Spatial Processes and Management of Marine Populations 105
Alaska Sea Grant College Program « AK-SG-01-02, 2001

Spatial Modeling of Atlantic
Yellowfin Tuna Population
Dynamics: Application of a
Habitat-Based Advection-
Diffusion-Reaction Model to the
Study of Local Overfishing

Olivier Maury
Institut de Recherche pour le Développement, Montpellier, France

Didier Gascuel
Ecole Nationale Superievre Agronomique de Rennes, Rennes, France

Alain Fonteneau
Institut de Recherche pour le Développement, Montpellier, France

Abstract

This paper presents a spatial multigear population dynamics model forced
by the environment for Atlantic Ocean yellowfin tuna. The model simu-
lates the population’s distribution as a function of environmental vari-
ables and observed fishing effort. It is age-structured to account for
age-dependent population processes and catchability. It is based on an
advection-diffusion-reaction equation in which the advective term is pro-
portional to the gradient of a habitat suitability index derived from tem-
perature, salinity, and tuna forage data. Functional relationships between
movement parameters, catchability, and environmental variables are based
on nonlinear relationships estimated with generalized additive models
(GAM) to characterize, on the one hand, yellowfin environmental prefer-
ences and, on the other hand, their catchability to different gears. Analyti-
cally formalized, GAM’s relationships characterizing environmental
preferences enable the habitat index to be calculated at each point in time
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and space. Also formulated analytically, the relationships characterizing
catchability to different gears enable the calculation of predicted catches,
which are compared to observed catches to estimate the model param-
eters. In this paper, the problem of local overfishing of adult tuna in the
Gulf of Guinea is addressed through different simulations and discussed.

Introduction

Yellowfin tuna (Thunnus albacares) is a cosmopolitan species whose distri-
bution covers tropical and subtropical waters of the three oceans. In the
Atlantic Ocean, three main fleets fish for this important pelagic resource.
The purse-seine fleet (mainly French and Spanish vessels in the eastern
Atlantic and Venezuelan vessels in the western side of the ocean) catches
all yellowfin sizes in surface waters. The bait-boat fleet catches mainly
young fishes associated with other tropical tunas (skipjack, Katsuwonus
pelamis, and bigeye, Thunnus obesus) in coastal waters; and the longline
fleet catches older yellowfin and bigeye in open sea waters. During recent
years, total yellowfin catches in the Atlantic Ocean were approximately
150,000 t and reached a 175,000 t maximum in 1991 (ICCAT 1997).

Because tuna populations exhibit particular characteristics (i.e., the
presence of a cryptic fraction of the biomass in the population dynamics
[Fonteneau and Soubrier 1996], massive movements and migrations linked
to the environment {Cayré et al. 1988a,b], very heterogeneous fisheries
spread over ocean scale distribution areas, etc.), spatial models are needed
to realistically represent their dynamics (Sibert et al. 1999). Among ex-
ploited species in the Atlantic Ocean, yellowfin tuna is an interesting can-
didate for application of an advection-diffusion-reaction model forced by
the environment. Indeed, yellowfin exhibits important movements at dif-
ferent scales, which make spatial distribution a central problem for man-
agement and conservation (Fonteneau 1998, Maury 1998).

Yellowfin movements seem to be directly linked to a highly variable
environment (Mendelssohn and Roy 1986; Cayré et al. 1988a,b; Fonteneau
and Marcille 1988; Mendelssohn 1991; Marsac 1992): tunas continuously
look for micronectonic aggregates for feeding and their three-dimensional
distribution is limited by physiology to well defined dynamic environmen-
tal ranges.

In this context, environmental characteristics are probably the major
driving force for yellowfin population movements (Cayré 1990). Conse-
quently, environmental forcing on yellowfin distribution, movements, and
catchability must be explicitly incorporated in any realistic high resolution
spatial model. GAM analysis of the relationships linking yellowfin density
to the ocean environment distinguished four main scales of variability in
the Atlantic yellowfin population movements (Maury 1998). At each scale
there is a corresponding movement type, which is associated with the vari-
ability of a given environmental factor (Maury 1998, Maury et al. 2001).
Such scale-dependent relationships are used here to analytically formulate
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a heuristic age-dependent habitat model for yellowfin. This model is used
to force an advection-diffusion-reaction equation, which represents the
space-time population dynamics. Using this model, different ecological as-
sumptions can be explored. In this paper, we particularly focus on local
overfishing of yellowfin populations.

