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ABSTRACT 
Two types of model, equation-based models (EBMs) and agent-
based models (ABMs) are now widely used in modeling 
ecological complex systems and seem not to be reconciled. While 
ABMs can help in exploring and explaining the local causes of 
global phenomena, EBMs are useful for predicting their long-term 
evolution without having to explore them through simulated 
experiments. In this paper, we show that it is possible to use an 
ABM to infer an EBM. Base on the case study, a dynamics of two 
competing species, we illustrate our methodology through the 
presentation of two models: an ABM and an EBM. We also show 
that the two models give the same results on coexistence of the 
two competing species. 

Categories and Subject Descriptors 
I.6.0 [Simulation and Modeling]: General  

General Terms 
Design, Theory. 

Keywords 
Agent-Based Models, Equation-Based Models, Population 
Dynamics, Complex Systems. 

1. INTRODUCTION 
In modeling ecological complex systems, two widely accepted 
models coexist: agent-based models (ABMs) and equation-based 
models (EBMs). Each of these two models has its own strengths 
and weakness ([6], [12]) depending on the purpose of study. 
EBMs, on one hand, play as compartment models and operate on 
global laws generally, defined by the equations that apply to all 
members of the compartments. For example, in early ecological 
models, the state variables (compartments) in the models of 
population dynamics was often chosen as the total population 
densities and the model was a set of nonlinear, coupled, ordinary 
differential equations or discrete equations [8]. In such classical 
models, the agents (individuals) are assumed to be homogenous 

and well mixed: they are all treated as identical. The benefit of 
these simple EBMs is that they can be handled analytically. 
However, given this previous assumption, they cannot be very 
realistic. In recent years, some “more realistic” EBMs have been 
developed, which are aimed at taking different categories of 
agents into account. These EBMs involve a large number of 
variables and are in general difficult to handle analytically. 
However, in most cases, it is possible to consider different time 
scales: a fast one for processes operating at the agent level; and a 
slow one at the levels of the population and the community. It is 
then possible to use the “variable aggregation” method, deriving a 
reduced model which governs a few global variables at the slow 
time scale while taking into account all the processes going on at 
the agent level [9]. One can also find in [9] some interesting 
examples of EBMs in which different categories of agents were 
considered, and for which aggregation methods were used 
successfully to proceed analysis of the EBMs. 
 
ABMs, on the other hand, are natural representations of real 
ecological systems [10]. The obvious reason for using ABMs to 
model a real ecological system is that agents are building blocks 
of ecological systems. The properties and behaviors of agents 
determine the properties of the systems that the agents compose. 
In ecological systems, agents are not identical and do not stay the 
same all their life: all that an agent does-grow, develop, acquire 
resources, reproduce, interact - depends on its internal and 
external environments and it modifies both with its actions. 
ABMs are then particularly adapted to represent and understand 
the emergence of global dynamics among heterogeneous agents 
sharing common environmental constraints. In comparison to 
EBMs, ABMs are much more realistic with respect to the data 
available in the field and thus are easier to test in scientific 
process. But being closer to reality usually means having to 
define, calibrate and determine much more parameter values than 
in EBMs and analysis problems then arise.  
 
To summarize, both ABMs and EBMs address, with its own point 
of view, the same problems in ecological complex systems. Each 
of these modeling approaches answers different, yet 



complementary, questions. While ABMs can help in exploring 
and explaining the local causes of global phenomena, EBMs are 
useful for predicting their long-term evolution without having to 
explore them through simulated experiments.   
 
Therefore, it is primary to couple these two modeling approaches 
when studying ecological complex systems. There are many 
alternative ways for coupling these two approaches. For instance, 
the process can be completely top-down: by distributing global 
parameters of a given EBM to obtain local parameters of a related 
ABM. We refer to our previous contribution [12] for this way. It 
can also be bottom-up, by extracting local parameters of a given 
ABM to obtain global parameters of inferred EBM. Several 
studies seem to be related to this way can be found in ([15], [16]). 
In these contributions, the authors tried to abstract ABMs by 
introducing mathematical formalism [15] as well as moment 
approximations of ABMs [16]. 
 
