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“As a matter of fact all epidemiology, concerned as it is with variation of disease from time to time or from place to place,

must be considered mathematically (.. .), if it is to be considered scientifically at all. (.. .) And the mathematical method of

treatment is really nothing but the application of careful reasoning to the problems at hand.”

221 INTRODUCTION

The concealed and apparently unpredictable nature of infec-
tious diseases has been a source of fear and superstition since
the first ages of human civilization (see Chapters 31 and 40).
The worldwide panic following the emergence of SARS and
avian flu in Southeast Asia are recent examples that our feeling
of dread increases with our ignorance of the disease [48]. One
of the primary aims of epidemic modeling is helping to under-
stand the spread of diseases in host populations, both in time
and space. Indeed, the processes of systematically clarifying
inherent model assumptions, interpreting its variables, and esti-
mating parameters are invaluable in uncovering precisely the
mechanisms giving rise to the observed patterns. The very first
epidemiological model was formulated by Daniel Bernoulli in
1760 [11] with the aim of evaluating the impact of variolation
on human life expectancy. However, there was a hiatus in epi-
demiological modeling until the beginning of the twentieth
century! with the pioneering work of Hamer [32] and Ross
[54] on measles and malaria, respectively. The past century has

'During the nineteenth century research activity on infectious diseases was
dominated by the clinical studies at the Pasteur school.
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—Sir Ronald Ross MDD, 1911

witnessed the rapid emergence and development of a substan-
tial theory of epidemics. In 1927, Kermack and McKendrick
[41] derived the celebrated threshold theorem, which is one of
the key results in epidemiology. It predicts — depending on the
transmission potential of the infection — the critical fraction of
susceptibles in the population that must be exceeded if an epi-
demic is to occur. This was followed by the classic work of
Bartlett [9], who examined models and data to expose the fac-
tors that determine disease persistence in large populations.
Arguably, the first landmark book on mathematical modeling
of epidemiological systems was published by Bailey [8] which
led in part to the recognition of the importance of modeling
in public health decision making [7]. Given the diversity of
infectious diseases studied since the middle of the 1950s, an
impressive variety of epidemiological models have been devel-
oped. A comprehensive review of them would be both beyond
the scope of the present chapter and of limited interest. Instead,
here we introduce the reader to the most important notions of
epidemic modeling based on the presentation of the classic
models.

After presenting general notions of mathematical model-
ing (Section 22.2) and the nature of epidemiological data
available to the modeler (Section 22.3), we detail the very
basic SIR epidemiological model (Section 22.5). We explain
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the assumptions made about the biological processes and
their consequences from an epidemiological perspective. We
then review more complex models that allow the study of
endemic diseases (Section 22.6) and recurrent epidemics
(Section 22.7). Section 22.8 then focuses on the analysis of
epidemiological data and the estimation of model parame-
ters. The chapter ends with some examples of practical uses
of models for the development of public health policies
(Section 22.9). Technical aspects are treated in boxes.

22.2 THE PHILOSOPHY OF MATHEMATICAL
MODELING

Epidemiology is essentially a population biology discipline con-
cerned with public health. As such, epidemiology is thus heav-
ily influenced by mathematical theory. The reason is that most
phenomena observed at a population level are often complex
and difficult to deduce from the characteristics of an isolated
individual. For example, the prevalence of a disease in a popu-
lation is only indirectly connected to the course of disease in an
individual. In this context, the use of mathematical models aims
to unearth processes from a large-scale perspective.

2221 Model Complexity

A model is a caricature of reality as represented by empirical
data. Models help us to understand reality because they sim-
plify it. Consequently, all models are by definition “wrong.”
There are, however, models which more closely capture
essential features of reality than others — we usually refer to
these as better fitting data. There is a temptation to assume
that only models that are incredibly detailed (and hence “real-
istic”) can be useful — this is often not the case, however.
A model should only be as complex as needed, depending on
the questions of interest. This philosophy is referred to as
Occam’s razor or the principle of parsimony and can be
summarized as the simplest explanation is the best.

We now proceed to introduce some of the modeler’s
vocabulary. A state variable is a changing quantity that char-
acterizes the state of the system. For example, the number of
infectives and susceptibles in the population are state variables
of an epidemiological system. The modeler is interested in
the behavior of the state variables. A parameter is a user-
defined quantity that influences the value of the state vari-
ables. For example, the average duration an individual stays
infectious is a parameter of an epidemiological system.The fit
of a model to a data set is basically influenced by two aspects
[35]. The first is related to the complexity of the model as
given by the number of variables and parameters.
Complicated models will usually give better fits to data than
simpler models. However, simpler models are more transpar-
ent and often provide insight that is more valuable and influ-
ential in guiding thought. The choice of the optimal level of
complexity obeys a trade-off between bias and variance [14]
(see Box 22.1).The second aspect is related to the exact rela-
tionship between the parameters. For example, should the

BOX 22.1 - HOW COMPLEX SHOULD A MODEL
BE?

With the current power of desktop microcomputers it
is tempting to build very complex models in order to
fit the data the most. However, fitting the most com-
plex model is not necessary always the best solution.
Indeed, the more complex a model, the more difficult
the interpretation of its outputs. Also, if a model is too
complex, the modeler may not have sufficient infor-
mation in the data to distinguish between the possi-
ble parameter values of the model. As said in the
main text, the best-sized model depends on the pur-
pose of the model. Given this objective, there exist
quantitative methods for determining the optimal size
of a model. These approaches are based on a trade-
off between prediction error due to approximation
(i.e., bias) which decreases as model complexity
increases, and prediction error due to estimation (i.e.,
variance) which increases as model complexity
increases as shown in the figure below [14]. The con-
sequence is that for any model and amount of data,
the total prediction error (proportional to the mean
squared error) will decrease and then increase as
model complexity increases, thus evidencing an opti-
mal level of model complexity.

bias®
variance

The mean squared error (MSE) is equal to MSE =
variance + bias?’. As the number of parameters
increases the bias decreases and the variances
increase, defining an optimum number of parameters
corresponding to the minimum of the MSE, as mate-
rialized by the vertical dotted line in the above figure.

transmission process be linear or nonlinear? Again, it is
important to realize that the nature of such a relation does
not need to be totally correct for the model to be useful.
Modelers speak of structural stability, which refers to whether
small changes in the model assumptions result in substantial
changes in prediction.
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22.2.2 Model Formulation and Hypothesis
Testing

A mathematical model is a set of equations, which are the
mathematical translation of hypotheses (or assumptions).
When interpreting model predictions, it is thus important to
bear in mind the underlying assumptions. By definition, an
assumption is an unverified proposition, tentatively accepted
to explain certain facts or to provide a basis for further inves-
tigation. For example, one can construct a model 1, assuming

that the probability a susceptible gets infected is proportion-
al to the number of infectives and a model 2 assuming that
this probability is independent of the number of infectives. In
such an instance of competing hypotheses, the data can act as
an arbitrator by telling which model is more consistent with
the data [59]. In modern statistics the fit of a model to a data
set is measured by its likelihood (see Box 22.2). Comparison
of models is thus based on the comparison of their likeli-
hoods. As the likelihood of a model naturally increases as the

BOX 22.2 — LIKELIHOOD FUNCTIONS

The likelihood of a model is a measure of the probability that the model is the appropriate description of the real-
ity, given the data: L(model | data) = Pr(model | data). One powerful point of the likelihood function is that the term
“model” includes not only the mean trend but also the variance, that is the distribution of the errors around the
mean trend. Whereas the classical least square method implicitly assumes a normal distribution of errors, the like-
lihood methods allow considering any error distribution. For example, suppose that d is a vector of data and m a
vector of model predictions with a mean trend depending on one parameter x. Assuming now that the errors are
normally distributed with a variance o2 then the likelihood of one prediction of the model reads
2
Llrm; ()07 | d) = ———exp ‘21104
V2102 20

If the vector of data is a time series — as often the case for epidemiological data — then the data points are not inde-
pendent. However, if the noise has a large magnitude — as often the case for epidemiological data too — the approxi-
mation of independency between the data points becomes acceptable. In that case the likelihood function of the
model reads

Lim(x), o |d) =[] L(m,(x), 6 |d,):H\/21 —exp
i i o

We thus end with a function which depends on two parameters x and o?. This likelihood function can be used for
two different purposes. First, this function can be used to estimate parameters x and o2, good estimations of them
being values that maximize the likelihood function as shown in the figures below with one and two parameters.

If the search of the maximum of the likelihood is straightforward when the function depends on one parameter, it
becomes more complicated when the number of parameters increases. Microcomputers now allow the use of effi-
cient numerical algorithm to find the maximum of such multiple dimensional surfaces. Among the most popular
are the Newton and the Nelder-Mead algorithms [51]. Second, the expression of a likelihood function allows the
comparison of different competing models, using either the likelihood ratio test or the Akaike information criterion
(see main text).
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number of its parameters increases (see above Section 22.2.1),
it is necessary that the likelihood comparisons correct for the
complexities of the models. There exist two major procedures
for model likelihood comparison [37].

In a classic null hypothesis approach, the likelihood ratio
test (LRT) is the most commonly used procedure. Two mod-
els are said nested when one is a particular case of the other.
Twice the difference between log-likelihoods of two nested
models follows a x? distribution with degree of freedom equal
to the difference between the numbers of parameters of the
two models. A more complex is thus retained if its likelihood
is significantly higher than the one of a simpler model, as
judged from the x2 statistic.

We can alternatively use model selection criteria to rank
any (nested or not) competitive models. These criteria are
basically constructed as a likelihood value corrected for the
complexity of the model. The most used of these criteria is
the Akaike information criterion (AIC) [2] defined as AIC =
2(p-LL), where p is the number of parameters and LL is the
logarithm of the likelihood.

