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Abstract

Ecosystem Service  (ES)  mapping has become a key  tool  in scientific assessments  of
human-nature interactions and is being increasingly used in environmental planning and
policy-making. However, the associated epistemic uncertainty underlying these maps often
is not systematically considered. This paper proposes a basic procedure to present areas
with lower statistical reliability in a map of an ES indicator, the vegetation carbon stock,
when extrapolating field data to larger case study regions. To illustrate our approach, we
use regression analyses to model the spatial distribution of vegetation carbon stock in the
Brazilian  Amazon  forest  in  the  State  of  Pará.  In  our  analysis,  we  used  field  data
measurements  for  the  carbon stock  in  three study sites  as  the response variable  and
various land characteristics derived from remote sensing as explanatory variables for the
ES indicator. We performed regression methods to map the carbon stocks and calculated
three  indicators  of  reliability:  RMSE-Root-mean-square-error,  R -coefficient  of
determination - from an out-of-sample validation and prediction intervals. We obtained a
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map of carbon stocks and made explicit its associated uncertainty using a general indicator
of reliability and a map presenting the areas where our prediction is the most uncertain.
Finally, we highlighted the role of environmental factors on the range of uncertainty. The
results have two implications. (1) Mapping prediction interval indicates areas where the
map's reliability is the highest. This information increases the usefulness of ES maps in
environmental  planning  and  governance.  (2)  In  the  case  of  the  studied  indicator,  the
reliability of our prediction is very dependent on land cover type, on the site location and its
biophysical,  socioeconomic  and  political  characteristics.  A  better  understanding  of  the
relationship between carbon stock and land-use classes would increase the reliability of the
maps. Results of our analysis help to direct future research and fieldwork and to prevent
decision-making based on unreliable maps.
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Introduction

Ecosystem  services  (ES)  have  progressively  become  an  important  concept  in
environmental planning and policy-making to bridge the science – policy interface in the
management of ecosystems (Braat and de Groot 2012, Perrings et al. 2011, Groot et al.
2010). Mapping indicators of ES is one prominent approach to improve spatially explicit
decision-making and land management (Burkhard et  al.  2012).  This ecosystem service
approach can help policy-makers to target strategic areas, formulate new policies and/or
evaluate impacts of previous policies (Burkhard et al. 2013, Maes et al. 2012, Martinez-
Harms et al. 2015). ES maps are popular outreach and data visualisation products. They
have  profited  from the  increased  availability  and  applications  of  tools  such  as  GIS  or
remote  sensing  that  helps  to  increase  their  production  and  distribution  (Palsky  2013).
Despite  its  popularity,  mapping  ES  has  its  limitations  (Eigenbrod  et  al.  2010van
Oudenhoven et al. 2018). Specifically, spatial information used in mapping is rarely, if ever,
completely  accurate  or  verified  (Heuvelink  and  Burrough  2002;  Devendran  and
Lakshmanan 2014) and that spatial assessments are often based on coarse data, which
decreases the confidence in the spatial products (Andrew et al. 2015; Hamel and Bryant
2017).

The  importance  of  uncertainty  in  the  use  and  analysis  of  spatial  data  has  long  been
recognised  in  land-use  and  landcover  change  mapping  (e.g.  Dendoncker  et  al.  2008,
Lavorel et al. 2017, Verburg et al. 2013, Verburg et al. 2011, Kuemmerle et al. 2013) and is
increasingly  acknowledged  in  the  ES  mapping  community  (Jacobs  et  al.  2017).  The
representation of uncertainties, related to missing or incomplete data, aggregation error,
functional knowledge gaps or normative and value-laden indicators in these types of maps
is key for the map user (Crossman et al. 2013, Jacobs et al. 2013). In principle, information
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on uncertainties should allow a critical  look at  the map and be an integral  part  of  the
decision-making  process  for  which  maps  are  used.  As  a  matter  of  fact,  there  is  an
increasing number of scientific studies using ES maps addressing uncertainty or reliability
(e.g. Bagstad et al. 2018, Brunner et al. 2017, Johnson et al. 2012, Boithias et al. 2016,
Grêt-Regamey  et  al.  2013,  Schulp  et  al.  2014).  However,  uncertainty  in  the  valuation
process still remains an exception and has not explicitly been accounted for in many of the
studies.

Uncertainty is complex and there are many definitions or typologies of uncertainty in ES
analyses (Hamel and Bryant  2017) and therefore there are many ways to address the
issue.  Most  of  the  studies  focus  on  the  uncertainty  stemming  from  the  ecosystem
complexity or on the social-ecological uncertainties from supply and demand in ES models.
More recently, studies have highlighted the effects of the input data on the reliabilility of ES
assessments  (Kangas  et  al.  2018).  There  is,  however,  much  less  emphasis  on  the
epistemic  uncertainty  in  ES mapping due to  the modelling process.  In  the field  of  ES
mapping,  there  is  specifically  a  lack  in  the  representation  of  errors  inherent  to  the
extrapolation of point-based measurements to produce empirical-based ES maps. Mapping
an  ES  indicator  from  point  field  measurements  implies  several  causes  of  epistemic
uncertainties,  inherent  in  each  step  from  measurement  to  extrapolation.  For  instance,
because of the mismatch between the field sample, its GPS location information and pixel
size,  there  are  errors  generated,  as  field  and  remote  sensing  data  are  linked  (Réjou-
Méchain et al. 2015) and there is also uncertainty generated by the application of statistical
methods,  i.e.  related to the extrapolation process itself.  A comprehensive analysis  and
transparent documentation of the latter are seldom provided in ES mapping approaches.

The objective of this research is to describe a simple approach to assess and spatially
represent  uncertainties  associated  with  the  extrapolation  of  measured  field  data  using
regression analysis to map an ES indicator (vegetation carbon stock). Our results express
the degree of certainty that we have about our ES map and the confidence that policy-
makers can have in the map. To this end, we firstly used field data measurements for
vegetation carbon stock in the Brazilian Amazon forest as a response variable and various
land characteristics derived from remote sensing as potential explanatory factors of the ES
indicator.  We implemented the mapping techniques from earlier works (Le Clec’h et al.
2017) and evaluated the variability of ES supply in space resulting from our extrapolation
process. Secondly, we calculated and mapped an indicator based on the prediction interval
as a measure of the uncertainty stemming from the regression. Thirdly, we represented the
variation of the prediction interval within the land-use classes and within the three sites, to
identify sources of uncertainty within our dataset. While such estimation and analysis of the
uncertainty are common in some fields, such as geostatistics, it is still under-considered in
the field of ES mapping. Therefore, in the field of ES assessment and mapping, this study
can be seen as a first  step in a systematic assessment of  uncertainties related to ES
mapping in which point-based measurements are used to construct ES maps. Systematic
assessments of uncertainties should critically question the confidence and usability of ES
maps. This should be critical for discussing and determining the potential use(s) of the map
and/or  for  supporting policy and planning processes.  As some studies recommend the
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application of  the principle  of  parsimony in  ES mapping (e.g.  Jacobs et  al.  2017),  we
favoured a simple approach in this paper.

