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Abstract.
Complex processes, as geographical mobilities, cannot be always modeled by mathematical
formulas or probability laws due to the number of parameters that characterize their behavior.
For this reason, simulation is generally used to study movements in these systems. Multi-Agent
Systems (MAS) are an interesting and intuitive way to model such complex systems as they di-
vide the whole problem into simple ones. However, in this domain, there is a lack of a global
methodology that supports scientists from the design to the implementation of a simulator. In
this article we present the RAFALE-SP methodology that helps out the developer in the con-
struction of spatial mobility models and in their simulation. The methodology is implemented
in a framework that is composed of an oriented meta-model to describe spatial mobilities and
an oriented toolkit to implement mobility simulators. This paper gives a complete description
of the methodology and its concepts then it presents how to use it for the implementation of a
simulator.

Keywords: complex systems, multi-agent system modeling, distributed simulations

1. Introduction

Movement is something totally natural for everyone. However,
studying movements is difficult when we consider real systems com-
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posed of a large number of individuals (human or not). This com-
plexity comes from the independence of the individuals and their au-
tonomous behavior. Multi-Agent System (MAS) is an interesting and
intuitive way to model such complex systems. The reason is that they
use a decentralized approach to divide a complex problem into simple
ones [JP97], i.e. this paradigm allows to represent a complex system by
interconnecting more simple autonomous entities: agents. The shortest
path algorithm based on ant colonies [BG92] is such an example where
agents are used to find an optimal solution. So, creating an ABM (Agent
Based Model) to study dynamics of a complex system requires to con-
sider individuals (agent) and movements, at the natural level: each agent
works to achieve its tasks and interacts with others to solve the global
problem.

Some generic frameworks are available to model and simulate com-
plex systems using an agent based approach. But none of them includes
a methodology that supports scientists from the modeling stage to the
simulator development. Most of the frameworks are designed to de-
velop without formal modeling. We advocate however for the use of
methodologies and formal models in the design of large simulators.
Modelling is seldom used in the design of multi-agent simulators com-
pared to the software development context where the use of methodolo-
gies, models and formalisms is common and widely accepted. They are
numerous advantages for using this approach before starting the devel-
opment of a simulator: changes done afterward will be simplified, when
correctly specified parts of a simulator may be re-used in another one
and, last, validation tools may be used to assist in the development and
to check properties.

The contribution presented in this paper is a methodology called
RAFALE-SP 1. The goal of this methodology is to help scientists with
the definition of spatial mobility models and their simulation. It is com-
posed of a oriented meta-model 2 to describe spatial mobilities and a
oriented toolkit to implement mobility simulators. The meta-model and
the toolkit are generic because they can be used to model and simu-

1. Reflexion, Analysis, Formalization of Agents Localized on an Environment to Simulate
Peregrination

2. A meta-model is a tool which intends to create models [OMG02]
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late various complex systems. Yet, they are oriented in a sense that the
goal is specific to the mobility area. This methodology can be applied
to a wide span of problems as the study of population dynamics in a
town, the simulation of urban traffic or the validation of algorithms for
robot motions in a virtual environment. The RAFALE-SP methodology
is implemented in a framework. This framework helps users with the
description of mobiles, environments and movements and it provides
tools and libraries to generate simulators.

The aim of this article is to present the method we established to
help scientists with the modeling and simulating process of complex
systems. In the second part, we define the mobility context and we
present related works and their characteristics. Then, we introduce the
RAFALE-SP methodology, the proposed concepts and two use cases
that illustrate the methodology application all along the paper. In the
fourth part, we show how environments and motions are described to
create the mobility model. The fifth part presents the toolkit that imple-
ments the methodology. Finally, we compare the methodology to other
approaches before concluding.

2. Related works in the mobility simulation domain

Simulating physical phenomena or behaviors is mandatory to under-
stand the evolution of complex systems. The simulation approach is
composed of several steps: choose an adapted tool, model, implement
and execute. Depending on the complexity of the system, different tech-
niques may be used as mathematic or computer science. Mathematics
based representations of phenomena or behaviors lay on continuous de-
terministic models [DLV02]. The main interest of those models is the
possibility to compute an exact resolution of the problem. However,
those models are limited: on the one hand only a few number of vari-
ables may be used in the model if we want a solution and, on the other
hand, the definition of a mathematical model is not simple and not al-
ways possible. So, most of the research activities on simulation use
discrete event models [ZPK00]. Developing a simulator is however a
complex, time consuming task and, most of the time, a simulator can-
not be reused after it has given the expected results. For this reason,
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the simulation research community has develop concepts, methodolo-
gies and tools to help in the design and development of simulators. The
agent paradigm is one of them.

As said in the introduction, the agent concept is a powerful support
to simulate mobility in systems composed of individuals. Several re-
searches aim at creating generic tools based on agent paradigm to help
users that want to create models or/and softwares. We can divide these
researches into three levels: (i) methodologies (GAIA [WJK00], TRO-
POS [BPG+04] or Adelfe [PBG03]), (ii) languages (AUML [BMO01],
AML [CTC05], Ploom [Fer90]), (iii) and toolkits (MadKit [GFM00],
MASON [LCRPS04] or Repast [NNV06]).

These tools were created according to different approaches. Many
tools come from Object-Oriented (OO) tools as AUML. Others are cre-
ated independently of OO (e.g. TROPOS).

Each methodology, language and toolkit contains specific character-
istics. They do not share the same representation for agent and envi-
ronment. For instance, the agent language associated with GAIA de-
scribes environments with variables whereas AML represents environ-
ments with a set of objects that can be accessed by agents. Due to their
specificities, frameworks do not have the same goal.

Note that, depending on the methodology, language or toolkit abil-
ities, a tool may be more efficient in a particular domain [BLPM02].
A generic tool can be used in different situations. It is however less
efficient than a tool that is designed for a specific system.

Each agent oriented tool is created to reach a specific goal (creating
a software, simulating motion, etc.). Due to their objective, tools use
different concepts like role, perception or mobility. Mobility studies are
often achieved by creating models and software in order to design and
simulate different kinds of trips. So, agent based tools like AUML allow
mobility description. The meaning of the mobility concept is however
different depending on the considered multi-agent tool. Some of them,
like AUML or GrassHopper [BBCM00], associate mobility with mobile
computing i.e. agents moving from one computer to another. Others as-
sociate it with functions to simulate motions. Repast permits simulation
of agent journeys in a spatial environment. The work presented here fo-
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cuses on simulated mobilities rather than on real mobilities according to
the definition of motions that are proposed in Multi-Agent frameworks.

