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ABSTRACT
Background: Transposable elements (TEs) constitute the most common repeated
sequences in eukaryotic genomes. Recent studies demonstrated their deep impact on
species diversity, adaptation to the environment and diseases. Although there are
many conventional bioinformatics algorithms for detecting and classifying TEs, none
have achieved reliable results on different types of TEs. Machine learning (ML)
techniques can automatically extract hidden patterns and novel information from
labeled or non-labeled data and have been applied to solving several scientific
problems.
Methodology:We followed the Systematic Literature Review (SLR) process, applying
the six stages of the review protocol from it, but added a previous stage, which aims to
detect the need for a review. Then search equations were formulated and executed in
several literature databases. Relevant publications were scanned and used to extract
evidence to answer research questions.
Results: Several ML approaches have already been tested on other bioinformatics
problems with promising results, yet there are few algorithms and architectures
available in literature focused specifically on TEs, despite representing the majority of
the nuclear DNA of many organisms. Only 35 articles were found and categorized as
relevant in TE or related fields.
Conclusions: ML is a powerful tool that can be used to address many problems.
Although ML techniques have been used widely in other biological tasks, their
utilization in TE analyses is still limited. Following the SLR, it was possible to notice
that the use of ML for TE analyses (detection and classification) is an open problem,
and this new field of research is growing in interest.
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INTRODUCTION
Transposable elements (TEs) are genomic units with the ability to move from one locus to
another within the genome. TEs have been found in all organisms and comprise the
majority of the nuclear DNA content of plant genomes (Orozco-Arias et al., 2018), such
as in wheat, barley and maize. In these species, up to 85% of the sequenced DNA is
classified into repeated sequences (Choulet et al., 2014), of which TEs represent the most
abundant and functionally relevant type (Ventola et al., 2017). Due to the high diversity
of TE structures and transposition mechanisms, there are still numerous classification
problems and debates on the classification systems (Piégu et al., 2015). TEs in eukaryotes
are traditionally classified based on if the reverse transcription is needed for transposition
(Class I or retrotransposons) or not (Class II or DNA transposons) (Schietgat et al.,
2018). Retrotransposons can be further subclassified into four orders according to
structural features and the life cycle of the element.

In plants, Long Terminal Repeat retrotransposon (LTR-RT) is the most frequent order
(Gao et al., 2012; Grandbastien, 2015) and can contribute up to 80% of the plant
genome size (e.g., in wheat, barley or the rubber tree) (Rahman et al., 2013). However, in
humans, the non-LTR-RT order is the most common and is related to diseases such as
cancer (Tang et al., 2017). Other levels of classification of TEs include sub-classes (only for
DNA transposons which are distinguished by the number of DNA strands that are cut
during transposition (Wicker et al., 2007)), superfamilies, lineages, and families (De Castro
Nunes et al., 2018; Neumann et al., 2019).

Although several methods have been developed to detect TEs in genomes, including
de novo, structure-based, comparative genomic and homology-based (reviewed in
(Orozco-Arias, Isaza & Guyot, 2019)), there is no single bioinformatics tool achieving
reliable results on different types of TEs (Loureiro et al., 2013b). Most of the algorithms
available currently use a homology-based approach (Nakano et al., 2018b), but this method
can present limited potential due to the vast diversity at the nucleotide level of TEs.
Also, the repetitive nature of TEs, as well as their structural polymorphism, species
specificity, and high divergence rate even among close relative species (Mustafin &
Khusnutdinova, 2018), represent significant obstacles and challenges for their analysis
(Ou, Chen & Jiang, 2018). Despite the complexity, a well-curated detection and
classification of TEs is important, due to these elements have key roles into genomes, such
as in the chromosomal structure, their interaction with genes, and adaptation and
evolution processes (Orozco-Arias, Isaza & Guyot, 2019) and their annotation could
provide insights into genomic dynamics (Wheeler et al., 2012).

In recent years, machine learning (ML) has been used by life scientists as a system for
knowledge discovery (Ma, Zhang & Wang, 2014), achieving promising results. ML can
be defined as the process of designing a model that will be calibrated from the training
information and a loss function through an optimization algorithm (Mjolsness & DeCoste,
2001). Based on these extracted patterns, algorithms can then predict results from
unknown data. Main ML training methods can be classified into supervised learning and
unsupervised learning (Ceballos et al., 2019). The goal of supervised learning is to predict
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a discrete (classification) or continuous (regression) value for each data point by using a
provided set of labeled training examples. In unsupervised learning, which is based on
clustering algorithms, the goal is to self-learn inherent patterns within the data (Zou et al.,
2018). The main objective of ML tasks is to optimize a cost function in terms of a set
of parameters for a proposed model. In the optimization process, the proposed model is
calibrated. With this aim, the data are randomly split into a minimum of three subsets
(named hold-out method): training, validation, and test sets leaving the first set for
learning patterns and hyper-parameters, the second set for choosing the best models, and
the last set for obtaining more realistic accuracy. On the other hand, k-fold cross-validation
randomly splits data into k-folds and then applies hold-out to each subset (Zou et al.,
2018). This process is crucial to avoid overfitting (also called overtraining) or underfitting
(undertraining), which both lead to poor predictive performances. Therefore, the
algorithm must reach an appropriate balance between model flexibility and the amount of
training data. An overly simple model will underfit and fail to let the data “speak” while
an overly flexible model will overfit to spurious patterns in the training data and fail to
generalize (Zou et al., 2018).

