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A B S T R A C T

In the densely populated highlands of Madagascar, growing upland rice offers the opportunity to increase the
total rice cropping area and to improve food security. However, rice blast was a major constraint for the first
cultivars released in the 1990s and consequently limited the extension of upland rice. However, blast epidemics
are much less intense in the region of Betafo, where the composition of the soil, an Andosol developed from
volcanic rock, is different from the classical Ferralsol of the highlands. A 3-year field experiment (2009–2011)
was conducted near Antsirabe to compare blast epidemics on rice grown in Ferralsol vs. an Andosol. Leaf and
panicle blast development were monitored and the yield components of upland rice plants growing on the two
different soil orders were measured. In 2009 and 2011, leaf and panicle blast development were significantly
lower for plants grown on the Andosol compared to those grown on the Ferralsol (final panicle blast reduced by
40% in 2009 and 20% in 2011). The severity of blast was shown to be related to the concentrations of mineral
elements in the plant, and the Si content was significantly higher in plants growing on the Andosol. In 2010, the
differences of blast incidence between the two soils were less marked (14% reduction of panicle blast at the last
scoring date). AUDPC were lower in the Andosol compared to the Ferralsol each year, for leaf and panicle blast.
The yield components 1000 full grain weight, dry straw weight and the yield were higher in the Andosol
compared to the Ferralsol in 2009 and 2010 but were not significantly different in 2011. These results clearly
document that blast development may be impacted by the soil order in which rice is grown, and future agro-
nomic management of blast should focus on improved soil mineral composition such as silicon.

1. Introduction

Blast, caused by the fungus Pyricularia oryzae Cavara [syn.
Magnaporthe oryzae Couch ], is one of the most widespread diseases of
rice (Oryza sativa L.) and occurs in all rice growing regions in the world
(Pennisi, 2010). The damage caused by leaf blast is due to the decrease
in active photosynthetic area during the growing stage, which results in
a decrease in tillering, in the number of panicles and in the number of
grains per panicle (Bastiaans, 1991) and can kill the plants fully in
severe situations. In terms of yield loss, panicle or neck blast is the most
destructive form of the disease because it prevents grain filling (Ou,
1985).

Rice is the staple food crop in Madagascar with a consumption of
154 kg per capita per year in 2013 (FAOSTAT, 2018). The country

needs to import rice to supply its own production. The traditional rice
production in the lowlands is limited by the area that can be devoted to
that cropping system. Upland rainfed rice is a recent crop in the densely
populated highlands of Madagascar, whose altitude ranges from 1400
to 1800m above sea level (m asl), making it possible to increase the
area under rice production and to improve the food security of farm
households. The first cultivars released to farmers during the 1990s

were rapidly attacked by blast (Raboin et al., 2014) and the disease
continues to be a constraint for any new cultivar developed and re-
leased in the region. Today, there is a race between breeders and blast:
breeders have to rapidly produce new cultivars and find new sources of
resistance, because blast rapidly adapts to any new resistant cultivars
and is simultaneously becoming increasingly aggressive. Even the se-
verity of blast on upland rice in farmer's field is low due to the tolerance
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of cultivars, blast pressure is still high and caused 50%–100% yield
losses over the last 10 years at the experimental research station (Sester
et al., 2014). There is thus an urgent need for other strategies to limit
blast pressure and to delay the extension of virulent forms of the pa-
thogen, thereby increasing the useful life of the new cultivars.

Blast management strategies usually involve cultivars and fungicide
treatments, but this later practice is not sustainable and is too expensive
for poor farmers in Madagascar, so agroecological management is ne-
cessary to reduce the propagation of the inoculum like crop rotations
and residues destruction (Raveloson et al., 2018). Many studies have
shown that the nutritional balance can be successfully used to limit
blast epidemics, confirming that rice tolerance to blast can be enhanced
by improving rice nutrition (Datnoff et al., 2007; Sester et al., 2014;
Dusserre et al., 2017).

The soil characteristics (organo-mineral and biological content) are
known by agronomists to play a key role in the development of blast
epidemics but only a few experiments have demonstrated it at the field
level. In 1981, Seguy et al. conducted an experiment to measure the
impact of soil on rice susceptibility to blast and compared rice growing
on a volcanic vs an hydromorphic soil from Cameroon, in pots placed
outside in a place with a high blast pressure. The differences in blast
severity they measured were spectacular. After analysis of soil mineral
content, they concluded that the “natural fertility potential” of the
volcanic soil explained why the level of blast was consistently lower on
plants grown on that soil. A similar experiment was reported by
Bonman (1992), with pots transferred from one region of the Phi-
lippines to another. In conclusion, the authors proposed that the term
“disease potential” should be applied to each site depending on the soil
type.