In the literature, agent-based simulation tools which aim at simulat-
ing mobility, are either agent centered frameworks or environment cen-
tered frameworks [Fou05]. In the first case, agents are fully described
and environments are less realistic. On the opposite, in the second case,
agents are simpler and they evolve on a accurate virtual world. We have
created a new framework to fill the gap between these approaches. It
allows us to simulate intelligent mobiles (e.g. citizens) that move on a
complex environment (e.g. a city with its roads, shops, restaurants and
so on).

3. A methodology to design and simulate complex systems

The goal of this section is to give a global description of the
RAFALE-SP methodology. After justifying the approach, we define
the concepts used before presenting the methodology. Then, we show
how motion is described in our proposition.

3.1. Methodology justification

Two questions are tackled in this part: the methodology and the ben-
efits expected form this methodology.

The work presented in this paper concern both a methodology and a
framework. What is for us the distinction between these two concepts?
We name methodology the approach proposed to design simulators. It
is based on a progression from the model to the implementation and
on several concepts that have been identified as central in the design
of mobility simulators. So this is a set of working methods that helps
simulator designers to develop a simulator to study a context.

We claim that this methodology is generic: it may be used with dif-
ferent frameworks to develop simulators. We believe further that this
approach can be used for the design of other simulators than mobility
simulator but we do not have results to prove it. The framework part
is composed of the languages adaptation or definitions and of libraries
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that we propose to help users with the methodology progression. We
also present the framework in this paper.

The benefits expected from the methodology are the same as for all
software engineering based designs: quality of design and implemen-
tation, evolution ability for the simulators, software reuse thanks to the
modular approach, etc. In the particular case of our methodology we
also plan to use the models to validate parts of the design. All these
benefits leads to shorten the development of a simulator, in particular
when the developer have complete mastery of the methodology and of
the framework. Scientists that study mobilities and thus frequently de-
velop simulators will benefit from the proposed methodology.

3.2. Manipulated Concepts

To allow the representation of autonomous individuals, each mobile
is designed by a pro-active and social agent integrating human char-
acteristics. This choice was mandatory to support the description of
mobiles that are able of high level decision capacities. This is the case
for the simulation of human dynamics in an urban context for instance.
However, who can do more can do less and the representation of mo-
biles with low decision capacities is still possible. In the domain, many
social agent architectures have been proposed [BH02, CBF03, ML09].
Major of them are based on BDI approach [Dav96]. VON-BDI 3

agents [BH02], an extension of BDI agents, are inspiration sources to
response to our needs because these concepts were created to repre-
sent humans. Nevertheless, the BDI logic is not kept in RAFALE-SP.
Thus, in RAFALE-SP, agents are based on VON-BDI architecture but
not based on VON-BDI internal functioning.

As in most mobility simulation platforms, agents are located on a
virtual space, the environment, which represents a real area, for exam-
ple a town. So, a motion can be defined by a position change on this
environment. This change is the result of a complex computation based
on the agent mental state, its perceptions, its physical abilities and its
internal behavior rules.

3. Value, Obligation, Norm-Belief, Desire, Intention
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In this environment, a reference frame must be chosen in order to de-
termine an unique location for each agent. An environment may be de-
fined as a cellular automaton, a graph or dimensional spaces [TDZ08].
The frame of reference will determine mobilities that can be observed
during a simulation, so its choice must be considered. Many considera-
tions as the study goal or the accuracy of a simulation, need to be taken
into account for its definition.

To be generic, areas studied using the methodology may be com-
plex. Motions are constrained by space topology (e.g. streets define the
places where cars move) and laws applied to the area (e.g. the high-
way code). As a consequence, mobile abilities are limited because they
cannot move from a point to everywhere without having an intermedi-
ate location. For this reason, RAFALE-SP associates a set of motion
capacities to each agent. This capacity determines actions and move-
ments that an agent is able to do and represents the physical abilities
that the studied mobiles have in the reality. For example, we can define
walking and running aptitudes for an agent representing a human.

RAFALE-SP represents real mobility by two major elements: the
Agent and its Environment. In addition, Interaction between agents and
Organization (e.g. family, firm) are considered in our framework. In
fact, RAFALE-SP is inspired by a multi-agents approach called Vow-
els [Dem03].

One of the issues encountered when designing a MAS is the granu-
larity of the system representation, i.e. what must be represented by an
agent to get realistic results and what must be put in the environment.
The well known tradeoff is that the more we implement as agents the
more realistic are the results but also the slower is the simulator. The
main reason is that more agents leads to more computing power con-
sumption, due to their dynamic behavior. In the RAFALE-SP method,
we make the assumption that fine grained mobilities are modeled into
individuals and the whole system dynamics are described into the en-
vironment. It means that studied mobilities can be described at a mi-
croscopic level and other dynamics of a system at a macroscopic level.
Thus we can limit the execution cost of a simulator by describing parts
of the mobilities in the environment.
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3.3. Overview of the RAFALE-SP methodology
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Figure 1: Steps of simulator creation in the RAFALE-SP methodology

Traditional approaches used by software engineering have already
proven their efficiency in modeling complex applications. They are,
unfortunately, seldom used in simulator design. RAFALE-SP and its
associated methodology take advantage of these techniques. Figure 1
illustrates the steps defined in the methodology to realize a simulator.
First of all, a specification document must be written. It describes, in a
natural language, the system to be studied. The aim of this first step is
to give a global view on the mobiles that we want to describe. So, this
specification is an early document that is necessary clearly identify of
what we will model.

Then, four steps are needed to obtain a functional simulator:
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1) The architectural description represents how a system is struc-
tured. It describes, for example, the structure of agent knowledge and
how mobiles perceive their environment. Moreover it shows how mo-
biles move on the space. UML diagrams, like class diagrams, are used
to achieve this step. These diagrams are a first step before a more ac-
curate model. They are very useful during the development phase for
communication purpose. Thus, they are a good medium to globally
understand the system we want to model.

