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Abstract

Recent advances in high-throughput technologies have resulted in a tremendous increase

in the amount of omics data produced in plant science. This increase, in conjunction with the

heterogeneity and variability of the data, presents a major challenge to adopt an integrative

research approach. We are facing an urgent need to effectively integrate and assimilate

complementary datasets to understand the biological system as a whole. The Semantic

Web offers technologies for the integration of heterogeneous data and their transformation

into explicit knowledge thanks to ontologies. We have developed the Agronomic Linked

Data (AgroLD– www.agrold.org), a knowledge-based system relying on Semantic Web

technologies and exploiting standard domain ontologies, to integrate data about plant spe-

cies of high interest for the plant science community e.g., rice, wheat, arabidopsis. We pres-

ent some integration results of the project, which initially focused on genomics, proteomics

and phenomics. AgroLD is now an RDF (Resource Description Format) knowledge base of

100M triples created by annotating and integrating more than 50 datasets coming from 10

data sources–such as Gramene.org and TropGeneDB–with 10 ontologies–such as the

Gene Ontology and Plant Trait Ontology. Our evaluation results show users appreciate the

multiple query modes which support different use cases. AgroLD’s objective is to offer a

domain specific knowledge platform to solve complex biological and agronomical questions

related to the implication of genes/proteins in, for instances, plant disease resistance or high

yield traits. We expect the resolution of these questions to facilitate the formulation of new

scientific hypotheses to be validated with a knowledge-oriented approach.
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Introduction and background

Agronomy is a multi-disciplinary scientific discipline that includes research areas such as plant

molecular biology, physiology and agro-ecology. Agronomic research aims to improve crop

production and study the environmental impact on crops. Accordingly, researchers need to

understand the implications and interactions of the various biological processes, by linking data

at different scales (e.g., genomics, proteomics and phenomics). We are currently witnessing

rapid advances in high throughput and information technologies that continue to drive a flood

of data and analysis techniques within the domains mentioned above. However, much of these

data or information are dispersed across different domain or model specific databases, varied

formats and representations e.g., TAIR, GrainGenes and Gramene. Therefore, using these data-

bases more effectively and adopting an integrative approach remains a major challenge.

Among the numerous research directions that the field of bioinformatics has taken, knowl-

edge management has become a major area of research, focused on logically interlinking infor-

mation and the representation of domain knowledge [1]. To this end, ontologies have become

a cornerstone in the representation of biological and more recently agronomical knowledge

[2]. Ontologies provide the necessary scaffold to represent and formalize biological concepts

and their relationships. Currently, numerous applications exploit the advantages offered by

biological ontologies such as: the Gene Ontology [3]–widely used to annotate genes and their

products–Plant Ontology [4], Crop Ontology [5], Environment Ontology [6], to name a few.

Ontologies have opened the space to various types of semantic applications [7,8] to data inte-

gration [9], and to decision support [10]. Semantic interoperability has been identified as a key

issue for agronomy, and the use of ontologies declared a way to address it [11]. Furthermore,

efficient knowledge management requires the adoption of effective data integration methodol-

ogies. This involves efficient semantic integration of the disparate data sources, making infor-

mation machine-readable and interoperable. Accordingly, Semantic Web standards and

technologies enforced by the W3C, and embracing Tim Berners-Lee’s vision [12], offers a solu-

tion to facilitate integration and interoperability of highly diverse and distributed data

resources. The Semantic Web technologies stack includes among others the following W3C

Recommendations: the Resource Description Framework (RDF) [13] as a backbone language

to describe resources with triples, RDF Schema (RDFS) [14] to build lightweight data schemas,

Web Ontology Language (OWL) [15] to build semantically rich ontologies and the SPARQL

Query Language (SPARQL) [16] to query RDF data. All of the previous languages rely on

Unique Resource Identifiers (URIs) to define a resource and its components, enabling data

interoperability across the Web. RDF describes a resource and its relationships/properties in

the form of simple triples, i.e., Subject-Predicate-Object offering a very convenient framework

for integrating data across multiple platforms assuming the platforms share some common

vocabularies to describe their objects. These triples can be combined to construct large net-

works of information (also known as RDF graphs). A successfully implemented Semantic Web

application allows scientists to pose very complex questions through a query or a set of queries

that would return highly relevant answers to those questions, facilitating the formulation of

research hypotheses [17,18].

