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Abstract
Strain Marseille-P5643T was isolated from a vaginal sample of a healthy Senegalese woman. It is an anaerobic Gram-negative, rod-shaped

bacterium. Strain Marseille-P5643T exhibits 93.7% similarity levels with the Facklamia hominis strain ATCC 700628T, the phylogenetically

closest related species with standing in nomenclature. The draft genome size of strain Marseille-P5643T is 1.79 Mb with 39.0 mol% of

G+C content. We propose here the creation of Vaginisenegalia massiliensis gen. nov., sp. nov., as a new bacterial genus from the phylum

Firmicutes.
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Introduction
The vagina has a diverse and complex microbiota comprising a
wide variety of microorganisms [1,2]. A healthy woman usually

has a vaginal flora dominated by Lactobacillus, usually named
Döderlein’s bacteria [3,4]. Hence an imbalance of the complex

ecosystem dominated by species belonging to the genus Lacto-
bacillus can lead to vaginosis [5].

Since 1921, bacterial vaginosis is concidering as a dysbiosis

characterized by an increase in the pH of the vaginal mucosa, a
decrease in lactobacilli, and a proliferation of Gram negative

anaerobic bacteria [6,7]. Currently, it is important to under-
stand the role played by the vaginal microbiota, especially in the

prevention of bacterial vaginosis, sexually transmitted infections
and urinary tract infections, to better manage women of

childbearing age [8].
This is an open access arti
The strain described here is a bacterium isolated for the first

time from the vagina of a healthy woman, suggesting that
exploration of the vaginal ecosystem could help to prevent or

manage associated diseases. It is important to study the
involvement of microbial diversity in normal physiological

functions and exposure to certain diseases [9]. Culturomics, a
new method to determine all human-associated microbes using
different bacterial growth conditions mimicking natural condi-

tions, was used here [10–12]. The description of this new
species is based on a method combining genotypic and

phenotypic characteristics of the bacterium, supplemented by
the taxono-genomic strategy previously described [13,14]. In

this report, we provide a brief classification and set of features
for Vaginisenegalia massiliensis gen. nov., sp. nov., strain Mar-

seille-P5643T, together with a description of the complete
genomic sequencing and annotation.
Isolation and growth conditions
In 2017, as part of a study of the vaginal flora microbiome, the
strain Marseille-P5643T was isolated from a swab sample from

a woman living in Dielmo, a Senegalese village (West Africa). An
attempt to identify this bacterium using matrix-assisted laser
desorption/ionization time-of-flight mass spectrometry
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FIG. 1. MALDI-TOF MS reference spectrum of Vaginisenegalia massiliensis gen. nov., sp. nov. The reference spectrum was generated by comparison of

spectra from 12 individual colonies.
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(MALDI-TOF MS) did not provide a result. The identification

process was performed on a Microflex LT spectrometer
(Bruker, Daltonics, Bremen, Germany) as previously described

[15]. Spectra obtained were imported and analysed using the
BIOTYPER 3.0 software against the Bruker database, permanently

improved with the local MEPHI database (Fig. 1). The vaginal
swab was placed directly in liquid medium enriched with

sheep’s blood and rumen. Initial growth of bacterial cells was
obtained after 15 days of pre-incubation in an anaerobic envi-

ronment. Then, 10 μL of this liquid was seeded on 5% sheep’s
blood agar (bioMérieux, Marcy l’Etoile, France) under anaer-
obic conditions at 37°C.
FIG. 2. Scanning electron microscopy (SEM) of stained Vaginisenegalia

Phenotypic characteristics
massiliensis gen. nov., sp. nov. A colony was collected from agar and

immersed into a 2.5% glutaraldehyde fixative solution. Then, a drop of

the suspension was directly deposited on a poly-L-lysine coated mi-

croscope slide for 5 min and treated with 1% phosphotungstic acid

aqueous solution (pH 2.0) for 2 min to increase SEM image contrast.