The design and implementation of a ML system is a complex process that can be done
in three steps: (1) raw data preprocessing (i.e., features selection and extraction, data
imputation, etc.), (2) learning or training of the model by using an appropriate ML
algorithm or architecture (to calibrate the model) and (3) model evaluation through
metrics (Ma, Zhang &Wang, 2014). In some cases, the preprocessing step is very complex
and relies on complicated algorithms to automate this task or on experts in the field.
The use of deep learning (DL) in ML addresses the issue of selecting the correct data
representation or the best features (Eraslan et al., 2019), avoiding the need for an expert in
the area. DL has evolved as a sub-discipline of ML through the development of deep
artificial neural networks (DNN) (i.e., neural networks with many hidden layers), such as
auto-encoders, fully connected neural networks (FNN), convolutional neural networks
(CNNs), recurrent neural networks (RNNs), among others (Eraslan et al., 2019). DL has
shown successful results in life sciences (Yu, Yu & Pan, 2017), especially in genomics.
In this area, it has been used for identifying different types of genomic elements, such as
exons, introns, promoters, enhancers, positioned nucleosomes, splice sites, untranslated
regions, etc. (Yue & Wang, 2018).

Here, we performed a systematic review of applications of ML algorithms and
architectures in TE detection and classification problems. We also discuss other uses of ML
and DL in similar tasks that can be extrapolated to TE issues. To our knowledge, this is
the first review focused mainly on the use of ML in TEs.

SURVEY METHODOLOGY
We conducted an exhaustive literature review by applying the Systematic Literature
Review (SLR) process proposed by Kitchenham & Charters (2007) and preferred
reporting items for systematic reviews and meta-analyses guidelines (Moher et al.,
2009) (Fig. 1). We followed the six stages of the review protocol used in Wen et al. (2012)
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but added a previous stage, which aims to detect the need for a review (Fig. 2). First, we
searched for other reviews to formulate questions related to the aim of this review, and
then we selected the search strategy based on key terms and available databases. In the next
step, we defined the exclusion criteria for filtering relevant articles that could contribute to
answering the questions from the first stage. For this, we applied several filters in the
Quality Assessment Checklist (fourth stage) to choose articles to be included in the
following steps. Finally, we performed data extraction and data synthesis to process the
information retrieved.

Identification of the need for a review
The strategy used was based on the guidelines proposed by Wen et al. (2012) and used in
Franco-Bedoya et al. (2017) and Reinel, Raul & Gustavo (2019). To define the need for a
systematic review, we searched through published and available reviews (secondary
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Figure 1 PRISMA flow diagram. PRISMA flow chart for search and article screening process. From:
Moher et al. (2009). Full-size DOI: 10.7717/peerj.8311/fig-1
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studies) on the topic of interest. We used Eq. (1) to search in the literature databases
referenced in Table 1.

ð“transposable element” OR retrotransposon OR transposonÞ AND ð“machine

learning” OR “deep learning”Þ AND ðreview OR “systematic review” OR overview

OR “state of the art” OR “systematic mapping”Þ
(1)

The keywords were selected based on the following: (i) type of information that we
aimed to retrieve (TEs as well as retrotransposons and transposons classes), (ii) techniques
addressed in this review (ML and DL) and (iii) keywords related to secondary studies.

All of the databases showed results using the search equation (106 results after filtering),
yet only one secondary study (Dashti & Masoudi-Nejad, 2010) specifically applied ML

Need for a review

Research questions

Search design

Search
terms

Resources

Search process

Study selection

Data extraction

Data synthesis

Figure 2 Stages of the systematic literature review process. Based on Wen et al. (2012).
Full-size DOI: 10.7717/peerj.8311/fig-2

Table 1 Literature resources used in this review.

Database Link

Scopus https://www.scopus.com

Science direct https://www.sciencedirect.com/

Web of science https://clarivate.com/products/web-of-science/

Springer link https://link.springer.com/

PubMed https://www.ncbi.nlm.nih.gov/pubmed/

Nature https://www.nature.com/
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in TEs. However, this review published in 2010 focused only on support vector
machine (SVM). Given the lack of secondary studies about this topic, we concluded that a
systematic review of ML applications in TEs was needed.

Research questions
The main aim of this review is to summarize and clarify trends, metrics, benefits, and
possible ML techniques and architectures that have not yet been addressed in the detection
and classification (for a graphical representation of the TEs classification, see Fig. 3) of TEs.
With this in mind, we formulated the following questions:

1. Q1: Are ML approaches for TE analyses advantageous compared to bioinformatics
approaches? It is important to identify if the application of novel tools like ML can
contribute to improving current bioinformatics software. This is relevant since it is
well-know that current methodologies are still far from yielding confident results in the
detection and classification of TEs given their high variability and complexity (Bousios
et al., 2012). On the other hand, many articles propose that TEs are involved in key
characteristics of genomes, such as chromosome structure, environmental adaptation,
and interspecific variability, among others. Therefore, the objective of Q1 is to determine
how TEs detection and classification can be improved using ML to understand the
dynamics and impacts of these elements better.

