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Abstract

In movement ecology, the few works that have taken collective behaviour into account are data-driven and rely on
simplistic theoretical assumptions, relying in metrics that may or may not be measuring what is intended. In the
present paper, we focus on pairwise joint-movement behaviour, where individuals move together during at least a
segment of their path. We investigate the adequacy of twelve metrics introduced in previous works for assessing joint
movement by analysing their theoretical properties and confronting them with contrasting case scenarios. Two
criteria are taken into account for review of those metrics: 1) practical use, and 2) dependence on parameters and
underlying assumptions. When analysing the similarities between the metrics as defined, we show how some of them
can be expressed using general mathematical forms. In addition, we evaluate the ability of each metric to assess
specific aspects of joint-movement behaviour: proximity (closeness in space-time) and coordination (synchrony) in
direction and speed. We found that some metrics are better suited to assess proximity and others are more sensitive
to coordination. To help readers choose metrics, we elaborate a graphical representation of the metrics in the
coordination and proximity space based on our results, and give a few examples of proximity and coordination focus
in different movement studies.

Keywords: Collective behaviour, Dyadic movement, Indices, Movement ecology, Spatio-temporal dynamics,
Trajectories

Introduction
Collective behaviour has been the object of study of
many disciplines, such as behavioural ecology, psychol-
ogy, sports, medicine, physics and computer sciences
[7, 13, 19, 56, 57]. In multiple contexts, individuals – in
a very wide sense of the word – adapt their behaviour as
a function of their interaction with others. In movement
ecology, where movement is regarded as an expression of
behaviour [43], collective behaviour should be considered
as a key element given that collective dynamics and indi-
vidual movement are intricately intertwined [7]. Accord-
ingly, mechanistic movement models should account for
these dynamics. The vast majority of movement mod-
els neglect this aspect, with a few exceptions (e.g.,
[29, 44, 47, 53]). The consequence has been that the forms
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that these dynamics take in the few existing works rely on
very simple theoretical assumptions.
Collective behaviour can be produced at large group

scales (flocks, colonies, schools) but also at small group
scales (triads, dyads). Regardless of the actual group scale,
global patterns of collective behaviour originate from
local interactions among neighbouring members [11], so
analysing dyad interaction as a first step is a pertinent
choice. Concerning dyadic interaction, here we focus on
what we call ‘joint movement’, where two individuals move
together during the total duration or a partial segment of
their paths. Dyadic movement behaviour has been mostly
studied in a data-driven approach, using several metrics to
quantify it. In movement ecology, few works have applied
and compared some of these metrics [38, 41]. However,
their theoretical properties, and thus the similarities and
differences in their construction and in what they actually
assess, have not been thoroughly analysed yet.
This manuscript reviews a series of metrics used to

assess pairwise joint-movement and proposes some mod-
ifications when appropriate (Table 1). Two criteria are
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Table 1 Metrics for measuring dyad joint movement

Metric Range Parameters fixed ad hoc and Assumptions

Prox = K+
δ /T [0 , 1] i) δ: distance threshold, ii) K : kernel

Cs = Dchance−
(∑T

t=1 d
A,B
t

)
/T

Dchance+
(∑T

t=1 d
A,B
t

)
/T

]−1, 1] Dchance definition

HAI = K+
δ

K+
δ +(nA0+n0B)/2

[ 0, 1] i) Reference area, ii) δ: distance threshold

LixnT = logistic
(
ln
(
nAB/pAB+n00/p00
nA0/pA0+n0B/p0B

))
[0 , 1] Reference area;

jPPA =
S

{
T−1⋃
t=1

(
E
φA
(
XAt ,X

A
t+1

)∩E
φB

(
XBt ,X

B
t+1

))}

S

{
T−1⋃
t=1

(
E
φA
(
XAt ,X

A
t+1

)∪E
φB

(
XBt ,X

B
t+1

))} [0 , 1] i) Every zone within ellipse has same odd of being transited, ii) φ: maximum velocity

CSEM = max{m;Nm>0}
T−1 [0 , 1] distance threshold

rV =
∑T

t=1
(
VAt −V̄A

)(
VBt −V̄B

)

√∑T
t=1

(
VAt −V̄A

)2
√∑T

t=1

(
VBt −V̄B

)2 [-1 , 1]

DId =
(
∑T−1

t=1

[
1 −

(
|dAt,t+1−dBt,t+1|
dAt,t+1+dBt,t+1

)β
])

/(T − 1) [0 , 1] β : scaling parameter

DIθ =
(∑T−1

t=1 cos
(
θAt,t+1 − θBt,t+1

))
/(T − 1) [-1 , 1]

DI =
∑T−1

t=1 cos(θAt,t+1−θBt,t+1)

⎡
⎣1−

(
|dAt,t+1−dBt,t+1 |
dAt,t+1+dBt,t+1

)β
⎤
⎦

T−1

[-1 , 1]
β : scaling parameter

Note: The formulas assume simultaneous fixes. K+
δ = ∑T

t=1 Kδ

(
XAt , X

B
t

)
; T is the number of (paired) fixes in the dyad; δ is a distance-related parameter. K is a kernel function. A,

B: the two individuals in the dyad; T : number of fixes in the dyad; Dchance is the chance-expected distance between A and B; nAB : number of observed fixes where A and B are
simultaneously in the reference area (when a subscript is 0, it represents the absence of the corresponding individual from the reference area); pAB : probability of finding A
and B simultaneously in the reference area (same interpretation as for n when a subscript is 0); EφA