Spatial Modeling of the Population Dynamics
of Yellowfin Tuna

The model developed here includes three coupled components: environ-
ment, population, and fishing effort. The population dynamics component
is modeled with an advection-diffusion-reaction model. Such models have
a long history in ecology (Skellam 1951, Okubo 1980, Holmes et al. 1994)
but their use in fishery science has grown only recently (MacCall 1990,
Bertignac et al. 1998, Sibert et al. 1999). To be realistic in our case, they
must reflect the heterogeneous distribution and movement of the tuna
population linked to environmental heterogeneity. To model this linkage,
we transform the environmental multivariate heterogeneity into the vari-
ability of a single functional parameter, which characterizes the habitat
suitability and depends on physiological stage of the fish. For this pur-
pose, population functional responses to the environment need to be de-
termined. In addition, it is necessary to estimate catchability and its
variations with the ocean environment and the fishery configuration. Then,
given modeled fish density, observed fishing effort, and modeled
catchability, expected catches can be calculated and compared with ob-
served catches to estimate the model parameters (Fig. 1).

Model Formulation
Advection-Diffusion-Reaction of the Population

An advection-diffusion-reaction equation is used to model yellowfin popu-
lation dynamics, spatial distribution, and movements. In such a model,
fish movement has two components: a random one, a diffusion term which
characterizes “dispersive” movements; and a directed one, an advection
term which describes movement directed along the habitat suitability gra-
dient. Both components are included in a partial differential equation (PDE)
continuous in time and space (Okubo 1980, Bertignac et al. 1998, Sibert et
al. 1999). The equation used in the present work includes a density-depen-
dent diffusion term to model possible density-dependent habitat suitabil-
ity (DDHS) (MacCall 1990, Maury 1998, Maury and Gascuel 1999):
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Figure 1. Schematic diagram of the model. Population movements are forced by the
sea surface temperature (S5T), the water salinity, and a forage index (SPI-
6). The catchability is calculated locally as a function of local fishing effort
density and thermocline depth (see text).

With N= N, representing the cohort density at point (x, y) at time and age
tand D= D , the diffusivity coefficient; k and g are constants characteriz-
ing the shape of the density-dependence habitat selection relationship (the
more the fish density increases, the more the habitat suitability decreases);
b=>b_  isthelocal habitat suitability (biotic affinity); and Z = Z , the local
mortallty rate including the natural and the local fishing mortallty rate.
For simplicity, we do not allow the diffusion Dand the natural mortality
coefficient M to vary with the habitat suitability. On the other hand, the
advection term is proportional to the habitat suitability (b) spatial gradient.
Therefore, the modeled fish population moves with respect to the local “suit-
ability” gradient, and swims toward better environmental suitability. Equa-
tion 1 is solved numerically using an “alternating-direction implicit method”
(Pressetal. 1994) ona 1°x 1°square from 30°south to 50°north. A daily time

N
step and closed reflective boundaries are used (Neumann conditions: —aa—x— =0

at boundaries) to model an impassable frontier such as a shore.

Functional Responses to the Environment and Calculation of the
Biotic Affinity, b

Habitat suitability depends on various biotic and abiotic factors. At the
same time, functional responses linking the biotic affinity b to measured
environmental factors are likely to be nonlinear functions (dome-shaped
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Figure 2. Observed GAM relationships between the log of the biotic affinity and the
salinity (first row) and the SST (second row) for young yellowfin (age 1) on
the left and for adult fishes (age 5+) in the middle (redrawn from Maury et
al. 2001). On the right, the modeled relationships (arbitrary units): for
salinity (first row), an age-dependant threshold relationship is used and
for SST (second row), an age-dependent gaussian relationship is retained.

functions, thresholds, etc.). Maury et al. 2001 conducted a multivariate
GAM analysis of the relationships linking yellowfin density to the environ-
ment. Generalized additive models (GAM) are nonparametric statistical
methods which allow one to determine nonlinear relationships between
variables (Hastie and Tibshirani 1990). Among numerous factors, they found
that the sea surface temperature (SST), the salinity (salf), and a tuna forage
index (secondary production index SPI-6, calculated by transporting the
satellite-derived primary production with ocean currents [Maury 1998])
explain the major part of the Atlantic yellowfin tuna distribution variabil-
ity at four different spatiotemporal scales, from a local scale (1°x 1°x 15
days) to the scale of the whole distribution area. All the oceanographic
data used (SST, salinity, thermocline depth, oceanographic currents used
to derive SPIfrom satellite-derived primary production) are simulated data
from the OGCM OPA7.1 (Delecluse et al. 1993).