In this paper, the novel issue we explore is closed to the “bottom-
up” way.  Based on the case study, a dynamics of two competing 
species, we represent how to infer an EBM from a given ABM. 
Unlike in the previous studies ([15], [16]), we extract local 
parameters to obtain global ones. For instance, we show that an 
EBM can be built from a given ABM by considering ABM as a 
virtual laboratory to test and to see effects of parameters. Once we 
observe the effects of parameters, we choose parameters to build 
EBMs. We also show that the two models give the same results 
on coexistence of the two competing species. 
 
The paper is organized as follows. In section 2, we present the 
case study -the dynamics of two competing species. The ABM 
implemented for the case study is presented in section 3. We then 
present in section 4 how we extract global parameters in order to 
build an EBM. We present the EBM and its result in section 5, we 
also comparison result of the inferred EBM and the ABM. Section 
6 is dedicated for conclusion and perspectives.  
 

2. CASE STUDY: COMPETITION 
DYNAMICS 
We consider a system of two species competing for a common 
resource. We are interested in pre-emptive competition, i.e., one 
of the two species will end up extinction if it has smaller number 
of individuals at the beginning. There are a lot of such complex 
systems in the reality where two species coexist. The aim is to 
figure out under which conditions two species coexist in the pre-
emption dynamics. 
In the next sections, we shall present two models which can 
explain the coexistence of two species in pre-emption dynamics. 
To do that, we first present an ABM for dynamics of two 
competing species. We then test the ABM to figure out 
parameters and conditions under which two species coexist. We 
based on these results to build an EBM which has provable result 
on coexistence of two competing species. 

3. AGENT-BASED MODEL 
In this section, we propose a description following the ODD 
protocol [1] of our ABM. 
 

3.1 Overview 
3.1.1 Purpose 
The purpose of the model is to study the dynamic of two species 
when these ones are in competition and when the total quantity of 
food existing in the environment is stable. 
 

3.1.2 State variables and scales 
In our model, each individual of each species is represented as an 
“agent” that is located in a continuous environment. The food 
patches are also modeled as agents.  
 

3.1.2.1 Environment 
We chose to model the environment as a 2D plane of a specific 
size (300 × 300). The agents can not go out this environment.  
 

3.1.2.2 Food Patch Agent (FPA) 
Each food patch is represented by an agent (FPA). A FPA has for 
geometry a circle of which the area depends of the quantity of 
food contained in the food patch. The attributes of FPAs are 
described in Table 1.  
 

3.1.2.3 Species Individual Agent (SIA) 
Each species individual is represented by an agent (SIA) that has 
a point for geometry. The attributes of these agents are described 
in Table 2.  
 

Table 1. Attributes of the food patch agents 

Attribute name Brief description Value 

Location X and Y coordinates of the food patch 
(its center) Random 

Food 
Production 

quantity of food produced at each 
simulation step (in the food patch) 30 

Food 
current quantity of food contained in 
the food patch (when null, the agent 
dies) 

- 

Max food maximal quantity of food in a food 
patch 100 

FoodArea 
coefficient 

coefficient that links the food quantity 
to the food patch area 5 

Area area of the food patch - 

 
3.1.3 Process Overview and Scheduling  
At each simulation step, the SIAs act, then the FPAs evolve. 
The evolution of the FPAs is very simple (Figure 1): if there is no 
more food in the food patch, the agent dies, otherwise, the 
quantity of food evolves according to the food production 
attribute. Then the new area of the food patch is computed. When 
a FPA dies, a new one is created (at a random location). This 



mechanism allows to keep a stable quantity of food in the 
environment. 
 

 
Figure 1. Food patch agent evolution (at each simulation step) 
 
Concerning the SIAs, their general behavior consists in trying to 
survive (Figure 2). They have the capacity to move, to eat and to 
reproduce. They gain energy by eating food (in a food patch) and 
lose it, when fighting on a patch with member of the other 
species. When a SIA finds a food patch, it remains in this one as 
long as the proportion of agents of the same species is high 
enough. The choice of a new food patch is done randomly 
between the food patch perceived by the agent. 
 