Material and methods

Site description 

We estimated and mapped uncertainty related to ES maps using the case of the Brazilian
Amazon forest, a global hotspot of ES provision (Fearnside 2017). More specifically, we
focused on the State of Pará that spans 1.25 million km , which is partly covered by tropical
forest. Extensive forests, high biodiversity and rapid deforestation qualify Pará as indicative
of contexts in which ES surveys are urgently required. The rapid deforestation observed in
Pará is mainly caused by timber harvesting and subsequent cattle grazing, which prevents
forest restoration (Fearnside 2017, Godar et al. 2012), with 1,887 km  deforested in 2014
(INPE,  Instituto  Nacional  de Pesquisas Espaciais  2014).  While  deforestation has been
slowing, the area deforested in Pará in 2013 still  accounted for almost half  of the total
deforestation in Brazil.

Within Pará, we conducted field measures of ES within three local study sites that are
representative of the regional variability in socio-economics, deforestation temporalities and
ES change (Fig.  1,  Oszwald  et  al.  2011).  The  first  site,  Maçaranduba belongs  to  the
municipality of Nova Ipixuna. It covers 220 km² and has been deforested since the early
1970s. Although largely deforested, its remaining forest is relatively well preserved. The
second site, named here Pacajá, belongs to the municipality of Pacajà. It covers 175 km²
and is located on one of the ‘fishbone’ roads (Traverssão 338 South) of the Trans-Amazon
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Figure 1. 

Location of Pará State and the study sites of Maçaranduba (MC), Pacajá (PC) and Palmares II
(PR). Coloured areas in the maps represent land use of the study sites in 2007.
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highway.  It  has  been  deforested  since  the  1990s  by  agricultural  colonisation  that  has
resulted in the conversion of the landscape to pasture and annual and perennial crops.
Despite the deforestation dynamics, forests still covered 63% of this site in 2007. The third
site, Palmares II, is an assentamento (settlement) of 160 km² near the Carajas iron mine.
Emblematic of the agrarian reform, this site was established following the conflict between
Landless Movement workers, a fazendeiro, owner of a large farm, which was located on
the site,  the federal  government and the Vale mining company. This conflict  led to the
fragmentation of the land and thus of the forest that only covered 23% of the site in 2007.

In  a  deforestation  front  context,  because  of  the  lack  of  law,  public  policies  and
environmental  management,  the  study  of  ES  is  highly  relevant.  It  allows  us  a  better
understanding of the impacts of deforestation and cultivation on the environment, in other
words to evaluate the impacts of the past and current public policies (or their absence) on
the ecosystems.

Data 

We used two different  datasets to apply predictive statistical  methodologies for  the ES
indicator: field data related to the ES indicator (response variable) and remote sensing data
(explanatory variables – Table 1).

Variable name Source Description Unit/
range 

Response
variable
(ES indicator)

Vegetation
carbon stock

Field
measurement

Aboveground dry biomass of trees, bushes and
herbaceous plants

Mg/ha

Explanatory
variables
(ES potential
drivers)

Land cover Landsat TM
(30x30m)

Supervised maximum-likelihood classifications of
six land-cover classes

6
modalities

Historical
trajectory of
land cover

Classes of land-use trajectories (Oszwald et al.
2012), from a homogeneous forest structure (class
1) to an agricultural dynamic of extensive breeding
(class 5)

5
modalities

NDVI Vegetation density (index) -1;1

NDWI Water content into plants (index) -1;1

Elevation DEM Aster
(30mx30m)

Elevation at every point m

Slope Altitude difference between two adjacent pixels %

Synthesis of
topography

Characterisation of the topographic context 4
modalities

Distance to
water

Buffers around the rivers 5
modalities

Site General location 3
modalities

Table 1. 

Description of the data used in this study.The data constitutes the input of the statistical model.
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Field data: carbon stocks 

According to the definition of ES proposed by Portela and Rademacher (2001), a way to
map ES consists of defining spatial indicators of the biophysical processes that provide the
services (Oszwald et  al.  2014).  We studied here an indicator  of  the service of  climate
regulation. The chosen indicator is the vegetation carbon stock whose analysis is relevant
in a pioneer front context. Even though stocks are not per se an ES, we assumed this
indicator to be relevant in this context, as their main driver of change is due to human
activities. It was measured for 135 sampling points that were assessed during fieldworks in
2008 before the dry season. In each of the 27 farms (nine per site), five sampling points
were equally spaced (around every 200 m) along a transect corresponding to the longest
diagonal of the farm or to a north-south axis.

The  carbon  stock  was  estimated  using  a  factor  of  0.5  (Markewitz  et  al.  2004)  in
aboveground dry total biomass calculated from field data shown by Costa et al. (2012). At
each sampling point, the dry biomass was calculated for four strata: upper, middle, lower
(same strata where the vegetation cover was inventoried) and necromass. A plot of 10 m×
50 m (500 m ) was established for the upper stratum inventory (individuals with DBH -
diameter at breast height ≥ 10 cm), a subplot of 5 m× 50 m was established for the middle
stratum (individuals with DBH < 10 cm and height ≥ 2.0 m) and finally 4 subplots of 1 m ×1
m were regularly distributed in the centre of the plot for the lower and necromass strata
measured (individuals with 2.0 m > height ≥ 10 cm). In the upper and middle strata, dry
biomass was estimated from allometric equations using diameter at breast height. In the
primary forests,  biomass was estimated according to  Higuchi  et  al.  (1998)  using three
classes of DBH: DBH > 20 cm, 5 cm < DBH < 20 cm and DBH < 5 cm. In secondary forest,
biomass was calculated for Cecropia and all other trees, regardless of diameter, according
to Nelson et al.  (1999). In both forests, primary and secondary, biomass of lianas was
estimated according to Gerwing (2002).  The same equations were used in all  plots  to
ensure  a  better  comparison  between  them.  Due  to  the  low  density  of  trees  found  in
pastures  and  cultivation  areas,  the  dry  biomass  of  the  upper  and  middle  strata  were
calculated using the same formulas used in primary and secondary forests. In the lower
stratum, the biomass was first calculated directly by fresh weight; thereafter, one sample
was  taken  and  also  weighed;  and  finally,  the  sample  was  oven-dried  at  70°C  until  a
constant  dry  weight  and  the  dry  biomass  of  the  sub-plot  was  calculated  by  cross-
multiplication using the dry biomass of the sample. After the removal of plants from sub-
plots, all remaining ground material (leaves, twigs, flowers, dead wood) was gathered to
measure the necromass in a similar procedure to that used for measuring the biomass of
the lower strata.