In Madagascar, epidemics of blast disease are much less intense in
the region of Betafo, an important traditional rice production area lo-
cated 22 km west from Antsirabe, which is characterized by Andosols
developed on recent volcanic materials, than on the acid Ferralsols in
the highlands. Based on those observations, we conducted a 3-year field
experiment to compare blast disease in rice grown on a typical Ferralsol
and on Andosol imported from the Betafo region, to investigate the
ability of plants grown under specific soil fertility to improve their
tolerance to blast disease in the field and to identify the relationship
between the direct impact of soil on tolerance factors and the indirect
impact through plant development. We hypothesized that cropping
practices that restore soil fertility will improve rice tolerance to diseases
in Ferralsol.

2. Materials and methods

2.1. Location

The experiment was conducted at Andranomanelatra (S 19°78′, E
47°11’, 1640m asl.) in the Vakinankaratra region of the highlands of
Madagascar. The tropical altitude climate is characterized by cool dry
winter from May to September and warm wet summer from October to
April, which is the rice cropping season. Average annual rainfall is
1460mm.

2.2. Plant material

Two upland rice cultivars adapted for high altitude were used.
Fofifa 152 (F152) is one of the first cultivars selected in the CIRAD-
FOFIFA breeding program (Raboin et al., 2013). It was successfully
released to farmers in the 1990s and was appreciated for its taste.
However, in 2003 this cultivar resistance broke down and is now
considered one of the most susceptible cultivars adapted to the rainfed
conditions typical of the region. Fofifa 172 (F172) is a recent cultivar,
and was seen to be resistant to nine differential strains of P. oryzae
isolated from upland rice in Madagascar, after inoculation in a green-
house (data not shown). It was used as a barrier between plots of F152.

2.3. Soil type

Two types of soil were compared in this study. The first type of soil,
at Andranomanelatra, developed on volcano-lacustrine alluvia (Raunet,
1981). The second soil was transported from the village of Betafo,
18 km west of Antsirabe, in a region with recent volcanism. The type of
soil at Andranomanelatra was classified as Geric Ferralsol according to
the FAO soil classification (IUSS Working Group, 2014), using data
collected by Razafimbelo et al. (2006). The soil texture is clayey with
66% clay, 17% fine silt, 3% coarse silt, 6% fine sand and 8% coarse
sand. The soil is acidic (water pH 4.6) and the total carbon content is
46.9 g kg−1. The soil from Betafo is classified as Silandic Andosol, and
contains 12% clay, 39% fine silt, 12% coarse silt, 16% fine sand and
21% coarse sand (data from soil analysis performed in 2009).

2.4. Experimental design

The experiments were conducted in 2009, 2010 and 2011. The field
was plowed manually and a fine seedbed prepared by secondary tillage.
Six to eight rice seeds were sown manually in seed holes spaced
20× 20 cm apart (25 hills per m2). Before sowing, rice seeds were
treated with Gaucho® (35% imidacloprid + 10% thiram) at a rate of
2.5 g per kg of seeds, as protection against insects. Weeds were removed
by hand. The same amount of fertilizer was applied to each plot: cattle
manure at a rate of 5 t ha−1 fresh weight plus NPK mineral fertilizer
(11% N, 22% P2O5, 16% K2O) at 300 kg ha−1, dolomite (CaMg(CO3)2)
at 500 kg ha−1 applied at sowing and two top-dressings of urea (46% N)
at 50 kg ha−1 applied 30 and 70 days after sowing (beginning of til-
lering and beginning of the booting stage).

A randomized complete-block design was used for all three ex-
periments with four replicates. Elementary plots containing the sus-
ceptible F152 variety (3 m×3m in 2009 and 2011, 3m×5m in
2010) were separated by 3m of F172 to avoid border effects. The basic
rotation was two years, with upland rice followed by intercropping with
pigeon pea (Cajanus cajan), sunnhemp (Crotalaria grahamiana) and
finger millet (Eleusine coracana). Two neighboring fields were culti-
vated by turns (one in 2009 and 2011, the other in 2010). In 2009, we
removed 4m3 of Andosol from an upland rainfed field, cropped with
rice the previous year, in the region of Betafo. The soil sample was
placed in a cylindrical hole, 0.50m in depth (depth of the major part of
the roots, Dusserre et al., 2012) and 1.6m in diameter (1 m3), in the
center of the elementary plots. In 2010 and 2011, 6m3 of soil from
another field in Betafo were placed it in a rectangular 1.5m×2m hole,
0.50m in depth in the center of the elementary plots.