Table 2. Attributes of the species individual agents 

Attribute name Brief description Value 
Location X and Y coordinates of the agent - 
Displacement 
range 

maximal distance of displacement per 
step 100 

Energy quantity of energy (when null, the 
agent dies) - 

Max energy maximum quantity of energy  30 
Energy 
consumption 

quantity of energy consumed at each 
simulation step 2 

Extra 
competition 
coefficient 

coefficient of energy lost per 
simulation step due to  competition 
with individuals of the other species 

10 

Energy 
reproduction 

energy lost during the reproduction 
(the energy of the offspring will be 
equal to the energy reproduction / 
number of offspring) 

10 

Reproduction 
probability 

probability that an individual 
reproduces at each simulation step 0.01 

Reproduction 
Time 

minimal number of steps between two 
reproductions 20 

Max offspring maximal number of offspring that an 
individual can have when reproducing 3 

Max 
consumption 

maximal quantity of food that an 
individual agent can eat at each 
simulation step 

4 

Tolerance for 
other species 

proportion of individual agents of 
other species from which the agent is 
going to leave a food patch. Defined 
the strategy of the agent 

0.3 

 
 

3.2 Design concepts 
3.2.1 Emergence 
In this model, the emergent aspect concerns the population 
dynamics resulting from the interaction between the two species 

of SIAs and the FPAs; in particular the creation of groups of 
individual of the same species in a same food patch. It is 
influenced by different parameters: the extra competition 
coefficient, the tolerance for others, the food production, etc. 
 

3.2.2 Fitness  
Each individual does not have an explicit fitness function to 
optimise. However, the implicit fitness of a species concerns its 
survival. Thus the more agents of this species, the higher the 
fitness for this species will be.   
 

3.2.3 Adaptation  
The adaptive trait of the SIAs comes from their capacity to not 
tolerate a high proportion of agent of other species. This property 
allows them to avoid food patches with too much competition. 
 

 
Figure 2. Species individual agent behaviour (at each 
simulation step) 
 

3.2.4 Interaction  
There are two kinds of interaction between agents: the interaction 
between the SIAs and the FPAs (the SIAs eat food contains in 
FPA) and the interaction between SIAs of different species 
(competition and non tolerance to agents of other species).  
 

3.2.5 Sensing  
The SIAs know the number of agents (of the same species and of 
other species) that share the same food patch as them. They can 



detect food patches which geometry overlaps their seeing range 
(displacement range).  
 

3.2.6 Stochasticity  
The stochasticity is involved in the repartition of the food patches 
in the environment. It is also involved in the initial food contained 
in the food patches. At last, it is involved in the choice of a food 
patch by the SIA: these ones randomly choose a food patch 
among the perceived ones.   
 

3.2.7 Collectives  
SIAs of the same species sharing a same food patch formed an 
implicit group. Higher the number of agents in this group, the 
stronger will be its defense against SIAs from other species, but 
more quickly the food contained in the food patch will be 
consumed.  
 

3.2.8 Observation  
Various observations are available in this model from an 
omniscient perspective. However, as we study the population 
dynamics, a first observation is the evolution of the number of 
agents of the two species. The repartition of the species in the 
different food patches is as well an interesting observation. 
 

3.3 Details 
3.3.1 Initialisation 
At the initialisation, the FPAs and the SIAs are randomly placed 
in the environment. The quantity of food in each food patch is 
randomly drawn between [1, max food]. In the way the quantity 
of energy of each SIA is randomly drawn between [1, max 
energy]. The initial number of SIAs of each species is 50. The 
number of FPAs (which is constant) is equals to 10. 
 

