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Abstract—Several continuous-time tree-grass
competition models have been developed to study
conditions of long-lasting coexistence of trees
and grass in savanna ecosystems according to
environmental parameters such as climate or
fire regime. In those models, fire intensity is a
fixed parameter while the relationship between
woody plant size and fire-sensitivity is not
systematically considered. In this paper, we propose
a mathematical model for the tree-grass interaction
that takes into account both fire intensity and
size-dependent sensitivity. The fire intensity is
modeled by an increasing function of grass biomass
and fire return time is a function of climate. We
carry out a qualitative analysis that highlights
ecological thresholds that summarize the dynamics
of the system. Finally, we develop a non-standard
numerical scheme and present some simulations to
illustrate our analytical results.

Keywords-Asymmetric competition, Savanna, fire,
continuous-time modelling, qualitative analysis,
Non-standard numerical scheme.

I. Introduction

Savannas are tropical ecosystems characterized
by the durable co-occurrence of trees and grasses
(Scholes 2003, Sankaran et al. 2005) that have
been the focus of researches since many years.
Savanna-like vegetations cover extensive areas,
especially in Africa and understanding savannas
history and dynamics is important both to under-
stand the contribution of those areas to biosphere-
climate interactions and to sustainably manage the
natural resources provided by savanna ecosystems.
At biome scale, vegetation cover is known to dis-
play complex interactions with climate that often
feature delays and feed-backs. For instance any
shift from savanna to forest vegetation not only
means increase in vegetation biomass and carbon
sequestration but also may translate into changes
in the regional patterns of rainfall (Scheffer et
al. 2003, Bond et al. 2005). In the face of the
ongoing global change, it is therefore important to
understand how climate along with local factors
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drive the dynamics of savannas ecosystems. In
many temperate and humid tropical biomes, forest
vegetation in known to recover quickly from dis-
turbances and woody species are expected to take
over herbaceous species. Yet in the dry tropics,
it is well-known that grassy and woody species
may coexist over decades although their relative
proportion may show strong variations (Scholes
2003, Sankaran et al. 2005, 2008).

Savanna-like ecosystems are diverse and expla-
nations found in the literature about the long-
lasting coexistence of woody and grassy vegeta-
tion components therefore relate to diverse factors
and processes depending on the location and the
ecological context. Several studies have pointed
towards the role of stable ecological factors in
shaping the tree to grass ratio along large-scale
gradients of rainfall or soil fertility (Sankaran et
al. 2005, 2008). Other studies have rather em-
phasized the reaction of vegetation to recurrent
disturbances such as herbivory or fire (Langevelde
et al. 2003, D’Odorico et al. 2006, Sankaran et
al. 2008, Smit et al. 2010, Favier et al. 2012
and references therein). Those two points of view
are not mutually-exclusive since both environ-
mental control and disturbances may co-occur in
a given area, although their relative importance
generally varies among ecosystems. Bond et al.
(2003) proposed the name of climate-dependent
for ecosystems that are highly dependent on cli-
matic conditions (rainfall, soil moisture) and fire-
dependent or herbivore-dependent for ecosystems
which evolution are strongly dependent on fires or
herbivores. In a synthesis gathering data from 854
sites across Africa, Sankaran et al. (2005) showed
that the maximal observed woody cover appears
as water-controlled in arid to semi-arid sites since
it directly increase with mean annual precipitation
(MAP) while it shows no obvious dependence on
rainfall in wetter locations, say above c. 650 mm
MAP where it is probably controlled by distur-
bance regimes. Above this threshold, fire, grazing
and browsing are therefore required to prevent tree
canopy closure and allow the coexistence of trees
and grasses.

Several models using a system of ordinary dif-
ferential equations (ODES) have been proposed
to depict and understand the dynamics of woody
and herbaceous components in savanna-like veg-
etation. A first attempt (Walker et al. 1981) was
orientated towards semiarid savannas and analyzed
the effect of herbivory and drought on the bal-
ance between woody and herbaceous biomass.
This model refers to ecosystems immune to fire
due to insufficient annual rainfall. Indeed, fires
in savanna-like ecosystems mostly rely on herba-
ceous biomass that has dried up during the dry
season. As long as rainfall is sufficient, fire can
thus indirectly increase the inhibition of grass on
tree establishment in a way far more pervasive
than the direct competition between grass tufts and
woody seedlings.

More recently, several attempts have been made
(see Accatino et al. 2010, De Michele et al. 2011
and references therein) to model the dynamics
of fire-prone savannas on the basis of the initial
framework of Tilman (1994) that used coupled
ODES to model the competitive interactions be-
tween two kinds of plants. On analogous grounds,
Langevelde et al. (2003) have developed a model
taking into account fires, browsers, grazers and
Walter’s (1971) hypothesis of niche separation by
rooting zone depth. Models relying on stochas-
tic differential equations have also been used
(Baudena et al. 2010). Notably, Accatino et al.
(2010) and De Michele et al. (2011) focused on
the domain of stability of tree-grass coexistence
with respect to influencing ”biophysical” variables
(climate, herbivory). However, fire was consid-
ered as a forcing factor independent of climate
and vegetation, while woody cover was treated
as a single variable with no distinction between
seedling/saplings which are highly fire sensitive
and mature trees which are largely immune to
fire damages. The way in which the fundamental,
indirect retroaction of grass onto tree dynamics
is modeled is therefore to be questioned. In the
present paper we therefore a model that differs in
this respect.

Thus, to take into account the role of fire in
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savanna dynamics, we consider a tree-grass com-
partmental model with one compartment for grass
and two for trees, namely fire-sensitive individuals
(like seedlings, saplings, shrubs) and non-sensitive
mature trees. Based on field observations and ex-
periments reported by Scholes and Archer (1997)
and by Scholes (2003), we develop a system
of three coupled non-linear ordinary differential
equations (ODES), one equation per vegetation
compartment that describes savanna dynamics. In
addition, we model fire intensity (i.e. impact on
sensitive woody plants) as an increasing function
of grass biomass. Compared to existing models,
our model aims to properly acknowledge two ma-
jor phenomena, namely the fire-mediated negative
feedback of grasses onto sensitive trees and the
negative feed-back of grown-up, fire insensitive
trees on grasses. We therefore explicitly model
the asymmetric nature of tree-grass competitive
interactions in fire-prone savannas.

