers, combined
with the application of the reciprocity principle, allows us to retrieve 2-D phase-oscillation
DKs of surface waves between any two source or receiver points in the medium at each
frequency (up to 15 Hz, at least). These DKs are purely data based as no model calculations
and no synthetic data are needed. They naturally emerge from the interference patterns of the
recorded wavefields projected on the dense array of sources and/or receivers. The DKs are
used to obtain multimode dispersion relations of Rayleigh waves, from which near-surface
shear velocity can be extracted. Using convolution versus correlation with a grid of active
sources is an important step in understanding the physics of the retrieval of surface wave
Green’s functions. This provides the foundation for future studies based on noise sources or
active sources with a sparse spatial distribution.

Key words: Interferometry; Seismic tomography; Surface waves and free oscillations; Wave
propagation.

1 I N T RO D U C T I O N

The construction of a subsurface velocity model is an important
issue in different domains (e.g. seismology, civil engineering, seis-
mic exploration). In particular, the near surface is classically char-
acterized by high structural complexity that is due to multilay-
ered sediments. Surface waves sample the shallow structures and
can provide useful information on local subsurface heterogeneities.
However, obtaining phase-velocity and group-velocity maps for
surface waves can be challenging, due to the presence of funda-
mental and higher-order surface wave modes that are difficult to
identify.

New possibilities for imaging of the Earth structure have emerged
with surface wave tomography from ambient seismic noise (e.g.
Shapiro & Campillo 2004; Sabra et al. 2005; Shapiro et al. 2005;
Brenguier et al. 2007). Surface waves are most easily extracted
using noise interferometry, because they dominate the wavefields
recorded on receivers located at the surface (Shapiro et al. 2005).

Traditionally, ray theory is used to build a forward model in
the seismic tomography process for surface waves, which leads to
images of the subsurface (e.g. Barmin et al. 2001). This can provide
good results if the scale of the heterogeneities in the medium is larger
than the wavelength. If the scale of the heterogeneities is similar
to the wavelength or smaller, the sensitivity kernels account for the

finite frequency interference effects, as they recognize the frequency
dependence of both traveltime and amplitude (e.g. Marquering et al.
1999; Dahlen et al. 2000; Zhao et al. 2000).

Sensitivity kernels can reflect the sensitivity of a wavefield to
local variations in different parameters, such as density, velocity,
porosity and anisotropy. In practice, surface wave sensitivity ker-
nels have been derived from perturbation theory in the framework
of the single-scattering Born approximation (Zhou et al. 2004; Yang
& Forsyth 2006). In 2005, Tromp et al. showed the connection be-
tween seismic waveform tomography, adjoint models and sensitivity
kernels through the interactions between the ‘forward’ and ‘adjoint’
wavefields (Tarantola 1988; Tromp et al. 2005; Fichtner et al. 2006;
Liu & Tromp 2006). The principal application of adjoint models
is sensitivity analysis. An adjoint model provides a first-order ap-
proximation for the local parameter sensitivity in a nonlinear model
(Errico 1997). The adjoint wavefield is excited by an adjoint source
and travels backward in time (de Vos et al. 2013). For surface waves,
this requires an adequate 2-D synthetic subsurface model, and it can
often be computationally challenging. The sensitivity kernels arise
from the interference pattern between the forward wavefield and the
adjoint wavefield.

As an alternative to complex synthetic model computations, the
development of dense seismic arrays opened a road to innovative
surface wave tomography methods (e.g. eikonal tomography: Lin
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et al. 2009). Following this approach, sensitivity kernels were pro-
posed through exploitation of ambient-noise cross-correlations on
a dense seismic array (e.g. Tromp et al. 2010) and of teleseismic
earthquakes (e.g. Lin & Ritzwoller 2010). In the latter case, the
accuracy of the empirical sensitivity kernels depends on both the
spatial sampling proposed by the array of sensors and the robust-
ness of the phase or traveltime maps. Indeed, traveltime (or phase
delay) measurements can be relatively challenging when dealing
with complex waveforms and cycle-skipping issues.