2) The behavior analysis defines main agent behavior types. In an-
other words, we declare different types of agent acts (e.g. move or plan
a path). At this stage, we use diagrams like state-charts.

3) The specification describes the system with accuracy. It intends
to describe mobile behavior rules. It defines efficiently how mobiles
move and how agents observe their environment. Few specifications
are necessary to complete this step. These specifications use Ploom-
Unity [Mar05], a language which take advantage of Ploom [Fer90] and
Mobile Unity [GCP03]. At this stage, the XML meta-language is also
used to describe the structure of the messages exchanged by agents.

4) The development aims at implementing mobiles, their environ-
ment and graphical interface. This implementation is facilitated by a
toolkit based on the meta-model structure. This library is composed of
classes which are abstractions of desires, beliefs, and viewed elements.

Our methodology uses several formalisms - languages and meta-
languages - as UML, Ploom-Unity and XML to model the agents and
their environment. These formalisms are introduced to easier the learn-
ing and the correct use of the methodolgy. We mainly chose them for
their expressiveness and for their wide acceptance in the development
community so that we can take advantage of a large panel of tools, doc-
umentation, examples, etc. The ease of use also implies a better efficient
in the design and implementation process.

In some cases, an adaption is mandatory to specialize the language
to the specific context. For instance, we chose UML because it is well
adapted to our needs and widely used but we specialized it to describe
geographical mobility. In other cases, we had to design a new language
to correctly implement the methodology concepts. Thus, we created
the Ploom-Unity language as existing languages are not generic enough
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to describe dynamics that take place on any territory. For example,
ELMS [OBCdRC05] describes an area by a regular grid while our ap-
proach allows to design various types of spaces as grids, graphs or other
topologies. Last, the use of the XML meta-language is obvious for all
the cases where a formalism must be defined to instantiate structures.

3.4. Use cases

To illustrate the interest and the use of the RAFALE-SP method-
ology, we present here two use cases on which we have used the
RAFALE-SP methodology and that come from different research area:
the MIRO 4 project, in geography, Microbes, in soil sciences.

The goal of the MIRO [BCL+05] project is to model and simulate
daily journeys of Dijon (town in the east of France) inhabitants. From
a poll which collects data about Dijon inhabitant activities, a first anal-
ysis is done by geographers. Then, we have established an agent based
model and developed a simulator by following RAFALE-SP methodol-
ogy. Most of the concepts proposed in the methodology are illustrated
by examples taken from this work.

The aim of the Microbes project is to identify soil functioning by
studying soil biota (microorganisms, fauna and roots) evolution. In this
context, a work (presented in [MCD+07]) aims at reproducing earth-
worms effect on the soil structure and the nutrient availability. Creating
a soil model leads to complexity issues. A soil is a multi-scale hetero-
geneous, three-dimensional and dynamic space. For these reasons, it is
difficult to establish a realistic and computable model of soil. RAFALE-
SP methodology permits to develop a model and a simulator based on
MAS and Fractals: (i) Fractal theory (often used in soil sciences) is cho-
sen to describe the soil and to determine a dynamic environment where
agents move; (ii) agents model earthworms.

4. Modélisation Intra-urbaine des Rythmes Quotidiens
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4. Meta-models and formalisms to create the mobility model

The aim of this section is to describe more accurately the modelling
process of spatialized complex systems in which mobiles move on a
area. Describing this type of systems implies to model:

– the space into the MAS environment,
– the individuals into RAFALE-SP mobiles. The mobiles are com-

posed of an agent (the individual’s behavior) and a body that represents
the physics into the MAS environment (concret representation of the
individual),

– mobile skills into perception and motion vector.

Those elements are described into sub-models that describe different
aspects of the studied complex systems (mobile mind structures, mo-
bile behavior rules, the space, and so on). We have separated mobile
mind that represents the cognition and mobile body that is the concrete
representation of the mobile such as suggested in [Mag96, OPFB02].
In this section, these sub-models are presented as followed: (i) At first,
the process of modelling the mobile mind is described, (ii) then en-
vironments models are pinpointed and finally, mobile skill models, in
another words, representation of interactions between agents and their
environment are identified.

4.1. Agent description

Two models are needed to describe the agents that represent the mind
of studied mobiles. The first one identifies the cognitive architecture of
individuals. The second one allows the drawing up of agent behavior
rules.

4.1.1. Architecture description

As said before, mobiles are characterized by a knowledge, skills,
goals and behavior rules. The aim of the main architecture description
is to give a high level and understandable model that determine knowl-
edge, goals, perceptions and motions that a mobile can have. Note that
the mobile body is modelled into the environment description.
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UML Class Diagrams are an interesting tool to describe components
of agent (mobile mind). UML is indeed famous in majors research areas
as geography or biology where it is used to structure real data. So we
take advantage of UML (its simplicity, its readability and its expressive-
ness) to establish a meta-model which aims at structuring mobile mind.
This meta-model is composed of five parts (see figure 2):

Figure 2: Architecture of agent mind

– a belief representation that describes how external elements
(streets, other mobiles) are learnt by the mobile.

– a goal representation (desire) that defines the objectives of the mo-
bile.

– a perception of the environment that describes how a mobile sees
other elements located on the environment.

– a physical capacity (motionVector) that describes how a mobile
evolves on the environment.

– a behaviour (described mobile) that describes a motion strategy.

This UML meta-model does not however provides a support to es-
tablish a specific model that represents knowledge, goals and abilities
of individuals of a real complex system. For this reason, behaviors are
determined in Ploom-Unity specification, a specification formalism that
we created to express motion in agent based systems. The language is
defined further in part 4.1.2. To illustrate this mobile description, a
model of pedestrian is presented on the figure 3

This model characterizes a pedestrian that is able to remember ser-
vices located on Buildings, and the map of the town (Way). This virtual
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Figure 3: The case of Miro: agent mind architecture of townsman

pedestrian can do motion actions to move into a road (MVINWay) and
to move from a way to another one (MVChangeWay). According to
its location in the virtual world, an agent is able to perceive services
(PActivity) and streets (PBeginWay, PEndWay).

Note that, this model can easily be used and understood by scientists
coming from various research areas as it is based on UML. It can also
be used as support for a computer scientist to collaborate with other
researchers coming from other domains.