After some theoretical results of the continuous
fire model, though which we highlighted some
ecological thresholds that summarize savanna dy-
namics and some interesting bistability, we present
an appropriate non-standard numerical scheme
(see Anguelov et al. 2012, 2013, 2014 and Dumont
et al. 2010, 2012) for the model considered and we
end with numerical simulations. We show that the
fire frequency and the competition parameters are
bifurcation parameters which allow the continuous
fire model of asymmetric tree-grass competition to
converge to different steady states.

II. THE CONTINUOUS FIRE MODEL OF
ASYMMETRIC TREE-GRASS COMPETITION

(COFAC)

As we have mentioned before, we consider the
class of sensitive tree biomass (TS ), the class of
non-sensitive tree biomass (TNS ) and the class of
grass biomass (G). We model the fire intensity
by an increasing function of grass biomass w(G).
To built up our model, we consider the following
assumptions.

1) The grass vs. sensitive-tree competition has a
negative feedback on sensitive tree dynamics.

2) The grass vs. non sensitive-tree competition
has a negative feedback on grass dynamics.

3) After an average time expressed in years, the
sensitive tree biomass becomes non sensitive
to fire.

4) Fire only impacts grass and sensitive Tree.
We also consider the following parameters.
• There exists a carrying capacity KT for tree

biomass (in tons per hectare, t.ha−1).
• There exists a carrying capacity KG for grass

biomass (in tons per hectare, t.ha−1).
• Sensitive tree biomass is made up from

non sensitive tree biomass with the rate
γNS (in yr−1) and from existing sensitive tree
biomass with the rate γS (in yr−1).

• Sensitive tree biomass has a natural death rate
µS (in yr−1).

• Non sensitive tree biomass has a natural death
rate µNS (in yr−1).

• f is the fire frequency (in yr−1).
• Grass biomass has a natural death rate
µG (in yr−1).

•
1
ωS

is the average time, expressed in year, that

a sensitive tree takes to become non sensitive
to fire.

•
1

ωS + µS
is the average time that a tree spends

in the sensitive tree class without competition
and fires.

• σG is the competition rate, for light or/and
nutrients, between sensitive tree and grass (in
ha.t−1.yr−1).

• σNS is the competition rate, for light or/and
nutrients, between non sensitive tree and grass
(in ha.t−1.yr−1).

• ηS is the proportion of sensitive tree biomass
that is consumed by fire.

• ηG is the proportion of grass biomass that is
consumed by fire.

Remark 1. Competition parameters σG and σNS

are asymmetric, indeed σG inhibits sensitive tree
(TS ) growth and there is no reciprocal inhibition;
likewise, σNS inhibits grass (G) growth.

Based on these ecological premises, and taking
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into account the effect of fire as a forcing con-
tinuous in time, which is the classical approach,
we propose a model for the savanna vegetation
dynamics through a system of three interrelate
non-linear equations.

The COFAC is given by



dTS

dt
= (γS TS + γNS TNS )

(
1 −

TS + TNS

KT

)
−TS (µS + ωS + σGG + fηS w(G)),

dTNS

dt
= ωS TS − µNS TNS ,

dG
dt

= γG

(
1 −

G
KG

)
G − (σNS TNS + fηG + µG)G,

(1)
with

TS (0) = TS 0 > 0, TNS (0) = TNS 0 ≥ 0 , G(0) = G0 > 0.
(2)

For this continuous fire model, the fire intensity
function w is chosen as a sigmoidal function of
grass biomass because we want first to inves-
tigate the ecological consequences of the non-
linear response of fire intensity to grass biomass,
while nearly all published models using differen-
tial equations so far assumed a linear response.
Non linearity is justified since whenever grass
biomass is low fires are virtually absent while fire
impact increases rapidly with grass biomass before
reaching saturation. Thus,

w(G) =
G2

G2 + g2
0

, (3)

where G0 = g2
0 is the value of grass biomass at

which fire intensity reaches its half saturation (g0

in tons per hectare, t.ha−1).
The feasible region for system (1) is the set Ω

defined by
Ω = {(TS ,TNS ,G) ∈ R3

+ | 0 ≤ TS + TNS ≤ KT , 0 ≤
G ≤ KG}.

III. MATHEMATICAL ANALYSIS

A. Existence of equilibria, ecological thresholds
and stability analysis

We set

R0
1 =

γSµNS + γNSωS

µNS (µS + ωS )
and R0

2 =
γG

fηG + µG
.

1) Existence of equilibria:
Setting the right hand-side of system (1) to zero,

straightforward computations lead to the following
proposition

Proposition 1. System (1) has four kinds of equi-
libria
• The desert equilibrium point E0 = (0, 0, 0)

which always exists.
• The forest equilibrium point ET =

(T S ; T NS ; 0), with

T S =
KTµNS

ωS + µNS

1 − 1
R0

1

 and

T NS =
KTωS

ωS + µNS

1 − 1
R0

1


which is ecologically meaningful whenever
R0

1 > 1.
• The point EG = (0, 0,G), with

G = KG

1 − 1
R0

2

 ,
is ecologically meaningful when R0

2 > 1
The point EG when it exists is the grassland
equilibrium.

• The savanna equilibrium point ETG =

(T ∗S ,T
∗
NS ,G

∗), with T ∗S , T ∗NS and G∗ given in
Appendix A, has an ecological significance
whenever

R0
1 > 1, R0

2 > 1 and 0 < G∗ < KG

1 − 1
R0

2

 .
Remark 2. The number of savanna equilibria
depends on the form of the function w.
• If w(G) = G, then the COFAC has at most

one savanna equilibrium.

• If w(G) =
G

G + G0
(the Holling type II

function), then the COFAC has at most two
savanna equilibria.
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• If w(G) =
G2

G2 + G0
(the Holling type III

function), then the COFAC has at most three
savanna equilibria.

2) Ecological thresholds interpretation:
The qualitative behaviors of the COFAC depend

on the following thresholds

R0
1, R

0
2,

RG
1 =

γSµNS + γNSωS

µNS (µS + ωS + σGG + fηS w(G))
,

R
T NS
2 =

γG

fηG + µG + σNS T NS
,

where
• R0

1 is the sum of the average amount of
biomass produced by a sensitive/young plant,
without fires and competition with grass, and
the average amount of biomass produced by
a mature plant multiplied by the proportion
of young plants which reach the mature stage.

• RG
1 is the sum of the average amount of

biomass produced by a sensitive/young plant,
in presence of fires and competition with
grass, and the average amount of biomass
produced by a mature plant multiplied by the
proportion of young plants which reach the
mature stage.