3.3.2 Simulation implementation 
Since few years, many simulation platforms dedicated to the 
implementation of agent-based models have been developed. We 
can cite as examples GAMA [2], Mason [3], Repast [4], NetLogo 
[5]. In this work, we chose to develop our simulation with the 
GAMA platform. This platform provides a complete modelling 
and simulation environment for building spatially explicit multi-
agent simulations. In particular, it integrates powerful spatial 
analysis tools coming from Geographic Information Systems 
(GIS) allowing to give agents a geometry and spatial analysis 
capacities. 
 

3.3.3 Test the model 
Figure 3 shows examples of results concerning the distribution of 
individuals at several simulation steps. This figure shows that at 
step 1, the individuals are randomly located in the food patches; 
then at step 3, groups of individuals of the same species are 
beginning to form; at last, at step 20, these groups are uniform 
(only composed of individuals of the same species). 
 

 
a) 

 
b) 

 
c) 

Figure 3. Distribution of individuals in several simulation 
steps. In red, Species A, in yellow Species B. a) at step 1 b) at 
step 3, c) at step 20 
 
Figure 4 gives the simulation results obtained for the population 
evolution during the first 20 steps. In order to build this graphic, 
we carried out 30 simulations and we computed the means. The 
goal was to limit the stochastic bias of the model. First, one can 
observe that the two populations similarly evolve. The population 
is stable during the first three steps, and then it decreases until 
reaching an equilibrium point.  



 

 
Figure 4. Evolution of the number of individuals of each 
species (mean of 30 simulations). 
 

3.3.4  Remarks 
We pay our attention on the key result concerning to the 
parameter "tolerance for other species". Actually, this parameter, 
which defines the strategy used by the SIs to survive, has a deep 
impact on the generation of SIs aggressive/defensive groups. 
When the value of this parameter is high enough we can observe 
the formation of groups composed of SIs of the same species. 
These groups can allow to the IC to survive by combining their 
strength. In this context, we test two values for "tolerance for 
other species" parameters of the IC individual: 0 and 0.3. Figure 
\ref{ch4fig45} shows examples of simulation results obtained 
with these two parameter values: figure \ref{ch4fig45} a) 
corresponding to the case where the IC individuals do not have a 
specific strategy: they randomly choose a food patch and then do 
not move until this patch does not contain food anymore. One can 
see that IC will go extinct. In figure \ref{ch4fig45} b), the IC 
individuals try to avoid the SC individuals by searching food 
patches where there are not too many SC individuals. With this 
second parameter value, the IC individuals tend to form big 
groups that "invade" patches without SC individuals. These 
tactics of IC individuals lead to distribution of IC individuals on 
patches. To the first tactics which corresponds to the case where 
parameter "tolerance for other species" of the IC individual equals 
to 0, IC individuals distribute randomly on food patches. To the 
second tactics which corresponds to the case where parameter 
"tolerance for other species" of the IC individual equals to 0.3, IC 
individuals are likely to distribute on food patches where there are 
few SC individuals.  

4. METHODOLOGY 
EBMs are compartment models which operate on global laws 
generally, defined by the equations that apply to all members of 
the compartments. In such models, the individuals are assumed to 
be homogenous and well mixed: they are all treated as identical. 
Moreover, EBMs do not have “real” environment which allows 
individuals eat, move, reproduce and interact with others 
individuals. Therefore, our methodology basically is to 

abstract/simplify local parameters and to translate them into 
equations of compartments.   
 

4.1 First step: simplification and abstraction 
environment and translate it into equations. 
 
The first step of our methodology is to simplify the environment, 
i.e. to get rid of many local properties of the environment such as 
its topology, its dynamics, its nature and so on. Several questions 
are raised in this step: 
 

- the homogeneity of the environment 
- its discretization, i.e. patchy environment 
- the perception it can offer to species (for instance, are 

there any refuge for species?) and so on   
 

4.2 Second step: analysis and abstract local 
behaviors of agents and translate them into 
equations    
 
The second step is to analyze, one by one, the local behaviors of 
the agents. We then abstract and translate them into global 
parameters in equations. Each of these “abstractions” is tested and 
validated with respect to the results obtained with the simulations 
of the IBM.  
 