There are other approaches to meet the current data integration challenges, e.g., data ware-

houses. For instance, Intermine [19] has developed a sophisticated application to accommo-

date the dynamic nature of biological data and simplify data integration. However, with

integrative biology gaining popularity, it is necessary to preserve and share the semantics

between the various datasets and make information machine interoperable, enabling large

scale analyses of information available over the Web. The Semantic Web approach provides an

added value, playing a complementary role to the traditional methods of data integration.
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In the recent years, the biomedical community has strongly embraced the Semantic Web

vision as demonstrated by a number of initiatives to provide ontologies [20,21] and use them

for producing semantically rich data such as in Bio2RDF [22], OpenPHACTS [23], Linked

Life Data [24], KUPKB [25], and the EBI RDF Platform [26]. In particular, OpenPHACTS

serves as a good example of what can be achieved by using Semantic Web knowledge bases.

The OpenPHACTS Explorer (http://www.openphacts.org/open-phacts-discovery-platform/

explorer) provides use case driven tools that aid in browsing and visualizing the underlying

knowledge represented in RDF which is very convenient for biologists.

Currently, there is a growing awareness within the agronomic domain towards efficient

data interoperability and integration [2,27,28]. The need for an umbrella approach for provid-

ing uniform data is a widely-discussed topic. For instance, the Agriculture Data Interoperabil-

ity Interest Group (https://rd-alliance.org/groups/agriculture-data-interest-group-igad.html)

instituted by the Research Data Alliance (RDA) and agINFRA EU project (www.aginfra.eu)

are initiatives that work on improving data standards and promoting data interoperability in

agriculture. Moreover, the community has recently also started to adopt AgroPortal [11] as an

vocabulary and ontology repository for agronomy–and related domains such as nutrition,

plant sciences and biodiversity–that support browsing, searching and visualizing domain rele-

vant ontologies, ontology alignments and creation of semantic annotations. While plant-cen-

tric ontologies are now being used to annotate data by various databases developers [2,5,28],

unlike in the biomedical domain, the adoption of Semantic Web in agronomy is yet to be

completely exploited. Given that agronomic studies involve multiple domains, publicly avail-

able knowledge bases such as EBI RDF, Linked Life Data and Bio2RDF serves only limited

agronomical information. Hence, it is necessary to build on previous efforts and complete

them to provide information compliant with Semantic Web principles within agronomic sci-

ences. This adoption would certainly allow the homogenization of multi-scale information,

thereby aiding in the discovery of new knowledge. Therefore, we have developed an RDF

knowledge-based system, fully compliant with the Semantic Web vision, called Agronomic

Linked Data (AgroLD– www.agrold.org) presented hereafter. The aim of our effort is to pro-

vide a portal (to discover) and an endpoint (to query) for integrated agronomic information

and to aid domain experts in answering relevant biological questions.

The rest of the paper is organized as follows: in the next section, we describe the data

sources integrated or used for the integration, the content and architecture of the knowledge-

based system. In the following sections, we present the user interface with some examples que-

ries, then we discuss about the contributions and the future directions.