(
XAt , X

A
t+1

)
is the ellipse formed with positions Xt and Xt+1, and maximum

velocity φ from individual A (analogous for B); S represents the surface of the spatial object between braces; VA (and VB , resp.) represents the analysedmotion variable of A (and
B); V̄A (and V̄B) represent their average; β is a scale parameter; θ , the absolute angle; Nm is the number of m-similar consecutive segments within the series of analysed steps

taken into account for the review of these metrics: practi-
cal use and dependence on parameters; they are evaluated
through both a theoretical (conceptual) as well as a prac-
tical approach. Metrics found in the literature essentially
measured two aspects of joint movement: proximity and
coordination. Proximity refers to closeness in space-time,
as in how spatially close simultaneous fixes (individual
locations recorded) are in a dyad; a point pattern perspec-
tive. The notion of proximity is thus subjective, since a
judgement on proximity involves a threshold in distance
whether local or global, or the definition of a reference
zone (where encounters may be observed). Coordination,
on the other hand, refers to synchrony in movement,
which can be assessed through measures of similarity or
correlation in movement patterns such as speed or direc-
tion. There might be a thin line between proximity and
coordination, and some metrics may be associated with
both at some degree, as we show through the description
of their theoretical properties and the practical analysis of
case scenarios.

The manuscript is thus organized as follows. We first
describe the criteria used to evaluate the metrics as
indices of dyadic jointmovement.We then present the dif-
ferent metrics and their theoretical properties with special
attention to their dependence towards parameters. Next,
we define case scenarios to evaluate the practical prop-
erties of the metrics. In the last section, we discuss the
overall suitability of the metrics for assessing joint move-
ment in ecology and give some practical guidelines for
their use.

Evaluation criteria
We categorized the desirable properties of metrics for
assessing dyadic joint movement into three criteria: prac-
tical use, considered the most important one; dependence
on parameters; and computational cost:

C1 Practical use [50, 52, 58]: 1) A metric is useful if it is
interpretable and reflects a marked property of
collective behaviour. 2) It should also be sensitive to
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changes in patterns of joint movement (e.g. higher
values for high joint movement and lower values for
independence in movement). 3) Being able to attain
the theoretical range of values would also be
important, as not doing so makes it harder to
interpret empirical values. C1 is therefore a three
dimensional criterion comprising interpretation,
sensitivity and attainable range. Attainable range is
covered in the theoretical properties section; we
highlight the difficulties or implausibility to attain
minimum and maximum values for the metrics
when this is true. How to interpret each metric is
also explained in this section; evidently, a metric
without an attainable range is difficult to interpret.
Sensitivity is addressed in the case-scenario section.

C2 Dependence on parameters: A metric that depends
on few parameters and hypotheses is more robust
and generic than one that strongly relies on many
parameters and hypotheses, since the former can
produce more easily comparable results and
interpretations. In addition, an ideal metric can be
defined in such a way that the user can easily see
how a change in the values of the parameters or in
the components related to movement assumptions
conditions themetric derivations and interpretations.
In the next section, we describe the assumptions
underlying each metric and the parameters needed
to be fixed by the user. This description will allow
distinguishing user-tractable parameter-dependent
metrics from those that are not.

Definition and theoretical properties of themetrics
In the following subsections the metrics are defined and
their theoretical properties are described. A summary is
proposed in Table 1. Considering two individuals named
A and B, the position of A (resp. B) at time t is denoted
by XA

t (resp. XB
t ). The distance between A at time t1 and

B at time t2 will be referred to as dA,Bt1,t2 . When the dis-
tance between two individuals is regarded at simultaneous
time, this will be shortened to dA,Bt . Whenever possible,
metrics introduced by different authors but that are actu-
ally very similar in their definition, are grouped under a
unified name and a general definition.

Proximity index (Prox)
The proximity index (Prox in [5]) is defined as the propor-
tion of simultaneous pairs of fixes within a distance below
an ad hoc threshold (Fig. 1). Othermetrics in the literature
are actually analogous to Prox: the coefficient of associ-
ation (Ca) [12] and the IAB index [4]. Denoting by T the
number of pairs of fixes in the dyad, we propose a unified
version of those metrics using a kernel K (formula 1):

ProxK ,δ = 1
T

T∑
t=1

Kδ

(
XA
t ,XB

t

)
, (1)

where δ is a distance threshold parameter.
Choosing Kδ(x, y) = 1{‖x−y‖<δ} (1{} represents the

indicator function) as a kernel leads to the Prox met-
ric in [5], denoted by Prox1,δ henceforward. Instead,
choosing Kδ(x, y) = exp

(−‖x − y‖2/ (2δ2)) gives the IAB

Fig. 1 Example of Prox for δ = 3 (left panel) and Cs (right panel). Circles and squares represent locations of two different individuals. Left panel: The
numbers inside as well as the arrows represent the time sequence of both tracks. Grey lines correspond to the distances between simultaneous
fixes; their values are shown. At the bottom: a dummy variable indicating if distances are below δ for each pair of simultaneous fixes, then the
derived Prox and DO (average of observed distances). Right panel: Grey lines represent the distances of all permuted fixes; DE is their average
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index. Regarding Ca, for simultaneous fixes, its definition
becomes exactly the same as Prox1,δ (using Ca’s adapta-
tion to wildlife telemetry data shown in [38]).
Most of the proximity-relatedmetrics are based on sym-

metric kernels and depend only on the distance between
A and B; therefore, the formula notation (1) can be
simplified as:

ProxK ,δ = 1
T

T∑
t=1

Kδ

(
XA
t ,XB

t

)
= 1

T
K+

δ . (2)

If the distance between two individuals is below the
threshold δ during their whole tracks, Prox1,δ will be
1 (and 0 in the opposite case). Prox1,δ might be inter-
preted as the proportion of time the two individuals
spent together. This interpretation is, of course, threshold
dependent. The IAB index provides a smoother measure of
the average proximity between two individuals along the
trajectory. Proximity is thus dependent on the choice of a
δ parameter and of a kernel function. Graphical examples
illustrating the differences in Kδ(x, y) = 1{‖x−y‖<δ} and
Kδ(x, y) = exp

(−‖x − y‖2/(2δ2)) are in Additional file 1.