Each step consists in: 
- Building several models related to the global parameters we 

choose 
- Exploring their dynamics and “validate” each of them with 

respect to the IBM simulation results 
- Choosing the most relevant value of the parameters 

 
5. INSTANTIATION ON THE CASE 
STUDY 
In this section, we show how global parameters can be extracted 
from the local parameters of the IBM. An EBM consists of 
compartments which are usually chosen as population densities in 
ecology systems. We, therefore, consider compartments in our 
EBM as population densities. Others factors and parameters have 
effects on these parameters. These effects, of course, are 
represented by parameters in an evolution function of the 
compartment-population densities. We now investigate, by using 
the methodology presented above, how to represent these factors 
and parameters and such an evolution function in our EBM. 
 

5.1 Simplification and abstraction 
environment and translate it into equations 
The first factor is environment. The environment in the IBM is 
very complex. It, however, should be simple in our EBM. 
According to the above remarks, we consider the environment in 
our EBM as a simplest case of patchy environment, i.e. two 
patches environment. This leads to the fact that there are four 
compartments of the two species in two patches: species 1 
(species 2, respectively) on patch 1, species 1 (species 2, 
respectively) on patch 2.   



 

5.2 Analysis and abstraction local behaviors 
of individuals and translate them into 
equations   
5.2.1 Reproduction probability 
This factor represents the probability that an individual 
reproduces after a certain number of simulation steps. It means 
that the population densities increase when values of this factor 
increases. The corresponding global parameter is growth rate 
which has positive effect on evolution of population densities. 
 
5.2.2 Competition parameters 
In the IBM, there are two kinds of competition: the intra-
competition which represents the competition among individuals 
of the same species, and the extra-competition which represents 
the competition among individuals of different species. To 
represent this factor in EBM, the classic Lotka-Volterra 
competition model \cite{M89} seems to be a good candidate. We 
note that, in the IBM,, individuals compete with others for food. 
The competition, therefore, takes place on the patches.  
 
Following this analysis, we propose therefore to use the classic 
Lotka-Volterra competition model to represent the evolution of 
population densities on both patches.  
 
5.2.3 Movement/migration 
Another important factor is the movement of individuals. In the 
IBM, SC individuals move randomly in the environment to search 
for food patches. It is, therefore, assumed that SC always stay on 
some food patches. IC individuals have two kinds of movement: 
the first one is a random move and the second one is a SC density 
dependent move, i.e. the IC individuals are more likely to move to 
patches where there are few SC individuals. These tactics of 
movement, on the fast time scale, lead to the distribution of IC on 
the patches (\cite{ABPSN08a}, \cite{ABPSS08b}, appendix 
\ref{appendix0}). Being in mind that we do not have a real 
environment in our EBM. Therefore, we represent the number of 
immigrations and emigrations on each patch by using a function 
of density, i.e. a migration function. This function must increase 
when the other species population density increase. To simplify, 
we choose a homogenous linear function of population density, 
i.e. a straight line.  
 
5.2.4 Time scales 
The important point is that in the IBM, all the agent behaviors are 
not triggered every simulation step. Indeed, while the agents 
move at each step, they reproduce and interact only at specific 
simulation steps. Local dynamics (reproduction, interaction), 
therefore, seems to act on slow time scale than movement process. 
We represent the two time scale, in our EBM, by using small 
parameter ε  which is the ratio between two time scales. 
 
In the next section, we use these global parameters to build our 
EBM. We also analysis the EBM and compare its results with the 
results of the ABM. 
 