• R0
2 is the average amount of biomass pro-

duced per unit of grass biomass during
its whole lifespan in presence of fires and
and free from competition with non-sensitive
trees.

• R
T NS
2 is the average biomass produced per unit

of grass biomass during its whole lifespan in
presence of fires and experiencing competi-
tion from non-sensitive trees.

Remark 3. The following relations hold

RG
1 < R0

1, R
T NS
2 < R0

2.

3) Stability analysis:
Let

R = R(G∗) =
γG (µNS + ωS ) (γSµNS + γNSωS )

KGKTµNSωSσNS (σG + fηS w′(G?))
.

We have the following result:

Theorem 1. If R0
1 < 1 and R0

2 < 1, then the desert
equilibrium E0 is globally asymptotically stable.

Proof: See Appendix B.

Theorem 2. If R0
1 > 1, then the forest equilibrium

ET exists.
• If RT NS

2 < 1, then the forest equilibrium ET is
locally asymptotically stable.

• If R0
2 < 1, then the forest equilibrium ET is

globally asymptotically stable.
• If R0

2 > 1, RT̄NS
2 < 1, RḠ

1 > 1 and R < 1,
then the forest equilibrium ET is globally
asymptotically stable.

Proof: See Appendix C.
Furthermore, using the same approach as in

the proof of Theorem 2, we derive the following
results

Theorem 3. Suppose R0
2 > 1 so that the grassland

equilibrium EG exists.
• If RG

1 < 1, then the grassland equilibrium EG

is locally asymptotically stable.
• If R0

1 < 1, then the grassland equilibrium EG

is globally asymptotically stable.
• If R0

1 > 1, RT̄NS
2 > 1,RḠ

1 < 1 and R < 1,
then the grassland equilibrium EG is globally
asymptotically stable.

Theorem 4. Suppose that R0
1 > 1, R0

2 > 1 and
R > 1. We have the following three cases:
• The savanna equilibrium ETG is locally

asymptotically stable (LAS) when it is unique.
• When there exists two savanna equilibria, one

is LAS and the other is unstable.
• When there exists three savanna equilibria,

two are LAS and one is unstable. Thus System
(1) will converges to one of the two stable
savanna equilibria depending on initial con-
ditions.

Proof: See Appendix D.
4) Summary table of the qualitative analysis:

The qualitative behavior of system (1) is sum-
marized in the following Table in which we present
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only the most realistic, from an ecological point of
view, case i.e R0

1 > 1 and R0
2 > 1.

TABLE I
Summary table of the qualitative analysis of system (1)

Thresholds E0 ET EG ETG

R0
1 R0

2 RḠ
1 R

T̄NS
2 > 1 R > 1 U U U L?

> > > R
T̄NS
2 < 1 R > 1 U L U L

1 1 1 R < 1 U G U U

RḠ
1 R

T̄NS
2 > 1 R > 1 U U L L

< R < 1 U U G U

1 R
T̄NS
2 < 1 R > 1 U L L L

R < 1 U L L U

In Table I, the notations U, L and G stand for
unstable, locally asymptotically stable, globally
asymptotically stable, respectively, while the
notation L? means that we have the global
stability if there are no periodic solutions.

Remark 4. From an ecological point of view,
Lignes 1 to 7 of Table I are interesting because in
these cases, one ton of grass biomass will produce
during it lifespan at least one ton of grass biomass
(R0

2 > 1) and simultaneously, one ton of tree
biomass (sensitive and non sensitive) will produce
during it lifespan at least one ton of tree biomass
(R0

1 > 1). Moreover, it is also in these cases that
we have the most interesting situations of savanna
dynamics, namely bistability cases (Lines 2, 4, 7
in Table 1) and a tristability case (Line 6 in Table
1).

IV. NUMERICAL SIMULATIONS
Compartmental models are usually solved using

standard numerical methods, for example, Euler
or Runge Kutta methods included in software
package such as Scilab [18] and Matlab [19]. Un-
fortunately, these methods can sometimes present
spurious behaviors which are not in adequacy
with the continuous system properties that they
aim to approximate i.e, lead to negative solutions,
exhibit numerical instabilities, or even converge to
the wrong equilibrium for certain values of the
time discretization or the model parameters (see
Anguelov et al. 2012, Dumont et al. 2010 for
further investigations). For instance, we provided
in Appendix E some numerical simulations done
with Runge Kutta schemes to illustrate some of
its spurious behaviors. In this section, following
Anguelov et al. 2012, 2013, 2014 and Dumont et
al. 2010, 2012, we perform numerical simulations
using an implicit nonstandard algorithm to illus-
trate and validate analytical results obtained in the
previous sections.

A. A nonstandard scheme for the COFAC
System (1) is discretized as follows:

T k+1
NS − T k

NS

φ(h)
= ωS T k+1

S − µNS T k+1
NS ,

Gk+1 −Gk

φ(h)
= γG

(
1 − Gk

KG

)
Gk+1 − σNS T k

NS Gk+1

−(µG + fηG)Gk+1,

T k+1
S − T k

S

φ(h)
= (γS − (µS + ωS ))T k+1

S + γNS T k+1
NS

−
γS
KT

T k+1
S (T k

S + T k
NS ) − γNS

KT
T k

NS T k+1
NS

−
(
γNS
KT

T k
NS + (σGGk + fηS w(Gk))

)
T k+1

S ,

(4)
where the denominator function φ is such that

φ(h) = h + O(h2), ∀h > 0. Systems (1) − (2) can
be written in the following matrix form:

dX
dt

= A(X)X,

X(0) = X0,
(5)
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where X = (TNS ,G,TS ) ∈ R3
+ and A(X) =

(Ai j)1≤i, j≤3 with A11 = −µNS , A12 = 0, A13 = ωS ,
A21 = 0, A22(X) = γG

(
1 − G

KG

)
− (σNS TNS +

fηG + µG), A23 = 0, A31(X) = γNS

(
1 − TS +TNS

KT

)
,

A32 = 0, A33(X) = γS

(
1 − TS +TNS

KT

)
− (µS + ωS +

σGG + fηS w(G)).
Using (5), the numerical scheme (4) can be

rewritten as follows:

B(Xk)Xk+1 = Xk,

where

B(Xk) = (Id3 − φ(h)A(Xk)). (6)

Thus B(Xk) = 1 + φ(h)µNS 0 −ωSφ(h)
0 1 − φ(h)Ak

22 0
−φ(h)Ak

31 0 1 − φ(h)Ak
33


It suffices now to choose φ(h) such that the matrix
B(Xk)) is an M-matrix for all h > 0, which implies
that B−1(Xk) is a nonnegative matrix, for all h > 0.
In particular, choosing φ such that

1 − φ(h)(γG − (µG + fηG)) ≥ 0
1 − φ(h)(γS − (µS + ωS )) ≥ 0, (7)

lead to positive diagonal terms and nonpositive
off diagonal terms. We need to show that B(Xk)
is invertible. Obviously 1 − φ(h)Ak

22 is a positive
eigenvalue. Let us define N, a submatrix of matrix
B(Xk), as follows

N =

(
1 + φ(h)µNS −ωSφ(h)
−φ(h)Ak

31 1 − φ(h)Ak
33

)
.