2223 Stochastic Versus Deterministic Models
Deterministic models are those in which there is no element
of chance or uncertainty. As such, they can be thought to
account for the mean trend of a process only. Stochastic mod-
els, on the other hand, account not only for the mean trend
but also for the variance structure around it. In an epidemio-
logical context, there are two main kinds of stochasticity:
demographic and environmental. Demographic stochasticity
reflects the fact that while all individuals may be subject to the
same possible events with the exact same probabilities, chance
events may result in differences in the fates of individuals.
When a phenomenon is the sum of a large number of small
individual effects (as disease propagation in large population),
the weak law of large numbers diminishes the effects of
demographic stochasticity and a deterministic model becomes
appropriate. In contrast, when the population is small, random
events cannot be neglected and a stochastic model is neces-
sary. Environmental stochasticity refers to the situation where
there is variation in the probability associated with an event.
Consequently, some parameters of stochastic models may be
uncertain and characterized by a probability distribution
instead of a constant value. For fixed starting values, a deter-
ministic model will always produce the same result whereas a
stochastic model will produce many different outputs,
depending on the actual values the random variables take.

22.3 THE NATURE OF EPIDEMIOLOGICAL DATA

Epidemiology is fundamentally a data-driven discipline, and
a key element in this research field is being able to link math-
ematical models to data. Epidemiological data are generally
based on the disease notifications reported by medical doc-
tors, veterinarians, or agronomy engineers. Epidemiologists
usually consider incidences defined as the number of new

cases per unit of time and prevalences referring to the num-
ber of diseased people, ideally at one instant, and in practice
over a short period of time. Incidences thus reflect the
dynamics of the disease whereas prevalence is more related to
the static properties of the disease. Epidemiological data may
further be stratified by age, sex, social status, geographical
location, and so on. In Section 22.6.2 we will see that strati-
fication by age is of particular interest as age reflects time [7].
Moreover the survey can be carried out longitudinally (i.e.,
through time) or horizontally (i.e., at one instant or over a
short period of time). In the first case, where the data are in
the form of a time series, it is important to realize that the
data of the series are not independent. Indeed, the number of
new cases reported in a given week is likely to be close to
cases reported during the previous week. Consequently, the
statistical analysis of time series requires the use of specific
tools presented in Section 22.8.2. Epidemiological data sets
are often accompanied by demographic data such as the pop-
ulation size and the per capita birth rate in different localities
and at different dates. This is of primary interest as the
endemic state of an infectious disease is often dependent on
host social and demographic factors.

Such data sets currently exist for a variety of diseases, in
different locations and over several decades. Some of these
data bases are available from the Internet, as the one used to
draw Figures 22.6, 22.10, and 22.12. Other data sets can eas-
ily be requested from governmental health services. The qual-
ity of the data set is often related to its accuracy in terms of
disease diagnose, spatial location, and notification frequency
(weekly, monthly, or yearly).

224 CHILDHOOD MICRO-PARASITIC INFECTIONS

There exist a variety of epidemiological models and an
exhaustive review of them cannot be performed in one single
chapter. As a result, we will focus our attention on some of the
most frequently used models in order to highlight the general
approaches and the main results. We will thus be specifically
interested here in childhood micro-parasitic infections. The
distinction between microparasites and their counterpart
macroparasites is not clear-cut and actually reflects more the
way they are modeled than biological realities [7]. However,
microparasites tend to refer to small-size parasites (viruses,
bacteria, or protozoan) with fast and direct reproduction
within the host. Childhood microparasitic diseases usually
transmit by direct contact through droplets and the infectivi-
ty is generally high. The host usually recovers from the infec-
tion and acquires immunity for some time (often for life). The
disease generation length (i.e., the duration between the
infection and the clearance by the host immune system) is
generally short relative to the host life expectancy. Because of
the fast and direct reproduction within the host, it makes sense
to model the dynamics of microparasitic diseases according to
the host clinical status with compartmental models. We call
childhood diseases those diseases which confer a lifelong



CHAPTER 22 MATHEMATICAL MODELING OF INFECTIOUS DISEASES DYNAMICS 383

immunity. As the infectiousness of microparasitic diseases is
usually high, the lifelong immunity makes the mean age at
infection generally low, hence the name. Common childhood
microparasitic infectious diseases include measles, rubella,
chickenpox, mumps, whooping cough, and so on.

225 A SIMPLE EPIDEMIC MODEL

The idea behind compartmental models is to divide the host
population into a set of distinct classes, according to its epi-
demiological status. One simple such model is the SIR
formalism which classifies individuals as Susceptible to the
disease (S), currently Infectious (I), and Recovered (R). The
total size of the host population is then N = S + I + R. For
childhood diseases there is no vertical transmission and thus
individuals are born in the susceptible class (after any period
of maternally derived immunity is passed). Upon contact
with an infectious individual, susceptibles may get infected
and move into the infectious class. Once the immune system
clears the infectious agents, infecteds become immune and
move to the recovered class (Figure 22.1).

2251 Transmission Process

The transmission process is at the heart of any epidemiolog-
ical model. To describe it, epidemiologists usually consider
the force of infection N defined as the per capita rate of
acquisition of the infection. More precisely, N()At is the
probability that a given susceptible individual will acquire the
infection in the small interval of time Ar [34].

For airborne disease, the tradition has long been to con-
sider the force of infection proportional to the number of
infectious individual: A = al. There is thus an analogy with
the concentration of two chemical agents to which the law
of mass action applies. However, humans obviously do not
behave in exactly the same way as molecules in solutions as
the daily contact patterns of people are often similar in large
and small communities [34, 46].

Consider instead that the average number of contacts of
a person per unit time is the constant 8 combining a multi-
tude of epidemiological, environmental, and social factors
that affect transmission rates [7]. Among these contacts, the
number of contact with infectives is thus BI/N. Assuming
that contacts are sufficient for transmission, the number of
new cases per unit time is then SBI/N. Thus, in this case A
= BI/N, instead of N = al. Fits to real data have proved that

[s PSR

Fig. 22.1. A simple SIR epidemic model. The host population is
divided into three compartments, according to their epidemiologi-
cal status: susceptibles (S ind.), infectives (I ind.), and recovered
(R ind.). Individuals move to the susceptible class to the infective
class, to the recovered class according to the arrows. N is the force of
infection, that is, the probability that a susceptible individual gets
infected, and v is the recovery rate.

the frequency-dependant transmission process A = BI/N is
more appropriate for human airborne diseases than the den-
sity-dependant one N = ol [7].The parameter a has no clear
epidemiological interpretation but can be related to B as
o = 3/N. McCallum et al. [46] explored other forms of the
transmission process, including nonlinear ones, and studied
their influence on the epidemiological conclusions.

2252 Between-Compartment Flux

of Individuals

A common assumption is that the movements out of one
compartment into the next one are governed by constant
rates [7]. For each time unit a constant number of individu-
als leave one compartment to the next, regardless to the time
they spent in their compartment. The choice of this assump-
tion is essentially motivated by an ease of mathematical
tractability in a deterministic setup with ordinary differential
equations. However, the assumption of a flux of individual at
a constant rate r corresponds to exponentially distributed
waiting times in the compartments. The parameter of the
negative exponential distribution is r and thus the mean of
the distribution 1/r (see Box 22.3). Analysis of real data
reveals instead that each individual tends to spend a constant
duration in each compartment [39, 43]. Models accounting
for such realistic distributions of waiting times would imply
the use of more sophisticated mathematics such as integro- or
delay-differential equations. For didactic reasons we will here
restrict our attention to the simplest and most used models
based on simple ordinary differential equations and refer the
reader interested in more realistic ones to [43] and [39].
Keeling & Grenfell [39] and Wearing et al. [60] showed that
the assumptions on the waiting times can strongly influence
the model outputs.

2253 Basic Reproduction Number

and Threshold Effects

One of the most fundamental quantities used by epidemiol-
ogists 1s certainly the basic reproduction number R,. For
microparasites it is defined as the expected number of sec-
ondary cases following the introduction of one infectious
individual into a fully susceptible population [7]. We under-
stand from here that R, has a threshold value in the sense that
a disease must have R, > 1 to invade a host population,
otherwise it disappears right after its introduction. The
replacement number R is the average number of secondary
infections produced by a typical infective during its entire
period of infectiousness. At the introduction of one infective
into a fully susceptible population R = R, and then
R decreases. At endemic equilibrium we will have, by defini-
tion, R = 1 (see Sections 22.6.1 and 22.9.1.1).

225.4 Deterministic Setup and Dynamics
Analysis

For large populations, deterministic models with continuous
variations of population sizes provide a good description of
the disease behavior. Epidemic models are used to describe
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BOX 22.3 — MODELING THE INFECTIOUS PERIOD

In the classic SIR model it is usually assumed that the individuals leave the infectious class at a constant rate. Even
if this assumption seems the most intuitive, it is not always the most realistic in terms of the duration individuals
stay infective. In this box we detail the consequences of the constant recovery rate assumption on the distribution
of the infective periods, and propose an alternative which yields more realistic distributions [39,43,60].

Our random variable is the time of recovery since the infection. For discrete random variables (e.g., number of
individuals) it is easy to define a probability distribution Pr{Z = k} = f; (as in Section 22.5.5) and then to define a
cumulative distribution function F(z) = Pr{Z = z}. For continuous variables, like here, the time of recovery since
infection, it is impossible to define a probability of each time as there is an infinity of such times. The approach is
then to first define a cumulative distribution and then express a probability density function from this cumulative
distribution. The idea is to consider the probability associated with a short interval Az of the random variable z.