The slide was gently washed in water; air-dried and examined in a

tabletop SEM (Hitachi TM4000). Scales and acquisition settings are

shown of figures.
Strain Marseille-P5643T grew anaerobically; its first growth was
observed after 15 days of incubation at 37°C on 5% sheep’s

blood–Columbia agar medium (bioMérieux) in an anaerobic
atmosphere generated using the GENbag anaer system (bio-

Mérieux). Strain Marseille-P5643T (= CSUR P5643) is a Gram-
negative bacterium. Its colonies appear transparent on agar

with a mean diameter of 0.5 mm. Cells are not motile and
© 2019 The Author(s). Published by Elsevier Ltd, NMNI, 32, 100601
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TABLE 1. Phenotypic characterization of Vaginisenegalia

massiliensis gen. nov., sp. nov., based on analytical profile

index (API) tests

Tests Characteristics Results

API ZYM Alkaline phosphatase −

Esterase (C4) +
Esterase lipase (C8) +
Lipase (C14) −

Leucine arylamidase +
Valine arylamidase +
Cystine arylamidase −

Trypsine −

α-chymotrypsine −

Acid phosphatase +
Naphthalo-AS-BI-phosphohydrolase +
α-galactosidase +
β-galactosidase −

β-glucuronidase −

α-glucosidase +
β-glucosidase +
N-acetyl-β-glucosaminidase −

α-mannosidase −

α-fucosidase −

API 20 A Indole production −

Urease −

Glucose +
Mannitol −

Lactose −

Sucrose −

Maltose −

Salicin −

Xylose −

Arabinose −

Gelatin −

Esculin +
Glycerol −

Cellobiose −

Mannose +
Melezitose −

Raffinose −

Sorbitol −

Rhamnose −

Trehalose +
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present no catalase and oxidase activities. The shape of this
bacterium was highlighted with the Hitachi TM4000 instrument

(Hitachi Group, Krefeld, Germany) (Fig. 2).
Biochemical characteristics of strain Marseille-P5643T were

tested using the API ZYM and 20A strips (bioMérieux) and are
TABLE 2. Differential characteristics of Vaginisenegalia massiliensis g

[26], Enterococcus asini [27]

Property Vaginisenegalia massiliensis Facklamia

Cell diameter (μm) 0.2 NA
Oxygen requirement Anaerobic Anaerobic
Gram stain − +
Spore formation − −

Motility − NA
Production of:

Alkaline phosphatase − +
Catalase − −

Nitrate reductase
Urease − −

β-galactosidase − −

N-acetyl-glucosamine − −

Acid from:
Mannitol − −

Glucose + NA
Lactose − −

Raffinose − −

G+C (mol%) 39.0 43.9
Source Vagina Clinical sam

+, positive result; −, negative result; NA, data not available; w, weakly positive.

This is an open access artic
presented in Table 1. A comparative study of the differential

characteristics of this strain with other closely related species is
displayed in Table 2. The major fatty acid found for this strain

was hexadecanoic acid (57.7%), followed by 9-octadecenoic acid
(25.5%). Minor amounts of unsaturated, branched and other

saturated fatty acids were also detected (Table 3). A micro-
scopic image of the bacterial cells was taken with the Hitachi
TM4000 instrument (Hitachi Group, Krefeld, Germany) (Fig. 2).

Strain identification
To identify strain Marseille-P5643T, the 16S rRNA gene was

amplified using the primer pair fD1 and rP2 (Eurogentec, An-
gers, France) and sequenced using the Big Dye® Terminator

v1.1 Cycle Sequencing Kit and 3500xLGenetic Analyzer capil-
lary sequencer (Thermofisher, Saint-Aubin, France), as previ-

ously reported [16]. The 16S rRNA nucleotide sequences were
assembled and corrected using CODONCODE ALIGNER software

(http://www.codoncode.com). The 16S rRNA (accession
number LT971014) gene sequence analyses showed 93.7%
similarity with Facklamia hominis strain ATCC 700628, con-

firming the status of strain Marseille-P5643T as a new bacterium
[17,18]. We accordingly proposed to classify Vaginisenegalia

massiliensis as a new genus within the family Aerococcaceae
belonging to the phylum Firmicutes (Fig. 3).

Genome sequencing
Using EZ1 biorobot with the EZ1 DNA tissue kit (Qiagen,

Hilden, Germany), the genomic DNA of strain Marseille-
P5643T was extracted and then sequenced on a MiSeq

sequencer (Illumina Inc, San Diego, CA, USA) with the Nextera
en. nov., sp. nov., Facklamia languida [25], Facklamia miroungae

languida Facklamia miroungae Enterococcus asini

0.8–0.9 NA
Facultatively anaerobic Facultatively anaerobic
+ +
− −

− −

w −

− −

−

+ NA
− −

NA +

− −

+ +
− +
− −

35.6 44.7
ple Juvenile elephant seal Donkey

© 2019 The Author(s). Published by Elsevier Ltd, NMNI, 32, 100601
le under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://www.codoncode.com
http://creativecommons.org/licenses/by-nc-nd/4.0/