2. Q2:WhichML techniques are currently used to detect and classify TEs or other genomic
data? We were interested in knowing which algorithms or architectures have been tested
on TEs or other genomic data, such as long non-coding regions or retrovirus.

3. Q3: What are the best parameters and most used metrics in algorithms and architectures
to detect and classify TEs? To avoid overfitting, it is important to use a splitting method
to reduce dependance on the training data and to determine which type of data is better
to use. Thus, we were interested in knowing which current articles addressed this step.
Additionally, to compare algorithms and architectures, it is important to define metrics
that accurately measure performance. It is also essential to assess if these techniques
improve results compared to traditional bioinformatics software.

4. Q4: What are the most used DNA coding schemes in ML tasks? Because TEs comprise
categorical data (nucleotides), there are many ways to transform this information into
numerical data required by ML algorithms. Therefore, we were interested in
understanding how this transformation can contribute to improving results and which
coding schemes are widely used in this kind of problem.

Search design and study selection
Once we identified the need for a review and formulated the research questions, we
developed the search strategy to find research articles, chapter books, conference
proceedings and other review articles in the databases shown in Table 1. Similar to search
Eq. (1), we used general keywords related to (a) type of genomic data and (b) techniques
used. We did not use specific keywords (such as specific algorithms or architectures)
and any time limitations, because few relevant results were found on this topic. Major
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keywords were separated by the “AND” operator, and related keywords were linked using
the Boolean operator “OR”, as shown in Eq. (2):

ð“transposable element” OR retrotransposon OR transposonÞ AND ð“machine

learning” OR “deep learning”Þ (2)

TEs
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Figure 3 Classification of TEs following Rexdb and GyDB nomenclatures. Adapted from: Schietgat et al. (2018).
Full-size DOI: 10.7717/peerj.8311/fig-3
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The literature search using Eq. (2) retrieved 403 candidate articles of which were
eliminated those that were: (a) repeated (the same study was found in different databases);
(b) of different types (books, posters, short articles, letters and abstracts); (c) written in
other languages (languages other than English). Then, we performed a fast read process
(i.e., title, abstract, and conclusion) to detect articles that could contribute to answering the
research questions. For this, we established the following inclusion and exclusion criteria.

Inclusion criteria

� Application of ML or DL in the detection of TEs (any class)

� Application of ML or DL in the classification of TEs (any class)

� Description of DNA coding schemes

� Use of ML or DL on similar genomic data

� Comparison of bioinformatics algorithms to ML or DL techniques

� Application of metrics to evaluate ML or DL algorithms for TEs or similar data

Exclusion criteria

� Do not use any ML or DL techniques

� Studies focused only on in vivo processes

� Studies that do not integrate any of the topics addressed in this review

After this selection process (Fig. 1), we identified 35 relevant articles that were used to
extract and summarize the information.

Data extraction and synthesis
In this stage, we first wholly read the selected publications (Table 2) to extract information
to answer the research questions. Then, we registered the article into a data extraction card
proposed by Wen et al. (2012) with some adaptations to our study. The card contained
information on publication identifier, year, publication name, related research questions,
and the information itself.

In the final step, we synthesized all of the collected information and obtained evidence
to answer the research questions. Interestingly, more than 50% of the selected studies
were published between 2017 and 2019 (Fig. 4), demonstrating a growing interest in this
topic in the last years.

We identified 35 relevant publications after the SLR (see Table 2). These articles were
published between 2009 and 2019. Among them, 77% (27) were reported in journals,
17% (6) in conference proceedings and 6% (2) as book sections (Fig. 5A). The selected
articles were published in 21 journals, of which ten focused on bioinformatics or
computational biology, six on genomics or genetics, and 15 on other areas (Fig. 5B).

Benefits of ML over bioinformatics (Q1)
There is much literature about applications of ML in bioinformatics (e.g., reviewed in
Larrañaga et al. (2006)), showing improvements in many aspects such as genome
annotation (Arango-López et al., 2017). In recent years, much bioinformatics software has
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been developed to detect TEs (Girgis, 2015) and, although they follow different strategies
(such as homology-based, structure-based, de novo, and using comparative genomics),
these lack sensitivity and specificity due to the polymorphic structures of TEs (Su, Gu &

2 2

4

1 1

4

1 1

6

8

5

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Years

0

1

2

3

4

5

6

7

8

9

Re
le

va
nt

 p
ub

lic
at

io
ns

Figure 4 Number of relevant publications found per year.
Full-size DOI: 10.7717/peerj.8311/fig-4

Table 2 Selected publications and their contribution to each research question.