Pr{iz<Z<z+Az}=F(z+Az)—F(2)
=F'(z2)Az +o(A2)

The derivative F'(z) of the cumulative distribution F(z) is by definition the probability density function.
Let us now apply this method to the time of recovery since the infection. As done in Section 22.6.3, we can
express the probability of an infective to recover in the time interval At as

Pr{recovery in (t, t + At] | no recovery in (0, t} = YAt + o(At)

where t is the time since infection and vy is a fixed constant. The cumulative distribution is defined as F(t) = Pr{no
recovery in (0,t]}. For an infective not to recover in the interval (0, t + At], he must first not recover in the interval
(0,t] and then not recover in the next At. Assuming that these events are independent gives

Fit+At)=FOI[1 — yAt+o(AD)]

Ft+ At)— (1) o(A?)
At D8 At
Taking the limit as At — 0 gives
dF
L
T ®

which, after integration and setting F(0) = 1 (i.e., no recovery before the infection), yields
F(t)=et

Thus, infectious periods are exponentially distributed with a mean infectious duration equal to 1/y (see dashed
curve on the figure below). Inspecting real data, it seems that the infectious period does not follow an exponential
distribution but rather seems to be of constant duration. To account for such more realistic distributions, we need
to relax the assumption that the probability of recovery does not depend on the time since infection. There are sev-
eral ways to do that, including integro-differential and partial differential formulations, but the simplest one is cer-
tainly the method of stages.

The basic idea of the method of stages is to replace the infective compartment by a series of n successive infec-
tive compartments, each with an exponential distribution of the same parameter:

5 ~ T FTn— ~In
s Pl n ) m % Ny LN
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The total duration of the infectious period is thus the sum of n identical and independent exponential distributions,
which leads to a gamma distribution of the infectious durations:

fit)= m t=le—mt
T'(n)

where I'(n) is the gamma function. The variance of such a distribution is 1/(ny?). Notice that when n = 1 we find
back the above-presented exponential distribution, when n gets large, the gamma distribution tends toward a nor-
mal one and when n — o we have the delta (fixed duration with no variance) distribution (see figure below).

-
- &

o
&)

gamma probability density, f(t)

time since infection, f

The above figure shows gamma distribution for y = 0.5 and various values of the number n of classes. When n =
1 we have the exponential distribution and when n increases the distribution tends toward a normal one.
Ultimately, when n — o« the gamma distribution converge toward the delta distribution with a variance equal to

zero. Note that for all values of n the mean is equal to 1/y = 2.

rapid outbreaks that occur in very short periods of time,
during which the host population can be assumed to be in a
constant state [18, 19]. A mathematical description of the
fluxes of individuals of Figure 22.1 is given by the following
set of differential equations:

ds I
Z=Bs—  S(0)=S;20 22.1
5 B N )=S0 (22.1)
dI I
Z=BS——y L0)=I,20 (222
py B ~N 7 O)=1Io (22.2)
Z—R = R(0)=Ry >0  (22.3)
t

where vy is the recovery rate. Since the duration of the
epidemic is short, this model has no host vital rate. In conse-
quence, the total host population size N= S + I + R is
constant and only two of the above equations are necessary
to totally account for the disease behavior. Dividing the first
two Equations (22.1) and (22.2) by the constant host popu-
lation size N yields

—=—Pis s(0)=s,20 (22.4)
de

di . .

—=fis-yi i0)=1,20 (22.5)
de

where s(f) = S(f)/N and i(t) = I(f)/ N. The basic reproduc-
tion number then reads R, = s, B/v. Thus we can express
the threshold on R as follows. When s, < y/f3, on average
each infective produces less than one infective and thus the
number of infectives diminishes to reach O as time passes
on. When s, > v/, the number of infectives first increases
to then decrease toward 0, producing this characteristic epi-
demic peak. This threshold effect is illustrated on the phase
plane (see Box 22.4) of Figure 22.2.We can see on this fig-
ure that when s, < /B the proportion of infectives
decreases toward 0, and when s, > y/B the proportion of
infectives first increases to then decrease toward zero. In any
case the proportion of infectives ends at zero whereas the
ultimate value s, of the proportion of susceptibles depends
on the initial proportions s, and i, of susceptibles and
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BOX 22.4 — GRAPHICAL TOOLS TO STUDY DYNAMICAL SYSTEMS

In this box we present two graphical tools facilitating the study of dynamical systems. The first one is the phase
plane. Consider for example the endemo-epidemic S/IR model of the main text

ds/dt=u— Bis— us s(0)=sy =20
di /dt = Bis—yi— pi i0)=iy>0
We can solve this system and draw the temporal dynamics of each of the state variable, s(t), i(t), and r(t) = 1—s(t)—i(t).

A phase plane plots the behavior of one state variable as a function of another state variable. Temporal dynamics and
phase plane are thus two different ways of visualizing the same reality as exemplified on the figure below.

temporal dynamics

phase
plane

infectives
N

-

0.05 { 25
sy, 004

C
=) ”Z’/es 0.03

ol
00270 Cypnel@®

The phase plane of the above figure is the same as the one of Figure 22.7. There is no time dimension on phase
planes but the trajectory of the dynamics is

usually indicated by arrows (see Figures 22.2, 22.5, and 22.7). A phase plane can also be drawn for three state vari-
ables like on the figure below.

°
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The second tool is relative to the complexity of a dynamics. Consider the same S/R model but now with a varying
contact rate to sustain the oscillations (see Section 22.7.1):

B(t) = B,(1+ B, cos(2rt)) 0<pB <1

Running this model with different values of the host population turnover rate u yields qualitatively different disease
dynamics: on the figure below the dynamics changes from annual to bi-annual when u increases from 0.0180 to
0.0210.




CHAPTER 22 MATHEMATICAL MODELING OF INFECTIOUS DISEASES DYNAMICS 387

0

QO =i

£ 5000 1=0.0180
8

C 1 L f )
'; %50 185 190 195 200
[ =

2 5000 1=0.0184
2

=

= %50 185 190 195 200
@ =

£ 5000 1=0.0190
§ /\/\/\/\/\/\./\/\./\/\/\/\/\/\/\/\/\/\/\/\,
c

s 980 185 190 195 200
(]

£ 5000 1=0.0210
3

c 1 )
- ‘?80 185 190 195 200

year

These qualitative changes on the dynamics are called bifurcations and the parameter we explore the influence
(here w) is called the control parameter. Bifurcation diagrams allow to visualize the effect of a control parame-
ter on the complexity of the dynamics. For each value of the control parameter the simulated dynamics is sam-
pled at regular time intervals. Imagine, for example, that we sample the dynamics every year. Then, an annual
dynamics will give one point on the bifurcation diagram (each year the dynamics recovers the same value),
whereas a biannual dynamics will give two points (one for the odd years and the other for the even years).

15000
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infectives
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25007,
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host population turn—over rate

The above figure shows the bifurcation diagram of the disease dynamics with w as the control parameter. The four
vertical lines materialize the u values corresponding to the above four time series. This diagram predicts that the
disease dynamics is biannual for u between 0.0183 and 0.0351 and annual for u between 0.0150 and 0.0183 and
between 0.0351 and 0.0400. At u = 0.0183 the switch from annual to biannual is progressive whereas at u =
0.0351 the switch from biannual to annual is sharp. Between 0.0183 and 0.0351 the disease oscillations reach their
maximum at u = 0.0303.

infectives, respectively, as expressed by the following
implicit equation [19]:

However, observations on real data reveal that R, > 1
does not guarantee an epidemic in the population [9]. The
cause of this discrepancy between model prediction and

iy + 50 = Seo +10g(500 / 50) /O =0 (22.6)

We can see from Figure 22.2 that the higher the initial pro-

observed data is that the deterministic SIR model is a good
approximation of the epidemic dynamics only when dealing

portion of susceptibles s, the lower the proportion of indi- with large populations (see above Section 22.2.3), which is

viduals who do not get diseased during the epidemic. This is clearly not the case when we are interested in the initial epi-

known as overshot phenomenon [19]. demic growth following the introduction of one infective
into a fully susceptible population. As the initial number of
infectives during the initial epidemic growth is by definition

very small, demographic stochasticity may play an important

2255 Stochastic Dynamics and Probability

of an Epidemic in a Small Population

The deterministic SIR model presented above highlights a
threshold value on the basic reproduction number with an
epidemic when R, > 1 and no epidemic when R, < 1.

role in the start of an epidemic. The theory of branching
processes is a useful framework to derive the probability that
an epidemic starts [19].

Consider that the number of people infected by one infec-
tive follows a given probability distribution {g.}r = 0. Thus,
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Fig. 22.2. Phase plane of the SIR epidemic model of Equations
(22.4) and (22.5). The arrowed lines show the trajectories of the
dynamics. The dashed arrowed line shows one particular trajectory
with its initial and final proportions of suscpetible s, and s.., respec-
tively. The vertical dotted line is the threshold /B on the value of
the proportion of susceptibles (see main text). There is an epidemic
only when s, is above this threshold.

any infective infects k individuals with the probability gk and
Y%y qp=1. The basic reproduction ratio R, can then be
expressed simply as the expected number of individuals infect-
ed by one infective: Ry = X%, kq.. Then, we need to introduce
the reader to one fundamental tool of branching processes: the
generation function defined as

g2 =Y qgkz*

k=0

0<z<1 (22.7)

Among the interesting properties of the generating function
are g(0) = 0,¢(1) = 1,and ¢’(1) = R, [19]. Let 2, be the prob-
ability that the disease disappears from the population after n
generations of transmission events. It can be shown that z, =
g(z, — 1) [33]. As the function g is increasing, the sequence z,

is increasing and tends toward a limit z... By definition z., is
the probability that the disease introduced by one individual
into a fully susceptible population will go extinct. Thus z., is
the solution of the equation z = g(z). It can be shown that =z,
=1lforRy=1and 0 < z, <1 for Ry > 1 [19]. Depending
on the exact form of the infectious process, the solution z., of
the equation z = ¢(z) can not always be expressed explicitly.
For example, assuming that the number of infections during a
constant time interval is according to a Poisson process, we
end up with the following implicit expression of 2, 19]:

z=zexp(Ryp(z—1)) (22.8)

which can be easily solved graphically (see Figure 22.3).