TABLE 3. Fatty acid profiles (%) of Vaginisenegalia massiliensis

strain Marseille-P5643T

Fatty acids Name Mean relative % a

16:00 Hexadecanoic acid 57.7 ± 2.0
18:1n9 9-Octadecenoic acid 25.5 ± 1.9
18:2n6 9,12-Octadecadienoic acid 7.5 ± 1.2
18:00 Octadecanoic acid 6.3 ± 0.6
14:00 Tetradecanoic acid 3.1 ± 1.0

aMean peak area percentage.
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Mate Pair sample prep kit and Nextera XT Paired End (Illu-
mina), following a previously described protocol [19]. Genome

assembly was carried out using a pipeline containing various
softwares (VELVET [20], SPADES [21], and SOAP DENOVO [22]), and
trimmed (MISEQ and TRIMMOMATIC [23] softwares) or untrimmed

(only MISEQ software) data. GAPCLOSER was used to decrease
assembly gaps. Scaffolds with a base pair number <800 bp and

those with a depth value <25% at mean depth have been
FIG. 3. Phylogenetic tree highlighting the position of Vaginisenegalia massilien

within the genus Vaginisenegalia. GenBank accession numbers of 16S rRNA ar

default parameters, phylogenetic inferences were obtained using the maximum

percentages of bootstrap values obtained by repeating the analysis 1000 tim

nucleotide sequence divergence.

© 2019 The Author(s). Published by Elsevier Ltd, NMNI, 32, 100601
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removed. Therefore, the best assembly was chosen by using

different criteria (number of scaffolds, N50, number of N).
Comparison of genome properties
The genome of strain Marseille-P5643T has a length of

1 754 973 bp with a 39.0 mol% G+C content (Fig. 4). It is
composed of 1613 proteins and 1698 genes with 55 RNA

genes (6 rRNA, 48 tRNA and 1 tmRNA). By comparing its
genome with other closer genomes, we find that the strain

Marseille-P5643T (1.75 Mb) was smaller than Trichococcus
collinsii, Enterococcus asini, Facklamia miroungae, Facklamia
hominis and Dolosicoccus paucivorans (3.29, 2.57, 2.03, 1.89 and

1.76 Mb, respectively), but larger than those of Facklamia
languida (1.71 Mb).

Furthermore, its G+C content (39 mol%) is higher than that
of D. paucivorans and F. miroungae (37.9 and 35.7 mol%,
sis gen. nov., sp. nov., relative to the most closely related type strains

e indicated in parentheses. Sequences were aligned using MUSCLE with

likelihood method and MEGA 7 software. Numbers at the nodes are

es to generate a majority consensus tree. The scale bar indicates a 2%

nses/by-nc-nd/4.0/).
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FIG. 4. A circular map generated using the CGVIEW SERVER [28], showing a full view of the genome of Vaginisenegalia massiliensis (1 754 973 bp). From

outside to the centre: region-coding genes and RNA genes (tRNA/rRNA) from the forward and reverse strands, respectively, GC content (black) and

GC skew (green/mauve).

TABLE 4. Number of genes associated with general COGs functional categories of Vaginisenegalia massiliensis gen. nov., sp. nov.,

strain Marseille-P5643T

Code Description Value %a

Information storage and processing
[J] Translation, ribosomal structure and biogenesis 189 11.6
[A] RNA processing and modification 0 0
[K] Transcription 116 7.1
[L] Replication, recombination and repair 91 5.6
[B] Chromatin structure and dynamics 0 0
Cellular processes and signalling
[D] Cell cycle control, cell division, chromosome partitioning 34 2.1
[Y] Nuclear structure 0 0
[V] Defence mechanisms 67 4.1
[T] Signal transduction mechanisms 84 5.2
[M] Cell wall/membrane/envelope biogenesis 110 6.8
[N] Cell motility 15 0.9
[Z] Cytoskeleton 1 0.1
[W] Extracellular structures 3 0.2
[U] Intracellular trafficking, secretion and vesicular transport 17 1.0
[O] Post-translational modification, protein turnover, chaperones 69 4.2
[X] Mobilome: prophages, transposons 16 1.0
Metabolism
[C] Energy production and conversion 53 3.3
[G] Carbohydrate transport and metabolism 108 6.6
[E] Amino acid transport and metabolism 100 6.1
[F] Nucleotide transport and metabolism 80 4.9
[H] Coenzyme transport and metabolism 56 3.4
[I] Lipid transport and metabolism 41 2.5
[P] Inorganic ion transport and metabolism 77 4.7
[Q] Secondary metabolites biosynthesis, transport and catabolism 16 1.0
Poorly characterized
[R] General function prediction only 154 9.5
[S] Function unknown 117 7.2