We already have trace(N) > 0. Then, a direct
computation shows that det(N) > 0 if φ(h) is
choosen such that

1 − φ(h)
(
γS +

γNSωS

µNS
− (µS + ωS )

)
≥ 0.

Thus we have α(N) > 0, i.e. the eigenvalues have
positive real parts, which implies that B(Xk) is
invertible. Finally, choosing

φ(h) =
1 − e−Qh

Q
, (8)

with

Q ≥ max
(
γG − (µG + fηG), γS − (µS + ωS ) +

γNSωS
µNS

)
,

(9)
matrix B(Xk) is an M-matrix. Furthermore, assum-
ing Xk ≥ 0, we deduce

Xk+1 = B−1(Xk)Xk ≥ 0.

Lemma 1. Using the expression of φ defined in
(8), the numerical scheme (4) is positively stable
( i.e for Xk ≥ 0, we obtain Xk+1 ≥ 0).

An equilibrium Xe of the continuous model
(1) verifies A(Xe)Xe = 0. Multiplying the above
expression by φ(h) and summing with Xe yields

(Id3 − φ(h)A(Xe))Xe = Xe,

Thus, we deduce that the numerical scheme (4)
and the continuous model (1) have the same equi-
libria which are (assumed to be) hyperbolic.

The dynamics of model (1) can be captured by
any number Q satisfying

Q ≥ max
{
|λ|2

2|Re(λ)|

}
, (10)

where λ ∈ sp(J) with Ji j = ∂Ai
∂X j

.
We also have the following result:

Lemma 2. If φ(h) is chosen as in Eqs. (8), (9) and
(10), then the numerical scheme (4) is elementary
stable ( i.e local stability properties of equilibria
are preserved).

The proof of Lemma 2 follows the proof of
Theorem 2 in Dumont et al., 2010.

B. NUMERICAL SIMULATIONS AND BIFUR-
CATION PARAMETERS

In literature we found the following parameters
values
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TABLE II
Parameters values found in literature

Parameters values References
f 0-1 Langevelde et al. 2003

0-2 Accatino et al. 2010
γG 0.4(1) − 4.6(2) (1) Penning de Vries 1982

(2) Menaut et al. 1979
γS + γNS 0.456-7.2 Breman et al. 1995
µS + µNS 0.03-0.3 Accatino et al. 2010

0.4 Langevelde et al. 2003
µG 0.9 Langevelde et al. 2003
ηG 0.1(a)-1(b) (a) Van de Vijver 1999

(b) Accatino et al. 2010
ηS 0.02-0.6 Accatino et al. 2010
ωS 0.05-0.2 Walkeling et al. 2011

We now provide some numerical simulations to
illustrate the theoretical results and for discussions.

1) Some monostability and bistability situa-
tions:
• Monostability.

We choose

γS γNS γG ηS ηG
1 2 3.1 0.5 0.5

µS µNS µG σNS σG
0.1 0.3 0.3 0.3 0.05

G0 ωS KT KG f
2 0.05 50 12 0.5 yr−1

R0
1 R0

2 RG
1 R

T NS
2 R

8.8889 5.6364 1.5006 1.2644 2.9424

With the chosen parameters, the savanna equi-
librium is stable, i.e. sensitive trees, non-
sensitive trees and grasses coexist. Figure
1 presents the 3D plot of the trajectories
of system (1). It illustrates that the savanna
equilibrium point is stable. Figure 1 also il-
lustrates the monostability situation presented
in Ligne 1 of Table I.
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Fig. 1. 3D plot of the trajectories of system (1) showing
that the savanna equilibrium point ETG point is stable. The
red bullets represent different initial conditions.

• Bistability

– Bistability involving forest and grassland
equilibria. The state trajectories of the
model will converge to a state depending
of initial quantity.
We choose

γS γNS γG µS µNS µG f

0.4 2 2.1 0.1 0.3 0.3 0.5 yr−1

ηS =0.5, ηG = 0.5, KT =50, KG = 12

R0
1 R0

2 RG
1 R

T NS
2 R σG σNS

4.8889 3.8182 0.5731 0.9315 0.2958 0.1 0.3

The 3D plot of the trajectories of system
(1) is depicted in Figure 2. It clearly ap-
pears that the forest and grassland equi-
libria are stables. Figure 2 illustrates the
bistability situation presented in Ligne 7
of Table I.
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 •
E
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•

•

Fig. 2. 3D plot of the trajectories of system (1) showing that
the forest (ET ) and grassland (EG) equilibria are stable. The
green bullets represent different initial conditions.

– Bistability involving forest and savanna
equilibria. The state trajectories of the
model will converge to a state depending
on initial quantity.
We choose

γS γNS γG µS µNS µG f
0.6 2 2.1 0.1 0.3 0.3 0.5 yr−1

ηS =0.5, ηG = 0.5, KT =50, KG = 12

R0
1 R0

2 RG
1 R

T NS
2 R σG σNS

6.2222 3.8182 1.1156 0.8942 1.2985 0.05 0.3

For these parameters, there exist two
savanna equilibria but only one is stable
as shown in Figure 3. Figure 3 also illus-
trates the bistability situation presented in
Ligne 2 of Table I.
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Fig. 3. 3D plot of the trajectories of system (1) showing that
the forest (ET ) and savanna (ETG) equilibria are stable. The
green and red bullets represent different initial conditions.

Remark 5. Note also that we didn’t observed
periodic behaviors in the previous simulations,
considering the set of parameters presented in
Table 2, while their existence cannot be completely
ruled out by the analytical analysis.

C. Some bifurcation parameters

In this section we emphasize on some bifurca-
tion parameters of system (1) which are such that
the COFAC can converge to different steady state
depending on the variation of these parameters.