22.6 A SIMPLE ENDEMIC MODEL

22.6.1 Deterministic Dynamics

Epidemic models presented in the above section are
used to describe rapid outbreaks that occur in very
short period of time, during which the host population
can be assumed to be in a constant state. Such models
thus do not need to account for the host population
dynamics as governed by births and deaths. On longer
period of times individuals will die and births will feed
the population with new susceptibles, possibly allowing
the disease to persist in the population at a low and
constant prevalence. We then say that the disease is in an
endemic state in the population [7]. If we are to study
the endemic state of a disease, we need to construct a
model that accounts for the birth and death rate of the
host population. In the case of a nonfatal disease like
most childhood ones in developing countries, a good
approximation is to consider that the host population
size N=S + I + R is constant. The dynamics of the
disease can then be described by the following differential

(@) R,=05 (b) Ry=15

1| EEEEEEEEEEEEEEESs A D | e EEE
s <7 =
5 A : i
9(0)=q, [ R ; :
: 90 =q,r* " | i
00 z = 1 0 Z‘ ‘i

z « z

Fig. 22.3. Graphical resolution of the implicit Equation (22.8). Solutions of Equation (22.8) are the
intersections between the first bissectrice and the curve which are respectively the Lh.s. and the r.h.s.
of Equation (22.8), in the domain of definition [0,1]. 2z, = 1 when Ry < 1 (a) and 0 < z,. < 1 when

Ry, > 1 (b), (see main text).
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Fig. 22.4. A simple SIR endemic model. Same as Figure 22.1
except that now deaths remove individual from each compartment
at a constant rate u. Also, births feed the susceptible compartment
with new individuals at the same rate . As the birth and death rates
are equal, the total size N of the whole population remains constant,
see main text.

equations which correspond to the flow diagram of
Figure 22.4.

? = - Bis— Us s(0)=s,20 (22.9)
t

di . o NS

P Bis—yi— i 1(0)=41,20 (22.10)

where u is the host population turnover rate, that is, the birth
rate equal to the death rate. Again, for the simplicity of the
mathematical analysis, assume that this rate has a constant
value. As explained above and in Box 22.3, the consequence of
this assumption is that the age distribution follows a negative
exponential distribution. The mean of this distribution (i.e., the
host life expectancy L) is equal to L = 1/u. This is a rather
good approximation for the developing countries where the
harshness of the environment imposes a similar death pressure
on all the age classes [7]. However, in western countries, med-
ical care allows most of the people to reach the natural age
limit, yielding this characteristics square shape age distribution.
Nevertheless, the exact form of the age pyramid does not have
substantial influence on the dynamics of the disease [7].

The basic reproduction ratio now reads Ry = B/(y + w).
By definition, at equilibrium the system is in a constant state.

0.8

0.6

proportion of infectives, (i)

0 02 04 06 038 1
proportion of susceptibles, (s)

Thus the differentials of Equations (22.9) and (22.10) should
be equated to 0:ds/dt = di/dt = 0, which yields the following
system of equations:

u—PBis—us=0

Bis—yi—ui=0
Solving this system produces two equilibrium points: (i) the
disease-free scenario (sF, i, 7f) = (1, 0, 0) and (i) the endem-
ic case (5, &, %) = (1/Ry, W(Ry— 1)/B, 1 — & — i¥). The stabil-
ity of these two equilibria depends solely on the value of the
basic reproduction number, and not on the initial values of the
proportions of susceptibles and infectives as in the above epi-
demic model. If Ry is less than unity, then the disease-free equi-
librium is stable [19] and the phase plane of Figure 22.5 shows
that the proportion of susceptibles increases toward 1 whereas
the proportion of infectives decreases toward 0. When R, > 1
means that the endemic equilibrium is stable [19] and Figure
22.5 shows that the proportions of susceptibles and infectives
produce damped oscillations that converge toward their
endemic values s* and i*. Linear stability analysis (see Box 22.5)
reveals the natural period T and the damping time D of these
damped oscillations to be approximated by

(22.11)
(22.12)

T =27VAG (22.13)

and

D=2A4 (22.14)

respectively, where A represents the mean age at infection,
A=1/U(Ry— 1) (see below Section 22.6.2), and G gives the
ecological generation length of the infection, that is, the sum
of the latent and infectious periods, G=1/(u + ) [7, 53].

22.6.2 Statics and the Average Age at Infection

Once the endemic equilibrium is reached we may be inter-
ested in the statics of the disease such as the mean age at
infection. This is of importance as, first, numerous diseases are

proportion of infectives, (i)

0 02 s 06 038 1
proportion of susceptibles, (s)

Fig. 22.5. Phase plane of the SIR endemic model of Equations (22.9) and (22.10). The arrowed lines
show the trajectories of the dynamics. When the basic reproduction number R, < 1 the dynamics
converges toward the stable disease-free equilibrium (left). When R, > 1 the disease dynamics con-

verges toward endemic equilibrium (%, s¥) (right).
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BOX 22.5 — LINEAR STABILITY ANALYSIS BASED
ON EIGENVALUES

Linearization approximation is a standard phase
plane technique used to analyze system dynamics
[42]. For an SIR system with a constant host popula-
tion size we have the following system of two
independent nonlinear differential equations:

£=,u—ﬂis—us s0)=s5=0
dt
%=,Bis—)4’—ui i0)=ip 20

As found in the main text, the endemic equilibrium of
this system is (s*, i) = (1/Ry, m(Ry—1)/B). Close to the
endemic equilibrium, the above system can then be
rewritten into the following form:

s(t) = s *+&(t)
iO)=i* +(t)

where &) and {(t) are the deviations from the equi-
librium. In order to study the stability of the equilib-
rium, we then need to focus on the dynamics of the
deviations &) and {(t) [42]. Combining the above
two systems, developing, and keeping only the terms
which are linear in £ and ¢, we get

as_
de

& pivtenr L)

(Bi*+ )&= Ps* L+NL(EG, ©)

where NL(£ ) contains all the nonlinear terms in &
and ¢. Replacing s” and i by their value gives

9 _ R - _B

Go = IR, ~ D+ HE =L NLE
dg B

o = HR, ~DEFNLE, )

Written in matrix form, the above system becomes

dé/ dt [—u(Ro—D—u —/s/RO} {d&

dC/dt - ,U(RO =1 0 dc:|+N|—(§/ C )

J

The Jacobian matrix J is called the community matrix in
ecology and its eigenvalues are indicative of the dynam-
ics of the system [42]. The eigenvalues of the community
matrix are solutions of the characteristic equation

A’ = Tr()A+det (J) =0

ENCYCLOPEDIA OF INFECTIOUS DISEASES: MODERN METHODOLOGIES

where Tr and det refer to the trace and the determi-
nant of the matrix, respectively. Replacing the trace
and determinant by their values gives

A% = uRyA + p(p +7)Ry =1 =0

With the approximation pertaining to the fact that
v > u, we end with

At
2A AG

where A represents the mean age at infection,
A =1/n Ry, and G gives the ecological generation
length of the infection, that is, the sum of the latent
and infectious periods, G = 1/(u+vy) = 1/y [7,53].
The system oscillates with a period equal to 27 times
the inverse of the imaginary part of the eigenvalue,
T= 277\/A_G,and a damping time equal to the inverse
of the real part of the eigenvalue, D = 2A [42].

in endemic state in human populations and, second, the study
of static properties of a disease allows the estimation of key
epidemiologic parameter without requiring the long series of
longitudinal notifications, often difficult to obtain in practice.
The idea behind studies on the statics of diseases is that the
age of the individuals reflects, in some way, time [7]. What we
simply need here is horizontal data stratified by age.

Considering the age as a continuous variable, the mean
age at infection is simply expressed as [7]

*  \s(a)
g—28

0 “\e
j{) As(a)da

A= da (22.15)

which is the integral sum of the age values a, weighted by the
proportion of infectives of age a. Calculating this integral for
a constant host population turnover rate U yields the intuitive
relationship A = 1/(N + ). This means that the higher the
force of infection (i.e., the probability that a susceptible gets
infected), the lower the mean age at infection. Moreover, recall
from above (Section 22.6.1) that i* = u(R, — 1)/B. Thus, A =
Bi* = u(R, — 1). Rearranging this equation we get A + [ =
UR,.An expression of the mean age at infection then becomes
A = 1/(URy). This last expression allows estimating the basic
reproduction number R, in a rather simple way as
L

Ry =— 22.16
0=7 ( )

where L=1/pu is the host life expectancy (see Section 22.6.1).

22.6.3 Stochastic Dynamics and Disease
Persistence

The above study of the deterministic dynamics of diseases
has revealed a threshold on the value of the basic repro-
duction number. The disease immediately disappears after



CHAPTER 22 MATHEMATICAL MODELING OF INFECTIOUS DISEASES DYNAMICS 391

its introduction as soon as R, < 1 and persists at an
endemic level in the host population when R, = 1.
However, by inspection of real data, it appears that the
condition Ry = 1 does not guarantee the disease persist-
ence [9]. As already mentioned about the epidemic model
(see Section 22.6.3), such persistence is dependent on the
magnitude of the stochastic fluctuations around the
endemic equilibrium.

In a metapopulation context, the probability of disease
extinction in one subpopulation depends on both the size of
the subpopulation and the fluxes of infectives from neighbor
subpopulations. Bartlett [9] has thus evidenced that there is
a community size above which the disease can be main-
tained in population by itself and below which the disease
cannot persist in the population without regular fluxes of
infectives from neighbor populations. The determination of
this critical community size is performed empirically by
plotting the mean annual duration of periods with no cases
against the size of the subpopulation. By definition, we have
a period of disease fade-out if the duration of the disease
extinction is longer than the disease generation length [9].
Figure 22.6 shows an example for measles in 59 cities of
England and Wales in the pre-vaccine era (1944-1966). For
this disease the generation length is around 3 weeks and the
critical community size is estimated here at about 115,000
individuals. The critical community size is thus a quantity
very easily calculated from disease notifications and which
gives a good idea of the population size required for disease
persistence. Intuitively we expect that the more contagious

a disease, the lower the critical community size. This explains
why highly contagious diseases cannot persist in small iso-
lated communities such as island populations or primitive
Amazonian tribes.