Hypothetical protein 196 12.0

COGs, Clusters of Orthologous Groups.
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respectively) but similar to F. hominis (38.9 mol%) and smaller

than T. collinsii, E. asini and F. languida (45.8, 44.7 and 43.9 mol%,
respectively). The comparison of gene numbers shows that the

number of genes of Vaginisenegalia massiliensis (1613) was lower
than those of T. collinsii, E. asini, F. miroungae, D. paucivorans and

F. hominis (3163, 2512, 1949, 1794 and 1767, respectively). The
genome analysis of strain Marseille-P5643T allowed us to study
the distribution of genes into Clusters of Orthologous Groups

categories, which showed the importance of the function of
translation, ribosomal structure and biogenesis (Table 4).

Finally, the degree of genomic similarity of strain Marseille-
P5643T with closely related species was estimated using the

ORTHOANI software [24]. OrthoANI values among closely
related species (Fig. 5) ranged from 63.52% between F. languida

and T. collinsii to 86.79% between F. hominis and F. languida.
When V. massiliensis was compared with these closely related
species, values ranged from 64.82% with E. asini to 74.79% with

F. languida.
Conclusion
Taxono-genomics, based on phenotypic and genotypic data, has

been used to describe this new bacterium. This allowed
detection of clear differences between our strain and those

described previously. Therefore, we formally propose the
FIG. 5. Heatmap generated with ORTHOANI values calculated using the OA

other closely related species with standing in nomenclature.

© 2019 The Author(s). Published by Elsevier Ltd, NMNI, 32, 100601
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creation of Vaginisenegalia massiliensis gen. nov., a new genus in

the Aerococcaceae family within the phylum Firmicutes. Vagi-
nisenegalia massiliensis sp. nov., contains the type strain Mar-

seille-P5643T (CSURP5643), which was isolated from the vagina
of healthy Senegalese woman.

Description of Vaginisenegalia gen. nov.
(Va.gi.ni.se.ne.ga.lia N.L. fem. n. Vaginisenegalia, is a compound
name between vagina and Senegal specifying the type and

location of sampling). Cells are Gram-negative bacilli anaerobic
and non-motile. Colony growth is obtained in anaerobic con-

ditions at 37° C. The DNA G+C content is about 38 mol%. The
type species of the genus is Vaginisenegalia massiliensis.

Description of Vaginisenegalia massiliensis sp. nov.
‘Vaginisenegalia massiliensis’ gen. nov., sp. nov. (mas.si.li.en’sis
N.L. fem. adj. massiliensis, to Massilia, the Latin name of Mar-

seille where the type strain was first isolated and characterized)
is classified as a member of the family Aerococcaceae in the

phylum Firmicutes. Strain Marseille-P5643T is the type strain of
the new species ‘Vaginisenegalia massiliensis’ gen. nov., sp. nov. It

is a strictly anaerobic, Gram-negative bacterium, non-spore-
forming and non-motile. Colonies of strain Marseille-P5643T

observed on blood agar medium are transparent with a mean

diameter of 0.5 mm. This bacterial strain does not present any
catalase and oxidase activities. The genome size of
T software between Vaginisenegalia massiliensis gen. nov., sp. nov., and

nses/by-nc-nd/4.0/).
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Vaginisenegalia massiliensis strain Marseille-P5643T is 1 754 973

bp with 39.0 mol% G+C content. The GenBank accession
number for the 16S rRNA gene sequence of strain Marseille-

P5643T is LT971014 and for the whole genome shotgun project
is UWPC00000000. It was isolated from the vagina of a Sene-

galese woman living in a rural area.

Nucleotide sequence accession numbers
The 16S rRNA and genome sequences were deposited in
GenBank under accession numbers LT971014 and

UWPC00000000, respectively.
Deposit in culture collections
Strain Marseille-P5643T was deposited in two different strain

collections under the following number (CSURP5643).
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