In this study, we build data-based diffraction kernels (DKs) for
surface waves that result either from correlation or convolution
process. The DKs are computed at one frequency between two re-
ceivers and one source that spatially scan a large 2-D surface. In
the case of convolution, the DK exactly matches the sensitivity ker-
nel definition for surface waves. In the case of correlation, the DK
reveals phase oscillations in connection with the stationary-phase
theorem that is classically invoked to extract surface wave travel-
time arrivals from noise interferometry (Campillo & Roux 2014).
In practice, we use a data set from 51 808 active sources (seismic
vibrator trucks) that was recorded by 10 710 vertical receivers. The
sources were spaced at intervals of 30 m (in both dimensions), and
the receivers were placed in parallel lines (150 m/30 m in the x/y
directions, respectively). Seismic acquisition with active, controlled
and spatially dense source arrays offers rare but innovative possi-
bilities when it comes to seismic interferometry and tomography.
In particular, we benefit from this densely sampled active-source
array to explore both convolution-based and correlation-based in-
terferometry. The large number of sources and receivers, combined
with the application of the reciprocity principle, allow us to retrieve
2-D DKs, of surface waves between any two source or receiver
points in the medium at each frequency (up to 15 Hz, at least).
These DKs are purely data based, as no model calculations and
no synthetic data are needed. As described in the literature (e.g.
Walker 2012; Fichtner et al. 2017), these emerge from the interfer-
ence pattern between the recorded wavefields dominated by surface
waves.

In the following, we theoretically investigate the role of the math-
ematical operations (i.e. correlation and convolution) in seismic
interferometry with active sources. Next, we use correlation and
convolution to extract data-based DKs for Rayleigh waves. These
data-based DKs are finally used for surface wave phase-velocity
tomography, based on the DK modelling. This study provides the
foundation of future studies based on noise sources or active sources
with a sparse spatial distribution.

2 M E T H O D S

The data used in this study were acquired during a field test over a
42-km2 area in the context of geophysics exploration (Fig. 1a). The
data were from 51 808 active sources (seismic vibrator trucks) that
were recorded by 10 710 vertical geophones. A seismic vibrator is
a truck that generates a long and low-power broad-band frequency
sweep, from 2 to 100 Hz (Postel et al. 2005). The received signals
are then cross-correlated with the emitted sweep to construct the
subsurface impulse response, from which surface waves and reflec-
tion events are revealed (Fig. 2). The source spacing is the same in
both the x and y directions (30 m), which is known as ‘carpet shoot-
ing’. The receivers are positioned in parallel lines with a spacing of
150 m in the x direction and 30 m in the y direction (Fig. 1b).
One recorded trace is the sum of six tightly clustered vertical
geophones.

Seismic interferometry can be used with either active sources or
passive sources (Schuster et al. 2008). Bakulin and Calvert (2004)
showed possible applications of interferometry using active sources
in the context of geophysics exploration. With noise interferome-
try, long averaging times are needed for the correlation function
to converge towards the surface wave Green’s function under the
condition of azimuthal averaging of the noise source distribution.
In the case of an active seismic experiment, the long recording time
is traded for the regular spatial distribution of the sources and/or
receivers. In practice, the data are recorded separately for each shot
at each source position, and the length of one recording is a few sec-
onds (here, 5 s). The azimuthal averaging criterion is fulfilled due
to the dense distribution of sources and receivers, the locations of
which are known precisely. Seismic acquisition with active sources
has more possibilities when it comes to interferometry, as the use
of sources with absolute time control makes it possible to recover
the surface wave Green’s functions between two points using either
correlation or convolution.

In classical seismic acquisition at the Earth surface, the surface
waves generated by the vibrator truck are often more energetic
than the reflection and refraction events, and they are the dominant
arrivals in the recorded data (Fig. 2). In this paper, we limit our
study to surface wave interferometry from the wavefield analysis
that was performed on interleaved source and receiver arrays.

The reciprocity principle states that the traveltime along a given
ray path is the same regardless of the direction of travel (Sheriff &
Geldart 1995). In other words, if any source and any receiver are
interchanged (under some polarization conditions: for example, a
vertical force on the source side and a vertical receiver), the same
waveforms will be observed. This principle can be used to enlarge
the data collection. The representation theorem that is classically
invoked for Green’s function retrieval from sets of cross-correlation
functions is built on the reciprocity principle (Wapenaar 2004). In
practice, this means that the active seismic data can be represented
in two different formats: the source gather (Fig. 3a) and the receiver
gather (Fig. 3b). The source gather shows the wavefield generated by
one point source and recorded simultaneously on a set of receivers.
Contrarily, the receiver gather represents the wavefield generated
by each point source and recorded at one reference receiver. In
other words, the reference receiver acts as a virtual point source
and the carpet/grid of sources at the surface plays the role of virtual
receivers that were activated one at a time.