Materials and methods

Information sources

AgroLD was conceived to accommodate molecular and phenotypic information available on

various plant species (see Fig 1). The conceptual framework for the knowledge in AgroLD is

based on well-established ontologies: GO, SO, PO, Plant Trait Ontology (TO) and Plant Envi-

ronment Ontology (EO). Among these PO, TO and EO are currently developed by the Plan-

teome project [29] (http://planteome.org). Furthermore, considering the scope of the effort,

we decided to build AgroLD in phases. The current phase (phase I) covers information on

genes, proteins, ontology associations, homology predictions, metabolic pathways, plant traits,

and germplasm, relevant to the selected species. At this stage, we have incorporated the corre-

sponding information from various databases, such as Gramene [30], UniprotKB [31], Gene

Ontology Annotation [32], TropGeneDB [33], OryGenesDB [34], Oryza Tag Line [35], Green-

PhylDB [36] and SNiPlay [37]. The selection of these data sources was considered based on

AgroLD
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popularity among domain experts such as GOA, Gramene, and complementary information

hosted by the local research community, for instance, Oryza Tag Line and GreenPhylDB.

Information on the integrated databases can be found in the documentation page (http://

www.agrold.org/documentation.jsp). Table 1 provides a break-down of the data sources and

the species covered.

Architecture

AgroLD relies on the RDF and SPARQL technologies for information modelling and retrieval.

We use OpenLink Virtuoso (version 7.2) to store and access the RDF graphs. The data from

the selected databases were parsed and converted into RDF using a semi-automated pipeline.

The pipeline consists of several parsers to handle data in a variety of formats, such as the Gene

Ontology Annotation File (GAF) [38], Generic File Format (GFF3) [39], HapMap [40] and

Variant Call Format (VCF) [41]. Fig 2 shows the Extraction-Transform-Load (ETL) processes

developed to transform in RDF various source data formats. The source code of the ETL work-

flow (https://doi.org/10.5281/zenodo.1294660) is available on GitHub (https://github.com/

SouthGreenPlatform/AgroLD).

Fig 1. Current plant species included in AgroLD.

https://doi.org/10.1371/journal.pone.0198270.g001
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Table 1. Plant species and data sources in AgroLD.

Data sources URLs File format #tuples Crops Ontologies used #triples produced

GO associations geneontology.org GAF 1, 160K R, W, A, M, S GO, PO, TO, EO 6, 200K

Gramene gramene.org Custom flat file 1, 718K R, W, M, A, S GO, PO, TO, EO 4, 600K

UniprotKB uniprot.org Custom flat file 1, 400K R, W, A, M, S GO, PO 50, 000 K

OryGenesDB orygenesdb.cirad.fr GFF 1, 100K R, S, A, GO, SO 14, 800K

Oryza Tag Line oryzatagline.cirad.fr Custom flat file 22K R PO, TO, CO 300K

TropGeneDB tropgenedb.cirad.fr Custom flat file 2k R PO, TO, CO 20K

GreenPhylDB greenphyl.org Custom flat file 100K R, A GO, PO 700K

SNiPlay sniplay.southgreen.fr HapMap, VCF 16K R GO 16, 000K

Q-TARO Qtaro.abr.affrc.go.jp Custom flat file 2K R PO,TO 20K

Oryzabase shigen.nig.ac.jp/rice/oryzabase Custom flat file 17K R GO,PO,TO 160K

TOTAL 92, 640K

The number of tuples gives an idea of the number of elements we have annotated from the data sources (e.g., 1160K Gene Ontology annotations). The crops &

ontologies are referred as follows: R = rice, W = wheat, A = Arabidopsis, S = sorghum, M = maize, GO = Gene Ontology, PO = Plant Ontology, TO = Plant Trait

Ontology, EO = Plant Environment Ontology, SO = Sequence Ontology, CO = Crop Ontology (specific trait ontologies).

https://doi.org/10.1371/journal.pone.0198270.t001

Fig 2. ETL workflow for the various datasets and data formats. The workflow shows two types of process: 1) from relational databases through a CVS file export: in

that case, the transformation is tailored for the database model with some Python scripts converters. 2) from standards file formats: in that case, the transformation is

generic with some Python packages used as converter tools. The workflow outputs can be produce in various type of RDF format such as turtle, JSON-LD, XML.

https://doi.org/10.1371/journal.pone.0198270.g002
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For this phase, each dataset was downloaded from curated sources and was annotated with

ontology terms URIs by reusing the ontology fields when provided by the original source.