Publication
identifier

Year Q1 Q2 Q3 Q4 References Publication
identifier

Year Q1 Q2 Q3 Q4 References

P1 2017 X X X X Yu, Yu & Pan (2017) P19 2013 X X X Loureiro et al. (2013b)

P2 2018 X X X Schietgat et al. (2018) P20 2014 X X Ma, Zhang & Wang (2014)

P3 2017 X X X Arango-López et al. (2017) P21 2010 X X Dashti & Masoudi-Nejad (2010)

P4 2013 X X X Loureiro et al. (2013a) P22 2010 X X Ding, Zhou & Guan (2010)

P5 2011 X X X Tsafnat et al. (2011) P23 2019 X Jaiswal & Krishnamachari (2019)

P6 2018 X X X Zhang et al. (2018) P24 2015 X X X X Girgis (2015)

P7 2019 X X X Eraslan et al. (2019) P25 2018 X X X Nakano et al. (2018a)

P8 2018 X X X Douville et al. (2018) P26 2018 X X X Zamith Santos et al. (2018)

P9 2018 X X Chen et al. (2018) P27 2009 X Abrusan et al. (2009)

P10 2012 X X X X Ashlock & Datta (2012) P28 2019 X X Su, Gu & Peterson (2019)

P11 2017 X X X Smith et al. (2017) P29 2017 X X X X Nakano et al. (2017)

P12 2014 X X X X Kamath, De Jong & Shehu
(2014)

P30 2014 X X X Brayet et al. (2014)

P13 2016 X X X Kim et al. (2016) P31 2013 X Zamani et al. (2013)

P14 2018 X X X Segal et al. (2018) P32 2019 X Hubbard et al. (2019)

P15 2011 X X X Rawal & Ramaswamy (2011) P33 2014 X X Ryvkin et al. (2014)

P16 2017 X X X Tang et al. (2017) P34 2013 X X X X Zhang et al. (2013)

P17 2017 X X X Ventola et al. (2017) P35 2019 X X Da Cruz et al. (2019)

P18 2018 X X X Nakano et al. (2018b)
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Peterson, 2019). Loureiro et al. (2013a) proved that ML could be used to improve the
accuracy of TEs detection by combining results obtained by several conventional software
and training a classifier using these results (Schietgat et al., 2018; Loureiro et al., 2013b).
Loureiro’s work provided novel evidence for the use of ML in TEs, yet it did not use ML to
obtain the predictions, making the results too dependent on traditional algorithms. Using
the Random Forest (RF) algorithm, Schietgat et al. (2018) were able to improve results
obtained by popular bioinformatics software (which followed a homology-based strategy)
such as Censor, RepeatMasker, and LTRDigest (Schietgat et al., 2018) in the detection
of LTR retrotransposons. The authors proposed a framework called TE-LearnerLTR, which
outperformed LTRDigest in recall and RepeatMasker and Censor in terms of precision.

Machine learning techniques also obtain better results than traditional methods
regarding TEs classification. Using ML, it is possible to classify non-autonomous TEs
(specifically derived from LTR retrotransposons) using features other than coding regions
(which are commonly used in classification processes), including element length, LTR
length, and ORF lengths (Arango-López et al., 2017). ML algorithms can distinguish
between retroviral LTRs and SINEs (Short Interspersed Nuclear Elements) by combining
a set of methods (Ashlock & Datta, 2012), which is a complicated procedure in
bioinformatics. Also, using hierarchical classification, ML-based methods obtain better
results than well-known homologous-based methods (specifically, BLASTn algorithm)
(Nakano et al., 2017).

The advantages of using ML in bioinformatics include the discovery of entirely new
information such as arrays of mobile genetic elements, new transposition unit boundaries
(Tsafnat et al., 2011), and predicting new long noncoding RNA that are related to cancer
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(Zhang et al., 2018). Other applications include extracting discriminatory features for
automatically determining functional properties of biological sequences (Kamath, De Jong &
Shehu, 2014), identifying DNA motifs, which is a difficult task in non-ML applications
(Dashti & Masoudi-Nejad, 2010), and automating specific processes like the identification of
long non-coding RNAs (Ventola et al., 2017) and the classification of LTR retrotransposons
(Arango-López et al., 2017).

On the other hand, DL has been applied in biological areas such as genomics (for a
review see, Yue & Wang, 2018) proving to be promising (Yu, Yu & Pan, 2017) due to the
flexibility showed by deep neural networks. In Eraslan et al. (2019), several applications
in genomics are discussed such as variant calling, base calling for novel sequencing
technologies, denoising ChIP–seq data (chromatin immunoprecipitation followed by
sequencing), and enhancing Hi-C data resolution (Chromosome conformation capture
followed by pair-end sequencing). Also, some frameworks allow users to use GPUs as a
complement for CPUs, achieving a faster execution of DL algorithms (Eraslan et al.,
2019). Deep neural networks have also been used to improve the prediction of global
enhancers, which was proven to be challenging using other computational tools
(Kim et al., 2016).

Machine learning and DL fields are supported by multiple companies and industry
research groups, which anticipated the great benefits that artificial intelligence can
contribute to genomics, human health (Eraslan et al., 2019), and major crops. Several
articles using ML or DL techniques reported that TEs are associated with many human
diseases (Zhang et al., 2013). For example, cancer-related long noncoding RNAs have
higher SINE and LINE numbers than cancer-unrelated long noncoding RNAs (Zhang
et al., 2018). Likewise, several types of epithelial cancers acquire somatic insertions of
LINE-1 as they develop (mentioned in Tang et al. (2017)). Moreover, the genes that
confer antibiotic resistance (called R genes) in bacteria are associated with TEs, and it
is possible to detect them through ML (Tsafnat et al., 2011). Finally, although LTR
retrotransposons are related to retroviruses such as HIV, ML algorithms can distinguish
them from SINEs (Ashlock & Datta, 2012). On the other hand, the human genome is
composed of a considerable number of interspersed repeats, such as LINE-1 as one of the
most abundant (Tang et al., 2017)), human endogenous retroviral sequences comprising
8–10% of the genome, and SINEs contributing with ∼11%. Meanwhile, protein-coding
regions comprise only about 1.5% (Ashlock & Datta, 2012).