In this study, the spatial sampling of the wavefield is optimal in
the source domain, as it allows the phase changes of the recorded
wavefield to be tracked with 30-m spatial accuracy in both the x and
y directions (Figs 1 and 3b). Note that the source gather in Fig. 3(a)
shows coherent noise due to its temporal continuity and the pres-
ence of other sources at the same time (i.e. simultaneous shooting).
The receiver gather retains the spatial continuity, although it lacks
the temporal continuity, which results in a smoother spatial repre-
sentation only polluted by random, low-amplitude, incoherent noise
(Fig. 3b).

2.1 Interferometry by convolution and correlation

Acoustic or elastic wave interferometry provides a measure of the
wavefield between two receivers by applying cross-correlation, de-
convolution (e.g. Wapenaar et al. 2008) or even convolution (e.g.
Roux & Fink 2003; Slob et al. 2007), to the wavefield recordings
at these two points (Duguid et al. 2011). When applied to seis-
mic recordings, surface wave interferometry takes advantage of the
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Figure 1. Active seismic acquisition. In this survey, a grid of active sources was applied during an experimental field test in the context of geophysics
exploration. The x–y coordinates are relative to the position of the first source. (a) The full array of the active seismic survey. (b) Zoom of the bottom-left area
of 2 km2 [red box in (a)]. The source spacing is the same in the x and y directions (30 m). The receivers were placed in parallel lines with a spacing of 150 m
in the x direction and 30 m in the y direction.

Figure 2. Active seismic data. Raw data for the source and two lines of receivers. Note that the surface waves are more energetic than the body waves.

correlation process to recover traveltime information from inco-
herent noise sources (Sabra et al. 2005; Campillo & Roux 2014).
Indeed, because of the phase cancellation in the correlation process,
the origin time of the noise sources is not required, and the seis-
mic noise can be used for surface wave tomography. On the con-
trary, surface wave interferometry based on convolution requires
sources that are synchronized with receivers, with accurate abso-
lute time control. In this project, we benefit from the large set of
perfectly synchronized active sources and receivers to explore both
the convolution and the correlation approaches in surface wave
interferometry.

We now revisit the theoretical approach that leads to the surface
wave Green’s function retrieval from controlled sources in a 2-
D medium with both convolution and correlation schemes. The
surface wave Green’s function can be obtained from the scalar
Green’s function in 2-D (defined as G2D, see Tromp & Dahlen
1993; Section 5; Boschi & Weemstra 2015). The analysis of 2-D
wavefields hold, therefore, for Rayleigh waves propagating in a 3-D
medium (in the Earth) and measure on the vertical component of
seismograms, as far as the phase is concerned. The Rayleigh wave
approach of Snieder (2004) is also based on this idea. Halliday &
Curtis (2008) explore the effects of subsurface sources on Green’s
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Figure 3. Source (a) and receiver (b) gather collections with time slices taken at 0, 0.5, 1, 1.5, 2 and 2.5 s in the 2–6 Hz frequency band. Using the reciprocity
principle, each slice represents the wavefield excited by each source and recorded at one reference receiver.

function reconstruction; their results are consistent with those of
Snieder (2004) whenever their setup is a uniform source distribution
over the Earth’s surface.

In practice, we consider a free space with attenuation and geome-
try with two receivers 1 (in r1) and 2 (in r2) and a large set of sources
s (in rs) that covers the whole 2-D surface. Note that as shown in
Fig. 3, the roles of the sources and receivers can be physically inter-
changed according to the reciprocity principle. We now deal with
the average correlation and/or convolution of the signals recorded
at 1 and 2 from each single source s. Through the spatial integration
over all of the sources, different studies have demonstrated that the
time derivative of the correlation function provides an estimate of
the causal and anticausal Green’s functions (Snieder 2004; Roux
et al. 2005; Campillo & Roux 2014; Boschi & Weemstra 2015), as

given in eq. (1):

d

dt
Corr1,2 (t) ∼ (

G2D
1,2 (t) − G2D

2,1 (−t)
)
. (1)

Similarly, an equivalent result is obtained for the convolution
function, as given in eq. (2):

d

dt
Conv1,2(t) ∼ G2D

1,2(t). (2)

Despite a clear analogy between these two results, there are ma-
jor differences between the correlation and convolution processes.
While the correlation deals with the subtraction of traveltimes be-
tween each source s and receivers in 1 and 2, the convolution
performs the addition of these traveltimes. This implies that the
convolution process requires perfect synchronization between the
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controlled sources and receivers when the correlation process can
be performed with incoherent noise sources.