• The grass vs. sensitive-tree competition pa-
rameter σG is a bifurcation parameter. Figure
4 presents how the system (1) changes from
the savanna state to the grassland state as a
function of the grass vs. sensitive-tree com-
petition parameter σG.
We choose

γS γNS γG µS µNS µG ηS σNS f

0.4 1 4 0.1 0.3 0.1 0.5 0.3 0.2 yr−1

ηG = 0.5, KT =45, KG = 10

For these parameters values, system (1) un-
dergoes a transcritical bifurcation. Indeed, we
move from ligne 1 to ligne 5 of Table I. From
left to right, (R0

1 = 3.7778, R0
2 = 20, RG

1 =

2.2865, RT NS
2 = 2.4721, R = 99.3058) →

(R0
1 = 3.7778, R0

2 = 20, RG
1 = 1.2943,

R
T NS
2 = 2.4721, R = 5.6803)→ (R0

1 = 3.7778,
R0

2 = 20, RG
1 = 0.9026, RT NS

2 = 2.4721). For
the last case, the savanna equilibrium ETG is
undefined.
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Fig. 4. From savanna to grassland as a function of the grass
vs. sensitive-tree competition parameter σG. From left to right,
the fire period τ = 1

f is fixed, while the grass vs. sensitive-tree
competition parameter σG increases. In (a) (τ = 5, σG = 0),
in (b) (τ = 5, σG = 0.02) and in (c) (τ = 5, σG = 0.04)

• The fire period parameter τ = 1
f is a bifur-

cation parameter. Figure 5 presents a shift of
the convergence of system (1) from the forest
state to the grassland state as a function of
the fire period τ.
We choose

TABLE III
Parameters values for Figures 5 and 6

γS γNS γG µS µNS µG ηS σNS f

0.4 2 2.1 0.1 0.3 0.3 0.5 0.3 yr−1

ηG = 0.5, KT =50, KG = 12

For these parameters values, system (1) un-
dergoes a forward bifurcation. Indeed, we
move from ligne 3 to ligne 7 of Table I. From
left to right, (R0

1 = 4.8889, R0
2 = 1.0678, RG

1 =

1.3025, RT NS
2 = 0.5720) → (R0

1 = 4.8889,
R0

2 = 1.3548, RG
1 = 0.5446, RT NS

2 = 0.6453,
R = 0.0983) → (R0

1 = 4.8889, R0
2 = 1.6154,

RG
1 = 0.5679, RT NS

2 = 0.6989, R = 0.1201).
For the first case, the savanna equilibrium
ETG is undefined.
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Fig. 5. From forest to grassland as a function of the fire
period τ. From left to right, the fire period τ increased, while
the sensitive tree-grass competition parameter σG is fixed. In
(a) (τ = 0.3, σG = 0.05), in (b) (τ = 0.4, σG = 0.05) and in
(c) (τ = 0.5, σG = 0.05)
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Suppose now that fire period is fixed and the
grass vs. sensitive-tree competition parameter
σG varies. Figure 6 illustrates a shift of the
convergence of system (1) from the forest
state to the grassland state through a savanna
state as a function of the grass vs. sensitive-
tree competition parameter σG.
For the parameters values in Table III, sys-
tem (1) exhibits to bifurcation phenomena: a
pitchfork bifurcation and a transcritical bifur-
cation. We move from ligne 3 (figure 6 (a),
-(b)) to ligne 7 (figure 6 (e), -(f)) through
ligne 2 (figure 6 (c), -(d)) of Table I. Indeed,
in figure 6 (a), -(b) ETG is undefined, EG is
unstable, ET is stable. In in figure 6 (c), -(d),
EG remains unstable but we have bistability
between ETG and ET : it is a case of pitchfork
bifurcation. In figure 6 (d), -(f), ETG becomes
unstable and we have a bistability between ET

and EG: it is a case of transcritical bifurcation.
Values of R0

1, R0
2, RG

1 , RT NS
2 and R are given

in Appendix F.
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Fig. 6. From forest to grassland, with a transition through
a savanna state, as a function of the sensitive tree-grass
competition parameter. From left to right, the fire period τ
is fixed at 4, while the grass vs. sensitive-tree competition
parameter σG increased.

• The grass vs. non sensitive-tree competition
parameter σNS is a bifurcation parameter. A
shift of the convergence of system (1) from
the grassland state to the forest state as a
function of the grass vs. non sensitive-tree
competition parameter σNS is depicted in Fig.
7.
We choose

γS γNS γG µS µNS µG σG ηS f

0.4 1 4 0.1 0.3 0.1 0.05 0.5 yr−1

ηG = 0.5, KT =45, KG = 10

For these parameters values, system (1) ex-
hibits a pitchfork bifurcation. We move from
ligne 5 (figure 7 (a), -(b)) to ligne 7 (figure
7 (c), -(d)) of Table I. Indeed, in figure 7 (a),
-(b) ETG is undefined, ET is unstable, EG is
stable. In figure 7 (c), -(d), ETG exits but it is
unstable and we have bistability between EG

and ET : it is a case of pitchfork bifurcation.
Values of R0

1, R0
2, RG

1 , RT NS
2 and R are given

in Appendix G.
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Fig. 7. From grassland to forest as a function of the grass
vs. non sensitive-tree competition parameter σNS . From left
to right, the fire period τ is fixed, while the grass vs. non
sensitive-tree competition parameter σNS increases.

V. Conclusion and discussion

In this work, we present and analyze a new
mathematical model to study the interaction of
tree and grass that explicitly makes fire intensity
dependent on the grass biomass and distinguishes
two levels of fire sensitivity within the woody
biomass (implicitly relating to plant size and
bark thickness). Fire was considered as a time-
continuous forcing as in several existing models
(Langevelde et al. 2003, Accatino et al. 2010,
De Michele et al. 2011 and reference therein)
with a constant frequency of fire return that can
be interpreted as mainly expressing an external
forcing to the tree-grass system from climate and
human practices. What is novel in our model is
that fire impact on tree biomass is modeled as a
non-linear function w of the grass biomass. Using
a non-linear function is to our knowledge only
found in Staver et al. 2011. But this latter model
made peculiar assumptions and does not predict
grassland and forest as possible equilibria (only
desert and savanna). The advantage of a non-linear
function is that it can account for the absence
of fire at low biomass. As a consequence and
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although keeping the same modeling paradigm as
in Langevelde et al. 2003, Accatino et al. 2010, De
Michele et al. 2011, we reached different results
and predictions.

