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A B S T R A C T

Dengue fever is the most widespread of the human arbovirus diseases, with approximately one third of the
world's population at risk of infection. Dengue viruses are members of the genus Flavivirus (family Flaviviridae)
and, antigenically, they separate as four closely related serotypes (1–4) that share 60–75% amino acid homology.
This genetic diversity complicates the process of antiviral drug discovery. Thus, currently no approved dengue-
specific therapeutic treatments are available. With the aim of providing an efficient tool for dengue virus drug
discovery, a collection of nineteen dengue viruses, representing the genotypic diversity within the four ser-
otypes, was developed. After phylogenetic analysis of the full-length genomes, we selected relevant strains from
the EVAg collection at Aix-Marseille University and completed the virus collection, using a reverse genetic
system based on the infectious sub-genomic amplicons technique. Finally, we evaluated this dengue virus col-
lection against three published dengue inhibitory compounds. NITD008, which targets the highly conserved
active site of the viral NS5 polymerase enzyme, exhibited similar antiviral potencies against each of the different
dengue genotypes in the panel. Compounds targeting less conserved protein subdomains, such as the capsid
inhibitor ST-148, or SDM25N, a ∂ opioid receptor antagonist which indirectly targets NS4B, exhibited larger
differences in potency against the various genotypes of dengue viruses. These results illustrate the importance of
a phylogenetically based dengue virus reference panel for dengue antiviral research. The collection developed in
this study, which includes such representative dengue viruses, has been made available to the scientific com-
munity through the European Virus Archive to evaluate novel DENV antiviral candidates.

1. Short communication

Dengue virus (DENV) is a major threat to human health, with ap-
proximately one third of the world's population at risk of being infected.
DENV is the causative agent of dengue fever, as well as the more severe
dengue haemorrhagic fever (DHF)(Messina et al., 2014) and dengue
shock syndrome (DSS). It belongs to the genus Flavivirus (Flaviviridae
family), which comprises other clinically important human pathogens,
such as yellow fever virus, West Nile virus and the recently emerging
Zika virus(Vasilakis and Weaver, 2017). DENV is an arthropod borne
virus transmitted through the bite of infected mosquitoes from the
genus Aedes (Stegomyia). Epidemiological transmission of DENV is
confined to urban and peri-urban cycles for which Aedes aegypti and Ae
albopictus mosquitoes, respectively, are the primary transmission vec-
tors(Chen and Vasilakis, 2011). Dengue is a positive-sense single
stranded RNA virus with a 10.7 kb genome encoding a single

polyprotein which is post-translationally processed into three structural
proteins, viz., capsid (C), pre-membrane (prM), envelope (E) and seven
non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5)
(Gebhard et al., 2011). Four antigenically closely related serotypes of
DENV (1–4) which share 60–75% amino acid homology, have been
identified(Guzman and Harris, 2015). Within this serotype demarca-
tion, the DENV are also grouped into genotypes, with varying termi-
nology between authors(Carrillo-Valenzo et al., 2010; Weaver and
Vasilakis, 2009) (hereunder we refer to the grouping proposed by
Weaver and Vasilakis(Weaver and Vasilakis, 2009)).

Hence, many of the DENV diagnostic tools do not readily distinguish
between DENV serotypes. Moreover, co-circulation of different ser-
otypes during DENV epidemics(Vilela et al., 2016) increases the com-
plexity of virus identification. Added to these factors, antibody depen-
dent enhancement of the disease i.e., when patients contract a
heterotypic secondary DENV infection(Katzelnick et al., 2017) is a
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potential additional complication for effective treatment of patients.
Consequently, scientists are faced with the challenge of developing
Directly Active Antivirals (DAA) that can inhibit the entire spectrum of
genetically diverse serotypes and/or genotypes of DENV. However,
despite the tireless efforts to provide an antiviral therapy(Canard, 2012;
Coutard et al., 2008; van Cleef et al., 2013; Yin et al., 2009), there are
still no approved drugs on the market to treat dengue infections. At
present, the treatments available are merely supportive(Kaptein and
Neyts, 2016).