As correlation can be interpreted through time reversal, the focal-
point mechanism between points 1 and 2 results from the summation
of a convergent and divergent Green’s function generated by the
time-reversal mirror built from the set of sources s outside these two
points. On the contrary, the convolution process mimics Huygens’s
theorem between receiver points 1 and 2 through a constructive
interference process, which is generated this time at each source s
in between these two points.

3 DATA - B A S E D D K S

It can be seen from eqs (1) and (2) that both the correlation and
convolution processes between two receivers in 1 and 2 are strongly
connected to the Green’s function retrieval when averaged over
a dense map of point sources. The Green’s function perturbation
associated to a local change that classically leads to the sensitivity
kernel formulation shows a direct connection with the convolution
process (Spetzler et al. 2002; Zhou et al. 2004; Yoshizawa & Kennett
2005; Peter et al. 2007, Marandet et al. 2011). We propose here to
generalize the concept of DKs to the correlation process, and to
illustrate both of the DKs that are obtained from either convolution
or correlation through experimental measurements.

In practice, we define two types of DKs, both of which are limited
to phase perturbations, one for convolution (eq. 3) and one for
correlation (eq. 4):

Kconv (ω; r1, rs, r2) = G (ω; rs, r1) G (ω; rs, r2) , (3)

Kcorr (ω; r1, rs, r2) = G (ω; rs, r1) G∗ (ω; rs, r2) , (4)

where r1 and r2 correspond to receiver points in 1 and 2, and rs to
sources s.

Eqs (3) and (4) mean that we use the interference pattern between
two empirical wavefields to retrieve data-based DKs. These phys-
ically correspond to a spatial representation of the correlation and
convolution processes described above, prior to the spatial averag-
ing performed on the set of sources s (eqs 1 and 2). As we choose
to limit this study to phase variations, spectral whitening is applied
to the received data at each frequency, which is equivalent to say-
ing that the narrow-band time-domain correlation and convolution
functions are normalized, for a source in s, by the energy of the
received signals in 1 and 2. Normalized cross-correlations are also
defined in the literature as coherence function (Jones 2000). Playing
with phase-only DKs is a way to cancel out amplitude-related issues
associated to the physical coupling of both geophones and active
sources to the ground. This emphasizes the dominant role played
by local velocity variations on the traveltimes, which is the main
goal in surface wave tomography inversion. On the other hand, this
prevents investigation into local attenuation or damping, which can
be considered as a second-order effect at low frequencies (<10 Hz).

Fig. 4 shows the data-based DKs for both correlation and convo-
lution calculated at a single frequency of 3.8 Hz. These data-based
DKs are complex numbers; here, we represent the imaginary part
for correlation and the real part for convolution.

As shown in eqs (3) and (4), the DKs calculated with correla-
tion are based on phase differences, and the DKs calculated with
convolution are based on phase addition. This explains why the
convolution DK in Fig. 4(a) shows faster phase oscillations than the
correlation DKs in Figs 4(b) and (c). The convolution DK reveals
the primary influence area in between the two receivers (defined

here as the inner DK, or the first Fresnel zone; e.g. Yoshizawa &
Kennett 2002). Instead, the correlation DKs demonstrate the pres-
ence of stationary-phase areas (defined here as the outer DK) in the
alignment of the two receivers (Roux & Kuperman 2004; Snieder
2004; Roux et al. 2005; Walker 2012). Note that the shape of the
inner DK is elliptical, and the shape of the outer DKs is hyperbolic.

In Fig. 5, the DKs were integrated over a given frequency band
(ω1–ω2) for convolution and correlation around the stationary time
τ 12. The coherent summation of the frequency-dependent DKs over
the frequency band results in smoothing of the frequency-dependent
phase oscillations outside the first Fresnel zone (for convolution)
and the end-fire lobe (for correlation), which is in agreement with
the stationary-phase theorem (Roux & Kuperman 2004; Snieder
2004). In a recent paper, Fichtner et al. (2017) provide in Fig. 10 an
analogue spatial representation of ‘source kernels’ for the noise cor-
relation process computed for a band-limited spectrum at different
times τ .