Coefficient of Sociality (Cs)
The Coefficient of Sociality (Cs) [26] compares the mean
(Euclidean) distance between simultaneous pairs of fixes
(DO) against the mean distance between all permutations
of all fixes (DE).

Cs = DE − DO
DE + DO

= 1 − 2
DO

DE + DO
, (3)

where

DO =
( T∑

t=1
dA,Bt

)
/T ,

and

DE =
⎛
⎝

T∑
t1=1

T∑
t2=1

dA,Bt1,t2

⎞
⎠ /T2.

Kenward et al. [26] stated that Cs belongs to [−1, 1],
and it has been used as a symmetrical index since. Nev-
ertheless, that is not true. Cs equals 1 if and only if DO =
0 and DE �= 0, which occurs only when the two indi-
viduals always share the exact same locations. However, Cs
equals −1, if and only if DE = 0 and DO �= 0, which is
impossible (it could asymptotically approach to 1 for very
large series when DO approaches infinity). Cs equals 0
when DO = DE .
If all simultaneous fixes are very proximal but not in

the same locations, Cs would approach 1 (how close to
1 would depend on the value of DE as illustrated in the
right hand side of Eq. 3). Moreover, only if DE < DO, Cs
can take a negative value. For Cs to take a largely neg-
ative value, the difference in the numerator should be

very large compared to the sum in the denominator; in
Additional file 2 we show how implausible that situation is
and how sensitive it is to the length of the series. The latter
makes Cs from dyads of different length difficult to com-
pare, because their real range of definition would differ.
This fact is neither evoked in the work that introduced the
metric [26] nor in the ones that evaluated this and other
metrics [38, 41], despite the fact that in those works no
value lower than −0.1 was obtained.
Indeed, [26] assumed that the permutation of all fixes is

a way to represent locations of independent individuals.
While this is questionable, some modified versions, as the
one proposed by [62], use correlated random walks as
null models and simulated independent trajectories under
these models to replace DE by a more realistic reference
value. Thus, a generalized version of Cs would be:

Cs = Dchance − DO
Dchance + DO

, (4)

whereDchance is defined through a user-chosenmovement
model for independent trajectories.

The Half-weight Association Index (HAI)
The Half-weight Association Index (HAI) proposed by
[10] measures the proportions of fixes where individuals
are close to each other (within a user-defined threshold).
By that definition, HAI is exactly the same as Prox1,δ .
However, HAI was popularized by [2] in another form that
did not consider all fixes for the computation of the met-
ric, but used counts with respect to a reference area (called
overlapping zone in the original paper):

HAI = K+
δ

K+
δ + 1

2 (nA0 + n0B)
(5)

where nAB (resp nA0; n0B; n00) is the number of simultane-
ous occurrences of A and B in the reference area SAB (resp.
simultaneous presence of A and absence of B; simultane-
ous absence of A and presence of B; simultaneous absence
of A and absence of B), and where K+

δ is computed over
the reference area.
It is worth noticing that the HAI adaptation proposed by

[2] does not correctly account for spatial joint movement,
as would do a Prox1,δ version constraint to the reference
area; i.e. the denominator should be equal to nAB + nA0 +
n0B, which is the total number of simultaneous fixes where
at least one individual is in the reference area.
The dependence to the definition of an overlapping zone

or reference area is discussed in the following subsection
dedicated to LixnT , which also relies on the definition of a
static reference area.
If the individuals remain together (i.e. in the reference

area and closer than δ) all the time, HAI is close to 1, and
0 in the opposite case. An example of the computation of
HAI under [2]’s definition is given in Fig. 2.
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Fig. 2 Two examples of the derivation of LixnT and HAI. LixnT was computed using expected frequencies. HAI was computed with
Kδ(t) = 1{dA,Bt < 5}. Circles and squares represent locations of two different individuals. The numbers inside as well as the arrows represent the
time sequence of both tracks. Grey lines correspond to the distances between simultaneous fixes; their values are shown. The dashed lines circle an
arbitrary reference area

Coefficient of Interaction (Lixn and LixnT)
Minta [42] proposed a Coefficient of Interaction (Lixn)
that assesses how simultaneous are the use and avoidance
of a reference area SAB by two individuals:

Lixn = ln
(
nAB/pAB + n00/p00
nA0/pA0 + n0B/p0B

)
, (6)

where pAB is the probability, under some reference null
model, of finding A and B simultaneously in SAB (the
same interpretation as for n when a subscript is 0; see
HAI subsection). Attraction between individuals would
cause greater simultaneous use of SAB than its solitary
use, which would give positive values of Lixn. Conversely,
avoidance would translate into negative values of Lixn,
since use of SAB would be mostly solitary. A logistic trans-
formation of the metric (LixnT) produces values between
0 (avoidance) and 1 (attraction), making the interpretation
easier:

LixnT = logistic(Lixn) = 1
1 + e−Lixn

. (7)