Three treatments were compared each year: rice growing on the
local Ferralsol, rice growing on imported Andosol and, as a control of
growth potential rice growing on Ferralsol with chemical treatment
against blast: alternate fungicide treatments with Antracol® (70%
Propineb, 3 kg ha−1) and carbendazim (50% carbendazim, 1 l ha−1)
applied once a week in 2009 and twice a week in 2010 and 2011 from
the first symptoms observation during tillering to the end of filling stage
with a backpack sprayer (Cooper Pegler®, model CP15).

3. Measurements

3.1. Assessment of blast disease

Blast infection occurred naturally in our experiments. Leaf blast
severity was estimated weekly from the first symptoms observation (in
general during the first stage of tillering) to flowering stage (Dusserre
et al., 2017), six times in 2009 and 2010 and seven times in 2011. The
severity of leaf blast (LB) was assessed as follows: on 10 hills per ex-
perimental unit, the total number of tillers per hill and the number of
tillers with at least one typical leaf blast symptom were counted; on
three diseased tillers, the percentage of leaf area affected by blast
symptoms was estimated visually on the four uppermost fully expanded
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leaves. The value of leaf blast severity at the hill scale was then cal-
culated as described in Dusserre et al. (2017):

The leaf blast severity of an experimental unit is the mean of leaf
blast severity of the 10 hills.

Area Under Disease Progress Curve for leaf blast severity (AUDPClb)
has been calculated for each experimental unit:
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with lsi the mean leaf blast severity for observation i, ti the number of
days after sowing at observation i and n the number of observations of
leaf blast in the experimental unit.

After flowering, panicle blast (PB) symptoms were evaluated
weekly, five times in 2009, four times in 2010 and seven times in 2011.
Healthy and diseased panicles were counted on 10 hills. On five dis-
eased panicles per hill, we visually estimated the percentage of diseased
spikelets (i.e. those with a black stem). When the neck nodes were in-
fected by the pathogen, the panicle dries out and turns white (counted
as 100% of spikelets affected). PB severity was obtained by calculating
the mean of the severity values for the 10 hills in the experimental unit:

Area Under Disease Progress Curve for panicle blast severity
(AUDPCpb) has been calculated for each experimental unit:
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with psi the panicle severity for observation i, ti the number of days
after sowing at observation i and n the number of observations of pa-
nicle blast in the experimental unit.

3.2. Grain yield and yield components

Grain yield (using unhulled seeds), yield components, and straw dry
weight were measured at maturity. The number of plants, panicles, and
spikelets per panicle, the number of filled and unfilled spikelets, 1000-
grain weight and grain and straw yields were measured on eight hills
located in the center of each experimental unit. All plant samples were
separated into straw and panicles. The panicles were counted and hand
threshed, and the filled and unfilled spikelets were separated. The dry
weight of filled spikelets and unfilled spikelets was determined after
oven drying at 60 °C for three days. Sub-samples comprising 200 filled
spikelets and 200 unfilled spikelets were weighed to calculate the total
number of filled and unfilled spikelets and 1000-grain weight. The
fertility was calculated as the percentage of grain filling (100 x number
of filled spikelets/total number of spikelets). Grain yield and straw dry
weight were determined after drying at 60 °C for three days.

3.3. Soil and plant mineral analyses

In 2009, we analyzed three samples of soil taken from the local
field before the rice was sown and three samples of the imported soil.

The samples were sent to the “Laboratoire des radioisotopes,
Antananarivo, Madagascar” where N content, pH, total phosphorus,

Olsen phosphorus and exchangeable potassium content were ana-
lyzed. Chemical analyses of soils were performed on air-dried soil
whose particles were less than 2mm in size. pH was measured in soil
water and in 1M KCl suspensions using 1:2.5 (w:v) soil:solution ratio.
Total organic carbon (C) was determined with the Walkley-Black di-
chromate oxidation method and total nitrogen (N) with the Kjeldahl
method. Exchangeable K+ was extracted with cobalt hexamine
chloride and determined by atomic absorption spectrometry. Total P
was determined after perchloric acid (HClO4) digestion. Olsen-ex-
tractable P was obtained after extraction with 0.5 N sodium bicarbo-
nate solution (pH 8.5). The P in the soil extracts was determined using
the blue molybdate–ascorbic acid method.