Note that Fig. 5(a) is extracted at slightly different traveltimes
to Figs 5(b) and (c). Outside of experimental uncertainties, this
traveltime difference might be due to a slight phase shift between
convolution and correlation in Green’s function reconstruction that
is associated to the medium attenuation in 3-D acoustic configura-
tions.

The geometry of DKs depends on several factors, including the
frequency and the distance between the receivers. Figs 6 and 7 show
the spatial evolution of the inner and outer DKs for convolution and
correlation, at a frequency 4.2 Hz. The position of receiver 1 remains
unchanged when receiver 2 is moved away, while keeping the same
1–2 azimuth (distance 870, 1443, 2100 and 2737 m). In the case
of the convolution DK, there is broadening of the first Fresnel zone
with an increase in the offset between the two receivers, and as a
consequence, a decrease in the number of phase oscillations.

In contrast, in Fig. 7 there is a narrowing of the stationary-phase
zone (also called the end-fire lobe) with an increase in the offset
between the two receivers with the correlation DK. There is also an
increase in the phase oscillations in between the sensors.

Finally, Fig. 8 shows the frequency evolution of the data-based
DKs for convolution and correlation at two different frequencies.
In both cases, the number of phase oscillations increases with fre-
quency, and the sizes of the first Fresnel zone (for convolution)
or stationary-phase zone (for correlation) become narrower as the
surface wave wavelength decreases. At 2.7 Hz, the correlation DK
(Fig. 8c) shows some deformation of the interference fringes that
is due to local phase-velocity anomalies. We note that these phase
fluctuations are more difficult to observe in the convolution DK
(Fig. 8a). This means that the spatial resolution of the correlation
and convolution DKs are different at the same frequency. Note that
for correlation here, the calculation of the real, symmetric part of
the DK is shown.

As empirical DKs carry the footprint of the velocity fluctuations
in the medium, we propose in the following an inversion algorithm
to extract dispersion relations for phase velocities from the combi-
nation of convolution and correlation DKs.

4 P H A S E - V E L O C I T Y I N V E R S I O N W I T H
H Y P E R B O L I C A N D E L L I P T I C A L
T R A N S F O R M AT I O N S

The inversion process is performed for each pair of receivers from
the data-based DKs. The idea is to project data-based DKs into
the modelled frequency-phase-velocity space. To do so, we model
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Figure 4. Data-based DKs at a frequency of 3.8 Hz for convolution (a) and correlation (b and c). The distance between the two receivers was 990 m. The x and
y coordinates correspond to source positions rs. The DKs are defined as a spatial representation of phase coherence at a given frequency (only the real part of
the convolution-based kernel function and the imaginary part of the correlation-based kernel are represented; see eqs (1) and (2). In (a), the zone over which
the surface waves are coherent in phase is defined as the first Fresnel zone, where the convolved wavefields interfere in a coherent way. In (b) and (c), all of the
sources located within the first phase oscillation belong to the stationary-phase zone.

Figure 5. Time-domain data-based DKs in the frequency band (3–4) Hz for convolution (a) and correlation (b and c) calculated at the traveltime τ 12 between
the receivers. The distance between the two receivers was 990 m. The x and y coordinates correspond to source positions rs. Data-based DKs are defined
only at positive times for convolution, and at both negative and positive times for correlation. The traveltime τ 12 corresponds to the maximum of the stacked
convolution or correlation functions (eqs 1 and 2). In practice, τ 12 = 0.85 s for the convolution kernel and τ 12 = ±0.84 s (causal and anticausal parts) for the
correlation kernel.

theoretical DKs parametrized by the surface wave velocity on which
the empirical DKs are projected. The projection or inversion process
is applied to the set of sources s for which the empirical DKs are
measured. At each frequency w, we define a matrix representation
between the phase-only observed DK K(ω,rs) and the unknown
dispersion relation D(ω; c), as given in eq. (5):

K (ω; rs) = A (ω; rs ; c) · D (ω; c) . (5)

The 2-D transformation matrix A(ω; rs ; c) has one dimension
connected to the spatial domain of the sources rs and the other with
the phase-velocity domain c. We introduce two different transfor-
mation matrices for correlation (i.e. hyperbolic transformation) and
convolution (i.e. elliptical transformation).

The hyperbolic transformation is based on phase differences, as
given in eq. (6):

Acorr (ω; rs; c) = exp

(
iω

c
(|rs − r1| − |rs − r2|)

)
, (6)

whereas the elliptical transformation is based on phase additions,
as given in eq. (7):

Aconv (ω; rs; c) = exp

(
iω

c
(|rs − r1| + |rs − r2|)

)
, (7)

where r1, r2 are the positions of the receivers and rs is the position
of the source.