Remote sensing data 

We built and applied linear regression to extrapolate and map the ES indicator, using the
plot-level  measures  and  local  high-resolution  satellite  imagery  (Table  1).  Since  the
vegetation  carbon  stock  is  strongly  related  to  the  biophysical  characteristics  of  the
landscape  (Grimaldi  et  al.  2014),  explanatory  variables  were  chosen  to  characterise
different aspects of the landscape. We used remote sensing data that provides information

2

6 Le Clec'h S et al



about vegetation cover and topography. They are derived from the processing of the 1986,
1996, 2001 and 2007 Landsat TM images (30 m x 30 m spatial resolution) carried out
under ENVI and the processing of the Aster Digital Elevation Model (DEM - 30 m x 30 m
spatial resolution). These data are known for the three study sites and they were extracted
for the 135 sampling points.

We used remote-sensing data to characterise the land-cover of the three study sites for
2007. A Landsat TM image from the dry season (30 m spatial resolution) was used to build
a  supervised classification  by  maximum likelihood,  to  calculate  two vegetation  indexes
(NDVI and NDWI) and to determine a historical trajectory of land-cover (Oszwald et al.
2012).  The  Landsat  classifications  characterise  six  land-cover  classes  (forest,  burned
forest,  juquira-capoeira [fallow lands],  grasslands with trees, clean grasslands and bare
soils) for 2007. Training data, used for the supervised classification, were sampled during
field  campaigns  using  a  GPS.  Landsat  images  were  radiometrically  and  geometrically
corrected prior to classification to ensure comparability between the study sites. In addition,
analysis and processing of land cover classification were also extended to all Landsat TM
images of the dataset (from 1986 to 2007). Using the land-use maps obtained for the four
dates, five classes of land-use trajectories were determined (Oszwald et al. 2012), ranging
from a homogeneous forest  structure (class 1)  to  an agricultural  dynamic of  extensive
breeding (class 5). Landsat TM images were also used to calculate two vegetation indices
giving information about vegetation density (NDVI) and water content into plants (NDWI).

Data  also  provided  information  about  the  elevation  (in  metres)  at  every  point.  Slopes
synthesised the altitude difference between two adjacent  pixels  and are provided as a
percentage. These two variables (elevation and slope) are quantitative and are treated as
continuous raw data. The "topography" variable corresponds to a synthetic characterisation
of the topographic context comprising four modalities: bottom of valleys, hilltops, zones of
steep slopes and zones of low slopes. Finally, we deduced the hydrographic network from
the DEM which was used to determine a distance to the rivers (0 to 100 m, 100 to 200 m,
200 to 300 m, 300 to 500 m and more than 500 m).

We also used a variable, named “Site” that corresponds to the identity of the study site to
which each pixel belongs. This variable aims to (1) estimate the spatial auto-correlation of
the  sampling  points  and  (2)  take  into  account  the  inter-sites  variability,  due  to
homogeneous  biophysical  conditions  and  socioeconomic  characteristics  within  each
location.

Statistical approach 

We aimed to evaluate and map the confidence we have in our prediction, as a way to
represent  the  uncertainty  related  to  the  ES  map.  We  based  our  approach  on  the
implementation of statistical methodologies that link field (ES indicator) and remote sensing
(explanatory) data. These statistical methodologies are used to (1) extrapolate field data
using remote sensing to the three study sites. They also (2) give us information about the
reliability of the resulting maps, through a general and a spatialised indicator (Fig. 2).
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Regression  methods  represent  one  of  the  possible  statistical  approaches  to  map  ES
indicators from field and remote sensing data (Le Clec’h et al. 2017). Several regression
methods  can  be  computed  to  provide  ES  predictions  based  on  both  qualitative  and
quantitative inputs (Le Clec'h et al. 2013). Obtaining prediction intervals on the predictions
can be quite challenging, in particular when no analytic expression of such intervals is
available.  For  example,  non-parametric  methods,  such  as  regression  trees  or  random
forests, may require bootstrap techniques to do so. However, linear modelling is interesting,
for it allows the calculation of confidence intervals on predictions (Cornillon and Matzner-
Lober 2011). In the following, we present results provided by linear regression methods.

We  computed  a  linear  model  on  the  135  sampling  points.  The  model  linked  the  ES
indicator (carbon stocks - field data) and remote sensing data (related to the site, land
cover and topography – Fig. 2). We manually performed a selection of variables, using
Mallows' Cp Mallows 2000. The selection of variables aimed to (1) identify and select the
best subset amongst the remote sensing variables and to (2) avoid overfitting. Thus, this
selection allows us to obtain a model, which has good predictive properties. We called it, in
this paper, “final model”, the model resulting from the selection of variables and that was
used for the prediction of new ES values. This final model was based on two variables: the
land-cover classification and the site (split into two classes: Palmares II and the two other
sites, Table 2). The model can be considered as reliable (R² = 0.75).

We used the final model to extrapolate the vegetation carbon stocks to the whole study
sites. To do so, the final model, trained on the 135 sampling points, was then applied to all
the  study  sites  to  predict  new  carbon  stocks,  based  on  the  land-cover  data  and  the
typology of the study sites (for more information, see Le Clec’h et al. 2017). Thanks to
these predicted values, we obtained a map of the vegetation carbon stocks.

 
Figure 2. 

General  methodology  used  to  map  the  ES  indicator  and  the  estimate  the  uncertainty
associated to the map.
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Linear model: lm(formula = VCSt ~ Site  + LC)
Residuals:

Min 1Q Median 3Q Max 

-103.41 -27.34 -10.23 19.96 143.19

Coefficients:

Estimate Std. Error t value Pr(>|t|) 

Intercept 161.57 13.474 11.99 < 2e-16 ***

Site  -37.77 9.82 -3.85 0.000202 ***

Land Cover  60.64 16.51 3.67 0.000375 ***

Land Cover  -89.37 15.33 -5.83 5.86e-08 ***

Land Cover  -143.46 16.78 -8.55 9.07e-14 ***

Land Cover  -143.06 16.65 -8.592 7.20e-14 ***

Land Cover  -131.70 17.58 -7.49 1.99e-11 ***

Significativity codes: 0 ‘***’
Residual standard error: 47.99 on 108 degrees of freedom
Multiple R : 0.75, Adjusted R : 0.73
F-statistic: 52.62 on 6 and 108 DF, p-value: < 2.2e-16

In the second step, we used the same final model to estimate a simple indicator that gives
information on the confidence we have in our prediction. In linear regression, one way to
associate  confidence/uncertainty  to  the  prediction  is  the  calculation  of  the  prediction
intervals on predictions (Cornillon and Matzner-Lober 2011). The prediction intervals of the
prediction are a range that is likely to contain the mean response given specified settings of
the predictors in our model. Prediction intervals assess the accuracy of the estimated ES
indicator. Therefore, to characterise the confidence we have in our prediction, we evaluated
and mapped an index based on the prediction intervals. This index allowed us to have
spatial information about uncertainty of the estimated carbon stocks. Such information is
useful to identify the areas where the prediction is very reliable or, on the contrary, where
the predicted values should be considered carefully.