Since TEs are under relatively low selection pressure and evolve more rapidly than
coding genes (Rawal & Ramaswamy, 2011), they undergo dynamic evolution. Moreover,
insertions of other TEs (nested insertion), illegitimate and unequal recombination, cellular
gene capture, and inter-chromosomal and tandem duplications (Garbus et al., 2015)
make TEs classification and annotation a very complicated task (Bousios et al., 2012).
Thus, conventional methods (such as bioinformatics) cannot obtain reliable results in
TE detection and classification tasks.

In supervised problems, the process of feature extraction or selection is a crucial step for
the performance of the entire architecture. In ML, the processes of selection of variables
or characteristics must be carried out by a thematic expert. Deep network architectures, on
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the other hand, allow characteristics to be extracted in a nonlinear and automatic way.
The hidden layers of deep neural networks transform these characteristics into intricate
patterns relevant to the classification problem (Eraslan et al., 2019). In the specific case of
TEs, because they are DNA sequences, the extraction of characteristics is usually a too
complex process due to a large amount of information, their unstructured form, and their
sequentially. In this case, the deep neural networks provide new features that cannot be
extracted manually. For example, CNNs can discover local patterns in sequential data such
as pixels in an image or DNA (Zou et al., 2018). These patterns known as motifs have
functions of great importance in the genome as promoters of genes and to be found in the
LTR sequences of retrotransposons, in addition, if they are found in different places
and under certain frequencies could be very useful to identify or classify TEs. Although
motifs are essential for DNA classification problems, it is not enough to find the exact
patterns, because DNA can undergo modifications or mutations and because specific
motifs can function the same as others even if they do not have the same nucleotides.
Another benefit of ML over bioinformatics is the use of labeled data to generate
computational models. Currently, a few hundreds of plant genomes are available to train
algorithms, but this number will increase significantly in the near future due to massive
genome sequencing projects such as the 10 K plant project (https://db.cngb.org/10kp/)
or the Earth BioGenome Project (https://www.earthbiogenome.org). This large amount of
data will help to produce more accurate and reliable software thought ML and DL.
Additional to available training data, some plant genomes are very interesting to identify
and classify TEs following ML or DL approaches, due to their huge genome and their
composition. As examples, sugarcane, maize, and barley have large genomes (3 Gb, 2 Gb
and 5.1 Gb respectively) that are composed mainly by repetitive sequences (up to 80%,
(Rahman et al., 2013)). On the other hand, the process of supervised training of ML
algorithms provides another advantage when training a model that increases true positives
(TP) and decreases false positives results. To improve this rate of performance, the
hyperparameters of the models can be tuned using techniques such as search grid, which
does an exhaustive search for the hyperparameters that produce the best accuracy
and precision.

ML architectures and algorithms currently used for TEs or similar
data (Q2)
ML has been applied in bioinformatics due to a large amount of data that has been
generated. Ma, Zhang & Wang (2014), review the application of ML in topics such as
genome assembly, genomic variation detection, genome-wide association studies, and the
in silico annotation of coding genomic loci. Particular focus has been given to loci that
code for proteins, TEs, noncoding RNAs, miRNAs and targets, transcription factor
binding sites, cis-regulatory elements, enhancer and silencer elements, and mRNA
alternative splicing sites. Additionally, many frameworks have been developed to
facilitate the implementation of ML algorithms in bioinformatics projects. Tools such
as Scikit-learn, Weka, and several packages developed in R (for a complete list, see,
Ma, Zhang & Wang, 2014) allow using ML-based techniques in biological areas.
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Table 3 Machine learning algorithms used in publications selected in this study.

Publication Data source Task ML algorithm Learning method References

P2 Numerical and
categorical features
based on coding regions

Detect LTR
Retrotransposons at the
super-family level

RF Supervised Schietgat et al. (2018)

P3 Numerical and
categorical features

Classify LTR
Retrotransposons at the
lineage level

DT, BN and lazy
algorithms

Supervised Arango-López et al.
(2017)

P4 Numerical and
categorical features

Improve the detection and
classification of TEs

NN, BN, RF, DT Supervised Loureiro et al. (2013a)

P5 Numerical features based
on structure

Detect boundary
sequences of mobile
elements

HMM, SVM Unsupervised and
Supervised

Tsafnat et al. (2011)

P6 85 Numerical features in
four categories
(genomic, epigenetic,
expression, network)

Detection of
cancer-related long
non-coding RNA

RF, NB, SVM, LR
and KNN

Supervised Zhang et al. (2018)

P8 Z-score features,
representing
chromosome arm gains
and losses

Detection of aneuploidy SVM Supervised Douville et al. (2018)