Minta [42] proposed two different approaches for com-
puting the associated probabilities conditionally to the
fact that the reference area is known (see examples in
Fig. 2 and Table in Additional file 3). In both cases, the
probabilities are estimated under the assumptions of inde-
pendence in movement among the individuals and of uni-
form utilization of the space. Indeed this latter assumption
can be relaxed and pAB can be derived from any kind

of utilization distribution (see for instance [20] for the
estimation of utilization distribution).
HAI and LixnT (thus Lixn as well) rely heavily on a static

reference area – either known or estimated – and on the
probabilities of presence within this reference area. The
static reference area could be defined, for instance, as
the intersection of the respective home ranges of A and
B. However, there are many approaches for estimating
home ranges, each one relying on particular assumptions
about the spatial behaviour of the studied populations [9].
Thus, SAB is not a simple tuning parameter. The way it is
defined may completely modify the output. If the refer-
ence area is equal to the whole area of movement of the
two individuals, then both the numerator and the denom-
inator in the logarithm are equal to infinity and LixnT
cannot be derived. That problem could arise for extremely
mobile individuals, such as tuna, turtles and seabirds [8],
or fishing vessels [6], and avoiding it would require the
computation of multiple dynamic reference areas. There-
fore, LixnT may be better used for specific cases where the
definition of the reference area relies on a deep knowledge
of the spatial behaviour of the populations.

Joint Potential Path Area (jPPA)
Long et al. [39] computed the relative size of the poten-
tial encounter area at each time step of two individuals’
tracks. Assuming a speed limit φ, the potential locations
visited between two consecutive fixes define an ellipse
(Additional file 4). Then, the potential encounter area
corresponds to the intersection between the ellipses of the
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two individuals (at simultaneous time steps; see Fig. 3).
The overall potential meeting area is given by the spa-
tial union of all those potential encounter areas. This area
is then normalized by the surface of the spatial union of
all the computed ellipses to produce the joint Potential
Path Area (jPPA) metric ranging from 0 to 1 (see formula
in Table 1). jPPA values close to 0 indicate no potential
spatio-temporal overlap, while values close to 1 indicate a
strong spatio-temporal match.
Several issues can be discussed here. First, nomovement

model is assumed and therefore the method confers the
same probabilities of presence to every subspace within
the ellipse regions. This is clearly unrealistic as individu-
als are more likely to occupy the central part of the ellipse
because they cannot always move at φ, i.e. maximal speed.
Second, the computation of the ellipses relies strongly on
the φ parameter. If φ is unrealistically small, it would be
impossible to obtain the observed displacements and the
ellipses could not be computed. By contrast, if φ is too
large, the ellipses would occupy such a large area that the
intersected areas would also be very large (hence a large
jPPA value). Alternatively, [36] proposed a dynamic com-
putation of φ as a function of the activity performed by
the individual at each fix. Within this approach, additional
information or knowledge (i.e. other data sources or mod-
els) would be required for the computation of φ.

Cross sampled entropy (CSE and CSEM)
Cross sampled entropy (CSE) [51] comes from the time
series analysis literature and is used for comparing pairs
of motion variables [3; 18, e.g.]. It evaluates the similarity
between the dynamical changes registered in two series
of any given movement measure. Here we present a sim-
plification of the CSE for simultaneous fixes and position
series. A segment of track A would be said to bem-similar
to a segment of track B if the distance between paired fixes
from A and B remain below a certain threshold during
m consecutive time steps. If we define Nm as the num-
ber of m-similar segments within the series, then CSE
can be defined as (the negative natural logarithm of) the
ratio of Nm+1 over Nm and might be understood as (the
negative natural logarithm of) the probability for an m-
similar segment to also be (m + 1)-similar. Formally, CSE
is defined as:

CSEδ(m) = − ln

⎧⎨
⎩

∑T−m
t=1 1

{(
maxk∈[0,m]

∣∣∣XA
t+k − XB

t+k

∣∣∣
)

< δ
}

∑T−m
t=1 1

{(
maxk∈[0,m−1]

∣∣∣XA
t+k − XB

t+k

∣∣∣
)

< δ
}
⎫⎬
⎭

= − ln
Nm+1
Nm

,

(8)

Fig. 3 Example of the derivation of the joint potential path area (when φ = 10). Circles and squares represent locations of two different individuals;
the numbers inside represent the time sequence. The grey scales of the ellipses correspond to the time intervals used for their computation: from
light grey for the [ 1, 2] interval to dark grey for the [ 3, 4] interval. The black regions with white dashed borders correspond to the potential meeting
areas
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A large value of CSE corresponds to greater asynchrony
between the two series, while a small value corresponds to
greater synchrony.
CSE relies on an ad hoc choice of bothm and δ. In prac-

tice, it is expected that the movement series of A and B
will not be constantly synchronous and that, for a large
value of m, Nm could be equal to 0, in which case CSE
would tend to ∞. Therefore, the largest value of m such
thatNm > 0, i.e. the length of the longest similar segment,
could be an alternative indicator of similarity between the
series (do not confuse with the longest common subse-
quence LCSS; see [60]). We propose to use this measure
(standardized by T − 1 to get a value between 0 and 1)
as an alternative index of joint movement (formula 9),
which we denote by CSEM. An example of a dyad and the
computation of its CSEs and CSEM is shown in Fig. 4.

CSEM = max {m;Nm > 0}
T − 1

, (9)

with the convention that max {∅} = 0.

Correlations (rV )
Pearson and Spearman correlations between variables
such as longitude, latitude, distance, velocity, acceler-
ation and turning angles from pairs of tracks, have
been used as measures of synchrony in several studies

(e.g. [16],). Correlations are easy to interpret. Pearson cor-
relation coefficients (Table 1) assess linear correlations,
while Spearman correlation coefficients based on ranks
statistics capture any functional correlation. The corre-
lation in a given V variable between dyads is denoted
by rV .