We proposed an index based on width of 95% prediction intervals. To do so, we calculated
the difference between the upper and lower bounds of prediction confidence intervals. A
high index characterised areas with high uncertainty around the prediction (up to 90 MgC/
ha around the prediction). For each predicted value (pixel), we thus applied the final linear
model  to  get  (1)  an estimated carbon stock and (2)  the prediction interval  around the
predicted value. As we predicted an ES value for each pixel of the study sites, we also
obtained an uncertainty index for each pixel. Thus, we can propose a spatial representation

PR

PR

BF

JC

PT

CP

BS

2 2

Table 2. 

Outputs of the final linear model. Acronyms: Site : Palmares II and Land Cover : class n of Land
Cover (F: Forest; BF: Burned Forest; JC: Jucuira-Capoeira-Fallow lands; PL: Pasture with tree; CP:
Clean Pasture and BS: Bare Soil).

PR n
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of  the  uncertainty.  Finally,  we  represented  the  variations  of  the  index  within  the  two
explanatory variables of the final model: the land cover and the site classifications.

Results

Maps of carbon stocks and their global reliability 

The linear model based on the land-cover classification and the site classification was used
to map vegetation carbon stock. The maps of vegetation carbon stock show the influence
of land-cover changes on ES supply (Fig. 3).The highest values are located in forested
areas, with the lowest values in deforested areas: farms and riversides in Maçaranduba,
the main road in Pacajá and the southern part of Palmares II close to the city, influenced by
the railway and the road.  There are differences amongst  study sites,  because of  local
specificities such as differences in terms of  biophysical  conditions as human pressure,
political  and  socio-economic  factors  that  affect  vegetation  conditions  and  thus  carbon
stock. In Palmares II, the highest stock is lower than the one in the two other sites because
the forests in Palmares II are highly degraded.

Mapping uncertainty associated with the ES map 

We mapped the uncertainty index related to the application of a statistical method to predict
values of  an ES indicator  for  the vegetation carbon stock.  The resulting map gives an
overview  of  the  areas  where  the  map  is  and  is  not  reliable.  High  prediction  intervals
express low confidence and can be associated with our inability to reliably predict carbon
stocks,  whereas high prediction intervals  express our  ability  to  estimate the vegetation
carbon stocks with much greater certainty.

 
Figure 3. 

Vegetation carbon stock in the three study sites: A. Maçaranduba; B. Pacajá; C. Palmares II.
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The index of uncertainty takes high values in highly anthropised areas (grazed landscapes
and bare soils). Grazed grasslands have very heterogeneous profiles because they can be
declined from bare soil to pasture with trees. Moreover, forest areas are associated with
high carbon stock and quite high variability. Forests of the three study sites are at different
stages of degradation and carbon stock is therefore relatively heterogeneous within these
forests. Variability in transition areas can be explained by the nature of the class itself.
Transition areas consist of secondary vegetation and fallow lands. This class is relatively
homogeneous in Maçaranduba (Fig. 4) and in Pacajá, whereas it is more heterogeneous in
Palmares II.

Role of land cover and location 

We analysed how the uncertainty index varies with the two explanatory variables of the
final linear model: the land cover and the site classifications. This analysis helped us to
better understand the level of uncertainty related to our assessments. To do so, we plotted
the prediction intervals (1) within the six land-cover classes and (2) within the three study
sites.  Such  analyses  highlight  the  uncertainty  related  to  the  explanatory  data  that  our
knowledge of  the  study  sites  (socioeconomic,  political  and/or  biophysical  contexts  and
conditions) can explain. The range of the prediction intervals modelled, based on the final
model (Table 2), varies amongst the land-cover type (Fig. 5A). Prediction intervals are low
in degraded forests, even if this class is highly diversified, in terms of density, strata and
type of vegetation, due to natural and human-based factors. Agricultural areas are very
diverse, especially the bare soil class, which regroups two different realities that can be
discriminated with the analysis of our satellite data. On the one hand, this class includes
bare soils such as roads and tracks. On the other hand, it regroups as well annual crops
that are actually bare soil without plant cover, during the dry season. The reliability of our
prediction is also very dependent on the location, independently of the differences in land-
cover between the sites (Fig. 5B). In Maçaraduba and Pacajá, our predictions are reliable
with  a  low  variability,  whereas  predicted  values  in  Palmares  are  highly  uncertain.  For

 
Figure 4. 

Prediction intervals around the predicted vegetation carbon stock in Maçaranduba.
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instance, in Maçaranduba, sharp contrasts in the landscape exist, between large areas of
preserved forests and pastures. In Pacajá, despite the landscape gradient, there are also
sharp contrasts in the landscape between well-conserved forests and already cultivated /
pastured areas. In Palmares II, differentiation between land covers was less clear: pastures
were abandoned then transformed into fallow lands and,  sometimes,  were transformed
back  into  pastures.  Consequently,  for  this  site,  continuity  in  land-cover  types  existed,
leading to an absence of spatial contrasts that can influence our capacity to obtain reliable
statistical ES predictions.

Discussion

A map is a generalisation or a schematisation of reality (Palsky 2013) and, accordingly,
includes uncertainties or even errors.  The issue of uncertainty can become particularly
important when maps aim to support policies, for example, when they are used for land
planning or to allocate budget to areas considered as ES hotspots (Bagstad et al. 2018,
Eigenbrod et al. 2010, Palomo et al. 2018). In ES mapping processes, there is a plurality of
uncertainties,  inherent  in  each step of  the modelling,  for  any methods that  have been

 
Figure 5. 