P10 K-mer frequencies and
frequencies of certain
patterns

Distinguishing
endogenous retroviral
LTRs from SINEs

RF Supervised Ashlock & Datta (2012)

P11 Dinucleotide frequencies Identification and
clustering of RNA
structure motifs

Density-based
clustering

Unsupervised Smith et al. (2017)

P12 Sequences of nucleotides
(DNA) and categorical
features

Automatization of the
process of extracting
discriminatory features
for determining
functional properties of
biological sequences

Evolutionary
feature
construction and
evolutionary
feature selection

Unsupervised Kamath, De Jong &
Shehu (2014)

P14 Numerical features Analysis of mutants RF Supervised Segal et al. (2018)

P15 Insertion sites Identification of potential
insertion sites of mobile
elements

SVM Supervised Rawal & Ramaswamy
(2011)

P16 Numerical features Identification of somatic
LINE-1 insertions

LR Supervised Tang et al. (2017)

P17 Numerical features, RNA
mononucleotides,
dinucleotides and
trinucleotides
frequencies, Fickett
score

Identification of most
informative features of
long non-coding
transcripts

11 different feature
selection
approaches, SVM,
RF, and NB

Supervised Ventola et al. (2017)

P19 Numerical and
categorical features

Improve the detection and
classification of TEs

NN, BN, RF, DT Supervised Loureiro et al. (2013b)

P21 K-mer frequencies Classify repetitive
sequences

SVM Supervised Dashti & Masoudi-Nejad
(2010)

P22 Numerical features Prediction of microRNA
precursors

SVM Supervised Ding, Zhou & Guan
(2010)

(Continued)
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Most of the publications found in this review (Table 3) used supervised learning as the
training mechanism (84%, 21 publications). We found only four publications (16%)
that used unsupervised learning (Fig. 6A), which mainly addressed tasks of features
selection and extraction and clustering of motif sequences.

Among the supervised learning algorithms used, RF and SVM are the most commonly
found in the publications reviewed (Fig. 6B). SVM is a widely used classifier, while RF can
avoid overfitting and is insensitive to noise (Ashlock & Datta, 2012), two features that
are very useful in TE problems due to the high variability and lack of a general structure of
TEs. On the other hand, we found only three publications that used Hidden Markov
Models (HMM) and, in the case of Tsafnat et al. (2011) and Zamani et al. (2013),
HMMs are applied in the preprocessing step for other ML techniques. HMM is another
well-known technique in bioinformatics. RED, which de novo detects repeats, is the only
software found that uses HMM as the primary tool (Girgis, 2015). Finally, 12 of 25
publications used more than one technique to compare results and select the most optimal
or to improve the accuracy obtained.

Eight publications focused on the detection or classification of TEs, and all of them used
supervised techniques. RF, decision trees (DT), and SVM are the most frequent algorithms.

Table 3 (continued).

Publication Data source Task ML algorithm Learning method References

P24 Sequences of nucleotides
(DNA)

Detecting repeats de novo HMM Supervised Girgis (2015)

P26 K-mer frequencies Classify TEs using
hierarchical approaches

DT, RF, NB, KNN,
MLP, SVM

Supervised Zamith Santos et al.
(2018)

P27 K-mer frequencies Classify TEs SVM Supervised Abrusan et al. (2009)

P28 Numerical features based
on structure

Identify sequence motifs
conserved in each of the
five major TIR
superfamilies

NN, KNN, RF, and
Adaboost

Supervised Su, Gu & Peterson (2019)

P30 Numerical features and
k-mer frequencies

piRNA prediction SVM Supervised Brayet et al. (2014)

P31 Aligned genomes and
binary representation (1
for mismatches and 0
for matches)

Recognition of local
relationship patterns

HMM, SOM Unsupervised Zamani et al. (2013)

P32 Numerical features Compare multiple
transposon insertion
sequencing studies

PCA Unsupervised Hubbard et al. (2019)

P33 Numerical and
categorical features,
nucleotide frequencies

Classify the precursors of
small non-coding RNAs

RF Supervised Ryvkin et al. (2014)

P34 Normalized numerical
and categorical features

Prediction of
transcriptional effects by
intronic endogenous
retroviruses

MLP NN Supervised Zhang et al. (2013)

Note:
RF, Random Forest; DT, Decision Trees; BN, Bayesian Networks; NN, Neural networks; HMM, Hidden MarkovModel; SVM, Support Vector Machine; NB, Naïve Bayes;
LR, Logistic Regression; KNN, K-Nearest Neighbors; SOM, Self-Organizing Map; PCA, Principal Component Analysis; MLP, Multi-Layer Perceptron; FORF, first-order
random forests. The full version of this table can be consulted in Table S1.
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The use of preprocessing methods to extract features from DNA or RNA (Fig. 7) was a
common finding (for a review on the extraction and selection of features from biological
sequences see, Kamath, De Jong & Shehu, 2014). For example, Loureiro et al. (2013b),
Zamith Santos et al. (2018) and Abrusan et al. (2009) used k-mer frequencies as features.
On the contrary, Schietgat et al. (2018), Arango-López et al. (2017) and Loureiro et al.
(2013a) used numerical and categorical features mainly based on structures. Other
purposes of ML in TEs included detecting the boundaries of mobile elements (Tsafnat
et al., 2011), identifying insertion sites of somatic LINEs insertions (Tang et al., 2017),
and other mobile elements at the genome level (Rawal & Ramaswamy, 2011), detecting
aneuploidy in patients with cancer through LINEs (Douville et al., 2018), detecting
conserved motifs in TIR elements (Su, Gu & Peterson, 2019), distinguishing endogenous
retroviral LTRs from SINEs (Ashlock & Datta, 2012), and comparing multiple studies
on transposon insertion sequencing (Hubbard et al., 2019). The last study used an
unsupervised algorithm based on principal component analysis (PCA) to reduce the
feature dimensions and improve the clustering analysis.