In the present work, the parametric formulation of relationships link-
ing the habitat suitability to the environment is derived from GAM rela-
tionships obtained by Maury (1998). Four relationships are used to
characterize environmental forcing. Each varies with the age of the fish:
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¢ A threshold relationship for salinity which combines two different
linear relationships (a constraint for low salinity and a limitation for
high levels) (Fig. 2).

¢ A gaussian relationship between the log of the habitat suitability and
the temperature (Fig. 2).

¢ A linear relationship between the log of the biotic affinity and the
tuna forage indices SPI-6.

The generalized additive models we used to assess the shape of the
relationships between yellowfin abundance and environmental factors are
additive representations of the relationships between environmental fac-
tors and habitat suitability. The definition of biotic affinity suggests a trans-
formation to a multiplicative model, which is more in accordance with the
ecological niche theory where a niche is viewed as a hyper-volume with n
environmental dimensions:
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Fish Diffusion

The diffusivity coefficient D is related to the mean distance that a fish
moves during a time step. This distance varies with the swimming speed
of the fish, which depends on their size (Sharp and Dizon 1978). In the
model, a power law with an exponent 6 characterizes the potential
nonlinearity of this relationship (Aleyev 1977):

D =é/° 3)

The two stanzas growth model of Gascuel et al. (1992) is used to con-
vert age into size to calculate diffusion as a function of age (Fig. 3).

Natural Mortality

The yellowfin natural mortality rate used for stock assessment by the ICCAT
(International Commission for the Conservation of Atlantic Tunas) scien-
tific committee is arbitrarily fixed at 0.8 year~! for age O to 1 fish and at 0.6
year™ for older fish. The use of two mortality rates accounts for the fact
that juvenile mortality is likely to be higher than adult mortality. In the
present study, an age-dependent natural mortality curve is used. The use
of a second order polynomial function characterizes a high mortality rate
for young fish, a lower mortality rate for adults, and slight increase for the
oldest fish due to senescence (Fig. 4).

Recruitment

Our advection-diffusion-reaction model only deals with the recruited life
history stages. It does not explicitly represent the recruitment process,
which provides the initial state to the dynamics of each cohort. The spatial
distribution of recruitment is obtained with a simple algorithm. For each
of the seven cohorts modeled, the recruitment levels are calculated by a
monthly VPA, Recruitment in the model is uniformly distributed in the
tropical areas where salinity on the first of January is lower than an arbi-
trarily fixed threshold equal to 0.03 kg kg™. Those low salinity regions,
thought to be nursery areas, are mainly located from the Gulf of Guinea to
Guinea shores and seaward of the Amazon River mouth (Fig. 5).

The population obtained is considered to be prerecruited. To get a
“close to equilibrium” state, the prerecruits are redistributed without mor-
tality for five time steps by using equation 1 with environmental condi-
tions corresponding to the first of January of the year being modeled and
age-0 functional relationships to environmental conditions. The resulting
distribution of age 0 fish is used to initialize simulations.

Parameterization of Purse-Seiner Catchability

The GAM analysis of commercial CPUE conducted by Maury et al. 2001
provides a model of catchability to purse-seiners for the period 1980-1991.
The fishing data used in the present study comes from the ICCAT database
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Figure 3. Yellowfin diffusivity modeled as a function of their age for different g
parameters (arbitrary units).
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Figure 4. Monthly natural mortality rate as a function of yellowfin age (days). Black
line, the natural mortality coefficient used by ICCAT. Grey line, the natu-
ral mortality used in the present work.
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Figure 5.

Model nursery zones where recruitment calculated by VPA is distributed
(see text). Case of 1 January 1980.
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Figure 6.