Variation  in  the  range  of  the  prediction  intervals  due  to  (A)  the  land  cover  and  (B)  the
geographical general location
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implemented. Scientific literature has increasingly acknowledged the need for considering
uncertainties  in  the ES assessments  (Bagstad et  al.  2018,  Grêt-Regamey et  al.  2013,
Schulp et al. 2014). There are, however, different types of uncertainties, from epistemic to
scenarios inherent in mapping ES (Lavorel et al. 2017). Quantifiable and spatially explicit
information about different types of uncertainty, as we presented here, help to qualify and
critically assess ES maps and reveals the limits of the presented information, irrespective
of the underlying methodological approach. However, the range of uncertainties produced
in an ES assessment is much broader than the uncertainties induced by the statistical
prediction (Hamel and Bryant 2017) and more systematic assessments are needed.

We proposed an exploratory approach to assess and communicate epistemic uncertainties
related  to  ES  mapping  and  valuation  and  thus  specifically  addressed  a  lack  in  the
representation  of  errors  inherent  to  the  extrapolation  of  point-based  measurements  to
produce empirical based ES maps. It is only one of the uncertainties produced in an ES
assessment (Hamel and Bryant 2017), but it is also one that can be easily identified and
communicated and/or reduced in order to create reliable outputs that can support policy-
making  or  land  management.  We  extrapolated  measured  field  data  using  regression
analysis to map carbon stocks for three study sites in the Brazilian Amazon and evaluated
the variability of the ES provision across space. An indicator based on prediction intervals
gave an overview of the spatially explicit reliability in the statistical procedure by enabling
the identification of places where the prediction is reliable and where it has to be improved
and cannot currently be used to base decisions.

Overall, the regression model provided a reliable map of carbon stocks that allowed us to
highlight carbon hotspots and, at the same time, to identify areas where this prediction of
carbon stocks is highly uncertain. The results showed that prediction intervals for bare soils
and clean pastures had higher mean values but also a wider range of values and thus
emerged  as  highly  variable  classes.  The  map’s  trustworthiness  is  thus  partially  a
consequence of the uncertainty related to the explanatory data underlying these classes.
From  a  scientific  perspective,  these  findings  have  three  implications.  First,  a  better
understanding of the drivers of ES provision could help to reduce the uncertainty stemming
from the variability of the provision of ES per land-cover class. This aspect is very critical in
the Amazon rainforest where the slowdown of deforestation rates leads to an increase in
forest degradation. The consequences of forest degradation on ES provision in these areas
are still  largely  unknown.  Secondly,  the land-cover  classification should  account  for  as
many different  classes as  possible  to  reduce intra-class  variability.  This  underlines the
importance of studies on local scales with detailed information on land use/land cover to
complement large scale maps with less accuracy in land-use classes (Foody 2015, Domac
2004). The availability of new satellite information such as PROBA-V might help to fill this
gap given its relatively high spatial resolution and short processing time. Thirdly, despite
this potential of new remote sensing information, data uncertainties highlight our limited
ability to model some specific ES indicators. On the one hand, variations in the vegetation
carbon stock, for instance, can be explained by modified properties of ecosystems such as
land-cover changes. On the other hand, indicators related to soil or biodiversity are greatly
influenced by inherent ecosystem properties such as biophysical processes that can rarely
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be inferred from remote-sensing data (Dominati et al. 2010). In addition, high uncertainty
areas can vary from one ES to another and, for one specific ES, vary from one spatial
scale to another (Le Clec’h et al. 2018). Thus, a systematic and transparent assessment of
such uncertainties helps to reconsider and improve the methodological approach and the
data used in the mapping process.

The use of  prediction intervals to assess epistemic uncertainties in ES maps has also
certain drawbacks. Not all methodologies allow a feedback between data and ES maps.
The  indicator  proposed  here,  can  only  be  applied  in  the  case  of  certain  statistical
procedures. Even for some statistics, such as regression trees (CART algorithm - Breiman
et al. 1984), the calculation of prediction intervals is not possible (Yohannes and Hoddinott
1999).  Moreover,  the  indicator  represents  the  variance  in  the  prediction  and  does  not
contain information on the goodness of fit to the response variable. This point seems to be
critical, as previous studies demonstrated that the reliability of the map in general could
vary strongly from one indicator to another (Le Clec’h et al. 2017). Thus, we here used a
more general indicator, such as the RMSE or the R , to complement the information on the
prediction  uncertainty.  General  information  on  the  map´s  reliability  could  help  the
cartographer to decide whether he/she should stop or proceed with the mapping process.
However, it raises in turn the critical question of what an acceptable threshold of reliability
is. Thus, the choice of threshold values should be transparent and be subject to sensitivity
analysis. Finally, we are fully aware that the range of uncertainties in an ES assessment is
much broader than the epistemic uncertainties induced by the statistical prediction (Hamel
and Bryant 2017).

Uncertainty  can  become  particularly  important  when  maps  aim  to  support  policy
development,  for  example,  when  they  are  used  to  analyse  trade-offs  and  synergies
(Bagstad  et  al.  2018,  Eigenbrod  et  al.  2010,  Palomo  et  al.  2018).  Information  about
uncertainties in these maps can help to prevent unwanted or unintended consequences of
policy  measures that  affect  land-use decision or  management  (Jacobs et  al.  2017).  In
addition, the provision of information about spatially explicit trustworthiness of ES maps
helps  to  evaluate  policies.  Maps  and  information  about  their  accuracy  and  flaws  can
support the spatially explicit identification of the relevant socio-economic and biophysical
characteristics that lead to an (in-)effective policy implementation.

Conclusions

Uncertainties  are  inherent  and  unavoidable  in  the  assessment  of  environmental
management in general and in particular in ES mapping. They exist in different stages of
the assessments and some cannot integrally be reduced. We used here a linear model to
describe the method because prediction intervals can be directly calculated. This approach
could be extended to other methods, especially by the use of bootstrapping. However, their
identification, acknowledgement and explanation should, at least, be systematic, to raise
awareness and to determine the optimal use(s) of the maps, especially in the context of
environmental policy-making and governance (Jacobs et al. 2017). Information related to
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uncertainty, such as the map presented in this paper, might be difficult to apprehend for
non-specialists.  Accordingly,  further  research  should  not  only  provide  more  holistic
perspectives  on  uncertainties  in  ES  mapping,  but  also  offer  insights  on  how  to
communicate such information. Further work should focus on what could be the best way
(s) to map such information and how to adapt these way(s) to the purpose of the map. In
that sense, our approach should be seen as a first step towards a systematic consideration
and acknowledgement of uncertainties that would be included as a strong and integral
component of ES mapping.

Acknowledgements 

This  research  was  funded  by  the  Institut  des  Amériques  and  by  the  French  Agence
Nationale de la Recherche through two grants: ANR AMAZ, coordinated by P. Lavelle and
ANR AGES, coordinated by X. Arnauld de Sartre and by the Brazilian Conselho Nacional
de Desenvolvimento Científico e Tecnológico (CNPq), also through two Grants: Processes
484990/2007-1 and 490649/2006-8.