4.1.2. Behavior specification

The aim of the Ploom-Unity specification is to describe with accu-
racy the mobile mind and its functioning. This specification is in the
continuity of the architecture description. It extends UML class dia-
gram and outlines the behavior rules of the mobiles.

A Ploom Unity specification is composed of 8 parts, as illustrated on
the figure 4.

– the head part (clauses “Extends” and “Refines”) defines the iden-
tity of a mobile class. It gives the name of the parent class and includes
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Agent DescribedMobile
Extends Mobile
Refines DescribedMobileGroup




 Head part

Type : MessageType1, MessageType2,. . .
}

Type declaration part
Declare :

attributeName : Type; . . .
Function function1(parameter1: int ). . .




 Cognitive behavior definition

Desire: {DesireType1}∪. . .
Belief: {BeliefType1} ∪{BeliefType2}. . .
Value: {BeliefType1}
Message:{MessageType1} ∪{MessageType2}∪. . .
Perception:{PerceptionType1} ∪{ PerceptionType2}∪. . .
Motion Vector:{MotionType1} ∪{MotionType2}∪. . .






Agent concept description part

Obligation:
}

valid state definition
Initially:. . .

}
Initial state definition

Perception Filter(p: Perception):
doAction() if(p instanceOf(PerceptionType1)
. . .

Message Filter(p: Message):
doAction2() if(p instanceOf(MessageType1)
. . .






Filter definition

Assign:
move() if(∃x ∈ DesireType1. . .

}
Reactive behavior definition

End Agent

Figure 4: An extract of a specification

mobiles in groups through the Extends and Refines clauses.
– the type declaration part (clause “Type”) describes categories of

objects that are used in the specification.
– the cognitive behavior definition (clause “Declare”) shows at-

tributes that are employed by agent methods. These functions compose
the behavior of a mobile as they are called according to the mobile state.

– the Agent concept description part (clauses “Belief”, “Value”,
“Desire”, “Message”, “Perception” and “Motion Vector”) defines
agent knowledge and agent desire. Indeed, it shows the elements that
can be saved by a mobile category.

– the valid state definition (clause “Obligation”) expresses a valid
mental state by a predicate.

– the initially part (clause “Initially”) intends to define the state of
the mobile at the beginning.

– the filter definition (clauses “Perception Filter” and “Message Fil-
ter”) determines how the mobile reacts to an event coming from the
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environment or another agent.
– the reactive behavior description (clauses “Assign”), the kernel of

a mobile, expresses the actions be to performed when an event occurs.
This section of the specification is composed of instructions that call the
corresponding function when the associated condition is true.

From this specification and from the UML agent description, the
specification presented on figure 5 has been established. This figure
presents in detail behavior rules of pedestrians in the case of the Miro
Project.

Agent townMan
Type : shortestPath
Declare :

isEndWay : boolean;
pedestrianSpeed : float;
...
goInWay(p : Perception) : void

. . .
End Function

goOutWay(p : Perception) : void
Begin Function

. . .
End Function

Desire: DActivity, DTakeWay
Belief: Way, Building
Value: Building
Perception: PBeginWay, PEndWay, PActivity
Motion vector: MVInWay, MVChangeWay
Initially:

pedestrianSpeed=1.38888 //default walking speed in cell per second
Perception Filter(p : Perception):

goInWay(p) if(p instanceOf(PDebutPerception))|
...
. . .

Message Filter(m : Message):
. . .

Assign(firstDesire : Desire):
move(MVInWay(movingSpeed)) if(isArrived=false&&isEndWay=false)|
. . .

End Agent

Figure 5: the case of Miro: extract of Townsmans’ specification

When this specification is done, agent knowledge, goals, skills and
behaviors are determined. Created models are accurate enough to allow
the implementation of agents (mobile mind) in a simulator. But before,
mobile body and mobile environment must be modelled.



RAFALE-SP 53

4.2. Environment description

The environment models the space where studied mobiles evolve. It
represents, for example, a town with its roads, buildings, shops and so
on. In addition, it completes mobile descriptions by determining the
body of simulated mobiles.

One of the benefit of the RAFALE-SP methodology is that it allows
the description of active environments which evolve during a simulation
and affect studied mobiles, their actions and their motions. A simple
behavior can be defined for each component of the environment (shop,
signals) and it allows the reproduction of the global dynamic of the
complex system (e.g. traffic of a town). This strategy permits to de-
scribe studied mobilities at a microscopic level with agents while other
dynamics may be observed at a macroscopic level through the environ-
ment. It is important to take into account dynamics that impact on the
studied mobilities in order to obtain a realistic model. But, it is not
necessary to give a fine grain description of them.

Environment modeling process is closed to the individual modelling
scheme presented in section 4.1. The environment modelling process
starts with an architecture description and finishes with an environment
specification.

4.2.1. Architecture description

The RAFALE-SP framework is generic enough to design and simu-
late various kinds of spatial environments. So, as for agents, the envi-
ronment model is defined through its characteristics, mainly its archi-
tecture, and its behavior proposes a generic environment architecture
that scientists (user of the RAFALES-SP methodology) must extend to
generate their own mobility model and their mobility simulator. The
environment structure is composed of the following features:

– the space. It describes the structure of a space by dividing evolu-
tion world into atomic parts. For example, we can model a real space
like a town by a regular grid. A graph is another solution where nodes
represent crossroads and edges define streets.

– the location. It defines how mobiles are located on the space. It is a
generic structure which must be refined to determine a specific reference
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system. For a given space architecture, various reference systems can
be identified (e.g. for locating mobiles on a regular grid we can either
use “x,y” coordinates or a cell number based reference system).

– the environment objects. It defines objects and mobiles that have
a position on the environment. We can enumerate two types of lo-
cated elements. An ActiveMobile is a mobile we study in the space.
This element is associated with an agent. So its state and its location
may change according to the agent behavior rules. PassiveObjects are
managed by the environment. They represent objects like buildings or
shops. Their state is modified by the environment process according to
a predefined algorithm.

Figure 6 gives the meta-model of the environment architecture. This
meta-model should be extended to be applied to a specific case study.
For the Miro project, the model presented by the figure 7 has been es-
tablished.