GAM relationships between the log of the 1980-1991 mean catchability
and the fishing effort for young yellowfin (age 1) in the left panel and for
adult fishes (age 5+) in the middle panel (redrawn from Maury etal. 2001).
In the right, the parametric model used to represent the relationship be-
tween yellowfin catchability to purse-seiners and fishing effort.
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which centralizes statistical data for all tuna fisheries in the whole Atlantic
Ocean. In the present study, only catches by age and effort for the FIS
(France, Ivory Coast, and Senegal) purse-seiners during the period 1980-
1993 were used. Catchability is related to the local fishing effort and to the
depth of the thermocline (approximated by the 20°C isotherm depth). To
characterize the increase in catchability when local fishing effort increases
and the approach to an asymptote (Maury 1998, Maury et al. 2001), we use
a simple nonlinear function (Fig. 6). The increasing part of the curve corre-
sponds to the increase of purse seiner's catchability when the fishing ef-
fort increases (cooperation and spying between vessels). The decreasing
part of the curve observed for adult fishes is interpreted as a local over-
fishing (Maury and Gascuel 2001) and is not included in the model
catchability (r> 1 in equation 4).

The effect of thermocline depth on catchability is considered to be
linear (the deeper the thermocline, the lower the catchability) and it varies
with yellowfin age. Therefore, the catchability model is expressed as fol-
lows:

Hngef
‘uagef e1+of’
Trapy P 220 e = @

In(g+1) =

Where g is the catchability; fis the fishing effort; Z20 is the thermocline
depth; u, , is the parameter characterizing the increase of catchability with
effort; w, a parameter characterizing the saturation of such effect; 7, a shape
parameter (Fig. 6) and p__, the weight of the linear thermocline effect on
catchability.

age’

Parameter Estimation and Model Validation

Model Tuning and Fitting to FIS (France, Ivory Coast, and
Senegal) Purse-Seiner CPUEs

When the six modeled age classes for yellowfin (from age 0 to 5+) are taken
into account, the whole model (functional responses + population dynam-
ics + catchability) has 47 parameters (o, 5o ﬁage, O e Yager Ko /lage, D, 9,1, M gger @,
P o0 (Table 1). Even with the high number of CPUE observations available
for this study (35,725 observations at 1 degree perl5 days resolution), the
identification of such a nonlinear numerical model is a difficult task. Thus,
as a first step, we chose to tune the model parameters “by hand” and to
estimate only the catchability parameters Fageoand and g, , 5 4 anas, UMeTi-
cally at each step. The fit of these six parameters provides statistical cri-
teria characterizing the fit of the model to observed data.

Assuming a lognormal distribution for CPUE, a simple least square fit
to In(CPUE+1)is used to estimate catchability parameters and to guide tun-
ing of the other parameters. Assuming that the observed In(CPUE +1)
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Table 1. Parameter values estimated by calibrating the model.

Preferences Catchability Diffusion
X 0 2.0 Uo s 10.0°6 8 72 nm?days! cm!
Q3 45, 5.2 Hy345, 3.10°6 0 1.05
Bo.12 30°C Bp.1.2-3-4-5+ 0.02

Biass 29.7°C T0-1-2-3-4-5+ 1.0

%0-1-2 2.0 Po.1-2-3-4-5+ 0.1

o3 2.6

Oys5s 2.8

Yo 6.0

] 4.0

> 0.5

Y345+ 0

K 50.0

Apr2345+ 0.1

(k=1...nobservations) are a realization of the random vector [In(CPUE+1)],,
the statistical model is written as follows:

In(CPUE  +1)] =flx ,8[+e k=1..n
l,_}.[ J ;(,j,[

It
k k

fbeing a deterministic function of the variables xand the parameters 6 and
Eﬁj.tare the errors which are assumed to be independent for each observa-
tion.

Since the observed In(CPUE+1) series is highly heteroscedastic (its vari-
ance is linked with the In(CPUF+1)’s value), we use a weighted least square
criterion (SCE) which gives to each observation an importance proportional
to the inverse of the fortnightly variance o7,:

In(CPUE, +1) - In(CPUE, + 1)]2

2
qz

SCE=73%
i=1 o

The least square estimator corresponds to the maximum likelihood esti-
mate of g if measurement errors are independent and normally distributed
(Bard 1974). If the model is correct, weighted reduced residuals

f(x,,0) - [In(CPUE, +1)|
e = -

k

obs.

should behave as independent random vari-

O'O'qz
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ables N(0,1). Assuming independent errors, the focus is now on the nor-
mality of residuals and their homoscedasticity. A simple graphical exami-
nation of the residuals (Fig. 7) shows that, apart from diagonal structures
characterizing positive distributions, residuals form a horizontal band cen-
tered around zero.

