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Statement of main outcome: While the Tropical Pacific

was rather in neutral El Niño-Southern Oscillation con-

ditions during 2017, a significant surface warming with

similar amplitude to typical eastern Pacific El Niños

was found locally along the coast of Peru and Ecuador

at the beginning of the year. Triggered by an anoma-

lously low along-shore wind, the surface warming

stopped the coastal upwelling and generated strong

interannual precipitation over the coastal land in the

north of Peru. This warm event, named ‘coastal El

Niño’, was not anticipated by climate forecasting centres

and left local authorities totally unprepared, regarding

floods and landslides generated by persistent heavy

rains from January to March.Given the strong conse-

quences for the local populations, these very rare coastal

El Niños (only two previously reported) therefore

require further investigations.

Products used:

Ref. no. Product name and type Documentation

4.7.1. GLOBAL_REANALYSIS_
PHY_001_025

PUM: http://marine.copernicus.eu/
documents/PUM/CMEMS-GLO-
PUM-001-025.pdf

QUID: http://marine.copernicus.eu/
documents/QUID/CMEMS-GLO-
QUID-001-025.pdf

4.7.2. ECMWF Era-Interim
reanalysis wind product

Reanalysis (atmosphere)

Dee et al. (2011), downloaded from
the website http://data.ecmwf.
int/data/

4.7.3 OCEANCOLOUR_GLO_
CHL_L4_REP_
OBSERVATIONS_009_082

OCEANCOLOUR_GLO_CHL_
L4_NRT_OBSERVATIONS_
009_033

PUM: http://marine.copernicus.eu/
documents/PUM/CMEMS-OC-
PUM-009-ALL.pdf

QUID: http://marine.copernicus.eu/
documents/QUID/CMEMS-OC-
QUID-009-033-037-082-098.pdf

http://marine.copernicus.eu/
documents/QUID/CMEMS-OC-
QUID-009-030-032-033-081-082-
083-085-086.pdf

4.7.4 GLOBAL_REANALYSIS_
BIO_001_018

PUM: http://marine.copernicus.eu/
documents/PUM/CMEMS-GLO-
PUM-001-018.pdf

QUID : http://marine.copernicus.
eu/documents/QUID/CMEMS-
GLO-QUID-001-018.pdf

Figure 4.7.1. Temperature (shading, in °C) and winds (arrows, in m/s) anomalies, from the 1993–2014 climatology, time-averaged for
the periods (b) January–March 2016 and (c) October–December 2016 (products reference 4.7.1, 4.7.2).
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As the dominant interannual climate signal on Earth,

the El Niño-Southern Oscillation includes a wide variety

of local and large-scale atmospheric and oceanic

phenomena, but is typically characterised by two anom-

alous basin-wide patterns in the tropical Pacific (e.g.,

Guilyardi et al. 2009; Wang et al. 2017 for a review).

At the beginning of 2017, while the tropical Pacific

conditions in 2017 were not marked by significant

anomalous basin-wide El Niño-Southern Oscillation

conditions such as during the 2015/2016 El Niño

(Gasparin et al. 2017), a localised warm event, associated

with anomalously strong precipitation, occurs in the

southeastern Pacific along the northwestern coast of

South America. This type of event, named ‘coastal El

Niño’, is very rare and the mechanisms are not well

known, as only two coastal El Niños were previously

reported in 1891 and 1925 (Takahashi and Martínez

2017).

As seen in Figure 4.7.1, the January/March 2017 sea

surface temperature is characterised by a strong warm

anomaly of more than 4°C in the eastern equatorial

Pacific off the coasts of Peru and Ecuador. This anomaly

was similar in shape and intensity to anomalies typical of

eastern Pacific El Niño conditions, with the major differ-

ence being the absence of El Niño conditions in the cen-

tral-eastern Pacific during this period. Although a

relatively weak downwelling equatorial Kelvin wave

may have contributed to the warm sea surface tempera-

ture anomaly along the Peru coasts in February–March

2017 (through the deepening of the thermocline), the

main forcing triggering the 2017 event was potentially

a strong large-scale relaxation of the southeasterly trades

in the eastern south Pacific (Figure 4.7.1). The large-scale

mechanism which generated the wind decrease could be

an enhanced deep convection over north Australia, trig-

gering an atmospheric teleconnection between the wes-

tern equatorial Pacific and the eastern South Pacific, as

evidenced by Garreaud (2018).

The intense local ocean warming, which peaked

during March 2017, resulted in enhanced local precipi-

tation rate in the northern Peru and Ecuador. In

Figure 4.7.2, the precipitation rate time series, area-

averaged off the coasts of Peru (red box in Figure 4.7.2

(a)), shows that the March 2017 precipitation rate was

more than 4 times higher than normal, exhibiting larger

amplitude as for the 1997/1998 El Niño. This impacted

on the surface ocean in favouring the development of a

negative sea surface salinity anomaly along the coast of

Peru (Figure 4.7.2(a)). In addition to the coastal area,

this strong event caused high inland precipitation over

the nearby desert land inducing devastating floods and

‘huacos’ (rivers of mud) in northern Peru and Ecuador

(Fraser 2017). Further investigations would require to

quantify the dominant terms of the freshwater balance

in the surface layer, including both atmospheric inputs

and oceanic dynamics.

To further investigate how this event impacted on the

phytoplankton biomass and the production of organic

carbon through photosynthesis, the surface chlorophyll

concentration (used as a proxy of phytoplankton bio-

mass) is shown from independent estimates deduced

from satellite observations and from a numerical

model (Figure 4.7.3). A strong negative anomaly

(<2.2 mg/m3) clearly appears along the coast of Peru

on both estimates. The model estimate suggests that

this negative anomaly is extended down to about 30 m

depth. The coastal upwelling system off Peru is a place

of enhanced level of primary production due to high

nutrient supply by wind-driven upwelling (Pennington

et al. 2006). In March 2017, a decrease of the nearshore

wind-driven upwelling along the coast of Peru (Figure

4.7.3(c)), associated with Ekman pumping changes

(Echevin et al. 2018), probably reduced the inputs of

nutrients to the surface layer, therefore decreasing the

production of organic carbon and phytoplankton

biomass.

Figure 4.7.2. (a) Salinity anomaly (shading) and precipitation rate
(contour, in mm/day), for the month of March 2017 (products
reference 4.7.1, 4.7.2). (b) Precipitation rate is area-averaged in
the red box of (a) (84°W–80°W, 3°S–10°S). Anomaly is calculated
from the 1993–2014 climatology.
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Thus, the large-scale atmospheric variability in the

eastern Pacific has led to significant modification of

the local oceanic/land conditions (i) by warming coastal

surface waters and (ii) by enhancing precipitation in the

northern Peru and Ecuador, and (iii) by decreasing the

upwelling-driven primary production in the coastal

ocean. Unlike the very strong 2015/2016 El Niño, the

2017 coastal El Niño was not anticipated by climate

forecasting centres and left local authorities totally

unprepared (Ramírez and Briones 2017; Garreaud

2018). Although the combination of oceanic/atmos-

pheric observation and model products allows a

detailed description of the 2017 coastal El Niño event,

the rare occurrence of these coastal El Niños can

make difficult the understanding and the prediction of

these extreme events, which thus require further

investigation.
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