In 2011, the pseudo-total SiO2 content (Sitotal) was estimated for
each plot (4 blocks for each soil origin) after dissolution in 1:1 conc.
H2SO4. This method is considered as a pseudo-total because the ex-
traction is thought to attack primarily amorphous and poorly ordered
silica as well as fine-grained crystalline clays, but not the most resistant
silicate minerals, which are mainly quartz. The available Si pool was
quantified using an extraction with 0.2 mol l−1 ammonium oxalate-

oxalic acid at pH 3, which extracts Si bound to poorly crystalline
components (allophane and imogolite) and weakly ordered sesqui-
oxides (Cornelis et al., 2011).

At the flowering stage, 30 flag leaves of rice plants not used for yield
parameters were sampled from the Ferralsol and Andosol, for leaf
analysis at the CIRAD water, soil, plant analyzes laboratory in
Montpellier, France, in 2009 and 2011. After the leaves were dried at
60 °C for 48 h, total leaf N was determined with the Dumas combustion
method using a ‘Leco N-analyzer’ (FP528-LECO). Foliar P, K, Ca, Mg,
Na, Cu, Mn, Zn and B were analyzed by ICP. The amount of SiO2 in the
flag leaves was measured by gravimetry with the method used by
Horwitz (1960) and is reported as the % of SiO2 in the dry matter, S
was analyzed by turbidimetry.

3.4. Statistical analysis

Statistical analyses were performed with the Statistical Analysis
System (SAS) v.9.2 (SAS Institute Inc., Cary, NC). Means and standard
errors were generated with PROC MEANS. Disease severity values were
transformed using the Arcsin of the square root transformation. The
MIXED procedure (with Random statement) was used for analysis of
variance. LSD test was used for mean separation. ANOVA was used to
compare leaf and panicle AUDPC, and soil and leaf mineral contents in
Ferralsol vs Andosol.

4. Results

4.1. Blast measurements

Dynamics of leaf and panicle blast were measured throughout the 3-
year experiment (Fig. 1). The difference of leaf blast between soils was
significant (P < 0.05) after the second measurement date in 2009 and

= ⎛
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⎞
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Leaf Severity Mean
% of leaf area presenting blast symptoms on diseased tillers x number of diseased tillers

total number of tillers
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Panicle Blast Severity Mean % of diseased spikelets on diseased panicles x number of diseased panicles
total number of panicles
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2011, and after the fifth measurement date in 2010. Leaf blast (LB)
severity increased during the development of the crop each year for
both soils, but was always more severe on plants grown on the Ferralsol
than on the Andosol (Fig. 1A, B and 1C) and particularly at the last
scoring date: 13.9% vs. 7.0% in 2009, 4.4% vs. 0.4% in 2010, and 4.9%

vs. 1.6% in 2011. AUDPC for leaf blast were always significantly dif-
ferent between the two soil orders (P < 0.05, Table 1).

The effect of soil on panicle blast (PB) was also highly significant on
all measurement dates in each year except at the end of the 2010 season
and on the four first dates in 2011 (Fig. 1, Table 1). Panicle blast

Fig. 1. Evolution of leaf and panicle blast severity in 2009, 2010 and 2011. Symbols represent means of four replications ± SE bars. Lines link means for each soil at
each date (in day after sowing). Empty dots represent blast severity on the Ferralsol, full dots are blast severity on the Andosol. Severity is the mean % of leaf area on
the four upper leaves for leaf blast and the mean % of spikelets affected by blast for panicle blast. * indicates the dates were the difference of blast severity between
the two soils was significant (P < 0.05).
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severity increased during crop development each year on both soils but
was always more severe for plants grown on the Ferralsol (Fig. 1):
80.6% vs 40.8% in 2009, 53.7% vs 39.6% in 2010 and 84.1% vs 64.2%
in 2011, at the last scoring dates. AUDPC for panicle blast were sig-
nificantly lower in the Andosol compared to the Ferralsol, each year
(Table 1).

4.2. Yield and yield components

Each year, the lowest yield was measured on rice plants grown
without fungicide on the Ferralsol (Table 2). The yields obtained from
rice plants grown on Ferralsol and receiving fungicides were two to
three times higher than the yields obtained in plots containing Ferralsol
without fungicide. These differences can mainly be explained by dif-
ferences in fertility (% of full grains) and in grain filling (weight of 1000
full grains), i.e. yield components that are established relatively late
(Table 2). No differences were observed between treatments for the
number of panicles per square meter, spikelets per panicle, and dry
straw weight, yield components that are established early.