Additionally, we used the AgroPortal web service API to retrieve the URI corresponding to the

taxon available for some data standards such as GFF. At the end of phase 1, early 2018, the

AgroLD knowledge base contains around 100 million RDF triples created by converting more

than 50 datasets from 10 data sources. Additionally, when available, we used some semantic

annotation already present in the datasets such as, for instances, genes or traits annotated

respectively with GO or TO identifiers. In that case, we produced additional properties with

the corresponding ontologies thus adding 22% additional triples validated manually (see

details in Table 1). The OWL versions of the candidate ontologies were directly loaded into the

knowledge base but their triples are not counted in the total. We provided in the supplemen-

tary file S1 Table, a more comprehensive statistics analysis such as number of triples, classes,

entities and properties for each graph stored in the knowledge base.

The RDF graphs are named after the corresponding data sources (protein/qtl ontology

annotations being the exception), sharing a common namespace: “http://www.southgreen.fr/

agrold/”. The entities in the RDF graphs are linked by shared common URIs. As a design prin-

ciple, we have used URI schemes made available by the sources (e.g., UniprotKB) or by Identi-

fiers.org registry (http://identifiers.org - [42]). For instances, proteins from UnitProtKB are

identified by the base URI: http://purl.uniprot.org/uniprot/; genes incorporated from Gra-

mene/Ensembl plants are identified by the base URI: http://identifiers.org/ensembl.plant/. New

URIs were minted when not provided by the sources or the by Identifiers.org such as Trop-

Gene and OryGenesDB; in such cases the URIs take the form http://www.southgreen.fr/agrold/
[resource_namespace]/[identifier]. Furthermore, properties linking the entities took the form:

http://www.southgreen.fr/agrold/vocabulary/[property]. An outline of how the RDF graphs are

linked is shown in Fig 3. About entity linking, we used the “key-based approach” which is the

most common one. It combines the unique identifier/accession number of the entity shared

with the community, with the URI basis pattern of the resource. Moreover, we also respected

Fig 3. Linking information in AgroLD. The figure illustrates the linking of varies information in AgroLD.

https://doi.org/10.1371/journal.pone.0198270.g003
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the “common URI approach” which recommends to use the same URI pattern when the same

accession number is used in different datasets. Therefore, defining the same URI for identical

entities (represented by identifiers) in different datasets makes it possible to aggregate addi-

tional information for this entity. Additionally, we used cross-reference links (represented by

identifiers from external datasets) by transforming them into URIs and linked the resource

with the predicate “has_dbxref’. This greatly increases the number of outbound links, making

AgroLD more integrated with other Linked Open Data. In the future, we will implement a

“similarity-based approach” to identify correspondences between entities which have different

URIs.

To map the various data types and properties, we developed a lightweight schema (cf.

https://github.com/SouthGreenPlatform/AgroLD) that glues classes and properties identified

in AgroLD and the corresponding external ontologies. For instance, the class Protein (http://
www.southgreen.fr/agrold/resource/Protein) is mapped as owl:equivalentClass to class polypep-

tide (http://purl.obolibrary.org/obo/SO_0000104) from SO. Similar mappings have been made

for properties, e.g., proteins/genes are linked to GO molecular function by the property http://
www.southgreen.fr/agrold/vocabulary/has_function, which is mapped as owl:equivalentProperty
to the corresponding Basic Formal Ontology (BFO) term (http://purl.obolibrary.org/obo/BFO_
0000085). When an equivalent property did not exist, we mapped then to the closest upper

level property using rdfs:subPropertyOf e.g., the property has_trait (http://www.southgreen.fr/
agrold/vocabulary/has_trait), links proteins to TO terms. It is mapped to a more generic prop-

erty, causally related to in the Relations Ontology [43]. For now, 55 mappings were identified.