Figure 6: Architecture of the environment

Note that depending on the space structure and on the chosen ref-
erence system, observed mobilities are different. A movement results
in a location change that has to be treated precisely [Mar05]. It can be
represented by a vector that specifies the location transformation. Con-
sequently, an observed mobility depends on the chosen space and refer-
ence system. So the choice of a space and a reference system depends
on the mobility that the scientist wants to study.
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Figure 7: the case of Miro: architecture of the environment

In the case of the Miro project, mobiles are located on the virtual
map thanks to the road identifier and to the cell number of the current
road. This approach is more accurate than simply locate an agent with
cellular automata where parts of different roads may be handled by the
same cell.

Space and reference system concepts are one of the keys of the
genericity of the RAFALES-SP approach. Thanks to the meta-model
generic description of spaces and reference systems, various kinds of
movements can be modelled. Thus, various mobilities can be observed.
Observed mobilities result in mobile (Agent + ActiveObject) motions.
These motions are disturbed by the environment dynamics.

4.2.2. Behavior specification

The aim of environment specification is to identify space dynamics.
As said before, the dynamics of the environment are expressed by Pas-
sive Objects. So, the modeling of these dynamics intend to identify
behaviors of passive objects.
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A passive object is composed of a set of attributes: several variables
that determine a state of the passive object. The change of passive object
state characterizes the environment dynamic. This dynamic is perceived
by mobiles and disturbs them.

To model environment dynamic, an algorithm is associated with ev-
ery kind of passive objects. The aim of this algorithm is to modify
values of state variables contained in the passive objects. At the begin-
ning, the algorithm is determined by a standard UML state-transition
diagram (see figure 8). This model gives a synthetic and user-friendly
description of the environment behavior. Later, it must be refined by
a specification. This second model characterizes with accuracy the be-
havior of passive objects.

Red

entry /lastUpdateDate=getDate()

do /red()

Green

entry /lastUpdateDate=getDate()

do /green()

Orange

entry /lastUpdateDate=getDate()

do /orange()

start

lastUpdateDate+60>getDate()

lastUpdateDate+60>getDate()

lastUpdateDate+2>getDate()

Figure 8: statchart describing PassiveSignal environment object

One specification model is established for each kind of passive ob-
ject. It declares variables and states respectively identified by the UML
class diagram and the UML state transition diagram of the environment.
This specification is named by a header and is composed of three parts
(figure 9):

– declaration: enumerates the feature attributes,
– initial state: defines the initial state of the passive object,
– comportment rules: defines the behavior of the passive object.

Specifying the behavior of the environment allows to associate math-
ematical or stochastic models with a MAS model. Mathematical or
stochastic models are introduced in the MAS environment to represent
the surrounding dynamics that are not studied themselves while mo-
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PassiveObject PassiveSignal
Declare :

color : String
lastUpdateDate : int
Function red( env : crossroad) : void

Begin Function
color=”red”;
lastUpdateDate=env.getHour();

End Function
. . .

Initially:
color=”red”;
lastUpdateDate=env.getHour();

Assign(env : crossroad )
red(env) if(color=”orange”&& lastUpdateDate+5>env.getHour())|
orange(env) if(color=”green”&& lastUpdateDate+60>env.getHour())|
green(env) if(color=”red”&& lastUpdateDate+60>env.getHour())|

End PassiveObject

Figure 9: Specification of a crossroad

biles reproduce studied dynamic through agent actions (mobile mind)
and active object motion (mobile body).

4.3. Interaction between agent and environment

Interactions between a mobile and its environment are based on the
agent perception, which is the environment action on the agent, and
agent movement, which is the agent action on the environment.

We have adopted a secure approach to manage motions and percep-
tions of mobiles. To do an action (e.g. a movement), a mobile, in
particular its mind (the agent), generates a Motion vector. This action
is applied on the environment according to predefined transformation
rules. These rules modify environment state. For example, they move
the mobile on the space (i.e. they change the mobile’s body location:
the position in the space of the associated active object). Then, the en-
vironment computes a new Perception for the mobile and send it to the
agent.

In the UML class diagram of a mobile’s mind, Motion Vectors and
Perceptions are identified. These elements model actions and percep-
tions that the described mobiles are able to do. Thanks to Ploom-Unity
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Motion Vector
From locBegin: LocationType
To locEnd: LocationType
Motion Act vec: MotionVectorType




 Declaration

Pre condition:
. . . (constraint)

}
Condition

Movement definition:
. . . (motion algorithm)

}
Transformation

Post condition:
. . . (constraint)

}
Condition

End Motion Vector

Figure 10: Structure of motion specification

Motion Vector
From locBegin: CityLocation
To locEnd: CityLocation
Motion Act vec: MvInWay
Mobile mob: Townsman
Pre condition: locBegin.cell ≤ locBegin.countCellsOfWay
Movement definition:

locEnd.wayId=locBegin.wayId
locEnd.direction=locBegin.direction
locEnd.setCell(locBegin.getCell()+vec.motionLength/Way.cellLength)

Post condition: locEnd.getCell() ≤ locEnd.countCellsOfWay()
End Motion Vector

Figure 11: case of Miro: Moving in a way

specifications, transformation laws are identified. The aim of this sec-
tion, is to present these specifications (their goal, their architecture and
their use).

4.3.1. Motion vector

Ploom-Unity is used to describe with accuracy how mobiles move
on space. This specification has two main goals: (i) it shows how Mo-
tionVectors are applied on a space in order to achieve movement, and
(ii) it defines when a motion is allowed or not.

A Ploom-Unity specification of Motion Vector contains an algorithm
that defines mobile movement and constraints to limit its possible abil-
ities. The specification is divided into three parts (see figure 10):

1) a declaration part defines variables which contain the current
mobile location (locBegin), the future mobile location (locEnd) and a
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Motion Vector (vec) associated with the agent.
2) condition parts aim at specifying constraints to limit the mobile’s

motions. These predicates verify that, from the declared location locBe-
gin, a motion can be achieved according to the Motion Vector vec. We
differentiate two types of constraints. The first one, Pre condition con-
firms that the agent location is correct before a motion. The second
one, Post Condition verifies that the trip can be done, in other words it
validates that the destination location is on a valid part of the space.