Dynamic Interaction (DI,DId andDIθ )
Long and Nelson [37] argued that it is necessary to
separate movement patterns into direction and displace-
ment (i.e. distance between consecutive fixes or step
length), instead of computing a correlation of locations
[55] which may carry a mixed effect of both components.
To measure interaction in displacement, at each time step,
the displacements of simultaneous fixes are compared
(formula 10).

gβ
t = 1 −

(∣∣dAt,t+1 − dBt,t+1
∣∣

dAt,t+1 + dBt,t+1

)β

(10)

where β is a scaling parameter meant to give more or less
weight to similarity in displacement when accounting for
dynamic interaction. As β increases, gβ

t is less sensitive to
larger differences in displacement. Its default value is 1.
When dAt,t+1 = dBt,t+1, g

β
t = 1; and when the difference

in displacement between A and B at time t is large, gβ
t

Fig. 4 Example of the derivation of CSE and CSEM when the compared features correspond to the positions of the individuals and δ = 3. Circles and
squares represent positions of two different individuals. The grey scales and arrows represent the time sequence of both tracks. Dotted lines
represent the distances between simultaneous fixes; their values are shown. Values for all steps for CSEM computation are also shown
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approaches zero. For gβ
t to be 0, one (and only one) of the

individuals in the dyad should not move; for a sum of gβ
t to

be equal to zero, at every time t one of the two individuals
should not move.
Interaction in direction is measured by

ft = cos
(
θAt,t+1 − θBt,t+1

)
(11)

where θt,t+1 is the direction of an individual between time
t and t + 1. ft is equal to 1 when movement segments
have the same orientation, 0 when they are perpendicular
and −1 when they go in opposite directions.
Long and Nelson [37] proposed 3 indices of dynamic

interaction: 1) DId, dynamic interaction in displacement
(average of all gβ

t ); 2)DIθ , dynamic interaction in direction
(average of all ft); and 3) DI, overall dynamic interaction,
defined as the average of gβ

t × ft (Table 1). DId ranges
from 0 to 1, DIθ from -1 to 1, and DI from -1 (opposing
movement) to 1 (cohesive movement). Figure 5 shows an
example of the three indices.

Conclusions on the theoretical properties of the metrics
Practical use (C1): While each metric concerns a con-
crete aspect of joint-movement behaviour, some of them,
such as Cs and DI, are harder to interpret. DI mixes up the
coordination in displacement and direction. When DI is
close to 1, it is certainly explained by high values in both

components. When it is close to −1, it is an indication
of overall high displacement coordination but in opposite
directions. With values around zero, however, it is impos-
sible to know if it is because of displacement or direction
or both. For Cs, because obtaining values close to −1 is
extremely rare, values around zero and, more particularly,
slightly negative values are difficult to interpret. In addi-
tion, the maximum attainable value depends on the length
of the series, which is likely to vary from dyad to dyad
(Additional file 2).

Dependence on parameters (C2): Almost every metric
depends on the ad hoc definition of a parameter or com-
ponent, as summarized in Table 1. This is consistent with
the fact that, since there is no consensus on the defini-
tion of behaviour [34], and much less on that of collective
behaviour, its study depends heavily on the definition that
the researcher gives to it. It should be noted that behind
each choice of a parameter value, there is also an underly-
ing assumption (e.g. that a distance below a δ value means
proximity); the difference is that parameters can be tuned,
and a variety of values can be easily tested. HAI and LixnT
make a critical assumption of a static reference area, and
its definition, which may be tricky for highly mobile indi-
viduals, is a key issue for the computation of both metrics.
On the other hand, rV and DIθ are the only metrics that
do not depend on parameter tuning or assumptions for

Fig. 5 Example of a dyad for which correlations in longitude, latitude and an average of both (rLon , rLat and rLonlat , respectively), DId , DIθ and DI are
derived. Circles and squares represent locations of two different individuals; the numbers inside represent the time sequence. Displacement lengths
and absolute angle values are also shown
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its derivation; except for the assumptions of correlations
being linear, or of linear movement between two succes-
sive positions when deriving directions, respectively.

Exploration of metrics through case scenarios
In this section we used schematic, simple and contrasting
case scenarios to evaluate the ability of themetrics to assess
joint movement, in terms of proximity and coordination.
To build the case scenarios, we considered three levels of

dyad proximity (high, medium and low); coordination was
decomposed into two aspects, direction (same, indepen-
dent and opposite) and speed (same or different). Eighteen
case scenarios were thus built, with one example of dyad
per scenario (Fig. 6; metrics in Additional file 5). The
dyads for each case scenario were deliberately composed
of a small number of fixes (∼10 simultaneous fixes, as in
[37],) to facilitate interpretation of the metric values and
the graphical representation of the arbitrarily constructed
tracks (online access to tracks in github repository; see
Availability of data and materials section). To assess the
sensitivity of the metrics to changes in patterns of prox-
imity and coordination, the case scenarios were grouped
according to the categories in Table 2.