Furthermore, mappings are both stored side by side with ontologies in AgroPortal, which

allows direct links between classes and instances of these classes in AgroLD. For example, the

following link will show the external mappings for SO:0000104 (polypeptide) stored in Agro-

Portal: http://agroportal.lirmm.fr/ontologies/SO/?p=classes&conceptid=http%3A%2F%

2Fpurl.obolibrary.org%2Fobo%2FSO_0000104&jump_to_nav=true#mappings. Additionally,

classes, properties and resources (e.g., http://www.southgreen.fr/agrold/page/biocyc.pathway/

CALVIN-PWY) are dereferenced on a dedicated Pubby server [44]. For details on the graphs,

URIs and properties, the reader may refer to AgroLD’s documentation (http://www.agrold.

org/documentation.jsp).

User interface

The AgroLD platform provides four entry points to access the knowledge base:

• Quick Search (http://www.agrold.org/quicksearch.jsp), a faceted search plugin made avail-

able by Virtuoso, that allows users to search by keywords and browse the AgroLD’s content;

• SPARQL Query Editor (http://www.agrold.org/sparqleditor.jsp), that provides an interactive

environment to formulate SPARQL queries;

• Explore Relationships visualizer (http://www.agrold.org/relfinder.jsp), which is an imple-

mentation of RelFinder [45] that allows users to explore and visualize existing relationships

between entities;

• Advanced Search (http://www.agrold.org/advancedSearch.jsp), a query form providing

entity (e.g., gene) specific information retrieval.

Alternatively, some user management features have been implemented on the platform.

Users have the opportunity to save their search and results on a persistent history session

attached to their own account. Furthermore, they can manage search history by editing, delet-

ing or re-running previous searches and exporting results according several formats. In the
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future, we plan to develop some recommendation features and sharing results between users.

More detailed descriptions and figures of the different user interfaces will be provided in the

following section. Furthermore, other examples are shown in the User Guide available in the

supporting information S1 File.

Results and discussion

RDF knowledge bases are accessed via SPARQL endpoints and in certain cases equipped with

faceted browser interfaces. Using SPARQL endpoints require a minimal knowledge of

SPARQL, this may result in the resources not being exploited completely. Alternatively, fac-

eted browser interfaces help the user in getting acquainted with information in the resource

(e.g., retrieving a local neighborhood for a particular term), the presence non-textual details

(e.g., URIs) in the results could be confusing. To this end, we attempted to lower the usability

barrier by providing tools to explore the knowledge base. In this section, we demonstrate the

complementary role of the Advanced Search and Explore Relationships query tools with that of

the SPARQL Query Editor.
We developed the SPARQL Query Editor based on the YASQE and YASR tools [46] and

customized it for our system. The SPARQL language is a powerful tool to mine and extract

meaningful information from the knowledge base. In the first example of the supplementary

S3 File, we compare two queries to answer the question: “Identify wheat proteins that are

involved in root development.”. While the first one (S3_Q1) using a simple search—which is a

direct translation of SQL—with the corresponding id (“GO_0048364”, “GO_2000280”) shows

73 entries, the second one (S3_Q2) using a property path query (i.e., query the descending

class hierarchy for a given trait ontology term) shows 137 entries, thus more than 80% of addi-

tional results. In that case, the use of property path algorithm shows the efficiency in retrieving

a comprehensive answer. But the SPARQL language performs also very well with complex

queries such as: “Retrieve individuals which have positive SNP variant effect identified for pro-

teins associated with a QTL” available in S3_Q3. This type of query involves several datasets

and uses graph traversal property of SPARQL to perform the query.

Because SPARQL is hard to handle for non-technical users, the SPARQL Query Editor
includes a list of modularized example queries, customizable according to the users’ needs.