We also found publications that applied ML to other genomic data than TEs (these
publications can be found in Table 2). Long non-coding RNAs (lncRNAs) are gaining
attention because of critical biological functions suggested by recent studies (for a review
see, Mercer, Dinger & Mattick, 2009). Some of the ML applications found included the
detection of cancer-related lncRNA (Zhang et al., 2018), the discrimination of circular
RNAs from other lncRNAs (Chen et al., 2018), and selection of the most informative
features of lncRNA (Ventola et al., 2017). Other applications in the RNA field address the
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Figure 6 Source of selected publications. (A) Proportion of publications using supervised and unsu-
pervised learning. (B) Supervised learning algorithms found in publications. Abbreviations: Random
Forest (RF), Decision Trees (DT), Bayesian Networks (BN), Neural networks (NN), Hidden Markov
Model (HMM), Support Vector Machine (SVM), Naïve Bayes (NB), Logistic Regression (LR), K-Nearest
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identification and clustering of RNA structure motifs (Smith et al., 2017), prediction of
microRNA precursors (Ding, Zhou & Guan, 2010), prediction of piRNA (Brayet et al.,
2014), and classification of small non-coding RNAs (Ryvkin et al., 2014). Although TEs are
DNA molecules, the techniques applied to lncRNA could be extrapolated to TEs since
they are composed of long non-coding regions containing motifs. For example, LTR
retrotransposons have two highly similar characteristic Long Terminal Repeats (LTR)
that usually contain Short Inverted Repeat (SIR) motifs TG-5′ and 3′-CA at both ends
(Mascagni et al., 2015; Yin et al., 2013), as well as one to three AT-rich regions with one or
two TATA-boxes and a polyadenylation signal (AATAAA motif) (Benachenhou et al.,
2013; Gao et al., 2012). Consequently, the approaches implemented in Zamani et al. (2013)
can be beneficial for predicting patterns inside TEs, yielding better results in classification
processes.

Regarding DL, we found five articles that addressed TE classification (Nakano et al.,
2018b), the detection of long intergenic non-coding RNA (lincRNA) using different coding
schemes and outperforming SVM results (Yu, Yu & Pan, 2017), the use of DL to
predict enhancers based on chromatin features (Kim et al., 2016), and the use of CNNs to
classify TEs (Da Cruz et al., 2019). Lastly, the fifth article reviewed the applications of DL
in genomics (Eraslan et al., 2019).

The first ideas on DNN were discussed in the 1990s, although mature concepts on the
subject matter appeared in the 2000s (Yu, Yu & Pan, 2017). Auto-encoders, which can
perform non-linear dimensionality reduction by training a multilayer neural network with
a small central layer to reconstruct high-dimensional input vectors (Zou et al., 2018),
have been used by Yu, Yu & Pan (2017) with a setting of two layers. They demonstrated
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Table 4 Deep learning architectures used in genomic data reviewed in Eraslan et al. (2019). Architecture details used in each work can be
consulted in Table S2.

Dataset features Task DNN type Framework or
language

Year References

Presence of binding motifs of
splice factors or sequence
conservation

Predict the percentage of
spliced exons

Fully connected NN TensorFlow 2017 Jha, Gazzara & Barash
(2017)

Numerical features, k-mer
frequencies (k = 1, 2, 3, 4)

Prioritize potential
disease-causing genetic
variants

Fully connected NN Matlab 2016 Liu et al. (2016)

Chromatin marks, gene
expression and evolutionary
conservation

Predict cis-regulatory
elements

Fully connected NN Python 2018 Li, Shi & Wasserman
(2018)

Microarray and sequencing
data

Predict binarized in vitro and
in vivo binding affinities

Convolutional NN Python + CUDA 2015 Alipanahi et al. (2015)

A 1,000 bp sequence Predict the presence or
absence of 919 chromatin
features

Convolutional NN LUA 2015 Zhou & Troyanskaya
(2015)

A 600bp
sequence (one-hot matrix)

Predict 164 binarized DNA
accessibility features

Convolutional NN Torch7 2016 Kelley, Snoek & Rinn
(2016)

DNA sequence (one-hot
matrix)

Classify transcription factor
binding sites

Convolutional NN Torch7 2018 Wang et al. (2018)

DNA sequence (one-hot
matrix)

Predict molecular phenotypes
such as chromatin features

Convolutional NN TensorFlow 2018 Kelley et al. (2018)