Due to the simplicity for its interpretation, Prox was
defined as Prox1,δ . Three distance thresholds Prox1,δ of
1, 2 and 3 distance units were used for Prox, HAI and
CSEM, thus denoted for instance Prox1, Prox2 and Prox3.
For Cs, the original definition (Eq. 3) was used. jPPA, φ

was arbitrarily fixed to 10. Regarding dynamic interaction,
β was fixed to 1. The v variables for Pearson correla-
tions (Table 1) were longitude (rLon), latitude (rLat) and
speed (rSpeed). An average of correlations in longitude
and latitude, denoted by rLonlat , was also computed. Box-
plots of each metric were derived for each proximity and
coordination category (Figs. 7, 8 and 9).
The values taken by Prox, jPPA, CSEM and, to a lesser

degree, Cs, showed sensitivity to the level of proximity
(Fig. 7). Conversely, no association was revealed between
the proximity scenarios and the metrics based on correla-
tion, dynamic interaction and reference area occupation.
Changes in direction were reflected in values taken by

correlation metrics on location (rLonlat , rLon and rLat) and
two dynamic interaction metrics, DI and DIθ (Fig. 8).
Cs took lower values in scenarios of opposite direction,
but independent and same direction scenarios reflected
no distinction for this metric. High correlation in speed

Fig. 6 One example of dyad for each case scenario representing contrasting patterns of proximity and coordination (in direction and speed,
CDirection and CSpeed , respectively). Numbers correspond to scenario ID in Table 2. Solid lines represent the two trajectories, the solid points
correspond to the start of the trajectories. The black dashed circumferences represent arbitrary reference areas; two circumferences correspond to
an absence of a common reference area
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Table 2 Case scenarios

ID Proximity
Coordination

Direction Speed

1 High Same Same

2 High Same Different

3 High Independent Same

4 High Independent Different

5 High Opposite Same

6 High Opposite Different

7 Medium Same Same

8 Medium Same Different

9 Medium Independent Same

10 Medium Independent Different

11 Medium Opposite Same

12 Medium Opposite Different

13 Low Same Same

14 Low Same Different

15 Low Independent Same

16 Low Independent Different

17 Low Opposite Same

18 Low Opposite Different

was found for scenarios of opposite and same direction,
while a large variability was found when direction was
independent. rspeed showed differences when direction
was independent between dyads, but no distinction was
caught by themetric between same and opposite direction
scenarios. The other metrics did not show distinguishable
patterns related to changes in direction coordination.
Concerning coordination in speed, the most sensitive

metric wasDId, whichmeasures similarity in the distances
covered by individuals at simultaneous fixes (Fig. 9). rSpeed
took a wide range of values when speed was not coordi-
nated, while it was equal to 1 when perfectly coordinated.
DId is more sensitive to changes in the values of speed
(similar to step length because of the regular step units)
than rspeed which characterizes variations in the same
sense (correlation), rather than correspondence in val-
ues. HAI and LixnT showed slight differences in their
ranges of values with changes in speed-coordination sce-
narios. When analysing combined categories of proximity
and speed-coordination, and proximity and direction-
coordination, less distinctive patterns were found, proba-
bly due to the higher number of categories, each containing
fewer observations (Figure in Additional file 6).
Overall, Prox, jPPA, CSEM, rLonlat , rSpeed , DId, DIθ and

DI were highly sensitive to changes in patterns of either
proximity or coordination. For proximity scenarios, the
variance of some metrics for each category was also sen-
sitive to the δ chosen; i.e. for larger δ, the variance of Prox

and CSEM decreased in high proximity, while it increased
for low proximity cases. This pattern does not hold for
HAI, probably due to the strong dependence of this metric
on the arbitrary choice of the reference area. Cs showed
a slight sensitivity to changes in direction and proximity
scenarios, although the values taken for each type of case
scenario did not show a clear separation.

Synthesis of metric analysis
Table 3 summarizes the theoretical and case-scenario
analyses. Most metrics reflected marked properties of
dyadic joint movement, evidenced both theoretically and
through the case scenario assessment. Exceptions were
Cs, HAI and LixnT . Cs was sensitive to the null model for
the distance expected by chance (Dchance; formula 4), it
did not attain its whole range of definition, turned out to
be asymmetric and dependent on the length of the series
(Additional file 2), and was less sensitive than the other
metrics to changes in patterns of joint movement. Per-
haps a change in the null model for Dchance could improve
Cs’s power to assess joint movement, though the new null
model should be justified. HAI and LixnT , dependent on
the reference area definition, were even less sensitive to
changes in joint movement patterns. This supports our
earlier statement that LixnT and HAI should only be used
when a reference area exists and is known. Alternatively,
Prox works as a simpler metric and is highly sensitive to
changes in proximity. The only drawback of Prox is the
need to choose a distance threshold parameter, eventu-
ally based on prior knowledge of the spatial dynamics of
the population. Otherwise, a set of values can be tested,
as shown here. jPPA presents the advantage of not requir-
ing the knowledge of a reference area, but still relies on
assumptions related to equal probability of presence in an
ellipse, which strongly depends on a φ parameter whose
tuning is not obvious.
CSEM evaluates the similarity between the dynami-

cal changes in movement patterns within a δ bandwidth,
and, because of that, was expected to be more sensitive
to changes in proximity than in coordination. It should
be further assessed if using other variables for deriving
CSEM (i.e. using [51] generic definition) could make it
more sensitive to coordination than proximity. As with
Prox, it is in the hands of the user to tune the thresh-
old parameter. Because we were using locations as the
analysed series (so the dynamical changes assessed were
in fact changes in distance), we used exactly the same
threshold values as for Prox. By contrast, correlations in
location (rLon, rLat , rLonlat) did show sensitivity to changes
in coordination, as expected. The same occurred with DIθ
and DI. Correlation in speed was sensitive to changes
in both coordination components, showing high variance
when there was no coordination (independent direction
or speed). DId, on the other hand, was only sensitive
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Fig. 7 Boxplots of each metric by category of proximity. Green, orange and purple correspond to case scenarios of high, medium and low proximity.
For each category, the solid horizontal bar corresponds to the median, the lower and upper limit of the box correspond to the first and the third
quartiles, while the solid vertical line joins the minimum to the maximum values. The green and purple boxplots are shifted to the left and right,
respectively, to distinguish them better in case of overlap. X-axis: The metrics ranging from 0 to 1 are on the left (up to DId) while those ranging from
-1 to 1 are on the right