3) a transformation part performs the future agent location. This
part contains the algorithm (transformation rules) that change a location
or a state of a mobile into a new one. According to the current location
(locBegin) and the motion act (vec), this part computes the value of the
destination location variable (locEnd).

Two motion constraints are necessary to confirm movement. The
Pre condition verifies that an agent is situated at an authorized location
before a motion and it allows to verify that a Motion Vector can be
applied. The Post condition do the same verification but after the action.
This constraint is important because it avoids situations in which an
agent is located out of the space.

According to the location definition given in figure 11, the specifi-
cation of MovingInWay Motion Vector has been established. This mov-
ing action increments (or decrements) the distance of the agent location
from the beginning of the way. In this case, the Pre and Post conditions
ensures that the agent is not going outside the way.

A motion specification describes with accuracy how an agent mod-
ifies the state of the environment. The perception specification shows
how the environment modifies agent perception.

4.3.2. Perception

UML diagrams show how a mobile perceive elements located into
the space. Ploom specifications define algorithms which aim at con-
verting environment objects (passive or active objects) into perceptions
understandable by agent (mobile mind).

A perception specification is divided into two parts (see figure 12):
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– declaration part. It defines a variable that contains an observed
located element (viewedElement) or an agent perception. This value is
computed thanks to the perception algorithm.

– transformation part. It performs perception conversion from the
state of active or passive object (noted viewedElement) to an internal
agent perception (internalPerception). This part is often a set of affec-
tations but it can also contains complex instructions that model complex
phenomena (perception perturbations, troubles and so on).

Perception
Perceive ViewedElement: PassiveObjectType1
According To intPerception: PerceptionType1

}
Declaration

Transcribe:
. . . (perception algorithm)

}
Transformation

End Perception

Figure 12: Perception Specification

The specification presented on figure 13 has been developed from the
Agent Architecture Class Diagram (figure 3) and the Environment Ar-
chitecture Class Diagram (figure 7). This specification realizes a simple
matching between the attributes of a passive object of an environment
and the attributes that compose the perception of the agent. According
to the proposed model of the system, this matching could be composed
of stochastic rules that model disturbances in perceptions.

Perception
Perceive view: BeginWayInfo
According To pView: PBeginWay
Transcribe:

. . . pView.speedLimitation=view.speedLimitation

. . . pView.wayID=view.way
End Perception

Figure 13: Case of Miro: Perception of a way access

The motion and perception specifications are a progressive process
that permits to model an environment characterized by its dynamic and
individuals according to an identified behavior. The motion and per-
ception specifications link the individual model and the environment
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model. For example, during the architecture description step, percep-
tion structures of mobile are identified in an UML class diagram ( di-
agram 3 for instance). These perceptions are a representation (for the
agent) of active or passive objects modeled in the environment UML
class diagram. Then, constraints are assigned to each perception of mo-
bile (see agent specification on figure 13) in order to reduce mobile’s
perception. Finally, perception specifications determine transformation
laws that convert active or/and passive objects of the environment into
perceptions. When the modeling process is finished, the simulator can
be implemented.

5. A toolkit to develop simulators

The toolkit supports the final step in the simulator development. It
contains specific primitives that developers have to extend and services
that manage simulation runs, persistence and distribution. The aim of
this section is to describe the architecture and the functionalities of the
toolkit. We also present its use in the implementation of two simulators:
daily journeys of a city inhabitants and soil biota.

5.1. Overview of RAFALES-SP toolkit

The RAFALES-SP toolkit architecture can be considered either from
the simulator viewpoint, the simulator architecture, or from its internal
organization viewpoint, the toolkit architecture.

5.1.1. Simulator architecture

The toolkit contains features which help developpers to implements
agents and environments. This framework is based on the Mad-
Kit [GFM00] multi-agent platform.

MadKit is based on an Agent Group Role (AGR) approach. It con-
tains basic features which manage agent life cycles or agent interac-
tions. It has been developed in JAVA and thus can be used on differ-
ent operating systems. Several Madkit servers, installed on different
computers, can work together. For the toolkit implementation, we take
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advantage of basic functions of Madkit : interaction, life cycle, and dis-
tribution management.

Figure 14: different level of the framework

Our framework extends Madkit basic features and contains specific
algorithms that be employed by users to implement their own mobiles
and their own environments. For example, motion specification is im-
plemented on two abstract functions of environment. The first one con-
tains motion constraints. The second one implements location algo-
rithms. For this reason, simulators developed from the RAFALE-SP
toolkit need the Madkit and RAFALE-SP plugins to be run. The devel-
opment of these simulators is simplified by to primitives of RAFALE-
SP dedicated to mobility simulation.

5.1.2. Toolkit architecture

The RAFALE-SP toolkit propose a pattern of simulator that scientist
have to extend to develop their specific simulator as urban mobility sim-
ulator for instance. It is, of course, an oriented agent-based framework
and it already contains several classes to develop and manage agents,
geographical environment and distribution and so on.

Figure 15: General structure of the toolkit

To support different operating systems, the JAVA language was cho-
sen to develop this framework. In addition, major agent based platforms
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and simulators are developed in JAVA so that we can easily interact with
these developments.

The toolkit is composed of three packages that correspond to the
RAFALES-SP meta-model (see figure 15):

– Domain contains every classes we can extend to implement mo-
biles and to manage them.

– Environment is composed of elements which intend to describe a
space as a virtual city with streets and locations (building, house, shop).

– Control package contains primitives that permit to develop the
graphical interface of simulators.

A simulator is the result of a development step, which aims at ex-
tending classes of Domain, Environment and Control packages and a
compilation step. Generated simulator can be distributed on grids, as
we will see in the next parts.

5.2. How to use RAFALE-SP toolkit to develop simulators

As said before, the RAFALE-SP Toolkit follows the meta-model
structure. Classes and constraints defined in the models are imple-
mented in dedicated classes, functions and variables of the toolkit.

For example, from an agent architecture UML class diagram and an
environment class diagram, several motion vectors are identified and
modeled by Ploom-Unity specifications. Each Ploom-Unity specifica-
tion is translated into a specific java class inherited from an abstract java
class of the RAFALE-SP toolkit, called MotionVector.