Distinguishing fire sensitive vs. fire insensi-
tive woody biomass lead to three variables ex-
pressing fractions of the above ground phy-
tomass, namely grass and both fire-sensitive and -
insensitive woody vegetation. It featured three cou-
pled, non-linear ordinary differential equations.As
several existing models (Baudena et al. 2010,
Staver et al. 2011), our model acknowledges two
major phenomena that regulate savanna dynamics,
namely the fire-mediated negative feedback of
grasses onto sensitive trees and the negative feed-
back of grown-up, fire insensitive trees on grasses.
We therefore explicitly model the asymmetric na-
ture of tree-grass competitive interactions in fire-
prone savannas.
The analytical study of the model reveals three
possible equilibria excluding tree-grass coexis-
tence (desert, grassland, forest) along with equilib-
ria for which woody and grassy components show
durable coexistence (i.e. savanna vegetation). The
number of such equilibrium points depends on the
function used to model the increase of fire intensity
with grass biomass(see Remark 2); for our model,
we can have at most three savanna equilibria. We
identified four ecologically meaningful thresholds
that defined in parameter space regions of monos-
tability, bistability as in Accatino et al. 2010, De
Michele et al. 2011 and tristability with respect to
the equilibria. Tristability of equilibria may mean
that shifts from one stable state to another may
often be less spectacular that hypothesized from
previous models and that scenarios of vegetation
changes may be more complex.

The model features some parameters that have
been analytically identified as liable to trigger
bifurcations (i.e., the state variables of the model
converges to different steady states), notably pa-
rameters σNS and σG of asymmetric competi-
tion that embody the depressing influence of fire
insensitive trees on grasses and of grasses on
sensitive woody biomass respectively. Since tree-

grass asymmetric competition is largely mediated
by fire, this finding of the role of those two
parameters is not intuitive and is the result of
the modeling effort and of the analytical anal-
ysis. Since such parameters that quantify direct
interactions between woody and grassy compo-
nents appear crucial to understand the tree-grass
dynamics in savanna ecosystems and for enhanced
parameter assessment, they could be the focus of
straightforward field experiments that would not
request manipulating fire regime. Another bifur-
cation parameter is the fire frequency, f , (or fire
period parameter τ = 1

f ) which has been assumed
to be an external forcing parameter that integrates
both climatic and human influences. Frequent fires
preclude tree-grass coexistence and turn savannas
into grasslands. In the wettest situations, or under
subequatorial climates, very high fire frequencies
(above one fire per year) seem to be needed to
prevent the progression of forests over savannas
(unpublished data of experiments carry out at La
Lopé National Park in Gabon).

However, it is questionable to model fire as a
continuous forcing that regularly removes frac-
tions of fire sensitive biomass. Indeed, several
months can past between two successive fires, such
that fire may be considered as an instantaneous
perturbation of the savanna ecosystem. Several
recent papers have proposed to model fires as
stochastic events while keeping the continuous-
time differential equation framework (Beckage et
al. 2011) or using time discrete matrix models
(Accatino & De Michele 2013). But in all those
examples, fire characteristics remain mainly a lin-
ear function of grass biomass. Another framework
that we will explore in a forthcoming work in
order to acknowledge the discrete nature of fire
events is based on system of impulsive differential
equations (Lakshmikantham et al. 1989, Bainov
and Simeonov 1993).
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Appendix A: Expressions of T ∗S , T ∗NS and G∗

After straightforward but long
computation, we show that

T ∗NS =
γG

σNS

1 − 1
R0

2

−
G∗

KG

 ,
T ∗S =

µNS
ωS

T ∗NS ,

1
KT

(
1 +

ωS

µNS

)
T ∗S = 1 −

1
R0

1

−
µNS (σGG∗ + fηS w(G∗))

γSµNS + γNSωS
,

where G∗ is solution of

w(G) = AG + B = F(G), (11)

with
A =

1
fηS

(
γG(ωS + µNS )(γSµNS + γNSωS )

KGKTσNSµNSωS
− σG

)
,

B =

(γSµNS + γNSωS )
[
1 − 1

R0
1
−

γG(ωS +µNS )
KTσNSωS

(
1 − 1

R0
2

)]
fηSµNS

.

We summarize the problem of existence of
solutions of equation (11) in the following Table

TABLE IV
Existence of solutions of equation (11)

A B Number of solutions
> 0 > 0 0 or 2 solutions

< 0 1 or 3 solutions
< 0 > 0 1 solution

< 0 0 solution

Note that solutions G∗ of (11) that give rise
to savanna equilibria must satisfy 0 < G∗ <

KG

1 − 1
R0

2

 .
Appendix B: Proof of Theorem 1

let R0
0 =

γS

µS + ωS + µNS
. In a matrical writing,

System (1) reads as

dX
dt

= A(X)X < Amax(X)X, (12)

with X = (TS ,TNS ,G) ∈ R3
+, A(X) = (Ai j)1≤i, j≤3

with A11 = γS

(
1 − TS +TNS

KT

)
− (µS + ωS + σGG +

fηS w(G)), A12 = γNS

(
1 − TS +TNS

KT

)
, A13 = 0,

A21 = ωS , A22 = −µNS , A23 = 0, A31 = 0,
A32 = 0,A33 = γG

(
1 − G

KG

)
−(σNS TNS + fηG+µG).

and

Amax(X) =


γS − µS − ωS γNS 0

ωS −µNS 0

0 0 γG

1 − 1
R0

2


 =

(
A B
C D

)
,

with A =

(
γS − µS − ωS γNS

ωS −µNS

)
, B =(

0
0

)
,C =

(
0 0

)
, and D = γG

1 − 1
R0

2

 .
Matrix Amax(X) is a Metzler matrix ( i.e all its off-
diagonal terms are nonnegative) and α(Amax(X)) ≤
0 if α(A) ≤ 0 and α(D) ≤ 0 where α denotes
the stability modulus. Moreover, for matrix D,
α(D) ≤ 0 if

R0
2 < 1. (13)
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For matrix A, α(A) ≤ 0 if trace(A) < 0 and
det(A) > 0.

trace(A) = γS − µS − ωS − µNS

= γS

1 − 1
R0

0

 . (14)

det(A) = µNS (µS + ωS ) − (µNS γS + ωS γNS )
= µNS (µS + ωS )(1 − R0

1).
(15)

Furthermore,

R0
0 < R0

1 (16)

Thus, from relations (13), (14), (15) and (16)
we deduce that the desert equilibrium (0; 0; 0) is
globally asymptotically stable whenever R0

1 < 1
and R0

2 < 1.