22.7 ENDEMO-EPIDEMIC MODELS

So far we have seen simple models that allow the study of one
isolated epidemic (Section 22.5) or of diseases in an endemic
state (Section 22.6). However, it appears that numerous dis-
eases are characterized by an endemic background with reg-
ular epidemics as visible on subplots of Figure 22.6 or on
Figure 22.10. We say that these diseases are in an endemo-
epidemic state in the population. In this section we propose
some complications of the basic endemic model that allow
producing recurrent outbreaks as observed on many longitu-
dinal surveys.

In Section 22.6.1 we have shown that the endemic model
exhibits damped oscillations which converge toward an
endemic equilibrium. Linear stability analysis further revealed
the natural period and the damping time of these oscillations
to be approximated by T = 2 VAG and D = 24, respec-
tively, where A and G are the mean age at infection and the
disease generation length respectively (see Equations (22.13)
and (22.14)). Importantly, for most epidemiologically reason-
able parameter values, the damping time is typically much
longer than the natural period: 24/T >=> 1.This renders the
endemic equilibrium weakly stable, with relatively small per-

47 48 49 50 51

mean annual duration of fadeouts

47 48 49 50 51

year l

0 CCSs2 3

5 6 7 8 9 10 11 12

population size (x100,000)

Fig. 22.6. Mean annual duration of fade-outs (i.e., local extinction) of measles against population size

for 59 cities in England and Wales in the pre-vaccine era (1944-1966). Subplots show portions of time

series illustrating the three levels of persistence identified by Bartlett [9]. Type I dynamics (bottom
subplot: Birmingham, population of 1.1 millon ind.) are regular, endemic, with no fade-out. Type II
dynamics (middle subplot: Nottingham, population of 300,000 ind.) are regular but with some fade-
outs (represented by black dots) in the troughs. Type III dynamics (top subplot: Teignmouth, population
of 11,000 ind.) are irregular with long fade-out between the epidemics. The curve is the nonlinear

regression (y = 16 X exp[—107° «x]) and its intersection with the disease generation length (G, repre-

sented by the horizontal dotted line) gives the critical community size (CCS) of the disease of around
115,000 ind. Data downloaded from http://www.zoo.cam.ac.uk/zoostaft/ grenfell/measles.htm [27].
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Fig. 22.7. Phase plane of the SIR endemo-epidemic model with a contact rate varying according to

Equation (22.17) and Ry > 1.When $; = 0, the dynamics converges toward an endemic equilibrium
point (left). When B; = 0.1, the equilibrium point is destabilized and the dynamics produces sustained

oscillations (right).

turbations (intrinsic or extrinsic) exciting and sustaining the
inherent oscillation behavior [31]. Alternative mechanisms
for this phenomenon have been proposed in the literature
and all are based on the inclusion of some heterogeneity in
the endemic model. Heterogeneity can be added temporally
on the coefficient of transmission, spatially in the context of
metapopulations, or by cohorts for age-structured models.
Lastly, heterogeneity can be added statistically for full sto-
chastic versions of the endemic model.

22.71 Varying Contact Rate

Temporal heterogeneity in the transmission rate was first pro-
posed by Soper [56] who was attempting to explain the high
amplitude outbreaks of measles in Glasgow. He demonstrat-
ed that transmission rates were high in October and declined
through the academic year, with a trough in the summer
months. This temporal variability in transmission rates, he
argued, may be due to the considerably higher transmission
rates when children are in school. Soper’s conclusions were
supported by later analyses of measles, chickenpox, and
mumps in some US cities, as well as measles in England &
Wales [26,44]. There has been a variety of mathematical
forms proposed for taking into account seasonality in the
coefficient of transmission [20, 22, 24, 40]. Certainly, the most
realistic take the form of a binary function, with two difter-
ent values of the coefficient of transmission — one for the
school terms and one for the holidays. This necessitates the
knowledge of the school holidays calendar which is not
always possible, particularly for historical data. A simpler form
of the coefficient of variation would simply take the form of
a sinusoidal wave:

B(t) = Bo(1+ By cos(2mr)) 0B <1 (22.17)

where the strength of seasonality 8; measures the amplitude of
the oscillations around the baseline coefficient of transmission 3.
Although less realistic, this form of the coefficient of transmission

produces results which are qualitatively very close to the ones

obtained with a coefficient of transmission in plateau [22].
Figure 22.7 shows that even small strengths of seasonality are able
to produce sustained oscillations.

22.1.2 Age-Structured Models

When the time is considered as a continuous variable, the
most general form of the force of infection is actually the fol-
lowing [7]:

Ma,6) = j: Bla.a.6)i(a,,t)ch, (22.18)
where B(a, a;, t) is the coefficient of transmission between a
susceptible of age a, and an infective of age g; at time f. In
Sections 22.5 and 22.6 we averaged this relation over both
time and ages. In the above Section 22.7.1 we averaged over

ages only and we defined the coefficient of transmission as a
function of time (see Equation (22.17)):

)= B(0)i (o)

where bars refer to age average. In the present section we

(22.19)

average the relation 22.18 over time only. We thus have to
define a coefficient of transmission as a function of age.
Contrary to time, it does not really make biological sense to
consider age as a continuous variable as human populations
are usually aggregated by cohorts defined as the primary
school children, the intermediate and high school teenagers,
the college young adults, and the adults [7]. When averaging
over time and considering the age variable as a discrete vari-
able, Equation (22.18) becomes:

A=YBi (22.20)
=1

where hats refer to time average and n is the number of
distinct cohorts. We thus need to define a matrix of transmis-

sion [,B,v,j].
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TABLE 22.1. Transition Events, and Corresponding Rates, for a Simple Stochastic SIR Model

Type of transition event Rate Event
1T S>S+1,1-1,5—>R rn=wuN Birth
2 S-5S5S-1,1-1,5S->R rn=wnS Death
3 S—>S51—>1-1,5S—>R 3=l Death
4 S—>S1-1,-5-1 ry=uR Death
5 S—»S5S-1,1-I1+1,R—>R rs = BIS/N Infection
6 S—>S5I1—>1-1,R—>R+1 re =1yl Recovery
7 S—>SI—->1+1,R—=>R r; =20 Immigration of infectives

22.1.3 Spatially Structured Models

The organization of human populations in distinct cities inter-
connected by fluxes of individuals makes the theory of
metapopulations an appropriate framework to study the spatial
dynamics of infectious diseases [28, 29]. In this context the def-
inition of a spatially structured model is pretty close to an age-
structured one. We thus need to define a matrix of transmission.
Two common assumptions are that this matrix is symmetric
and the values B;; are related to the geographic distance
between the cities 7 and j (Figure 22.8). However, given the
speed of communication networks at a regional scale, a simple
and widely used approximation of this metapopulation model
is the island model in which all the subpopulations are linked
the ones to the others by the same coupling coefficient €&

A= Bx|(1-g)ij+&> it (22.21)
k# j
The (1 — € term ensures that the basic reproduction

ration R, stays constant. Other spatial models are not based
on the theory of metapopulations and instead consider the
spatial dimension as a continuous variable. Those models are
based on the reaction—diftusion equations that, for simplicity,
we will not treat in the present chapter.

22.7.4 Stochastic Endemic Models

Sections 22.5 and 22.6 have primarily focused on determin-
istic models, that is, models in which nothing is random.These
models produce pretty good predictions as long as the popu-

1 1/(1172 1/(11)(‘,
1/(]12 1 e 1/(]'2,6
dy @ [8:.4] : : R :
l/dLG 1/(12.0 1
1

Fig. 22.8. In a metapopulation context the matrix of contact can be
modeled as inversely proportional to the distance between the com-
munities represented by circles.

lation is large enough for the stochasticity to have little influ-
ence. However, in Sections 22.5.5 and 22.6.3 we highlighted
that in small populations, deterministic model predictions
become unreliable. To study disease dynamics in small popu-
lations, one thus often need a stochastic instead of a deter-
ministic model [6]. In this section we present an easy way to
construct a stochastic version of the SIR endemic model and
we will show that stochasticity introduces enough hetero-
geneity in the model to produce sustained oscillations.

A stochastic version of the endemic SIR model passes
through the definition of a Markov process, that is, a process
in which the future is independent of the past, given the pres-
ent. The state space of this process is defined by the number
of individuals in each of the three classes susceptibles (S),
infectious (I), recovered (R). Changes in the state space are
characterized by transition events which are listed in Table 22.1.
Each transition event occurs with a probabilistic rate derived
from the rates of the deterministic model. For example, the
probabilistic rate corresponding to an event of birth is defined

as follows:
P{1birth in (t,¢+ At]| S(t) = n} = unAt +o(At)  (22.22)
with lim ) =0.
At—0  f

For numerical simulation, the basic procedure consists in,
first, searching the time of the next event (whatever its
nature) and, second, determine the nature of this event. As all
events are independent, the probabilistic rate that an event
occurs, whatever its nature, is simply equal to the sum of the
probabilistic rates of all the possible events r = 2. As future
events are independent on past events, the time to the next
event follows a negative exponential distribution of parame-
ter r (see Box 22.3).Thus, the time to the next event can sim-
ply be determined by a random realization of a negative
exponential probability distribution of parameter r. Then, the
nature of this event is simply determined by a random real-
ization of a multinomial probability distribution of parame-
ters r;/1, 1,/r,and so on.This process is reiterated for the dura-
tion desired. Figure 22.9 shows results of numerical
simulations. Note the resemblance with real time series
(compare with subplots of Figures 22.6 and 22.10).
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Fig. 22.9. Stochastic realizations of an SIR model in populations of 1,000,000 (top) and 100,000
(bottom) individuals. Each bar represents the incidence for one trimester.

22.8 DATA ANALYSIS

So far we have presented a variety of disease models, each
with its advantages and disadvantages. It should be clear now
that there is no one model which is, in absolute, better than
the others. The best model depends on the question under
investigation. This section is more oriented toward the epi-
demiological data. We will first see how model parameters
can be estimated from the data and then focus specifically on
the analysis of longitudinal data by presenting the basic tools
of time series analysis.