The specification presented on the figure 10 shows that a motion
vector is characterized by: (i) a pre-condition ensuring that the action
can be applied in the current mobile state; (ii) transformation rules that
modify a mobile position and are modelled by a specification; (iii) a
post-condition ensuring the coherency of the mobile state after apply-
ing motion. The MotionVector JAVA class architecture is closed to the
motion vector specification. It contains 3 main functions to be coded
in JAVA: pre-conditions (canMovePre, see figure 16), transformation
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protected boolean canMovePre( EnvObject en, MotionVector mv )
{

//Select the type of the motion
if ( mv instanceof MVInWay ) {

//Cast a MotionVector to a MVInWay motion vector
MVInWay vec = (MVInWAY) mv;
//verifies the pre condition of the motion specification
if(((CityLocation)en.getLocation()).getCell()>=((CityLocation)en.getLocation()).countCellOfWay())

return false;
return true;

}
}

Figure 16: An extract of motion check function

protected void moveMobileAccordingTo( envObject en, MotionVector mv )
{

MVInWay mouvement = (MVInWay) mv;
CityLocation loc = (CityLocation) (en.getLocation());
loc.setCell(loc.getCell()+( motionLength/Way.cellLength );

}

Figure 17: An extract of motion function

rules (moveMobileAccordingTo, see figure 17) and post conditions (can-
MovePost).

Figures 16 and 17 are code extracts from the MIRO simulator imple-
mentation. These functions implement pre-condition and transforma-
tion rules defined in changeWay specification.

Note that the approach used to develop simulators is closed to motion
vector implementation. RAFALE-SP toolkit can be viewed as a simula-
tor canvas that is extended by users and configured to develop their mo-
bility simulators. Moreover, features to translate automatically Ploom-
Unity scripts into JAVA codes and to compile simulators are needed to
obtain a complete, user friendly methodology. It is one of our further
works.

5.3. Toolkit services

Each person that wants to use the framework can take advantage of
multiple services that are included in it.
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Before speaking about these services, note that a city simulator, cre-
ated with the presented toolkit, already uses several technologies which
come from distributed system area. It is based on a MAS associated
with Enterprise Java Beans (EJB) and a database (see figure 18). Agents
are organized into four categories:

Figure 18: Structure of a simulator

– environment agents aim at representing a virtual city. They manage
space elements like buildings or roads, and mobile motions.

– control agents allow users to interact with a simulation (seeing mo-
tions, modifying simulation parameters).

– mobile agents represent mobiles we want to study.
– master agents manage mobile agents. They can create or destroy

them. They are allowed to modify mobile parameters. For example,
a master agent can stop an agent evolution when a control agent ask a
pause of a simulation.

Beside this quite simple scheme, we had to face some problems :
overload from multiplicity of agents, synchronization between agents
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when they are distributed on several machines, for instances. Solutions
to these problems are presented in the following.

5.3.1. Management of distributed simulations

Since our agents are not reactive ones, each of them may be quite
heavy in terms of system resource consumption. For this reason, to be
able to simulate enough agents to be realistic in a large system, we may
need to distribute a simulation on several computing nodes. In this case,
the environment must be distributed.

In RAFALE-SP, several computers can work together to execute the
same simulator. On each site, there is a master agent and an environ-
ment agent. It allows us to divide a virtual space into areas. Each area
is managed by an environment agent. The associated master agent takes
care of mobiles which move on the area. Obviously, we need to have
a pertinent division of the space in order to equitably share the load
between computers. We plan to work on an automatic mechanism to
handle this kind of problem.

As most of the simulations are synchronous, there executions are
based on a common global time. Representing time in a distributed
simulator is an important problem that we have solved by implement-
ing a distributed clock. We used an independent clock on each node of
the simulation. These clocks are synchronized thanks to message ex-
changes between the local clock and a master clock. Those messages
occur on pre-defined period.

5.3.2. Data persistence

We have developed generic classes that easier the connection of a
simulator with an application server. These classes use the entity bean
of EJB specification to provide access to standard data bases. Their goal
is to manage data that can be stored in a database. Thus, information
saved in a database are accessible through these objects and there is no
SQL code in the agent source code, these generic classes keep them
portable.

For example, we used these classes to manage streets, crossroads or
locations in MIRO application. Actually, we also plan to create differ-
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ent kinds of entity beans that will help, for all the geographical related
simulations, to save information into an OpenGIS database.

5.3.3. Code mobility and remote agent management

Simulators executed on a network of computers are composed of
several simulation nodes (1 simulation node per computer). The simu-
lated agents that represent mobiles are placed on different servers of the
network. To enable remote instantiation of simulated agents and their
mobility, RAFALE-SP provides a server called Factory that is executed
on each node of the network. This factory receives mobile creation mes-
sages from the user interface and loads simulated agents in the computer
memory.

Because of the simulator’s distributed architecture agents that rep-
resent studied mobiles must exchange messages through the network
to cooperate. Moreover the environment may be distributed on several
nodes, so agents will have to interact with different parts of it and then
with different nodes. To limit remote messages, which cost much re-
sources and time than local ones, simulated agents can be moved from
one server to another. The advantage of code mobility principle is that,
by transferring an agent from a server to another, it transforms remote
messages into local messages and thus it reduces the exchange cost.

The code mobility primitives are implemented in agent factories and
these functions can be used by RAFALE-SP developers to manage the
agent distribution. The automatic object location is however not taken
in charge by the framework. This has to be done in the simulator im-
plementation, by the developer. The framework just offers the support
of agent mobility and the developer is free to define the rules of agents
location on the different nodes.