Appendix C: Proof of Theorem 2

If R0
1 > 1, then the forest equilibrium ET exists.

• Using the Jacobian matrix of system (1) at
ET , one can prove that ET is locally asymp-
totically stable if RT NS

2 < 1.
• The solution G of system (1) verify

dG
dt

≤ (γG − ( fηG + µG))G,

≤ γG

1 − 1
R0

2

 . (17)

So, if R0
2 < 1, then

lim
t→+∞

G(t) = 0. (18)

Moreover, the solutions TS and TNS of system
(1) admit as a limit system, the system:

dTS

dt
= (γS TS + γNS TNS )

(
1 −

TS + TNS

KT

)
−TS (µS + ωS ) = F1(TS ,TNS ),

dTNS

dt
= ωS TS − µNS TNS = F2(TS ; TNS ).

(19)
Now, let h(TS ,TNS ) = T−1

S . Then, one has
∂F1h
∂TS

+ ∂F2h
∂TNS

= −γNS
TNS

T 2
S

(
1 − TS +TNS

KT

)
− 1

KT TS
(γS TS + γNS TNS ) − µNS T−1

S .

Furthermore, we have

∂F1h
∂TS

+
∂F2h
∂TNS

< 0 in Ω◦2 where Ω2 =

{(TS ,TNS ) ∈ R2
+ | 0 ≤ TS +TNS ≤ KT }, and by

the Bendixson-Dulac theorem, we deduce that
system (19) don’t admits a periodic solution
in Ω2.
Moreover, the equilibrium (T̄S , T̄NS ) exists
if R0

1 > 1 and using the Jacobian matrix
of system (19), we deduce that (T̄S , T̄NS ) is
locally asymptotically stable and then, glob-
ally asymptotically stable since there is no
periodic solution. Thus, if R0

2 < 1, then one
has

lim
t→+∞

(TS ,TNS ,G)(t) = ET .

• Suppose that
R0

1 =
γSµNS + γNSωS

µNS (µS + ωS )
> 1 and R0

2 =
γG

fηG + µG
> 1,

then equilibria (T̄ , T̄NS , 0), (0, 0, Ḡ) and
(T?

S ,T
?
NS ,G

?) are defined.
The Jacobian matrix of system (1) at an
arbitrarily equilibrium point is

J =

 J11 J12 J13

J21 J22 0
0 J32 J33

 ,
where

J11 = γS

(
1 − X+Y

KT

)
− 1

KT
(γS X + γNS Y)

−µS − ωS − σGZ − fηS w(Z),
J12 = γNS

(
1 − X+Y

KT

)
− 1

KT
(γS X + γNS Y),

J13 = −σGX − X fηS w′(Z),
J21 = ωS ,
J22 = −µNS ,
J32 = −σNS Z,
J33 = γG − 2 γG

KG
Z − σNS Y − fηG − µG.

The second additive compound matrix of J is

J[2] =

 J11 + J22 0 −J13

J32 J11 + J33 J12

0 J21 J22 + J33

 .
(20)

From the Jacobian matrix of system (1),
the equilibria (0, 0, Ḡ) and (T?

S ,T
?
NS ,G

?) are
unstable if RḠ

2 > 1 and R < 1.
In the sequel, we suppose that RT̄NS

2 < 1 to
process with the discussion.
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The second additive compound matrix
(20) at the equilibrium (T̄S , T̄NS , 0) is
J[2](T̄S , T̄NS , 0) = J11 + J22 0 σT̄S

0 J11 + J33 J12

0 J21 J22 + J33


(T̄S ,T̄NS ,0)

.

Let

B =

(
J11 + J33 J12

J21 J22 + J33

)
.

Then, a simple calculation gives

(J11 + J22)(T̄S ,T̄NS ,0) = γS

(
1 −

T̄S + T̄NS

KT

)
−

1
KT

(γS T̄S + γNS T̄NS ) − µS − ωS − µNS .

Using the relations

−µS −ωS = −

(
γS + γNS

ωS

µNS

) (
1 −

T̄S + T̄NS

KT

)
and

(
1 −

T̄S + T̄NS

KT

)
> 0, we have

(J11 + J22)(T̄S ,T̄NS ,0) = −
1

KT
T̄S

(
γS + γNS

ωS

µNS

)
−γNS

ωS

µNS

(
1 −

T̄S + T̄NS

KT

)
− µNS < 0.

Since J11 + J22 < 0 and RT̄NS
2 < 1, one has

tr(B) = (J11 + J22 + 2J33)(T̄S ;T̄NS ;0),

= J11 + J22 + 2γG

1 − 1

R
T̄NS
2

 < 0.

Also, if RT̄NS
2 < 1, one has

J11J33 =
(
−
γG
KT

T̄S

(
γS + γNS

ωS
µNS

)
−γGγNS

ωS
µNS

(
1 − T̄S +T̄NS

KT

))
×

(
1 − 1

R
T̄NS
2

)
> 0,

and

J33(J22 + J33) =

γG

1 − 1

R
T̄NS
2


−µNS + γG

1 − 1

R
T̄NS
2


 > 0.

With this in mind, we have

det(B) = (J11 + J33)(J22 + J33) − J12J21,
= J11J22 − J21J12 + J11J33

+J33(J22 + J33),

=
µNS

KT
T̄S

(
γS + γNS

ωS

µNS

)
+
ωS

KT
(γS T̄S + γNS T̄NS )

+J11J33 + J33(J22 + J33) > 0.
Thus, if R

T̄NS
2 < 1, one has

(J11 + J22)(T̄S ,T̄NS ,0) < 0, tr(B) < 0
and det(B) > 0. This implies that
s(J[2](T̄S , T̄NS , 0)) < 0 where s denotes
the stability modulus. Following Theorem
3.3 in Li and Wang 1998, we can deduce
that there is no hopf bifurcation points
for J(T̄S , T̄NS , 0). Since RT̄NS

2 < 1, the
equilibrium point (T̄S , T̄NS , 0) is locally
asymptotically stable and one can conclude
that this equilibrium point is globally
asymptotically stable if RT̄NS

2 < 1,RḠ
2 > 1 and

R < 1. This completes the proof.