References

• Andrew ME, Wulder MA, Nelson TA, N. C. Coops (2015) Spatial data, analysis
approaches, and information needs for spatial ecosystem service assessments: a
review. GIScience & Remote Sensing 52: 3‑344. https://
doi.org/10.1080/15481603.2015.1033809 

• Bagstad K, Cohen E, Ancona Z, McNulty S, Sun G (2018) The sensitivity of ecosystem
service models to choices of input data and spatial resolution. Applied Geography 93:
25‑36. https://doi.org/10.1016/j.apgeog.2018.02.005 

• Boithias L, Terrado M, Corominas L, Ziv G, Kumar V, Marqués M, Schuhmacher M,
Acuña V (2016) Analysis of the uncertainty in the monetary valuation of ecosystem
services — A case study at the river basin scale. Science of the Total Environment 543:
683‑690. https://doi.org/10.1016/j.scitotenv.2015.11.066 

• Braat LC, de Groot R (2012) The ecosystem services agenda: bridging the worlds of
natural science and economics, conservation and development, and public and private
policy. Ecosystem Services 1: 1‑4. 

• Breiman L, Friedman J, Stone C, R. Olsen (1984) Classification and Tegression Trees
(Boca Ratoned. USA 

• Brunner SH, Huber R, Grêt-Regamey A (2017) Mapping uncertainties in the future
provision of ecosystem services in a mountain region in Switzerland. Regional
Environmental Change 17 (8): 2309‑2321. https://doi.org/10.1007/s10113-017-1118-4 

• Burkhard B, Kroll R, Nedkov S, Müller F (2012) Mapping ecosystem service supply,
demand and budgets. Ecological Indicators 21: 17‑29. https://doi.org/10.1016/
j.ecolind.2011.06.019 

• Burkhard B, Crossman N, Nedkov S, Petz K, Alkemade R (2013) Mapping and
modelling ecosystem services for science, policy and practice. Ecosystem Services 4:
1‑3. https://doi.org/10.1016/j.ecoser.2013.04.005 

Uncertainty in ecosystem services maps: the case of carbon stocks in the ... 15

https://doi.org/10.1080/15481603.2015.1033809
https://doi.org/10.1080/15481603.2015.1033809
https://doi.org/10.1016/j.apgeog.2018.02.005
https://doi.org/10.1016/j.scitotenv.2015.11.066
https://doi.org/10.1007/s10113-017-1118-4
https://doi.org/10.1016/j.ecolind.2011.06.019
https://doi.org/10.1016/j.ecolind.2011.06.019
https://doi.org/10.1016/j.ecoser.2013.04.005


• Cornillon P-, Matzner-Lober E, (2011) Régression avec R. Springer, France https://
doi.org/10.1007/978-2-8178-0184-1 

• Costa S, Gonzaga L, Miranda IS, Grimaldi M, Silva ML, Mitja D, Lima TTS (2012)
Biomass in different types of land use in the Brazil’s 'arc of deforestation'. Forest
Ecology and Management 278: 101‑109. https://doi.org/10.1016/j.foreco.2012.04.007 

• Crossman N, Burkhard B, Nedkov S, Willemen L, Petz K, Palomo I, Drakou E, Martín-
Lopez B, McPhearson T, Boyanova K, Alkemade R, Egoh B, Dunbar M, Maes J (2013)
A blueprint for mapping and modelling ecosystem services. Ecosystem Services 4:
4‑14. https://doi.org/10.1016/j.ecoser.2013.02.001 

• Dendoncker N, Schmit C, Rounsevell M (2008) Exploring spatial data uncertainties in
land‐use change scenarios. International Journal of Geographical Information Science
22 (9): 1013‑1030. https://doi.org/10.1080/13658810701812836 

• Devendran AA, Lakshmanan G (2014) A Review On Accuracy and Uncertainty of
Spatial Data and Analyses with special reference to Urban and Hydrological Modelling.
ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences
171‑178. https://doi.org/10.5194/isprsannals-ii-8-171-2014 

• Domac (2004) Increasing the accuracy of vegetation classification using geology and
DEM. Middle East technical University, Ankara.

• Dominati E, Patterson M, Mackay A (2010) A framework for classifying and quantifying
the natural capital and ecosystem services of soils. Ecological Economics 69:
1858‑1868. https://doi.org/10.1016/j.ecolecon.2010.05.002 

• Eigenbrod F, Armsworth P, Anderson B, Heinemeyer A, Gillings S, Roy D, Thomas C,
Gaston K (2010) The impact of proxy-based methods on mapping the distribution of
ecosystem services. Journal of Applied Ecology 47 (2): 377‑385. https://
doi.org/10.1111/j.1365-2664.2010.01777.x 

• Fearnside P (2017) Deforestation of the Brazilian Amazon. Oxford Research
Encyclopedia of Environmental Science https://doi.org/10.1093/
acrefore/9780199389414.013.102 

• Foody GM (2015) Valuing map validation: The need for rigorous land cover map
accuracy assessment in economic valuations of ecosystem services. Ecological
Economics 111: 23‑28. https://doi.org/10.1016/j.ecolecon.2015.01.003 

• Gerwing J (2002) Degradation of forests through logging and fire in the eastern
Brazilian Amazon, Forest. Ecology and Management 157: 131‑141. https://
doi.org/10.1016/S0378-1127(00)00644-7 

• Godar J, Tizado E, Pokorny B (2012) Who is responsible for deforestation in the
Amazon? A spatially explicit analysis along the Transamazon Highway in Brazil, Forest.
Ecology and Management 267: 58‑73. https://doi.org/10.1016/j.foreco.2011.11.046 

• Grêt-Regamey A, Brunner S, Altwegg J, Bebi P (2013) Facing uncertainty in ecosystem
services-based resource management. Journal of Environmental Management 127:
145‑154. https://doi.org/10.1016/j.jenvman.2012.07.028 

• Grimaldi M, Oszwald J, Doledec S, Hurtado MdP, de Souza Miranda I, Arnauld de
Sartre X, Assis WS, Castañeda E, Desjardins T, Dubs F, Guevara E, Gond V, Lima TTS,
Marichal R, Michelotti F, Mitja D, Noronha NC, Delgado Oliveira MN, Ramirez B,
Rodriguez G, Sarrazin M, Silva ML, d. Costa LGS, Souza SLd, Veiga I, Velasquez E,
Lavelle P (2014) Ecosystem services of regulation and support in Amazonian pioneer
fronts: Searching for landscape drivers. Landscape Ecology 29 (2): 311‑328. https://
doi.org/10.1007/s10980-013-9981-y 