5.4. Implemented simulators

In section 3.4, we have introduced two examples that illustrate the
use of the RAFALE-SP methodology. In this part we present the imple-
mentation of the simulator for these examples. We give a global view
and details on these implementations and we explain the benefits gained
by applying RAFALE-SP.
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The MIRO project models and simulates daily journeys of Dijon in-
habitants. In this case, the created model describes the town as a graph
in which nodes represent crossroads and edges describe roads. Some
parameters are associated with each edges and nodes in order to model
speed limitations, road signs and so on. On this virtual environment,
buildings are located in order to model town services (e.g. houses,
firms, restaurants or shops). Dijon inhabitants (mobiles of the model)
are modeled by cognitive agents. These agents can learn the town map,
service locations and transport durations. They move according to a
set of tasks they have to do. The Miro model is implemented on a dis-
tributed simulator which have been tested on a network composed of
four computers. This simulator is based on the RAFALE-SP toolkit
(the kernel of the simulator), the JoNAS 5 application server (to store
the town map) and Sicstus prolog to compute the timetables that orga-
nize the daily activities of the agents. At the beginning of a simulation,
several mobiles are loaded and configured with a set of beliefs and a lo-
cation. From their knowledge, agents compute a timetable in which the
mobile’s tasks are defined for one day. Then, mobiles try to accomplish
their planning during the first simulated day. They move into the virtual
town and modify their knowledge according to their perception. At the
end of the first simulated day, agents compute a new timetable which
takes into account their past. These new timetables are executed by the
agents during the second simulated day and this is reproduced along the
different days. After the simulation, results are post-processed by geog-
raphers in order to generate maps. From these maps, they extract (for
example): (i) space organization of individuals which allow the identi-
fication of a major activity for each zone of the space, or (ii) use street
traffic rates to determine where traffic jams may appear. The final aim
of this work is to make a tool that helps administrations in taking deci-
sions for their urban policy (creating roads, creating industrial zone and
so on).

The MIRO project was the first project where we applied the
RAFALE-SP methodology. So giving a feedback on the use of the
methodology in this project is not easy as we did not have much back-
ground on it. It has however been a good validation case due to the size

5. http://jonas.objectweb.org
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Figure 19: Screenshot of the Miro simulator

of the project. Some parts of the project even lead to improvements in
the methodology. So the main benefit that we get from the use of the
methodology in this project is the genericity of the designed compo-
nents and the ability to reuse them in other simulators.

The Microbes project was the second development we made with
RAFALE-SP. From the Microbes project, we can state the interest of
the methodology. The development phase has been shortened and the
model enables to give a realistic virtual environment in which soil con-
centrations are kept. Simulations give indeed realistic results: the ar-
chitecture of the virtual soil obtained after a simulation are similar to
real soils observed on the ground. There are many mathematical and
statistical models that study water retention [WGA08, BPR01], erosion
of soils [GCB94, LHT+08]. . . But there are only few models that focus
on internal soil functioning and internal soil dynamics. One of these
individual based models (IBM) focus on microbial dynamic (MIOR)
[MCB+07]. A second one focus on earthworm impact on sediment
[CFCB02]. But, according to our knowledge no one reproduce earth-
worms’ dynamics and their impact on soil structure. The sworm model
and IBM are a new way in soil sciences to obtain data that cannot be
obtained by experiments, to well understand soil functioning and deter-
mine suitable pastoral politics.

The experiences of the MIRO and the Microbes projects show that
RAFALE-SP can be applied in a large span of domains to study various
complex systems. The key of this ability is given by the genericity of
the environment definition and the mobile descriptions. Enabling to de-
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termine the “location” is the key feature that allows modelers to define
various kind of 2D or 3D virtual environments (continuous, grid, frac-
tal based or GIS based environment). Enabling to define internal minds
as complex as users want (with knowledge or not, with perception or
not, ...) is the key feature to describe various kinds of mobiles (Human,
insects, robots, ...).

In spite of this genericity, users are well guided by RAFALE-SP to
establish the model of a complex system and to implement it into a sim-
ulator. UML meta-models and Ploom-Unity specifications “determine”
a minimal architecture of the mobility-model. To create RAFALE-SP
compliant model, scientists have to ask themselves important questions
about the complex system and to give answers. As a consequence, using
RAFALE-SP, as for every methodology, contributes to a better under-
standing of the studied system.

The major lack of RAFALE-SP approach (methodology and tools)
is the absence of user friendly automation to create models, to translate
models into new ones or into runnable simulators. This lack forbids
scientists to use the approach without the help of a computer scientists.

As for every methodology, using RAFALE-SP implies to acquire
some expertise on the concepts, their implementation, etc. before start-
ing a project. This time is however balanced by the quality of the final
realization, the evolution possibilities and it will just impact on the first
development as it will be reused in latter developments.

6. Conclusion

In this paper we have presented the RAFALE-SP methodology. This
methodology guides scientists in the development of mobility simula-
tors from the early design to the realization. As the agent paradigm
provides a good genericity, it has been used in the methodology to char-
acterize mobility. The domain of agent modeling is widely explored,
so we have coupled two modeling approaches in order to cover the de-
sign and development processes from the beginning, the specification,
to the end, the implementation. The first approach defines the general
modeling-simulation process and the second one splits up a multi-agent
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system in elementary entities: agents, environment, interactions and
groups. The methodology is composed of four steps: structural anal-
ysis, behaviors analysis, specification and implementation. The first
steps are based on a UML meta model and a specification. The last step
uses a simulation library to implement the final simulator.

The originality of this approach is that, on the one hand, we associate
two well-known modeling approaches to propose a global methodology
and, on the other hand, we only model mobiles that we want to observe.
Each observed mobile is represented by a cognitive agent and mobiles
with simple behaviors, as stochastic behaviors, are defined in the envi-
ronment.

The RAFALE-SP methodology is fully functional and it has been
tested on several simulation projects as the study of individual move-
ments in a city or the study of earthworms in the ground. There is how-
ever a limitation on the group notion that is represented in the UML
metamodel and in the Ploom-Unity language. This notion has not been
implemented at the simulation step as we did not need it in the two
projects, but no technical difficulty prevents to implement it and it could
be an interesting notion to simulate structured communities.

In the future, the methodology will surely evolve to gain in generic-
ity, flexibility and comfort. The genericity and flexibility will be gained
through the use of the methodology to simulate various contexts and by
adding new functionalities to fulfill specific needs. The comfort will be
improved by developing tools to support specification and implemen-
tation processes. Currently, the methodology steps are done one after
another by the developer but it is possible to provide semi-automatic or
automatic tools to go from one model to another. For example, from the
specification level, we could automatically generates skeletons of the
main classes to facilitate the implementation.

To improve the methodology, we are currently working on the ver-
ification of the models. To achieve this, we need to apply verification
rules on our models, either on UML schemes or on an action language.
This last can be Ploom-Unity or another one that may better fit to ver-
ification rules. Thus, we currently assess and compare Ploom-Unity
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(slightly modified) and action calculus that can be a solution to repre-
sent agent dynamicity.
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