The least-squares estimation, which is also known as a mini-
mizer of the residual sum of squared errors (Hastie et al. 2001), is
‖AD − K2‖. The dispersion curve D is constructed by minimizing
this expression with the use of correlation/convolution data-based
DKs and the corresponding hyperbolic/elliptical transformation.

In practice, finding the least-squares estimate requires inversion
of matrix ATA. However, this matrix can be singular, which causes
difficulty for the inversion. One of the methods that addresses the
numerical instability of matrix inversion is Tikhonov regularization
(Boyd & Vandenberghe 2004), which consists of adding a small
positive constant to the diagonal of ATA. This penalty term can be
expressed with a L2-norm or a L1-norm. L2-norm regularization
provides numerical stability, although it does not encourage sparsity
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Figure 6. Data-based DKs for convolution at a frequency 4.2 Hz for two receivers separated by distances of 870 m (a), 1443 m (b), 2100 m (c) and 2737 m
(d). The x and y coordinates correspond to source positions rs.

of the dispersion curve estimate D (Schmidt 2005; Guillouet et al.
2016), as shown in Fig. 9. Note that for both correlation and con-
volution processing, the dispersion relations were estimated from a
limited number of Fresnel zones or stationary-phase areas (Figs 8b
and d, dashed ellipse, hyperbola), as an optimal trade-off between
resolution and robustness of the inversion process.

Dispersion of surface waves occurs in vertically stratified media,
and can lead to the presence of higher-order modes. If the velocity
of the upper layer is low enough to cause a complete reflection
of both the P waves and the SV waves, then higher branches of
Rayleigh waves are seen (Heaton 2005). These overtones provide
important information on shallow structures and on the uniqueness
of the inverted models (van Heijst & Woodhouse 1997). However,
it might be difficult to invert higher modes, due to interference,
simultaneous arrivals and overlap in the frequency domain.

The dispersion relations shown in Fig. 9 show a fundamental
Rayleigh surface mode together with two higher-order overtones.
The modes are relatively well separated, although there remains
some interference between different mode branches. There are some
discrepancies between the dispersion relations inverted from the
correlation and convolution DKs. This might be due to the differ-
ences between the Fresnel zones and stationary-phase areas; that is,
the inner and outer DKs. For correlation, the phase subtraction is a

more robust and stable operation at higher frequencies (>5 Hz) than
the phase addition of the convolution process. On the other hand,
convolution provides higher spatial resolution at lower frequencies
(<5 Hz), as phase addition varies rapidly with distance, while the
uncertainty linked to 2p phase jumps also increases with frequency
in the same manner.

We now combine both the correlation and convolution DKs in
the inversion process. Indeed, DKs extracted from convolution pro-
vide better resolution at lower frequencies, while DKs extracted
from correlation provide robust results at higher frequencies. To
use both the inner and outer DKs together, some weighting is intro-
duced into the frequency domain. In practice, we give more weight
to the convolution (ratio of 0.7) at frequencies up to 7.3 Hz, and
more weight to the correlation (ratio of 0.95) at higher frequen-
cies, with a smooth transition between the weights to minimize
discontinuities.

Fig. 10(b) shows the joint dispersion curve analysis using L2-
norm regularization. As mentioned before, the L1-norm regular-
ization can enhance the sparsity of the solution. Nevertheless, the
L1-norm regularization cannot be solved algebraically, which has
led to the introduction of different techniques to determine the op-
timal parameters (Schmidt 2005). Estimation of least-squares pa-
rameters with the L1-norm was popularized under the names of
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Figure 7. Data-based DKs for correlation (positive lag time) at a frequency 4.2 Hz for two receivers separated by distances of 870 m (a), 1443 m (b), 2100 m
(c) and 2737 (d). The x and y coordinates correspond to source positions rs.

Least Absolute Selection and Shrinkage Operator (LASSO; Tibshi-
rani 1996) and Basis Pursuit Denoising (Chen et al. 1999). Here, we
empirically chose the shooting method for the LASSO minimization
problem.

As expected, the joint inversion takes advantage of the correla-
tion and convolution DKs to optimize the balance between resolu-
tion and robustness over a large frequency band (Fig. 10). Despite
residual interference between different branches of the modes, the
sparse solution (Fig. 10a) provides super-resolution, from which
the frequency-dependent maxima of the multimodal dispersion re-
lations can be easily picked.