For the comparison, we consider a sample question: ‘Retrieving genes that participate in Cal-
vin cycle’; (Q6 in the online list of modularized queries). As illustrated in Fig 4, the user can

run the query to retrieve the list of genes participating in the given pathway (Fig 4A). Addi-

tional information on a gene of interest can be retrieved by clicking on the URI. For example,

clicking on AT1GI870 (http://identifiers.org/ensembl.plant/AT1G18270) redirects the users to

the gene information provided by Gramene/Ensembl Plants resource (Fig 4B). The query can

be saved and the results can be downloaded in a variety of formats such as JSON, TSV, and

RDF/XML. Additionally, user defined queries could also be uploaded.

The Explore Relationships tool is based on RelFinder visualization module. This tool aids in

visualizing relationships between entities and searching entities by keyword when their URIs

are ignored. However, the original version of RelFinder was developed (in ActionScript) and

configured for DBpedia. We proposed a configuration and modification of the system suitable

for AgroLD. The configuration mainly concerns the SPARQL access point, the properties to

be considered for the search of entities and for the description of the resources. Furthermore,

we have added some biological examples to guide users. In Fig 5, the tool is used to search for

genes involved in Calvin cycle by entering the name of the entities.

The Advanced Search query form is based on the REST API suite (http://www.agrold.org/

api-doc.jsp), developed completely within the AgroLD project. The aim of this feature is to
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provide non-technical users with a tool to query the knowledge base while hiding the technical

aspects of SPARQL query formulation. Fig 6 illustrates steps involved in retrieving informa-

tion for Q6, using the query form:

a. The user selects Pathways from the list of entities and enters the pathway of interest, in this

case, Calvin cycle (Fig 6A);

b. The list of genes involved in the pathway can be retrieved by selecting the pathway.

Furthermore, information on a gene of interest can be retrieved by selecting the specific

gene (Fig 6B). For instance, clicking on AT1GI870 (Fig 6C) displays all the proteins the gene

encodes and the pathways the gene participates in (apart from Calvin cycle). The RESTful API

supports the query form and was developed for programmatic retrieval of entity specific

knowledge represented in AgroLD. The current version of the API suite (ver. 1) can be used to

retrieve gene and protein information, metabolic pathways, and proteins associated with onto-

logical terms. This is achieved by querying entity by name or identifier.

User evaluation

AgroLD is being actively developed based on usability testing sessions conducted with domain

experts, including doctoral students in biology, curators and senior researchers. Test sessions

were designed to measure if:

Fig 4. SPARQL query editor. Figure illustrates the execution of query Q6: (a) Q6 is one the examples queries on the top-right corner (highlighted in red). On executing

the query, the results are rendered below the editor; (b) the user can look up specific genes of interest by clicking on the corresponding URI, which points to the original

information source (in this case EsemblPlants).

https://doi.org/10.1371/journal.pone.0198270.g004
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• Resources integrated in AgroLD are useful;

• AgroLD is easy to use.

For the evaluation of semantic search systems, Elbedweihy et al. [47] recommend a survey

of users based on their experience with a few queries submitted to the system. We have used

this approach to collect user opinions, comments and suggestions via a feedback form directly

within the AgroLD web application. The form includes some questions from the "System

Usability Scale" questionnaires [48] and other questions that we considered important. The

three main criteria evaluated are:

1. Usability–ease to submit a query (number of attempts, time required) and presentation of

the results;

2. Expressiveness–type of queries a user is able to formulate (e.g., keywords or more complex

expressions);

3. Performance–speed, correctness and completeness of the results.

Recently, 20 participants were invited during 3 testing sessions, to search for concepts,

genes, or pathways of their interests; and the online form was active (http://agrold.org/survey.

jsp) to allow new feedbacks during the exploitation phase. Each question had 5 possible

answers ranked from the highest to the lowest note (5 to 1). We reported the results of these

sessions in S2 File as a supplementary document.