to changes in speed. Because the time-step was regu-
lar, identical speed was equivalent to identical covered
distance (at simultaneous fixes), which explained how in
those scenarios DId was equal to 1. While DI behaved
more similarly to DIθ , its definition makes it impossi-
ble to separate the effects of coordination in displace-
ment and in azimuth, which makes the interpretation of
the metric more difficult than interpreting DId and DIθ
independently.
We also analysed the computational cost associated

to these metrics. We simulated 50000 dyads with tra-
jectories following a Brownian motion, each one com-
posed of 100 fixes. Using a parallelization procedure,
we found low CPU times for all metrics (< 1 s)
except jPPA (∼ 68 s). CPU time for jPPA and CSEM
increased when we increased the number of fixes to
1000, to ∼ 161 and ∼ 94 s, respectively. It should be
noted that for jPPA, the areas of intersection and union
of the ellipses were approximated by grid cells, so for
smaller cell sizes (i.e. more accurate jPPA estimation),

the computational cost would increase. Researchers with
long series of trajectories and a large amount of dyads
should take this into consideration (results for the com-
putational cost and more details on its calculation are in
Additional file 7).
Although this review is directed at trajectory data (i.e.

time series of locations that allow for movement path
reconstruction) and the metrics presented here were
defined for simultaneous fixes at regular time steps, tech-
nically speaking, some of these metrics could be com-
puted only based on the identification of individuals
simultaneously observed in a certain area (e.g. LixnT).
These cases, which may be extremely sensitive to the spa-
tial accuracy and the time intervals between observed
fixes, are out of the scope of this review. For the case
scenarios built to illustrate the metrics, we assumed that
the granularity was correct, i.e. that the temporal and
spatial resolution of the data were coherent in respect
to the dyadic behavioural patterns under scope. Like-
wise, for practical uses of the metrics, researchers should
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Fig. 8 Boxplots of each metric by category of direction coordination. Green, orange and purple correspond to case scenarios of same, independent
and opposite direction. For each category, the solid horizontal bar corresponds to the median, the lower and upper limit of the box correspond to
the first and the third quartiles, while the solid vertical line joins the minimum to the maximum values. The green and purple boxplots are shifted to
the left and right, respectively, to distinguish them better in case of overlap. X-axis: The metrics ranging from 0 to 1 are on the left (up to DId) while
those ranging from -1 to 1 are on the right

1) make sure that the spatiotemporal data that they are
analysing allow reconstructing the movement paths of
a dyad and 2) that the sampled (discretised) version
of these paths are characterized by locations estimated
with high precision, and that the time steps are small
enough so that movement between two points could
be assumed to be linear, so that the derivation of dis-
tances, speed and turning angles could be reliable. Further
discussions on the importance of scale and granular-
ity in the analysis of movement patterns can be found
in [14, 30, 31].
We expected to obtain a binary classification of the

metrics into proximity and coordination, based on the
theoretical and case scenario evaluations. This was not
so straightforward and we ended up instead with a 3-
dimensional space representation (Fig. 10). Prox and
CSEM are the most proximity-like indices. jPPA would
be the third one due to its sensitivity to changes in prox-
imity in the case scenario evaluation. Cs would be some-
where between Prox and direction coordination because

it showed certain sensitivity to both HAI and LixnT
are almost at the origin but slightly related to speed
coordination. Theoretically, both metrics should account
for proximity, since when two individuals are together
in the same area, they are expected to be at a relative
proximity; in practice, this was not reflected in sensi-
tivity to proximity from HAI and LixnT . Still, HAI is
represented in the graphic slightly above LixnT since its
formulation specifically accounts for proximity in solitary
use of the reference area. They are both graphically rep-
resented in association with the speed coordination axis
because of the case scenario results which reflected that
being in the same area only simultaneously requires some
degree of synchrony. DId was the most sensitive metric to
speed coordination, followed by rSpeed . DIθ and rLonlat are
the most strongly linked to direction coordination, sec-
onded by DI, which is also related to speed coordination.
A principal component analysis (PCA) using the values
obtained for the case scenarios gave very similar results
to those in Fig. 10 (Additional file 8), but this schematic
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Fig. 9 Boxplots of each metric by category of speed coordination. Green and orange correspond to case scenarios of same and different speed. For
each category, the solid horizontal bar corresponds to the median, the lower and upper limit of the box correspond to the first and the third
quartiles, while the solid vertical line joins the minimum to the maximum values. The green boxplots are shifted to the left to distinguish them
better in case of overlap. X-axis: The metrics ranging from 0 to 1 are on the left (up to DId) while those ranging from -1 to 1 are on the right

representation is more complete because: 1) the theoret-
ical and case-scenario assessment were both taken into
account; 2) the PCA was performed without LixnT and
HAI that had missing values for case scenarios with no
common reference area (data imputation as in [25] was
not appropriate for this case).
Figure 10 and Table 3 could be used as guidelines to

choose the right metrics depending on the user’s case
study. For instance, in an African lion joint-movement
study [4], proximity was the focus of the study; in
that case, the IAB (Prox) metric was used. For simi-
lar studies several proximity-related metrics could be
chosen; the choice would depend on the assumptions
that the researcher is willing to make. In other cases,
researchers may want to assess collective behaviour in
tagged animals (e.g. birds or marinemammals) that do not
remain proximal during their foraging/migration trips.
Then, the collective behaviour component that could
be evaluated would be coordination. Whether it is in
direction or speed would depend on the researcher’s
hypotheses. Coordination, or synchrony, has already

been observed in some animal species such as north-
ern elephant seals [17, e.g.] and bottlenecked sea turtles
(e.g. [46]), among others. The use of the metrics pre-
sented here would allow a quantification of the pairwise
behavioural patterns observed, a first step towards a quan-
titative analysis of the factors explaining those behaviours
(e.g. physiological traits, personality or environmental
conditions). The metrics presented here are applica-
ble to any organism with tracking data (not necessarily
georeferenced).
If the aim is to evaluate all three joint-movement dimen-

sions, we advice to consider for each dimension at least
one metric that is highly sensitive to it, rather than a
metric that is weakly related to two or three. The comple-
mentarity of the metrics (i.e. multivariate approach) has
not been studied here, and should be the focus of a future
study.