Differences in yields between rice plants grown on the Andosol and
the Ferralsol without fungicide were significant in 2009 and 2010.
Yields ranged from 1.1 to 1.6 tons per ha on Ferralsol vs. 3.8 tons per ha
on Andosol in 2009 and 2010. Differences in yield were explained by
differences in grain filling but also by differences in plant growth (dry
straw weight, number of panicles per m2 and number of spikelets per
panicle). In 2011, very low yields were obtained from plants grown in
Andosol compared to the two previous years. No significant difference
in any yield component was observed between these two soils.

4.3. Soil and plant mineral analysis

Soil analysis (Table 3) confirmed that the imported soil was richer in
organic carbon and nitrogen than the local soil. The imported soil had a

less acid pH than the local soil and higher concentrations of total and
available phosphorus. Total Si content in the imported soil was slightly
lower than in the local soil, whereas available Si was much higher (46.3
vs. 0.8mg kg−1).

In 2009 and 2011, mineral analyses were performed on flag leaves
at the booting stage to compare plants growing on Ferralsol and
Andosol (Table 4). Many differences were observed each year but no
difference in N content. The significant differences concerned silicon
(Si) and phosphorus (P) contents, which were higher in the Andosol,
and manganese (Mn) content, which was lower in the Andosol, espe-
cially in 2009 (4.3% Si in plants on Ferralsol vs 11.2% in plants on
Andosol). Some statistical differences were observed for other elements
too, either in 2009 or in 2011.

5. Discussion

In the present study, a highly susceptible cultivar of upland rice was
grown on two different soils at the same location for three years in a
row, using identical traditional cropping practices with mineral ferti-
lization. The differences in the severity of leaf blast were significant, but
in our trials leaf blast levels were low (max 15% of leaf area affected by
blast symptoms) and did not really affect plant growth in the early
stages (number of panicles per m2, number of spikelets per panicle and
dry straw weight were similar). On the other hand, panicle blast levels
were high. On the Ferralsol, the blast epidemic was similar to the epi-
demics observed in previous years with 50%–80% of empty grains due
to the disease. For the Andosol, the level of PB was reduced by
10%–50%. The differences between the two soils had a direct effect on
the yield components with a higher percentage of full grains and a
higher full grain weight in plants grown on the Andosol. The associated
increase in yield was 137–231% in the two first years but was not
significant in the third year (+36%). Differences were observed be-
tween years concerning the disease dynamics. This could be due to

Table 1
Severity of Leaf and Panicle blast (% of leaf area affected by disease and % of spikelets affected by disease, respectively) at the last scoring date and mean values of
AUDPC (%.day), each year in each soil. Values followed by an asterisk differed significantly between soil (P < 0.05).

Year Soil Leaf Blast Panicle Blast

Severity at the last
scoring date (%)

AUDPC (%.day) Severity at the last
scoring date (%)

AUDPC (%.day)

2009 Andosol 7.0 131.4 40.8 297.2
Ferralsol 13.9* 337.0* 80.6* 827.7*

2010 Andosol 0.4 7.2 39.6 193.6
Ferralsol 4.4* 52.9* 53.7 373.7*

2011 Andosol 1.6 23.5 64.2 1365.9
Ferralsol 4.9* 154.1* 84.1* 1993.4*

Table 2
Yield components analysis. Means are presented for each component, and for each year on local Ferralsol, Andosol, and Ferralsol treated with fungicide. For each
component and each year, means followed by the same letter are not significantly different (at P < 0.05) based on ANOVA test. If there is no letter, there was no
significant difference in the result between treatments.

Number of panicles
per m2

Number of spikelets
per panicle

Fertility (% full
grains)

1000 full grain weight
(g)

Dry straw weight
(kg/ha)

Yield (kg/ha)

2009 Andosol 422.1 67.2 57.2A 23.7A 5158A 3788A

Ferralsol 356.1 49.8 34.1 B 17.8 B 3566 B 1143 B

Ferralsol + Fungicide 348.8 62.2 57.8A 24.5A 3886 B 3061A

2010 Andosol 516.4A 75.0A 41.7 B 24.0A 10355A 3774 B

Ferralsol 409.7 B 56.9 B 36.3 B 19.9 B 6682 B 1591 C

Ferralsol + Fungicide 359.0 B 63.6 AB 78.3A 27.2A 5568 B 4842A

2011 Andosol 477.3 55.9 19.5 B 19.7 B 5950 2090B

Ferralsol 452.3 52.4 11.6 B 17.3 B 5617 1533 B

Ferralsol + Fungicide 442.2 56.8 66.4A 26.3A 5419 4071A
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climatic conditions or to external factors influencing the date of appa-
rition of the natural primary inoculum, and the beginning of epidemic
development.