Globally, participants found the platform useful and easy to use. Overall, the idea of data

navigation and traversal through knowledge graphs was well received. However, many of them

needed help with some features. The general observation is that testing users ranked Advanced

Fig 5. Exploring entity relationships in AgroLD. Figure illustrates differently the results obtained for Q6 using Explore Relationships tool. The results of Q6 can be

visualized by entering the concepts (Calvin cycle and gene) in the left panel. On executing the query, all the genes involved in the chosen pathway are revealed. The

visualized graph can be altered based on the user interest. Additionally, a gene could be selected (circled on the left) and further explored by clicking on the More Info
link which directs the user to the information source.

https://doi.org/10.1371/journal.pone.0198270.g005
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Search first then Quick Search after. We explain this by the display output that looks friendlier

for Advanced Search. Quick Search won votes for usability and performance despite several

comments to improve the ranking and presentation of results (4 user’s comments). Advanced
and Explore search got average scores but good comments on the capability of discovering

unexpected results (e.g., nearest neighbour entities in the graph for the Explore Search and

additional results from external Web services for Advanced Search). With no surprise, evalua-

tion results show the SPARQL Query Editor is the most difficult to handle. We mitigate this by

offering examples of query pattern to help users handle query formulation. In the future, we

will improve the examples by offering a large spectrum of search type which will follow the

new phase of data integration. Furthermore, we will provide links to some SPARQL tutorials

in the documentation. These user feedbacks reinforced the need for knowledge bases such as

AgroLD, wherein users could retrieve information across various data types and sources. This

knowledge discovery is supported by the use of shared URI schemes and domain ontologies.

The testing sessions also helped us to identify areas for further improvement. Plus, we received

Fig 6. Advanced search query form: Figure demonstrates the steps involved in retrieving the results for Q6 using the Advanced Search query form: (a) query Q6 can be

executed by selecting the type of entity (Pathways–highlighted in red) to search and entering the name of the entity (Calvin cycle). The API then displays the matched

results; (b) Clicking on the result displays the genes participating in Calvin cycle; (c) selecting a gene of interest displays more information pertaining to that gene, for

instance, encoding proteins and pathways this selected gene participates in.

https://doi.org/10.1371/journal.pone.0198270.g006
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suggestions on improving the AgroLD’s coverage with more data types such as gene expres-

sion data, and protein-protein interactions. Considering, linked data and Semantic Web are

still not widely adopted in agronomy, increasing AgroLD’s coverage will be an incremental

process engaging our user community. This situation is expected to improve with new com-

munity efforts such as the Agrisemantics RDA Working Group (https://rd-alliance.org/

groups/agrisemantics-wg.html), which role is to reinforce the adoption of semantic technolo-

gies in the agri-food domain. We may also mention the AgBioData consortium (https://www.

agbiodata.org, [2]) which promotes the FAIR (Findable, Accessible, Interoperable and Reus-

able) data principles [49] within agricultural research.

Furthermore, we observed that although the information integrated in AgroLD came from

curated sources, scientists often prefer to validate these knowledge statements against assertions

made in scientific articles. Currently, we have implemented an external Web Services as part of

the Advanced Search Form to automatically search for publications related to a protein or gene of

interest in PubMed Central and aggregates them within the result of the AgroLD query. However,

this feature does not provide detailed (sentence level) assertions described in those publications.

This is an area that requires further work. With the recent developments towards making text

mined (sentence level) annotations available as RDF [50], query federation can be explored to

retrieve entity specific assertions. This would serve as an additional provenance layer.

Limits and perspectives

With the achievement of the first phase of AgroLD, many plant scientists can benefit from the

interoperability of the data, but user feedback reveals some limitations and challenges on the

current version of AgroLD. In order to achieve the expectations of the scientists for the use of

Semantic Web technologies in agronomy, a number of issues need to be addressed:

• The coverage content has to be extended to a larger number of biological entities (e.g.,

miRNA, mRNA) or interaction between them (e.g., co-expression, regulation and interac-

tion networks) in order to capture a broad view of the molecular interactions.