16 Le Clec'h S et al

https://doi.org/10.1007/978-2-8178-0184-1
https://doi.org/10.1007/978-2-8178-0184-1
https://doi.org/10.1016/j.foreco.2012.04.007
https://doi.org/10.1016/j.ecoser.2013.02.001
https://doi.org/10.1080/13658810701812836
https://doi.org/10.5194/isprsannals-ii-8-171-2014
https://doi.org/10.1016/j.ecolecon.2010.05.002
https://doi.org/10.1111/j.1365-2664.2010.01777.x
https://doi.org/10.1111/j.1365-2664.2010.01777.x
https://doi.org/10.1093/acrefore/9780199389414.013.102
https://doi.org/10.1093/acrefore/9780199389414.013.102
https://doi.org/10.1016/j.ecolecon.2015.01.003
https://doi.org/10.1016/S0378-1127(00)00644-7
https://doi.org/10.1016/S0378-1127(00)00644-7
https://doi.org/10.1016/j.foreco.2011.11.046
https://doi.org/10.1016/j.jenvman.2012.07.028
https://doi.org/10.1007/s10980-013-9981-y
https://doi.org/10.1007/s10980-013-9981-y


• Groot RSd, Alkemade R, Braat L, Hein L, Willemen L (2010) Challenges in integrating
the concept of ecosystem services and values in landscape planning, management and
decision making. Ecological Complexity 7 (3): 260‑272. https://doi.org/10.1016/
j.ecocom.2009.10.006 

• Hamel P, Bryant B (2017) Uncertainty assessment in ecosystem services analyses:
Seven challenges and practical responses. Ecosystem Services 24: 1‑15. https://
doi.org/10.1016/j.ecoser.2016.12.008 

• Heuvelink GB, Burrough PA (2002) Developments in statistical approaches to spatial
uncertainty and its propagation. International Journal of Geographical Information
Science 16 (2): 11‑113. 

• Higuchi N, Santos J, Ribeiro RJ, Minette L, Biot Y (1998) Biomassa da parte aérea da
vegetação da floresta tropical umida de terra-firme da Amazônia Brasileira. Acta
Amazonica 28: 153‑166. https://doi.org/10.1590/1809-43921998282166 

• INPE, Instituto Nacional de Pesquisas Espaciais (2014) Monitoramento da Floresta
Amazônica Brasileira por Satélite – Projeto Prodes. http://www.obt.inpe.br/prodes.
Accessed on: 2017-10-01.

• Jacobs S, Keune H, Vrebos D, Beauchard O, Villa F, Meire P (2013) Ecosystem Service
Assessments: Science or Pragmatism? Ecosystem Services. Ecosystem Services.
Elsevier, Boston.

• Jacobs S, Verheyden W, Dendoncker N (2017) Why to map Mapping Ecosystem
Services. Pensoft. In: Burkhard B, Maes J (Eds) Mapping Ecosystem Services. Pensoft,
Sofia, Bulgaria. [ISBN 978-954-642-830-1].

• Johnson K, Polasky S, Nelson E, Pennington D (2012) Uncertainty in ecosystem
services valuation and implications for assessing land use tradeoffs: An agricultural
case study in the Minnesota River Basin. Ecological Economics 79: 71‑79. https://
doi.org/10.1016/j.ecolecon.2012.04.020 

• Kangas A, Korhonen KT, Packalen T, Vauhkonen J (2018) Sources and types of
uncertainties in the information on forest-related ecosystem services. Forest, Ecology
and Management 427 https://doi.org/10.1016/j.foreco.2018.05.056 

• Kuemmerle T, Erb K, Meyfroidt P, Müller D, Verburg PH, Estel S, Haberl H, Hostert P,
Jepsen M, Kastner T, Levers C, Lindner M, Plutzar C, Verkerk PJ, der Zanden EHv,
Reenberg A (2013) Challenges and opportunities in mapping land use intensity globally.
Current Opinion in Environmental Sustainability 5 (5): 484‑493. https://doi.org/10.1016/
j.cosust.2013.06.002 

• Lavorel S, Bayer A, Bondeau A, Lautenbach S, Ruiz-Frau A, Schulp N, Seppelt R,
Verburg P, Teeffelen Av, Vannier C, Arneth A, Cramer W, Marba N (2017) Pathways to
bridge the biophysical realism gap in ecosystem services mapping approaches.
Ecological Indicators 74: 241‑260. https://doi.org/10.1016/j.ecolind.2016.11.015 

• Le Clec'h S, Oszwald J, Jegou N, Dufour S, Cornillon PA, Miranda I, Gonzaga L,
Grimaldi M, Gond V, Arnauld de Sartre X (2013) Mapping carbon stocks in vegetation:
prospects for the spatialization of an ecosystem service.". Bois Et Forets Des Tropiques
316: 35‑47. 

• Le Clec’h S, Jégou N, Decaens T, Dufour S, Grimaldi M, Oszwald J (2017) From Field
Data to Ecosystem Services Maps: Using Regressions for the Case of Deforested
Areas Within the Amazon. Ecosystems 21 (2): 216‑236. https://doi.org/10.1007/
s10021-017-0145-9 

Uncertainty in ecosystem services maps: the case of carbon stocks in the ... 17

https://doi.org/10.1016/j.ecocom.2009.10.006
https://doi.org/10.1016/j.ecocom.2009.10.006
https://doi.org/10.1016/j.ecoser.2016.12.008
https://doi.org/10.1016/j.ecoser.2016.12.008
https://doi.org/10.1590/1809-43921998282166
http://www.obt.inpe.br/prodes
https://doi.org/10.1016/j.ecolecon.2012.04.020
https://doi.org/10.1016/j.ecolecon.2012.04.020
https://doi.org/10.1016/j.foreco.2018.05.056
https://doi.org/10.1016/j.cosust.2013.06.002
https://doi.org/10.1016/j.cosust.2013.06.002
https://doi.org/10.1016/j.ecolind.2016.11.015
https://doi.org/10.1007/s10021-017-0145-9
https://doi.org/10.1007/s10021-017-0145-9


• Le Clec’h S, Sloan S, Gond V, Cornu G, Decaens T, Dufour S, Grimaldi M, Oszwald J
(2018) Mapping ecosystem services at the regional scale: the validity of an upscaling
approach. International Journal of Geographical Information Science 32 (8): 1593‑1610.
https://doi.org/10.1080/13658816.2018.1445256 

• Maes J, Egoh B, Willemen L, Liquete C, Vihervaara P, Schägner JP, Grizzetti B, Drakou
E, Notte AL, Zulian G, Bouraoui F, Paracchini ML, Braat L, Bidoglio G (2012) Mapping
ecosystem services for policy support and decision making in the European Union.
Ecosystem Services 1 (1): 31‑39. https://doi.org/10.1016/j.ecoser.2012.06.004 