In the following, the Dinver software (Wathelet et al. 2008) is
used to invert the phase velocity dispersion of the surface waves
obtained from the two receivers shown in Fig. 8. The objective is
to determine the depth resolution and uncertainty for the S-wave
and P-wave velocity profiles. Fig. 11 shows the inversion results
obtained from a three-layer parametrization with a linear increase in
the velocity with depth. The first five modes are considered during
the inversion. The curve with the lowest rate (Fig. 11a, black) is
assumed to be the fundamental mode, the next curve is compared
to the first, the second or the third higher mode and the last curve,
with the highest rate, can range from the second to the fourth higher
modes. To automatically identify higher-order modes, the misfit that
is represented by the colour scale is computed with the theoretical

modal curve that provides the best fit. For this parametrization, the
experimental dispersion curves are shown to optimally fit the second
and the fourth higher-order modes. Note that what was initially
considered as interference between the different mode branches in
Fig. 10 can also be considered as part of the third higher-order
mode.

As expected from the surface wave dispersion curve, the P-wave
velocity profile is poorly inverted, as no prior information was in-
troduced about its shape and values. Uncertainties in the P-wave ve-
locity are included directly in the variability of the S-wave velocity
profiles. All of the profiles generated are physically consistent with
Poisson’s ratios within 0.2 and 0.5 (Fig. 11d). Finally, Figs 11(e)–(h)
show the a-posteriori distribution and the interdependence of some
of the inversion parameters: the slope of the velocity gradient versus
the S-wave velocity for the first and second layers (Figs 11e and g),
and the S-wave velocity for the second layer versus the depth of the
first and second layers (Figs 11f and h).

The parametrization defines high velocity (>1200 m s−1) over
the first 50 m, with large uncertainty that covers an increase in ve-
locity from 1200 to 1500 m s−1 at depths of around 450 m. Below
this interface, strong contrast is expected, and the S-wave velocities
are not resolved any more. The maximum wavelength of the exper-
imental dispersion curve is 600 m. Resolving the S-wave velocity
profile down to 450 m (3/4 of a wavelength) is not usual. With
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Figure 8. Data-based DKs for convolution (a and b) and correlation (c and d) at the two different frequencies of 2.7 Hz (a and c) and 4.0 Hz (b and d). The
distance between the two receivers was 930 m. The x and y coordinates correspond to source positions rs. The dashed ellipse and hyperbola correspond to the
source position area used for the phase-velocity inversion shown in Fig. 9.

Figure 9. Surface wave dispersion relations obtained from least-squares minimization with L2-norm regularization from a correlation DK (a) and a convolution
DK (b).
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Figure 10. Surface wave dispersion relations obtained from joint inversion based on correlation and convolution DKs. (a) Least-squares minimization with
L1-norm regularization. (b) Least-squares minimization with L2-norm regularization.

surface wave inversion performed from the fundamental Rayleigh
mode, good resolution can generally be obtained down to a third or
a quarter of the maximum wavelength. We checked that the gradi-
ent parametrization used for the inversion of the fundamental mode
only provides lower resolution and higher uncertainties (Fig. S1,
Supplementary Information). In this single-mode inversion, there
are much higher uncertainties at all depths of the S-wave velocity
profile, and a depth resolution limit is seen at around 200 m, which
is in agreement with the general relations between penetration depth
and maximum available wavelength. This example demonstrates the
advantages of multimodal inversion over the classical approach, if
the modes are correctly identified. Note that such inversion can be
performed for any two points in the medium, which might further
result in an accurate tomography map for Vs. However, this global
inversion goes beyond the scope of this paper. Note that there is
abundant literature on surface wave inversion from dense arrays of
sources and/or receivers using either active or passive data. In the
context of geophysics exploration, surface wave inversion provides
valuable information about the near-surface that can be used to im-
prove existing models of the subsurface, and for static corrections.

5 D I S C U S S I O N

Benefitting from a detailed data set with a dense sheet of sources
and receivers, we present a method to construct data-based surface
wave DKs that are simultaneously spatially and frequency depen-
dent and limited to phase representation. These DKs are purely
data based, as no wave-propagation model is required, and with
the benefit of active sources with absolute time control they are
constructed from either correlation or convolution processes. For
convolution, these DKs result from a product of recorded wave-
fields in the frequency domain. They provide information about the
spatial extension of the first Fresnel zone in between the two sensors,
similar to Lin et al. (2010). On the other hand, the correlation DKs

provide spatial information about the stationary-phase area in the
alignment of the two sensors, and these can be interpreted as source
power spectral DKs, as defined by Walker (2012) and Fichtner
et al. (2017).