A major barrier to evaluating the activity spectrum of potential
DENV-inhibitory molecules arises from the non-availability of a well-
defined panel of viruses that specifically represents the genetic varia-
bility of all characterised DENV isolates. With the aim of providing a
tool for DENV research, with which to assess the antiviral activity of
potential inhibitory molecules, we have developed a collection of DENV

with sequences that include representative genotypes from within the
four DENV serotypes (Fig. 1). Wherever possible, we selected clinical
strains with a limited number of passages in cell culture. Strains were
selected from either the European Virus Archive (EVA) collection
(Romette et al., 2018), the French National Reference Centre for ar-
boviruses (CNR), or the World Reference Centre for Emerging Viruses
and Arboviruses (WRCEVA). Viruses that could not be obtained but for
which full length genome sequences were available, were re-created
using the versatile infectious sub-genomic amplicons (ISA) reverse ge-
netics technology(Aubry et al., 2015, 2014).

In order to select representative genotypes, we collected dengue
full-length genome sequences from the NCBI database and com-
plemented this database with those of our, still unpublished, “in house”
and CNR strains. We performed phylogenetic reconstructions with the
maximum likelihood method to assign all available genome sequences

Fig. 1. Global serotype-representative DENV collection A: Pipeline of the workflow employed for the virus collection. B: Maximum likelihood phylogenetic tree
(GTR + G + I model with 500 bootstraps), based on the complete nucleic acid sequences of the virus collection. Strain information: DENV-1: Genotype I: (Djibouti,
1998; AF298808); Genotype III (Malaysia, 1972; EF457905.1); Genotype IV (Indonesia, 1977; EUO74031); Genotype V (France, 2014; MF004384); DENV-2:
Genotype Asian-America (France Martinique, 1998; AF208496); Genotype American (Trinidad, 1953; EU073981.1); Genotype Cosmopolitan (France, 2014;
MF004385); Genotype Asian 1 (Thailand, 2014; MH888331); Genotype Asian 2 (Papua New Guinea, 2008; FJ906959.1); Genotype Sylvatic (Malaysia, 2008;
FJ467493.1); DENV-3: Genotype I (Malaysia, 2012; MF004386); Genotype II (Thailand, 2012; MH888332); Genotype III (Bolivia, 2011; MH888333); Genotype V
(Brazil, 2006; JN697379.1); DENV-4: Genotype IIb (Senegal, 1981; MF004387); Genotype IIa (Malaysia, 2013; MH888334); Genotype III (Thailand, 1997;
AY618988.1); Genotype Sylvatic (Malaysia, 1975; JF262779.1); Genotype I (INDIA, 1961; JF262783.1). Complete information relevant to the strains of the
collection are more fully detailed in the supplemental material..
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to a genotype in a serotype (Supplementary Material Figs. 1, 2, 3 and
4). Within each genotype, we focused on strains that were not subjected
to extensive cell passage and were either available as biological isolates
in virus collections or as full-length sequences in GenBank. Six dengue
genotypes were available only as complete genome sequences in the
NCBI database without any biological strain counterparts in referenced
collections (DENV-1 genotype III, DENV-2 genotype sylvatic and Asian
II, DENV-3 genotype V and DENV-4 genotype III and sylvatic). Two
genotypes were not available at all because of incomplete genome se-
quence (DENV-1 genotype II and DENV-3 genotype IV). To obtain the
biological viruses from the completely sequenced strains, we designed
reverse genetics systems based on the ISA technique(Atieh et al., 2016;
Aubry et al., 2015, 2014) and generated synthetic overlapping DNA
fragments that covered each of the entire genome, bordered by a CMV
promoter on the 5′ end and a Ribozyme and poly-adenylation signal on
the 3’ end. The overlapping fragments were co-transfected into a mix of
human and hamster embryonic kidney cell lines (HEK 293 and BHK-21
purchased from the American Cell Culture Collection). This enabled us
to recover the missing biological strains to complete the collection. The
initial viral stocks were amplified in Vero E6 cells and fully sequenced.
All the DENV strains used, have been made available through the EVAg
collection (https://www.european-virus-archive.com/).