• Mallows CL (2000) Some Comments onCp. Technometrics 42 (1): 87‑94. https://
doi.org/10.1080/00401706.2000.10485984 

• Markewitz D, Davidson E, Moutinho P, Nepstad D (2004) Nutrient loss and redistribution
after forest clearing on a highly weathered soil in Amazonia. Ecological Applications 14:
177‑199. https://doi.org/10.1890/01-6016 

• Martinez-Harms MJ, Bryan B, Balvanera P, Law E, Rhodes J, Possingham H, Wilson K
(2015) Making decisions for managing ecosystem services. Biological Conservation
184: 229‑238. https://doi.org/10.1016/j.biocon.2015.01.024 

• Nelson B, Mesquita R, Pereira J, Garcia Aquino de Souza S, G. Teixeira Batista G, L.
BC (1999) Allometric regressions for improved estimate of secondary forest biomass in
the central Amazon, Forest. Ecology and Management 117: 149‑167. https://
doi.org/10.1016/S0378-1127(98)00475-7 

• Oszwald J, Gond V, Doledec S, P. Lavelle (2011) Identification d'indicateurs de
changement d'occupation du sol pour le suivi des mosaïques paysagères. Bois Et
Forets Des Tropiques 307: 7‑21. https://doi.org/10.19182/bft2011.307.a20484 

• Oszwald J, Arnauld de Sartre X, Decaëns T, Gond V, Grimaldi M, Lefebvre A, De Araujo
Fretas RL, Lindoso de Souza S, Marichal R, Veiga I, Velasquez E, Lavelle P (2012)
Utilisation de la télédétection et de données socio-économiques et écologiques pour
comprendre l'impact des dynamiques de l'occupation des sols à Pacajá (Brésil). Revue
Française de Photogrammétrie et de Télédétection 198: 8‑24. 

• Oszwald J, Grimaldi M, Le Clec'h S, Dufour S (2014) Des processus biophysiques aux
indicateurs de services écosystémiques: l'apport des approches paysagères. In:
Arnauld de Sartre X, Castro M, Dufour S, Oszwald J (Eds) Political Ecology des
Services Ecosystémiques. P. Lang, Bruxelles. [ISBN 978-2-87574-197-4].

• Palomo I, Willemen L, Drakou E, Burkhard B, Crossman N, Bellamy C, Burkhard K,
Campagne CS, Dangol A, Franke J, Kulczyk S, Clec'h SL, Malak DA, Muñoz L,
Narusevicius V, Ottoy S, Roelens J, Sing L, Thomas A, Meerbeek KV, Verweij P (2018)
Practical solutions for bottlenecks in ecosystem services mapping. One Ecosystem 3:
e20713. https://doi.org/10.3897/oneeco.3.e20713 

• Palsky G (2013) Cartographie participative, cartographie indisciplinée. L'Information
géographique 77: 10‑25. https://doi.org/10.3917/lig.774.0010 

• Perrings C, Duraiappah A, Larigauderie A, Mooney H (2011) The Biodiversity and
Ecosystem Services Science-Policy Interface. Science 331 (6021): 1139‑1140. https://
doi.org/10.1126/science.1202400 

• Portela R, Rademacher I (2001) A dynamic model of patterns of deforestation and their
effect on the ability of the Brazilian Amazonia to provide ecosystem services. Ecological
Modelling 143: 115‑146. https://doi.org/10.1016/S0304-3800(01)00359-3 

• Réjou-Méchain M, Tymen B, Blanc L, Fauset S, Feldpausch T, Monteagudo A, Phillips
O, Richard H, Chave J (2015) Using repeated small-footprint LiDAR acquisitions to infer

18 Le Clec'h S et al

https://doi.org/10.1080/13658816.2018.1445256
https://doi.org/10.1016/j.ecoser.2012.06.004
https://doi.org/10.1080/00401706.2000.10485984
https://doi.org/10.1080/00401706.2000.10485984
https://doi.org/10.1890/01-6016
https://doi.org/10.1016/j.biocon.2015.01.024
https://doi.org/10.1016/S0378-1127(98)00475-7
https://doi.org/10.1016/S0378-1127(98)00475-7
https://doi.org/10.19182/bft2011.307.a20484
https://doi.org/10.3897/oneeco.3.e20713
https://doi.org/10.3917/lig.774.0010
https://doi.org/10.1126/science.1202400
https://doi.org/10.1126/science.1202400
https://doi.org/10.1016/S0304-3800(01)00359-3


spatial and temporal variations of a high-biomass Neotropical forest. Remote Sensing of
Environment 169: 93‑101. https://doi.org/10.1016/j.rse.2015.08.001 

• Schulp CE, Burkhard B, Maes J, Vliet JV, Verburg P (2014) Uncertainties in Ecosystem
Service Maps: A Comparison on the European Scale. PLoS ONE 9 (10): e109643. 
https://doi.org/10.1371/journal.pone.0109643 

• van Oudenhoven AE, Aukes E, Bontje L, Vikolainen V, van Bodegom P, Slinger J (2018)
‘Mind the Gap’ between ecosystem services classification and strategic decision
making. Ecosystem Services 33: 77‑88. https://doi.org/10.1016/j.ecoser.2018.09.003 

• Verburg P, Tabeau A, Hatna E (2013) Assessing spatial uncertainties of land allocation
using a scenario approach and sensitivity analysis: A study for land use in Europe.
Journal of Environmental Management 127: 132‑144. https://doi.org/10.1016/
j.jenvman.2012.08.038 

• Verburg PH, Neumann K, Nol L (2011) Challenges in using land use and land cover
data for global change studies. Global Change Biology 17 (2): 974‑989. https://
doi.org/10.1111/j.1365-2486.2010.02307.x

• Yohannes Y, Hoddinott J (1999) Classification and regression trees: an introduction. In:
International Food Policy Research Institute (IFPRI) Technical Guide 3. Washington DC.

Uncertainty in ecosystem services maps: the case of carbon stocks in the ... 19

https://doi.org/10.1016/j.rse.2015.08.001
https://doi.org/10.1371/journal.pone.0109643
https://doi.org/10.1016/j.ecoser.2018.09.003
https://doi.org/10.1016/j.jenvman.2012.08.038
https://doi.org/10.1016/j.jenvman.2012.08.038
https://doi.org/10.1111/j.1365-2486.2010.02307.x
https://doi.org/10.1111/j.1365-2486.2010.02307.x

	Abstract
	Keywords
	Introduction
	Material and methods
	Results
	Discussion
	Conclusions
	Acknowledgements
	References