In previous experiments, we observed differences in blast severity
with the cropping system (Sester et al., 2014; Dusserre et al., 2017) but
the differences were systematically associated with a delay in devel-
opment, which by itself, might help to explain the differences in the
incidence and severity of blast. In the present study, plant growth was
not only improved on the Andosol, even when compared with plants
grown on Ferralsol and treated with fungicides, but blast severity was
simultaneously lowered, resulting in a significant increase in yield. Our
experiments thus confirm that soil order may influence significantly the
epidemic development of blast disease in a rice crop whatever the cli-
mate, pathogen populations or other environmental factors.

In an attempt to identify the mineral elements which could be re-
sponsible for the reduced susceptibility of plants grown on the Andosol
(Dordas, 2008), we analyzed the nutrient contents in flag leaves of rice
growing on the Ferralsol and Andosol. Significant differences in silicon,
phosphorus and manganese were measured each year (Table 4). No
significant difference in nitrogen content was observed. Nitrogen is
known to be associated with rice blast susceptibility (Ballini et al.,
2013; Long et al., 2000; Pinnschmidt et al., 1995) but did not appear to
be responsible for the differences in blast levels observed in the present
study. According to physiological standards (CSIRO, 1997), the P con-
tent of the rice grown on the Ferralsol was probably deficient or at a
critical level. The lower P content of the Ferralsol could reduce plant
growth. Mn content appeared to be adequate or high. The role of ele-
ments in affecting rice blast susceptibility such as Mn or P are difficult
to interpret; the literature is mixed in that these elements have been
reported to either increase or decrease blast susceptibility (Datnoff
et al., 2007; Cacique et al., 2012).

The silicon content in plants grown on the Ferralsol was below the
Si threshold considered to be critical for plant growth (5%) for leaves
and straw (Dobermann and Fairhurst, 2000), as is often the case in sub-
Saharan Africa (Tsujimoto et al., 2014). Silicon may well explain the
differences in blast severity observed in the present study, as it has
already been shown to have a highly significant impact on rice blast
severity (Hayasaka et al., 2008; Ma and Yamaji, 2006; Nakata et al.,
2008; Seebold et al., 2004). Correlations have been reported between
the concentration of Si in rice plants and the amount of weatherable
minerals in soils (Makabe et al., 2009). Poorly ordered aluminosilcates,
such as allophane and imogolite, which are commonly found in vol-
canic soils and are easily weatherable (Churchman and Lowe, 2012),
could be the source of silicon in the Andosol. Sources of silicon can be
used to improve the level of plant-available Si in the soil, but this would

require imports of Si fertilizer, e.g. calcium silicate (Datnoff et al.,
1997), or alternatively, the development of local production of Si fer-
tilizer in Madagascar. Silicon can be supplied by plant-derived amor-
phous silica (phytoliths) present in plant residues, such as rice straw or
manure amendments (Guntzer et al., 2012; Song et al., 2014; Pati et al.,
2016; Haynes, 2017). Silicon availability may be improved by in-
creasing soil pH (dolomite CaMg(CO3)2 can be easily found in Mada-
gascar), by increasing soil biodiversity and using cropping practices
that favor earthworms activity (Bityutskii et al., 2016).

The way silicon may influence plant-pathogen interactions is de-
tailed in Wang et al. (2017) as a combination of four mechanisms:
structural reinforcement, stimulation of systemic acquired resistance,
production of antimicrobial compounds and activation of defense gene
expression. In 2005, Qin and Tian proposed that silicon may act in-
directly by an improvement of the effect of plant growth promoting
rhizobacteria (PGPR). Some PGPR have been reported to induce re-
sistance to rice blast (Filippi et al., 2011; Lucas et al., 2009; Spence
et al., 2014).

The results of our study clearly demonstrate that rice blast devel-
opment will vary for plants grown in different soil orders (Ferrasol vs
Andosol). This variation in disease development is apparently due to
the ability of the soil to provide sufficient levels of plant available si-
licon. Rice cropping systems should thus be adapted to improve soil Si
levels, especially for those soils known to be low or limiting in this
element, to enhance plant resistance to blast and subsequently improve
plant yield and quality.
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