2281 Parameter Estimations

We have seen that mathematical models are characterized by a
certain combination of parameters, each with a biological signif-
icance such as the force of infection, the birth rate, and so on. We
have also seen that mathematical models allow the derivation of
concepts which are not directly perceptible on the data, such as
the basic reproduction number. In this section we are interested
in trying to evaluate the numerical values of these quantities.

All the model parameters can be estimated by maximizing a
model likelihood on real data. This procedure is largely used in
modeling — not only in epidemiology — and its basic principles
are presented in Box 22.2. Parameter estimation by maximiza-
tion of the likelihood takes into account an error structure and
thus allows giving a confidence interval on the estimation. This
is one major advantage of the likelihood methods.

We will not present again the likelihood method here (see
Box 22.2 for more details). Instead, we are interested in this
section on the derivation of parameter values, almost from
direct reading from the data, after playing a little bit with the
model equations. Contrary to the likelihood methods, this

method does not produce a confidence interval on the
parameter estimation — though such an interval can be pro-
duced by Monte Carlo simulations (see Section 22.8.1.5).
However, this method of parameter estimation is easy, direct,
and much faster to implement than the likelihood methods.

22.8.1.1 The basic reproduction ratio R,

ous sections we have seen two expressions of the basic repro-

In the previ-

duction number which can all help to estimate it from the
data. The first one evidenced in Section 22.6.1 is relative to
the endemic equilibrium value of the proportion of suscep-
tibles in the population. Indeed, by searching the equilibrium
point of the system of difterential equations we ended with
the fact that, at endemic equilibrium, the proportion of sus-
ceptibles in the population is equal to the inverse of the basic
reproduction number. It is intuitively expected that the high-
er the basic reproduction number, the lower the proportion
of susceptibles at endemic equilibrium in the population. A
standard serological survey can easily determine the propor-
tion s* of susceptibles of an endemic disease. From this pro-
portion one can thus determine the basic reproductive ratio
simply as

1

Ry =—
§k

(22.23)

Such estimations of the basic reproduction number of a vari-
ety of viral and bacterial infections are listed in Table 22.2. In
Section 22.6.2 we showed an even simpler form of the basic
reproduction ratio, provided we have the age of each case
notification. From these data one can easily calculate the
mean age at infection A. The life expectancy L is a demo-
graphic information that is available for many human popu-
lations. Dividing it by the mean age at infection produces a
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TABLE 22.2. Some Disease Parameter Values Taken from the Literature. All Parameters are Estimated in Western Countries

Unless Otherwise Specified

Diseases ya Ab Rs pd Tops Tl
Measles 6-7 4-68, 1-3h 16-17 90-95% 1-2 1-2
Mumps 4-8 6-7 7-88, 11-14" 85-90% 3,2-4 3,2-4
Whooping cough 7-10 4-5 16-17 90-95% 34 3-4
Rubella 11-12 9-108, 2-3" 6-78, 15-16" 82-87% 3.5 4-5
Chickenpox 10-11 6-8 7-88, 10-12" 85-90% 2-4 3-4
Smallpox — — — 70-80% 5 4-5
Malaria — — — 99% — —

aRecovery rate (data from [10, 17, 25]).

bMean age at infection (data form [5]).

Basic reproduction ratio (data from [3, 5, 49]).
dCritical mass vaccination coverage [7].

¢Observed interepidemic period (data from [5]).
'Model-predicted interepidemic period (data from [5]).
8Western countries.

hDeveloping countries.

good estimate of the basic reproduction ratio of a disease in
a given population:

Rl) = £

A

Again this relation seems reasonable as it is intuitively expect-

ed that the higher the basic reproduction number R, the

lower the mean age at infection A.

(22.24)

22.8.1.2  The force of infection A In Section 22.6.2 too
we arrived at the intuitively plausible conclusion that the
mean age at infection is the reciprocal of the force of infec-
tion. Thus, knowing the age of the disease cases, one can eas-
ily calculate the mean age at infection A and deduce the
force of infection:

A=

y (22.25)

For the cases dealing with an age-structured model as in
Section 22.7.2, we need to evaluate the force of infection by age
cohort. By definition, the force of infection is the probability for
a susceptible to get infected. As the events of disease transmis-
sion are independent, the number of susceptible follows nega-
tive exponential distribution of parameter equal to the force of
infection.? Said in other words the ratio S(a+1)/S(a) decreases
exponentially at a rate equal to the force of infection:

S(a+1) _

@ exp(=\(a))

(22.26)

’Incidentally, we find again Equation (22.25). Indeed the mean of a negative
exponential distribution is, by definition, the inverse of the distribution
parameter (see Box 22.3). Thus the mean age at infection is the reciprocal of
the force of infection, as in Equation (22.25).

From Equation (22.26) the force of infection by age can thus
be casily calculated as long as we are in the possession of dis-
ease prevalence I(a) by age cohorts. Indeed, the number of sus-
ceptibles at age O is simply equal to the number of newborns
(S(0) = wN) and the other values of S(a) are then obtained

recursively:

S(a+1) = S(a)— I(a) (22.27)

22.8.1.3 The coefficient of transmission 3

of airborne diseases, the force of infection A is formally relat-

In the case

ed to the coefficient of transmission 8. The simplest of such
relations is a linear one (see Section 22.5.1):

A=pi (22.28)

The coefficient of transmission 8 can thus be estimated from
the value of the force of infection A, as estimated in the above
section 22.8.1.2, and the prevalence i.

For age-structured models, things become a little bit
tougher. Indeed, from Equation (22.20) we have a system of
n equations with n* unknown variables f; ;

n
)\iZZBi,jij i:1,...,l/l

j=1 (22.29)

In order to solve this system, it is necessary to formulate
hypotheses allowing us to decrease the number of unknown
variables down to n. The first of these hypotheses is an
assumption of symmetry [7]:

B.i=B (i) € {1,...n)2

However, this hypothesis has the effect of decreasing the num-

(22.30)

ber of unknown variables only to n(n+1)/2. An alternative
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consists in defining 3, ; = B,. [7]. In any case these hypotheses
necessitate the definition of a WAIFW (who acquire the infec-
tion from whom) matrix. Considering n=5 age cohorts, the
four most usually used WAIFW matrices are the followings [7]:

Bi B B Bi PBs
Bi B> Bs Bi Bs
& Bs Bs
Bs By By Bs Bs
1Bs Bs Bs Bs Bs]

WAIFW,

I
=
>
>

WAIFW, =| B, By By Bi P

WAIFW;

I
=
>
>
>
=

WAIFW, =B85 Bs B3 Bs PBs

where classes 1, 2, 3, 4, and 5 usually refer to the 0—4 years,
5-9 years, 10-14 years, 15-19 years and 20 years more,
respectively. Each of those matrices yields a system of n
equations with # unknown. The f; can thus be determined
from the observed mean incidences by age cohort (i) and
the mean forces of infection by age cohort calculated in
the above Section 22.8.1.2.

For a temporally varying coefficient of transmission, there
is no other means of estimation than maximum likelihood,
whatever the exact form of the variation on .

22.8.1.4 'The rate of recovery 7y Quite generally, under
steady-state conditions, the quantity in a given compartment is
equal to the product of the rate of inflow times the expected
sojourn time. In the case of the infective compartment of an
SIR model this remark translates into incidence X expected
sojourn time = prevalence [19]. As mentioned in Section 22.6.1,
when the outflow of a compartment occurs at a constant rate,
the sojourn time in the compartment follows a negative expo-
nential distribution with parameter equal to the rate of out-
flow. The mean of a negative exponential distribution is equal
to the reciprocal of its parameter, thus the expected sojourn
time in the infective compartment is equal to the inverse of the
recovery rate. In consequence, we end up with the following:

y= incidence (22.31)

prevalence

Epidemiological data generally contain either incidence or
prevalence. However, one can be easily calculated form the
other as incidence is equal to the variation of prevalence.

22.8.1.5 Monte Carlo simulations We have presented
here simple methods to estimate the values of both model
parameters (such as the rate of recovery) and emerging quan-
tities (such as the basic reproduction number). These estima-
tions are fast and easy to implement with most available epi-
demiological data. However, and contrary to likelihood
methods, they do not provide any confidence interval on the
estimation. One classic method to cope with this is to use
Monte Carlo simulations.

The idea of Monte Carlo simulations is to generate a dis-
tribution of a parameter by resampling the data [45]. A con-
fidence interval can then be found based on this distribu-
tion. In practice, the generation of such a distribution is
done as follows. (1) an artificial data of the same length as the
original data set is generated by sampling with replacement
in the original data set. (if) The parameter is estimated on
this artificial data set and its value kept in memory. Steps (i)
and (ii) are repeated a large number of times and the values
of the parameters estimated on each artificial data set give a
distribution of the parameter. From this distribution one can
find a confidence interval. One crucial point in Monte
Carlo simulations 1s related to the choice of the number of
time steps (i) and (ii) should be repeated. This number
should be large enough for the generated parameter distri-
bution to be considered in a steady state. One way to check
for the convergence of the distribution toward a steady state
is to follow the evolution of the value of one distribution’s
statistic (such as the mean) at each new repetition and stop
when this statistic seems to have converged to a steady value.

2282 Tools for Time Series Analysis
Longitudinal epidemiological surveys produce time series.
The object of time series analysis is to look for periodic pat-
terns in the data. Because of the time component, data in
time series are not independent. The consequence is that the
classic statistical tools that assume independence of data cannot
be used on time series [15]. In this section we briefly present
the basic tools of time series analysis, from the simplest to the
most recent and elaborated.

22.8.2.1 Stationary time series The first two methods
require the time series to be in a stationary state. A time series
is said to be in a stationary state if there is no systematic change
in mean (no trend) and in variance [15]. This basically sup-
poses that the signal has constant period and amplitude, which
is not the case for numerous real time series. The trend can be
removed by considering the residuals from a regression or a
nonparametric smoothing such as a B-spline or Loess regres-
sion [15]. Another mean for removing the trend consists in
applying a moving average to the series [15]: each point a time
t in the series is replaced by the average of the points between
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times t — T/2 and t + T/2, where the length T of the mov-
ing window is to be defined. When 7T increases the edge
effects increase too and the averaged series will be reduced
from T data points compared to the original series. Lastly, the
trends can be removed by considering the variations in
the time series [15]: each data point is replaced by the differ-
ence with the previous data point. Square transformation of
the data generally has the effect of stabilizing the variance and
logarithm transformation is usually used to linearize the data,
the three methods presented here requiring linear data sets
where the effect is proportional to the cause.