Further perspectives on collective behaviour
The assessment of a ‘lagged-follower’ behaviour, where
one individual would follow the other, was out of the scope
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Table 3 Evaluation of the two criteria for each metric

Metric

Criterion

C1: Practical use C2: Dependence on parameters /
assumptions

Attainable range Interpretation for joint movement Sensitivity to

P CDirection CSpeed

Prox Yes From always distant (0) to always
close (1)

High Low Low User tractable (ad hoc definition
of distance threshold)

Cs No Difficult: i) negative value close to 0
difficult to interpret; ii) series-length
dependent

Medium Medium Low Not user tractable (null hypothesis
of independent movement)

HAI Yes From always distant and out of SAB
at least for one individual (0) to
always close and in SAB (1)

Low Low Medium Not user tractable (reference area
and distance threshold)

LixnT Yes Same as HAI Low Low Medium Not user tractable (reference area)

jPPA Yes From no (0) to permanent (1)
potential overlap

High Low Low User tractable (maximum veloc-
ity)

CSEM Yes From highly synchronous (0) to
asynchronous (1)

High Low Low User tractable (distance thresh-
old)

rV Yes From anticorrelated (-1) to corre-
lated (1)

Low High* High* No dependence

DId Yes From opposite (-1) to cohesive (1)
movement in displacement

Low Low High User tractable (weighting coeffi-
cient for similarity in displacement)

DIθ Yes From opposite (-1) to cohesive (1)
movement in azimuth

Low High Low No dependence

DI Yes From opposite (-1) to cohesive (1)
movement in both mixed displace-
ment and azimuth effects

Low High Low User tractable (weighting coeffi-
cient for similarity in displacement)

Note: P =Proximity, Cspeed = coordination in speed, Cdirection = coordination in direction, S = reference area. *Depending on v (see section on case scenarios). Text in bold
correspond to positive attributes

Fig. 10 Representation of metrics in terms of their distance relative to
proximity and coordination

of this work and should be addressed in the future. The
study of this type of interactions is rather challenging,
since the lag in the following behaviour is probably not
static, and could vary between tracks and also within
tracks. A few works use entropy-based measures simi-
lar to CSE (transfer entropy [54] or a causation entropy
[40]), to measure how much the movement dynamics
of an individual (called the source individual, or the
leader) influences the transition probabilities in the move-
ment dynamics of another individual [45, 61]. Some other
works have focused on this type of interaction regard-
ing it as a delay between trajectories and transforming
the problem into one of similarity between trajecto-
ries, where one is delayed from the other [22, 27].
Metrics based on the Fréchet distance [1, 21] or the
Edit distance [33] are common choices for measuring
those similarities in computer science studies. In terms
of computational cost, assessing following behaviour
should be much more expensive than assessing joint
movement.
This study focused on dyadic joint movement. The next

step would be to identify metrics to characterize collective
behaviour with more than two individuals. A pragmatical
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approach to investigate this more complex issue could be
to identify, within large groups of individuals, the ones
that move together for each given segment of trajec-
tories (as dyads, triads or larger groups), and to study
those dynamics. A similar procedure could then be used
to spot following behaviour and leadership. Movement
could be then regarded as spatio-temporal sequences of
joint, following, hybrid and independence movement with
one or more partners. Dhanjal-Adams et al. [15] present
a Hidden Markov modelling approach to identify joint-
movement states using metrics of direction and amplitude
of flight synchronization in long-distance migratory
birds (and assuming proximity between individuals).
A similar approach could be used to identify more stages
of collective behaviour, using several metrics as observed
variables in the movement process.
Finally, a robust assessment of the different patterns

of collective behaviour (e.g. proximal joint movement,
coordination movement, follower movement) at mul-
tiple scales would provide realistic inputs for includ-
ing group dynamic into movement models, which until
now have relied on strong assumptions on collective
behaviour in the few cases where it was taken into account
[23, 29, 44, 47, 53], mostly due to the lack of understanding
of collective motion.

Conclusions
The increasing availability of telemetry data for move-
ment studies allow exploring patterns of collective move-
ment. Here we reviewed metrics for assessing dyadic
joint movement. We showed that some of the met-
rics were more suited for assessing proximity, others
for coordination in direction or speed, and some oth-
ers were not very sensitive to any of those aspects of
joint movement. The results shown in this review offer
guidelines to readers for choosing the metrics depend-
ing on which aspect of joint movement they would
like to either describe or incorporate into movement
models.
This study also contributes to highlighting the move-

ment assumptions behind each metric as well as
the parameters that need tuning. Users need to be
able to decide whether these assumptions are real-
istic for their case studies, and to understand the
consequences of their choice of parametrization. An
accurate interpretation of movement patterns (here
dyadic movement) relies on understanding the tools –
in this case, metrics – used for obtaining those
patterns.
Though the present work only concerns dyadic move-

ment, further studies should concern the identification of
larger groups moving together, where the size of the group
would change in time, and metrics that would account for
more than two individuals.
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