The inversion method allows the retrieval of phase-velocity dis-
persion relations for any receiver pair in the medium, up to 15
Hz. Dispersion relations from convolutions show better resolution
at lower frequencies (due to phase addition in the convolution),
while dispersion relations from correlations show more robustness
at higher frequencies (due to phase differences in the correlation).
This led us to combine both sets of information in a joint inver-
sion process with adequate weighting in the frequency domain.
When accumulated over all of the receiver pairs in the medium,
each optimal two-point dispersion relation can finally be inverted
for local S-wave velocity profiles in a global tomography inversion
process. This tomography inversion will be shown in our future
work.

This data-based DK method can add valuable information about
near-surface characteristics, and in particular, allow measurement of
statics, which are key issues in geophysics exploration. We can also
use the dispersion relations to separate fundamental from higher-
order surface wave modes.

We have verified here that the dispersion relations retrieved from
the DKs are consistent with dispersion relations calculated us-
ing other methods (e.g. spatial Fourier transformation: F-K and
frequency-time analysis; Levshin et al. 1972). The method we pro-
pose presents certain benefits when compared to existing methods.
First, the dispersion relations are not aliased due to the irregular
distribution of the offsets in the correlation and convolution. Sec-
ond, they provide dispersion relations between two receiver points
by using the whole carpet of sources, which makes the separation of
different branches of surface wave higher-order modes much more
efficient than the above-mentioned methods. Finally, it would be in-
teresting to study the effects of a reduction in the number of sources
on the results obtained for the optimal dispersion relation.
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Figure 11. Inversion of the two-point dispersion curve between receivers shown in Fig. 8. (a) Dispersion relations for the fundamental mode and two higher-
order overtones (maximum, black). (b) Vs profile. (c) Vp profile. (d) Poisson’s ratio obtained from the inversion. (e–h) The a-posteriori distribution and
interdependence of some of the model parameters after inversion. (e) The slope of the gradient versus the S-wave velocity for the first layer. (f) The S-wave
velocity versus the first layer. (g) The slope of the gradient versus the S-wave velocity for the second layer. (h) The S-wave velocity versus the depth of the
second layer.

Other applications can also be envisaged, such as the possibility
to extract DKs with correlations and convolutions for other wave-
field components. Due to the use of controlled sources, we can focus
on exploration of the different components of the recorded wave-
field; for example, reflected body waves. Similar investigations can
be performed for detection of subsurface reflectors from the coda
part of the recorded wavefield following the C3 method that was
developed for noise correlation (Stehly et al. 2008).

6 C O N C LU S I O N S

Seismic configurations with dense, active, controlled sources
recorded on a dense receiver array, as available in land active-
seismic data from exploration geophysics, provide more processing
possibilities in terms of spatial interferometry. The use of controlled
sources makes it possible to recover the surface wave Green’s func-
tion between two points using either correlation or convolution.
Invoking spatial reciprocity between sources and receivers, corre-
lation and convolution functions can be constructed between either

pairs of receivers or pairs of sources. To benefit from the dense ac-
quisition, we extracted frequency-dependent data-based DKs from
correlation and convolution two-point measurements of the seismic
wavefield. We propose an inversion method based on the phase-only
DKs to produce multimodal phase-velocity dispersion relations be-
tween two points. Using convolution and correlation with active
sources is an important step in understanding the physics of Green’s
function retrieval. This method provides the foundation for future
tomographic studies of high-resolution subsurface structures from
surface wave inversion.
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S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJI online.
Figure S1. Inversion of the two-point dispersion curve between
the receivers shown in Fig. 8, with only the fundamental mode
of the Rayleigh waves considered in the inversion algorithm.

(a) Dispersion relations for the fundamental mode (maximum,
black). (b) Vs profile. (c) Vp profile. (d) Poisson’s ratio obtained
from the inversion. (e–h) The a-posteriori distribution and in-
terdependence of some of the model parameters after inversion.
(e) The slope of the gradient versus the S-wave velocity for the
first layer. (f) The S-wave velocity versus the first layer. (g) The
slope of the gradient versus the S-wave velocity for the second
layer. (h) The S-wave velocity versus the depth of the second
layer.
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