22.8.2.2 Autocorrelograms This method applies to
stationary time series. The idea is to calculate the correlation
between a time series and a lagged copy of itself [15]
(Figure 22.10). The autocorrelogram plots the value of an
autocorrelation coefficient r against the value of the lag. At
lag = 0 the autocorrelation is by definition equal to 1. When
the lag increases the value of the autocorrelation coefficient
decreases, then becomes negative, and oscillates around the r
= 0 horizontal line. The period of the oscillations of the
periodogram is the same as the period of the original signal.
Moreover, the oscillations are damped. Indeed, because of the
dependency between the points of the time series, the noise
accumulate additionally, thus hiding any autocorrelation sig-
nal when the lag becomes too large. In the same way one can
trace correlograms between two different series (called cross-
correlograms) to get an idea of the synchronicity or phase
difference between two data sets.

22.8.2.3 Fourier spectra Like the autocorrelogram this
method applies to stationary time series. The Fourier theorem
states that any periodic signal s(f) of frequency F, can be
decomposed into a sum of sinusoids [13, 15] (Fig. 22.11):

oo
s(t)=ap + Z[a cos(2mhynt) + b, sinakynr)| (22.32)
n=1
where q, is the mean of the signal and 4, and b, (n € N) are
the Fourier coefficients, basically referring to the weight that
each harmonic of frequency nF has in the whole signal. This
can also be thought of in terms of the magnitude of the
correlation between the signal s(f) and the sinusoid of fre-
quency nkF,. The use of complex numbers renders this for-
mula much simpler®:

+o0

st = 2 ¢, et

n=-—oo

(22.33)

where j is the imaginary number and the Fourier coefficients
¢, are now complex. The advantage of this form is that we
have only one coefficient ¢, for each frequency nF,.
Decomposing a time series into a Fourier sum consists in

JAfter the application of the key mathematical relationship: e/’ = cos § + j
sin 0.

estimating the coefficients of the Fourier sum. For Equation
(22.33) the coefficients are equal to

T

=— | " ()e2mEmgy (22.34)
To 0

CH

It is important to realize that the time series s(f) and the
series of Fourier coefficients ¢, describe exactly the same
reality, the time series in the time domain and the Fourier
coefticients in the frequency domain. The Fourier transform
of Equation (22.34) allows passing from the time to the fre-
quency domains whereas the reverse Fourier transform of
Equation (22.33) does the opposite transformation. The time
or the frequency domains are thus two different ways of
looking at the same reality. As in time series analysis we are
interested into the regular patterns of a series, it is often
more convenient to work into the frequency domain (at
least when the series are stationary). This decomposition of
a periodic signal into a sum of sinusoids can be generalized
to the decomposition of an aperiodic signal where an aperi-
odic signal is simply a periodic signal with a period equal to
® [13,15]. Equation (22.34) then takes the more general
form
too

S(F) = [ stoye > dr (22.35)
where the Fourier transform S(f) is now a continuous func-
tion of frequency f. A Fourier spectrum plots the values of
S(f) against f. Inspection of such a spectrum gives a clear
idea of which frequencies contribute the most to the signal.

22.8.2.4 Wavelet analysis Direct and inverse Fourier
transforms force us to visualize a stationary time series either
in the time or the frequency domain. Analyzing nonstationary
time series, one may, however, be interested in visualizing it in
the time and frequency domain at the same time in order to
be able to say that the period of the signal is equal to T
between times t; and t,; T, between times t, and t3; and so on.
One first attempt into this direction has been the use of the
Fourier transform on a moving window. The major disadvan-
tage of this ad hoc method is that the fixed size of the windows
gives different weights to the different frequencies. This incon-
venience has been coped by the invention of the wavelets.
The last decade has witnessed the emergence of an
impressive number of wavelets. Certainly, the most used in
ecology is the Morlet one which is essentially a complex
exponential with a Gaussian envelope. The key advantage of
wavelets relative to sinusoids used in Fourier analysis is that
not only they can be moved along the signal (as in win-
dowed Fourier analysis) but also they can be stretched to
account equally for the different frequencies [13,58]. A
wavelet spectrum 1s thus a three-dimensional graph which
plots the correlation of the wavelet with the signal as a func-
tion of both the location of the wavelet along the signal
(time domain) and the stretching of the wavelet (frequency
domain). Figure 22.12 shows an example for the measles
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Fig. 22.10. Autocorrelation plot of the biweekly measles notification cases for London from 1944 to
1966. (a) Time series of the cases. The correlation between the time series and a lagged copy of itself
is calculated. As the notifications are biweekly, the lag is equal to 2 weeks. (b) The autocorrelogram
shows the value of the autocorrelation against the lag. The dashed line represent the 95% confidence
limits about zero. When lag = 0 the series is correlated with itself and thus the autocorrelation is equal
to 1. The autocorrelation coefficient then reaches maxima at lag = 53, 105, and 156 (106, 210, 312
weeks, respectively, see vertical arrows), thus evidencing a period of about 2 years. Data downloaded
from http://www.zoo.cam.ac.uk/zoostaft/ grenfell/measles.htm [27].
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Fig. 22.11. Decomposition of a periodic signal into Fourier sum of sinusoids. (a) Plot of the sinu-
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Fig. 22.12. Wavelet power spectrum of the measles notification cases for London between 1944 and

1966. The magnitude of the correlation between the series and the wavelet increases from blue to

black. The parabolic curves represent the cone of influence. Because of edge eftects, everything below

the cone of influence cannot be interpreted. The above graph shows the time series of normalized

measles cases and the right graph is the Fourier spectrum. It is clear that the wavelet power spectrum

combines information of both time and frequency domains. Data downloaded from

http://www.zoo.cam.ac.uk/zoostaft/ grenfell/measles.htm [27]. See color plates.

cases of London from 1944 to 1966. With such a graph one
is able to say the frequency of a signal at any time.

229 APPLICATIONS TO VACCINATION POLICIES

After an overview of the basic epidemiological models and
results, as well as statistical tools for the epidemiologist, the last
section 1s devoted to practical applications for the development
of vaccination policies. In public health, vaccination policies are
decisions made by governments and applied on large spatial and
temporal scales. The ultimate aim of a vaccination policy is the
eradication of a disease from a population. This goal is extreme-
ly difficult to achieve in practice and most vaccination strategies
are imperfect in the sense that they only decrease (sometime
dramatically) the number of cases, without, however, eradicat-
ing the disease [7]. In this context, vaccination can yield side
effects on the disease statics and dynamics that are important to
evaluate. There currently exist two major vaccination strategies
— the mass vaccination, which is the most ancient and still the
most applied, and the recently developed pulse vaccination
which is used in a increasing number of countries.

229.1 Mass Vaccination Strategy

Mass vaccination strategy is the most ancient and still the
most widely used vaccination scheme. It consists in vacci-
nating a large proportion of infants before the mean age at
infection [7], for example, the 0-2 age cohort for the
measles-mumps-rubella (MMR) vaccine in the United
States. Its first applications started in the sixties against
measles in the North American and European countries
where they have caused a dramatic decrease of the number
of cases.

22.9.1.1 Calculating the wvaccination coverage The
derivation of the optimal vaccination coverage is based on
the properties of the endemic equilibrium. At equilibrium the
replacement number R (see Section 22.5.3) is equal to the
basic reproduction number R, times the proportion of sus-
ceptibles: R = Rys*. Applying a vaccination coverage equal to
p has the effect of diminishing the proportion of susceptibles
by p:s*¥ =1 — p.A condition for disease eradication is that the
reproduction number be less than 1: R = Rys* = Ry(1 — p)
< 1,orp>1 — 1/R,.Thus the critical vaccination coverage
p. for disease eradication is p. = 1 — 1/R; [7]. Note that this
result shows that we do not need to vaccinate each individual
to protect the whole population. Note too that this property
known as herd immunity is not evident from the data and
emerges only from the model. The higher the basic reproduc-
tion number, the higher the vaccination coverage should be.
Vaccination coverages of major human infectious diseases are
given in Table 22.2. We can see that many infectious diseases
require vaccination coverage which are far too higher to be
achieved in practice. This 1s further complicated by other
mechanisms such as the vaccine efficacy. Consider, for exam-
ple, measles and rubella for which estimates of the critical vac-
cination coverage based on R, are 0.94 and 0.86, respectively.
A vaccine efficacy of 0.95 means that 5% of those vaccinated
do not become immune. In consequence, taking into account
vaccine efficacy necessitates coverages of 0.99 and 0.91 for
measles and rubella, respectively [34]. This explains why the
only human infectious disease which has been eradicated suc-
cessfully worldwide so far is smallpox which has the lowest
critical vaccination coverage.

22.9.1.2 Consequences on the statics A first and
expected effect of vaccination is that fewer people will
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Fig. 22.13. Model predicted effect of a mass vaccination policy at
birth on the number of congenital rubella syndromes (CRS). The
graph plots the ratio of CRS before and after the start of the mass
vaccination policy against the vaccination coverage. It shows that low
vaccination coverages (less than 50% here) should be avoided as they
can increase the absolute number of serious cases (model from [4]).

experience infection. But the decrease of the force of infec-
tion due to vaccination means that the mean age at infec-
tion of the smaller number of people who do acquire infec-
tion increases [7] (recall Equation (22.25)). If the probability
of disease complications increases with age, it is thus possi-
ble that some vaccination programs could actually increase
the absolute number of serious cases. The likelihood of such
a perverse outcome again can only be evaluated thanks to
disease models. A classical example is the one of the con-
genital rubella syndrome (CRS), treated in detail by
Anderson and May [4]. They have evidenced that the
absolute number of CRS can actually increase with the vac-
cination coverage when the vaccination coverage is low
(Figure 22.13).