However, normality of residuals is clearly not observed and their dis-
tribution is very asymmetric. Consequently, the simple minimum least
square criteria we used is not consistent with the maximum likelihood
estimator of the model given the data.

Model Validation and Consistency of the Outputs

The nonlinear features of our model make parameter estimation a complex
task. Indeed, different parameter sets may give very close values to the
objective function. Thus, even with many observations, simple tuning is
problematic and results have to be evaluated for their ecological plausibil-
ity. On the other hand, it is important to use independent information to
validate the model. For this, data from the longline fishery were used for
validation. The longline fishery characteristics (selectivity, spatial distri-
bution, catchability trends, etc.) are very different from the purse seine
fishery data used to fit the model. The global consistency of the model
outputs is analyzed by comparing the predicted monthly distribution of
adult (age 5+) yellowfin (Fig. 8C) with the mean spatial distribution of
longliner catches calculated by averaging the monthly longliners catches
over the period 1956-1993 (Fig. 8A). Because longliners mainly catch fish
aged 4-5 years and older, such a comparison is only applicable to charac-
terize the model’s ability to represent the spatial distribution and move-
ments of the adult population.

Even with such a rough validation method (we compare mean catch
distribution with the model predictions of the fish population spatial dis-
tribution for a given year), the model results seem to be very consistent
and represent fairly well the large-scale spatial distribution and movements
of the adult yellowfin population (age 4-5+). Results concerning young fishes
(age 0-1) seem consistent also with scientific knowledge concerning spatial
distribution and movements of juvenile yellowfin (Bard and Hervé 1994).
The distribution of 2-3 year-old yellowfin is more questionable and re-
quires further investigation concerning the parameterization of seasonal
catchability (for details, see Maury 1998).

Simulations Analysis: Local Overfishing

of Yellowfin

Strong local fishing pressure is likely to induce a significant local decrease
of both resource biomass and fishing yields. That is what we call “local

overfishing” (Maury and Gascuel 2001). In general, local overfishing is well
documented for tuna fisheries (Fonteneau and Soubrier 1996, Fonteneau
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Figure 7. Reduced residuals versus estimated values of the response variable .

et al. 1997). Concerning the Atlantic yellowfin tuna, a spatial VPA analysis
indicated that very high local mortality rates could be exerted on repro-
ductively active adult fish in the eastern Atlantic ocean (F= 0.8 per quarter
during the first quarter of the year) (Maury 1998). Such high mortality rates
are likely to induce important local depletions of adult fish. The compari-
son of two simulations of the spatial distribution of age 5+ fish clearly
demonstrates the effect of local overfishing. The first simulation accounts
for the observed FIS purse-seiner catches (Fig. 8B). The second simulates a
virgin population without fishing pressure (Fig. 8C). For age 0-3 fish, fish
density is very high compared to the realized catches and the effects of
local overfishing do not appear in simulations. For older fish, important
local biomass depletions appear in the simulated population when observed
FIS purse-seiner catches are taken into account (Fig. 8B). At different peri-
ods during the year, one can observe a “wound” and “healing” pattern as
producted with theoretical simulations by Maury and Gascuel 2001. The
pattern is less clear for age 4 fish than for age 5+ fish. The highest deple-
tions of fish occur in February, March, and April, off the Gulf of Guinea. In
May, the adult population “heals” before it experiences significant “wounds”
again after July in the Gulf of Guinea. At that time, fish are sufficiently
concentrated off Senegal to remain numerous despite the significant catches.
From July to the end of the year, there are almost no 5+ fish in the Gulf of
Guinea. Such depletion of old fish in the Gulf of Guinea could explain the
low longline catches observed in the area from August to November (Fig.
8A).