• We have observed many information remains hidden in RDF literal contents such as biolog-

ical entities or relationship between them. This information is poorly annotated (i.e., plain

text not formally expressed) and new research methods to identify biological entities and

reconstruct their relations further allowing the discovery of relevant links between related

resources are required.

• The explosion of data in agronomy forces database providers to augment the frequency of

their releases. The survey shows a growing interest of using up to date information from the

original sources. This have to be taken into account for the updating process in AgroLD.

• The user interfaces show some limitations to manage responses with large number of results,

e.g., to filter and rank them with precision score.

These limitations identified in the current version of AgroLD will be improved in the fol-

lowing versions. We will focus on the following areas:

• User Interface: we plan to explore features offered by Elastic search tool (https://www.elastic.

co), to enabling Quick Search retrieving more textual information and hiding the technical

details. Further, we will improve the performance and expand the API suite to cover other

entities represented in AgroLD (e.g., genomic annotation and homology information).

• Content: integrate information on gene expression such as IC4R [51], Gene Expression

Atlas [52], on gene regulatory networks such as RiceNetDB [53] and explore linking text-
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mined annotations from publications. Support molecular interaction networks per species

and also allow knowledge transfer between species.

• Knowledge discovery: explore methods to aid generating hypotheses by retrieving implicit

knowledge, e.g., inference rules, automatic data linking, entity recognition, text mining,

automatic semantic annotations.

• Data provenance: develop a provenance and annotation model. Set up a validation process

to allow users validating computed facts such as semantic annotations automatically pro-

duced and attached to a biological entity.

• Updates: To keep AgroLD updated with the latest available data, by processing regular data

updates and potentially re-building the entire repository from scratch every 12 months. Pro-

cessing regular data update is a hard issue has the original databases do not always provide

an automatic way to obtain the differential data between releases. From experience, we know

that regularly rebuilding the entire knowledge base is for us a good alternative to avoid deal-

ing with data diffs. Additionally, we plan to fully automate the current ETL workflow.

Conclusion

Data in the agronomic domain are highly heterogeneous and dispersed. For agronomic

researchers to make informed decisions in their daily work it is critical to integrate informa-

tion at different scales. Current traditional information systems are not able to exploit such

data (i.e., genes, proteins, metabolic pathways, plant traits, and phenotypes), in efficient way.

To this end, the application of Semantic Web, initiated in the biomedical domain, provides a

good example to follow by capitalizing on previous experiences and addressing weaknesses.

To further build on this line of research in agronomy, we have developed AgroLD. We have

demonstrated the advantages of AgroLD in data integration over multiple data sources using

plant domain ontologies and Semantic Web technologies. To date, AgroLD contains 100M of

triples created by transforming more than 50 datasets coming from 10 data and annotating

with 10 ontologies. The impact of AgroLD is expected to grow with an increase in coverage

(with respect to the species and the data sources) and user inputs. For instance, when user

feedback and implementation of inference rules are put within a context that supports search-

ing and recommendations, then we have the beginnings of a platform that can support auto-

mated hypotheses generation.

AgroLD is one of the first RDF linked open data knowledge-based system in the agronomic

domain. It demonstrates a first step toward adopting the Semantic Web technologies to facili-

tate research by integrating numerous heterogeneous data and transforming them into explic-

itly knowledge thanks to ontologies. We expect AgroLD will facilitate the formulation of new

scientific hypotheses to be validated with its knowledge-oriented approach.

Supporting information

S1 File. AgroLD user guide. This document shows how to use the various features of the plat-

form.

(PDF)

S2 File. Report of the online survey. Report of 3 sessions evaluating the AgroLD user inter-

faces.

(PDF)
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