22.9.1.3 Consequences on the spatial and/or tempo-
rval dynamics The spatio-temporal dynamics of a disease is
of primary interest if we are to design efficient country-wide
vaccination policies [28]. For example, the global eradication
of a disease would be easier if the local dynamics are syn-
chronous. In the case where local dynamics are completely
asynchronous, local extinctions would be quickly followed
by migration of infectious individuals from neighbor com-
munities experiencing an epidemic outbreak. With a very
simple endemo-epidemic model Earn et al. [22] have shown
that the disease dynamics complexity — as given by the
length of the period and the number of different attractors
(see Box 22.4) — increases with vaccination coverage.

Furthermore, a simple island model such as the one present-
ed in Section 22.7.3 evidences that an increase in the vacci-
nation coverage results in a decrease of the spatial synchrony
of disease dynamics. This is intuitive as the coupling between
the different subpopulations is assured by the migration of
infective (see Equation (22.21)).Vaccination has the effect of
decreasing the number of infectives and thus the synchrony
between the different subpopulations. In conclusion, mass
vaccination has the effect of (i) increasing disease dynamics
complexity and (i) desynchronizing local dynamics. The
first consequence accentuates the second as the probability
of dynamics synchronicity naturally decreases with the level
of complexity. These model predictions have been success-
fully confirmed on real data analysis [52]. As the mass vacci-
nation tends to desynchronize the spatial dynamics of the
disease, it renders global disease eradication even more diffi-
cult to achieve in practice than expected from the above the-
oretical predictions (Section 22.9.1.1).

229.2 Pulse Vaccination Strategy

As highlighted in the previous Section 22.9.1, mass vaccination
strategy requires a too high systematic vaccination coverage to
be achieved in practice. A recently proposed and potentially less
expensive strategy is vaccination in pulses [1, 50]. This approach
consists in vaccinating a certain proportion of the population at
regular intervals of time. The rationale behind this is to vacci-
nate sufficiently and frequently enough to maintain the per-
centage of susceptibles below the threshold necessary for an
epidemic to start (Figure 22.14). What makes this policy less
expensive than the mass vaccination strategy is that it explicitly
accounts for the dynamics of the host population through the
birth rate. Several theoretical works have been carried out to
express the optimal vaccination coverage and frequency as a
function of the host demographic characteristics [21,55,57].
The simplest one is derived from the Pythagore theorem (see
Figure 22.14).This theory has been successfully applied in cam-
paigns against poliomyelitis and measles in Central and South
America, and measles in the United Kingdom in 1994.

22.9.2.1 Spatial dynamics Using a simple endemo-
epidemic model Earn et al. [23] have shown that a same pulse
vaccination strategy tends to synchronize disease dynamics in
independent localities (see Figure 22.15). This phenomenon
is a case of Moran effect where the same causes produce the
same effects [12, 30, 47]. Indeed, by its periodical nature, an
imperfect pulse vaccination strategy acts as a forcing driving
the disease dynamics. Two independent populations submit-
ted to the same pulse vaccination scheme will thus exhibit
similar and synchronous disease dynamics. The effect of pulse
vaccination on the spatial dynamics of a disease is thus oppo-
site to the one of mass vaccination and this facilitates the
achievement of a global disease eradication [38].

22.9.2.2 Resonance A second side-effect that can be asso-
ciated to the periodic nature of pulse vaccination is the phe-
nomenon of resonance. Theory of oscillator dynamics predicts
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that an oscillating dynamical system (such as an epidemiologi-
cal one) submitted to a periodic forcing (such as an imperfect
pulse vaccination) can produce phenomena of resonance [36].
Resonance 1s a generic term indicating that the amplitude of
observed oscillations depends on the period of the forcing, and
has a maximum, called peak of resonance. These theoretical pre-
dictions and their epidemiological consequences have been
investigated on a disease system by numerical simulations and
data analyses [16]. Figure 22.16 shows that the mean annual
number of infectives globally decreases as the frequency of vac-
cination pulses increases. However, resonance is responsible for
the peaks observed on this general trend. The major one occurs
at a vaccination frequency close to 2 years, the others simply
being harmonics of it. The practical consequence of these peaks
is that, locally on the vaccination frequency dimension, the
mean annual number of infectives counter-intuitively increases
with the frequency of vaccination.

1015 3

1074 ¢

infectives

1000 :

2210 CONCLUSION
22101 What We Have Seen

Statistical analyses of epidemiological data help to character-
ize, quantify, and summarize the way diseases spread in host
populations (Section 22.8).The aim of epidemiological mod-
eling is to understand the behavior of diseases in nature
(Section 22.2). Because of ethical and practical impossibility
to perform experiments in public health, mathematical mod-
els appear as a cheap and efficient way to explore and test
hypotheses (Section 22.2.2). In addition to force the investi-
gator to think rigourously (Sections 22.5.1 and 22.5.2,
Box 22.3), models provide powerful conceptual results such
as the basic reproduction number and threshold effects
(Section 22.5.3), or the herd immunity (Section 22.9.1.1).
Even if very interesting pure theoretical works have been
realized, the key element of epidemiological modeling is to
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Fig. 22.15. Effect of a same pulse vaccination strategy on independent disease dynamics. The simula-
tions start so that the disease dynamics are in opposition of phase. At year 50 a pulse vaccination strat-
egy is started with p = 20% and T}, = 1 year, progressively synchronizing the two dynamics.
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Fig. 22.16. Mean annual number of infectives as a function of the
period T} of vaccination pulses. The general trend is a decrease of
the mean annual number of infectives as the frequency of vaccina-
tion (1/T}) increases. However, resonance is responsible for these
peaks on this general trend. The consequence of such peaks is that,
locally on the vaccination frequency dimension, the mean annual
number of infectives counter-intuitively increases with the frequen-
cy of vaccination.

link model with data. Likelithood methods are modern and
efficient ways to do so (Box 22.2). Models thus allow to esti-
mate epidemiological parameters and also to identify crucial
data that need to be collected.

This chapter was centered on the SIR model. Although
one of the simplest epidemiological models, it is still one of
the most used, particularly to study childhood viral and bac-
terial infections. There 1s a multitude of ways to complexify
this simple model in order to account for more and more
phenomena. However, the more complex is not necessary
the best and it is the purpose of a model that dictates its
degree of complexity (Section 22.2, Box 22.1). We have
explored models to study single epidemics (Section 22.5),
endemic diseases (Section 22.6), spatial disease dynamics
(Section 22.7.3), and have illustrated how these mathemati-
cal tools can be used for the development of public health
policies in helping defining optimal vaccination strategies
(Section 22.9).

22.10.2 What We Have Not Seen

Of course, the list of what we have not seen about epidemi-
ological models 1s much longer than the list of what we have
glanced at.

Some classes can be added to the simple SIR model. For
example, a commonly used model for childhood diseases is
the SEIR one which adds a class of exposed (E) individuals,
that is, individuals which are infected but not infectious yet.
For most childhood infectious diseases the latence phase is
often as long as the infectious and should be accounted for as
it can substantially change the epidemiological conclusions of
the models. MSEIR models further add a class accounting for
the post-birth period during which newborns are protected
from infections by maternal antibodies.

All the models covered in this chapter assume that the host
population is of constant size. This, thus, excludes both diseases
in exponentially growing populations like in most developing
countries and disease-induced mortality as the case for many
infections including childhood diseases in developing coun-
tries, malaria, and so on. Accounting for a nonconstant host
population size requires the explicit modeling of the host
population dynamics, in addition to the disease dynamics.

For sexually transmitted diseases (STD), contagious con-
tacts are not established randomly as usually assumed for air-
borne infections. Besides a strong heterogeneity in the sexu-
al activity, sexual contact occurs preferentially between
people of the same sexual activity, creating this core effect in
the epidemiology. Models for STD should thus account for
all these degrees of heterogeneity in the contacts. In addition,
many STD result in little or no acquired immunity following
recovery, and SIRS models would be more appropriate.

Otbher particular epidemiological systems requiring adapt-
ed models include, among others, mother-to-child diseases
for which not all children are born into the susceptible com-
partment and diseases propagated by syringe-sharing intra-
venous drug users such as HIV/AIDS.

The epidemiology of multiple-host diseases is far more
complicated than the one of directly transmitted infections.
Compartmental models of such diseases need to account for
the dynamics of the disease in the different hosts or reser-
voirs, and possibly also for the dynamics of these different
hosts or reservoirs. For these diseases, the modeling of passage
from one host to the other is not always an easy task.

Lastly, so far we have dealt primarily we microparasitic infec-
tions. Contrary to microparasites (Section 22.4), macroparasites
refer to large-size parasites (helminths, arthropods) with direct
reproduction in the definitive host. Macroparasites generally
have longer generation time (often an appreciable proportion of
the host life span) than microparasites. The immunity following
the recovery from a macroparasitic infection is generally of
short duration and the number of parasites per host is a strong
determinant of the epidemiology. From a modeling point of
view, this means that the simple compartmental models pre-
sented in this chapter for microparasites should be replaced by
more complicated models accounting for the distribution of
parasites among the hosts. This is totally another subject and we
refer the reader to the classical book by Anderson and May [7]
for more details.

2211 SUMMARY

By clarifying rigorously the assumptions, the variables, and the
parameters, mathematical modeling allows understanding the
observed spread of diseases in space and time. Epidemiological
model further provides important conceptual results including
the basic reproduction number, the threshold eftects, and the
herd immunity. For evident ethical and practical reasons,
experiments in public health are often impossible to perform
and mathematical models thus appear as a cheap and efficient
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way to explore and test hypotheses. This is, for example, of
particular practical utility in the design of vaccination policies.
One key aspect of epidemiological models is their link to real
data. Such data often stand under the form of time series
which necessitate specific statistical tools for their analysis.
Models can always be complicated to improve their fit to real
data. However, more complex models are not always the best
and it is the question under investigation that should dictate
the optimal level of complexity.
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