Only the FIS purse-seiner catches (more than 40% of the total yellowfin
catches) are included in the simulations presented here. If all the other
fishing fleets are taken into account (and particularly the Spanish purse-
seiner fleet with a catch level of the same order of magnitude as FIS), local
overfishing of old fish would have been much more significant, perhaps
too significant to be considered plausible. Consequently, four alternative
hypotheses must be studied in future work:
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Figure 8.

On the left (A), spatial distribution of cumulative longliner catches over
the 1956-1993 period. Middle (B) and right (C) columns, simulations of
age 5+ yellowfin distribution in 1991. Two simulations are compared: one
taking into account observed FIS purse-seiner catches (in the middle, B)
and another without (on the right, C).
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¢ Local overfishing of old fish is actually extremely strong.

e Our model does not sufficiently concentrate the population of old
fish in the Guinea Gulf to explain the very high catches which are
observed.

¢ The yellowfin population “viscosity” is too high in the model and is
responsible for an insufficiently strong “healing” of old fish.

* The total number of fish derived from VPA recruitment is not suffi-
cient to explain the high local catches. If this is the case, VPA may
underestimate total fish abundance, for instance, by ignoring a po-
tentially important cryptic biomass.

At this point, we are unable to distinguish which of these possibilities is
most likely. Nevertheless, our work suggests a potential for strong
seasonal local overfishing of old yellowfin, even if the “wound” and
“healing” phenomenon is exaggerated by our advection-diffusion
simulation. Such strong local overfishing may have significant impacts
on the utility of CPUE as an abundance index (Maury and Gascuel 2001).
Moreover, an important reduction in local biomass could have a long-term
impact on the yellowfin population genetic structure. For example, strong
local fishing pressure on the main reproductive grounds could select arti-
ficially for fish reproducing in marginal areas such as Cabo Verde (Santa
Rita Vieira 1991).

To address this question, improvement of our ecological knowledge
concerning yellowfin tunas is needed. By allowing theoretical ecological
assumptions to be studied, our model could help make advances in this
direction.

Conclusions

The advection-diffusion-reaction model of the Atlantic yellowfin tuna gives
satisfactory results. Fish population distribution and movements seem to
be well characterized, at least at the large scale for ages 0-1 and ages 4-5+.
The model is devoted to spatialized assessment, in particular to a better
understanding of the interaction between population dynamics and the
dynamics of fishing fleets. In addition, since it is spatially explicit, our
modeling study allows the exploration of ecological hypotheses concern-
ing yellowfin movements and behavior given the environment. In this pa-
per, local overfishing of yellowfin is addressed through different
simulations. It appears that the phenomenon is extremely marked in the
model for old fish in the eastern Atlantic. Other simulations have been
performed which study the homing of adults to the Gulf of Guinea repro-
ductive grounds and analyze the impact of the 1983-1984 environmental
anomaly on fish spatial distribution and catches (Maury 1998).
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The model presented here is still preliminary. Nevertheless, some con-
clusions can already be drawn. Despite many limitations, commercial fish-
eries data are often the only means of accurately estimating tuna distribution
on a large scale. For this reason, it is necessary to identify technical and
environmental factors involved in local catchability. From this perspec-
tive, the Atlantic Ocean has the advantage of being a small basin exploited
by rather homogeneous fleets distributed over wide areas covering vari-
ous biotopes. Nonlinear analyses which take into account the antagonistic
features of environmental influences on tuna distribution are needed. GAM
models would be very useful for such nonlinear analysis. Different im-
provements of the model are currently under way:

« Integration of a diffusivity coefficient varying with environment fa-
vorability (Mullen 1989, Bertignac et al. 1998).

¢ Further study of the salinity effect into the model; it seems to be too
strong in some regions and too weak in others.

¢ The secondary production index used here (SPI-6 index) is a mean
index which is currently being improved by developing a new “tuna
forage” modeling effort in collaboration with scientists from the
LODyC (Laboratoire d’'Océanographie Dynamique et de Climatologie,
Paris VI). This model is based on a coupled bio-geochemical model
as described by Lehodey et al. (1998).

¢ The model must consider catches from all fishing fleets in the Atlan-
tic Ocean and not only from FIS purse-seiners.

Finally, the model tuning presented here is extremely rough. A rigor-
ous estimation of all parameters (including recruitment) with a likelihood
approach should be attempted. Such a parameter estimation procedure
could simultaneously incorporate data from both fishery and tagging.
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