6. EQUATION-BASED MODEL 
6.1 Complete model 
We consider two competing species in two patch environment. 
Based on the above remarks, we further assume that two time 
scales are involved in the dynamics: a fast one corresponds to 
dispersal between patches and a slow for local population 
dynamics. According to these assumptions, the complete model 
reads as follows: 
 

( ) ( )( )

( ) ( )( )

( ) ( )( )

( ) ( )( )
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⎪
⎪
⎪ ⎛ ⎞

− −⎜ ⎟⎪
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(1) 

 

where 1 jn  is the density of species A living on patch j  , 2 jn  is 

the density of species B living on patch j  1,2.j = . 'r s  and 
'K s  represent the growth rates and carrying capacities of 

species. Parameters 12 ja  and 21ja represent the competition 
coefficients showing the negative effect of species A on species B 
and species B on species A on patch , 1, 2j j = , respectively.  jα  

is the dispersal rate of the species A leaving patch , 1,2j j = , and 

jβ  is the dispersal rate of the species B leaving patch , 1,2j j = . 
ε  is the ratio between two time scales. The term with ε  
corresponds to the slow time scale-birth death and competition 
processes; and the term without ε  corresponds to the fast time 
scale-migration process. In this model, individuals of a given 
species use the other species density-dependent migration in the 
sense that if there are many individuals of a given species on a 
given patch then individuals of the other species are more likely 
to leave that patch rapidly. We note that we are interested in pre-
emptive competition locally on each patch and the conditions 
ensure for this case are given by 
 

12 2 1 21 1 2/ 1, / 1, 1, 2.j j j j j ja K K a K K j> > =  (2) 

 
We are going to use aggregation of variables methods in order to 
derive a reduced model [9]. The first step is to look for the 
existence of a stable and fast equilibrium.  



6.2 Fast Equilibrium 
 
Fast equilibrium is the solution of the following system: 
 

( )( )1 11 21 2 1 11 2 21 ,n n n n n nα α= − −        

( )( )1 11 21 2 1 11 2 21 ,n n n n n nβ β= − −  

1 11 12 2 21 22,n n n n n n= + = +  

 
(3) 

 

 
It is easy to obtain that there are two stable and fast equilibria as  
follows: 

 

6.3  Aggregated model 
Substitution of the fast equilibria into the complete model (1) 
leads to two reduced models as follows: 
Model 1:  is the model which corresponds to the equilibrium 

* * * *
11 1 12 21 22 2, 0; 0,n n n n n n= = = = . 

 

1 1
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22
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(5) 

 
Model 2:  is the model which corresponds to the equilibrium 

* * * *
11 12 1 21 2 220, ; , 0n n n n n n= = = = . 

 

1 1
12 1

12

2 2
21 2

21

1

1
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dt K
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dt K
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= −⎪ ⎜ ⎟

⎪ ⎝ ⎠
⎨

⎛ ⎞⎪ = −⎜ ⎟⎪
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(6) 

 
The two aggregated models are two logistic models for two 
species on two patches. Model 1 corresponds to the case when all 
individuals of species A are located on patch 1 while all 
individuals of species B are located on patch 2 and Model 2 
corresponds vice versa. This means that two species coexist 
globally in the patchy environment and each species has its own 
living patch. One can see that this result is exactly the same as the 
result in the ABM. Figure 5 shows the case of model 2 when all 
individuals of species B are located on patch 1 while all 
individuals of species A are located on patch 2. 
 

 
Figure 5.  Two species coexist on two patches in model 2.  

 

7. CONCLUSION AND PERSPECTIVES 
In this paper, we proposed a methodology to infer an EBM from a 
given ABM. This methodology was illustrated through a case 
study concerning the competition of two species. Our idea is to 
consider as a virtual laboratory to test and to see effects of 
parameters and then to choose parameters to build the EBM. We 
also showed that the coexistence result of the obtained EBM is the 
same as that of the ABM. We conclude that these two techniques 
do not compete with each other: they instead tend to be ideally 
complementary with respect to the set of questions a modeler 
would want a model to answer. In this paper, we consider a 
simple case study of only two competing species. It would be 
interesting to consider more complex case studies of more than 
two competing species. It would be also interesting to couple 
these two types of model in modeling others ecological complex 
systems such as prey-predator systems, host-parasitoid systems 
and especially in epidemiology systems where it is impossible for 
one to test in order to get empirical observations and thus it is 
useful to use ABMs as a virtual laboratory. We would like to 
present these contributions in the near future. 
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