Various specific dengue inhibitors that target several viral proteins
involved in different replication steps, have been discovered. ST-148,
an inhibitor targeting the capsid structural protein, has been reported to
inhibit all DENV serotypes in cell culture, although with varying effi-
ciency. This inhibitor also appears promising in the AG-129 mouse
model when infected with a strain of DENV-2(Byrd et al., 2013).
NITD008, an adenosine analogue inhibitor that targets the RNA-de-
pendent RNA polymerase activity, was shown to be inhibitory against
all dengue serotypes as well as other flaviviruses, including West Nile
virus, yellow fever virus and tick-borne Powassan virus(Yin et al.,
2009). SDM25N, a ∂ opioid receptor antagonist, has been reported to
target the NS4B protein, probably indirectly through a cellular factor.
Thus far, it has only been shown to be active against a DENV-2 strain
(van Cleef et al., 2013). Based on the different mechanisms of action of
the 3 compounds, their respective target and its associated sequence
variability across the different genotypes, we hypothesize that the an-
tiviral activity of the compounds might differ between all of the gen-
otypes of DENV. Therefore, the antiviral activity of these three com-
pounds was assessed using a single common protocol based on a viral
RNA yield reduction assay(Delang et al., 2016). The assay did not de-
pend on the cytopathogenic potential of the strain, thus allowing for the
inclusion of any dengue strain in the panel tested. Because all these
strains differed in their replication kinetics, prior to the assay, all DENV
MOI and times of readout of the assay were calibrated so that the re-
plication growth were still in the log growth curve at time of the col-
lection of the supernatant. Although the maximum reduction of virus
yield may depend of the specific strain and assay conditions, the half
inhibitory doses (IC50s) are not expected to be affected in these settings
and will depend only on the inhibitor efficiency. The compounds were
assayed from 10 to 0.004 μM, with 3-fold step-dilution in triplicate. The
amount of viral RNA in the supernatant medium, sampled at pre-de-
termined time in the growth cycle, was quantified by qRT-PCR to de-
termine the 50% maximal effective concentration (EC50) (Table 1).

The DENV strains of the collection showed similar sensitivity to-
wards the nucleoside analogue inhibitor NITD008 with EC50's ranging
from 0.2 μM to 2.8 μM, which is in accordance with previously pub-
lished results (Xie et al., 2015).

The capsid inhibitor ST-148 inhibited all DENV-2 genotypes with
EC50's ranging from 0.25 to 1.1 μM. However, only one genotype of
DENV-1 (DENV-1 GIII at 0.5 μM), and one of DENV-4 (DENV-4 GIII at
0.3 μM), were inhibited by this compound. Finally, no activity was
observed against our DENV-3 genotypes, with all EC50's > 10 μM.
Although Byrd and co-workers(Byrd et al., 2013) found that the DENV-
2 serotype was the most sensitive serotype to this capsid inhibitor and

showed up to two log of variability in the inhibition against other
serotypes, they did not fully evaluate the variation in susceptibility to
other serotypes sufficiently comprehensively to draw conclusions. In
their study, they associated ST-148 resistance to a Leucine at position
34 instead of a Serine in DENV-2. However, looking at capsid amino-
acid alignment of all our DENV panel and their study's strains, and
regardless of their sensibility to ST-148, all strains exhibited a Serine at
position 34 except DENV-2 from Trinidad (1751 TC 544), which pre-
sented a Proline at this position, as the Modoc virus that they reported
to be sensitive to ST-148 (Byrd et al., 2013). Thus, if resistance for ST-
148 can arise from S34L mutations in some DENV-2 strains it is clear
that it cannot be unequivocally associated to a Leucine in position 34 in
other serotypes and genotypes. This suggests that other residues or
domains in the capsid protein may be involved in the interaction.

SDM25N showed moderate efficacy, with EC50's ranging from 1.7 to
7.7 μM against a large proportion of the DENV-2 genotype strains, and
half of the DENV-1 genotypes. However, no activity was observed
against any of the DENV-3 and 4 genotypes, as EC50 were all above
10 μM. This result suggests that the binding affinity of NS4B to the
hypothetical cellular factor targeted by SDM25N varies greatly among
various DENV genotypes and/or that this cellular factor might be dis-
pensable for efficient replication of some DENV genotypes.

Overall, the results demonstrate that compounds targeting highly
conserved sites, exemplified by nucleoside analogue inhibitor NITD008
(targeting the active site of the polymerase), had a broader pan-ser-
otypic activity, with similar EC50's regardless of the DENV genotype. In
contrast, compounds targeting less conserved proteins or protein sub-
domains, either directly (e.g. the capsid) or indirectly through an in-
teraction with a host factor of the cell (e.g. SDM25N), exhibited larger
differences in activity towards the various genotypes of DENV.

Importantly, these data illustrate the fact that a sound in cellulo
evaluation of anti-dengue candidate molecules requires the use of a
complete reference virus panel that enables estimates of the antiviral
activity against each of the identified DENV genotypes to be obtained.
Modern reverse genetics techniques have enabled us to develop such a
representative collection, and it has been made available to the scien-
tific community through the European Virus Archive collection (EVA).
We believe that the availability of this new tool will enable the in-
dependent assessment of pan-serotypic activity of anti-dengue candi-
dates in the future, fulfilling a critical requirement for a successful
dengue antiviral small molecule.
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