Appendix D: Proof of Theorem 4

Suppose that the savanna equilibrium ETG ex-
ists. The Jacobian matrix of system (1) at ETG is

J =

 J11 J12 J13

J21 J22 0
0 J32 J33

 ,
where

J11 = γS

(
1 − TS +TNS

KT

)
− 1

KT
(γS TS + γNS TNS )

−µS − ωS − σGG − fηS w(G),
J12 = γNS

(
1 − TS +TNS

KT

)
− 1

KT
(γS TS + γNS TNS ),

J13 = −σGTS − TS fηS w′(G),
J21 = ωS ,
J22 = −µNS ,
J32 = −σNS G,
J33 = −

γG
KG

G.

Let

A1 = −J11J22J33,
A2 = J21J12J33,
A3 = −J21J32J13,
C1 = −J11 − J22 − J33,
C2 = A1 + A2 + A3,

C3 = J11J33 + J11J22 − J21J12 + J22J33 −
C2
C1
.
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Note that, by the Routh-Hurwitz theorem, the
savanna equilibrium ETG is locally asymptotically
stable if
C1 > 0, C2 > 0 and C3 > 0.
Moreover, components of the savanna equilibrium
ETG satisfy

TNS =
ωS
µNS

TS ,

−µS − ωS − σGG − fηS w(G) = −
(
γS + γNS

ωS
µNS

)
×(

1 − TS +TNS
KT

)
,

thus,
C1 = −J11 − J22 − J33,

= 1
KT

(γS TS + γNS TNS ) + γNS
ωS
µNS

(
1 − TS +TNS

KT

)
+µNS +

γG
KG

G,
> 0.

C3 = J11J33 + J11J22 − J21J12 + J22J33 −
C2
C1
,

= 1
KT

(µNS + ωS )(γS TS + γNS TNS )

+
γGG
KG

(
1

KT
(γS TS + γNS TNS )

+γNS
ωS
µNS

(
1 − TS +TNS

KT

)
+ µNS

)
−

C2
C1
,

= 1
KT

(µNS + ωS )(γS TS + γNS TNS )

−

γGG
KG KT

(µNS +ωS )(γS TS +γNS TNS )

C1

+
ωSσNS G(σGTS fηS w′(G)TS )

C1

+
γGG
KG

(
1

KT
(γS TS + γNS TNS )

+γNS
ωS
µNS

(
1 − TS +TNS

KT

)
+ µNS

)
,

= 1
KT

(µNS + ωS )(γS TS + γNS TNS )
(
1 −

γGG
KG
C1

)
+
ωSσNS G(σGTS fηS w′(G)TS )

C1

+
γGG
KG

(
1

KT
(γS TS + γNS TNS )

+γNS
ωS
µNS

(
1 − TS +TNS

KT

)
+ µNS

)
,

= 1
KT C1

(µNS + ωS )(γS TS + γNS TNS )×(
1

KT
(γS TS + γNS TNS )

+γNS
ωS
µNS

(
1 − TS +TNS

KT

)
+ µNS

)
+
ωSσNS G(σGTS fηS w′(G)TS )

C1
+

γGG
KG

(
1

KT
(γS TS

+γNS TNS ) + γNS
ωS
µNS

(
1 − TS +TNS

KT

)
+ µNS

)
,

C3 > 0.

C2 = A1 + A2 + A3,

=
γGG

KG KT
(µNS + ωS )(γS TS + γNS TNS )

−ωSσNS G(σGTS + fηS w′(G)),
= ωSσNS GTS

(
γG

KG KTωSσNS
(µNS + ωS )×(

γS +
γNSωS
µNS

)
− σG − fηS w′(G)

)
,

= ωSσNS GTS (σG + fηS w′(G))(R − 1).

Thus, C2 > 0 if and only if R > 1.
Finally, we deduce that the savanna equilibrium

ETG, when it is unique, is locally asymptotically
stable if R = R(G) > 1. The first part of Theorem
4 holds.

One should note that C2 > 0 means that the
slope of w (the sigmoidal function) is less than
the slope of F where F is given by (11).

Furthermore, by using relation (11) we deduce
part 2 and part 3 of Theorem 4 graphically as
follow

Fig. 8. There exist two savanna equilibria but one is stable
and the other is unstable.

Fig. 9. There exist three savanna equilibria two are stable
and one is unstable. Thus system (1) will converge to one of
the two stable equilibria depending on initial conditions.
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Fig. 10. For these figure, µG = 0.4. The ODE’s routine which
is a standard numerical algorithms shows a spurious negative
solutions.

Appendix E: Spurious behaviors of Runge Kutta
methods to approximate solutions of system (1)

For the following figures we choose

γS γNS γG ηS ηG

0.1 2 0.6 0.5 0.5
µS µNS µG σNS σG

0.3 0.3 0.02 0.05
G0 ωS KT KG f
2 0.05 50 12 0.5

Other examples of spurious solutions given by
standard methods are also given in (Anguelov et
al. 2009).

Appendix F: Values of R0
1, R0

2, RG
1 , RT NS

2 and R in

figure 6

• Figure 6 (a):

R0
1 R0

2 RG
1 R

T NS
2

4.8889 4.9412 2.6928 0.9863

• Figure 6 (b):
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Fig. 11. For these figure, µG = 0.5. The ODE’s routine which
is a standard numerical algorithms shows again a spurious
negative solutions.

R0
1 R0

2 RG
1 R

T NS
2

4.8889 4.9412 1.5813 0.9861

• Figure 6 (c):

R0
1 R0

2 RG
1 R

T NS
2 R

4.8889 4.9412 1.1193 0.9861 1.3984

• Figure 6 (d):

R0
1 R0

2 RG
1 R

T NS
2 R

4.8889 4.9412 1.0431 0.9861 1.2980

• Figure 6 (e):

R0
1 R0

2 RG
1 R

T NS
2 R

4.8889 4.9412 0.9766 0.9861 0.5936

• Figure 6 (f):

R0
1 R0

2 RG
1 R

T NS
2 R

4.8889 4.9412 0.8662 0.9861 0.5746
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Appendix G: Values of R0
1, R0

2, RG
1 , RT NS

2 and R in

figure 7

• Figure 7 (a):

R0
1 R0

2 RG
1 R

T NS
2

3.7778 3.6364 0.3840 1.1549

• Figure 7 (b):

R0
1 R0

2 RG
1 R

T NS
2

3.7778 3.6364 0.3840 1.0162

• Figure 7 (c):

R0
1 R0

2 RG
1 R

T NS
2 R

3.7778 3.6364 0.3840 0.9587 0.2066

• Figure 7 (d):

R0
1 R0

2 RG
1 R

T NS
2 R

3.7778 3.6364 0.3840 0.9073 0.1453
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