DNA sequence (one-hot
matrix) and DNAse signal

DNA
contact maps

Convolutional NN Python 2018 Schreiber et al. (2018)

DNA sequence (one-hot
matrix) and DNAse signal

DNA methylation Convolutional NN Theano + Keras 2017 Angermueller et al.
(2017)

DNA sequences Transform genomic
sequences to epigenomic
features

Convolutional NN PyTorch 2018 Zhou et al. (2018)

K-mer frequencies and their
positions

Predict translation efficiency Convolutional NN Keras 2017 Cuperus et al. (2017)

DNA sequence (one-hot
matrix) and DNAse signal

Predict RNA-binding proteins Convolutional NN TensorFlow 2018 Budach & Marsico
(2018)

Numerical features Predict microRNA (miRNA)
targets

Convolutional NN – 2016 Cheng et al. (2015)

Numerical features Aggregate the outputs of
CNNs for predicting
single-cell DNA
methylation state

Recurrent NN Theano + Keras 2017 Angermueller et al.
(2017)

RNA sequence (one-hot
matrix)

Predict RNA-binding proteins Recurrent NN Keras 2018 Pan et al. (2018)

DNA sequence (one-hot
matrix)

Predict transcription factor
binding and DNA
accessibility

Recurrent NN Theano + Keras 2019 Quang & Xie (2019)

RNA sequence (weight
matrices)

Predict the occurrence of
precursor miRNAs from the
mRNA sequence

Recurrent NN Theano + Keras 2016 Park et al. (2016)

Gene expression level (binary,
over or under-expressed)

Predict binarized gene
expression given the
expression of other genes

Graph-convolutional NN Torch7 2018 Dutil et al. (2018)

Gene expression profile and
protein-protein interaction
network

Classify cancer subtypes Graph-convolutional NN – 2017 Rhee, Seo & Kim (2017)
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better results than SVM in the prediction of lncRNA. Moreover, other publications
have reported better results from DL compared to conventional ML techniques. Eraslan
et al. (2019) reviewed several DL architectures used in genomics (Table 4), showing
improved predictive performance over ML methods, including Logistic Regression,
DT or RF. Since no publications were found addressing TE detection, the application of
auto-encoders can be a novel way to predict TEs with long non-coding regions (such as
LTR retrotransposons).

One of the most useful characteristics of DL architectures is that DNN can automatically
learn non-linear features since each layer uses multiple linear models, and the outputs
are transformed by non-linear activation functions, such as sigmoid functions or
rectified-linear unit (Eraslan et al., 2019). This process could facilitate classification tasks
that include, for instance, distinguishing superfamilies of LTR retrotransposons (Copia
and Gypsy). Furthermore, Nakano et al. (2018b) used these advantages to improve the
hierarchical classification of TEs (Fig. 8) through FNN and using k-mer frequencies
as features.

Advances in DL can be attributed to the use of frameworks, which facilitate the
implementation of crucial operations required to build and train neural networks, such as
Keras (Chollet, 2015), tensorFlow (Abadi et al., 2016), Theano (Bergstra et al., 2011) or
Pytorch (Paszke et al., 2017). These operations include matrix multiplication, convolution,
and automatic differentiation (Eraslan et al., 2019), allowing users to specify their models
more easily and quickly. Another advantage is that users do not need to parallelize
their codes since frameworks like tensorFlow can do it automatically.

Convolutional neural networks have been widely used in genomics. Most of the
publications shown in Table 4 take advantage of the ability of CNNs to extract high-level
features directly from sequences (in most cases, using one-hot codification). These features
were then passed to other layers (i.e., fully connected layers) to calculate the final
results. Recently, CNNs have been applied to the classification of TEs and have shown
better results than conventional bioinformatics software such as PASTEC and REPCLASS.
Accordingly, benefits can be gained from the use of this kind of neural networks
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Figure 8 Overall FNN architecture used by Nakano et al. to classify TEs. Based on Nakano et al. (2018b).
Full-size DOI: 10.7717/peerj.8311/fig-8

Orozco-Arias et al. (2019), PeerJ, DOI 10.7717/peerj.8311 18/29

http://dx.doi.org/10.7717/peerj.8311/fig-8
http://dx.doi.org/10.7717/peerj.8311
https://peerj.com/


(Da Cruz et al., 2019) (Fig. 9). Since TEs display different structural features, specific
motifs, and promoters, CNNs can find features that are not calculable with conventional
methods. This ability can provide useful information to researchers interested in
understanding the diversity and characteristics of TEs, as well as improving the detection
and classification of these elements. Other architectures such as RNNs have been applied
in distinct tasks in genomics, such as the prediction of binding sequences. A crucial
feature of this kind of DNNs is the implementation of memory. An application of RNNs in
TEs is the identification of boundaries, which, in most orders, are composed of short
duplications at both ends (Target Site Duplications—TSD) and, in some orders, (i.e., LTR
retrotransposons and TIR DNA transposons) of non-coding repeat regions (long terminal
repeats for LTR retrotransposons and terminal inverted repeat for TIR DNA transposons).
On the other hand, since nucleotides from TEs are used as input, it is likely to have
more variables than individuals, leading to overfitting in the training steps. Thus,
auto-encoders can be used to reduce the number of features in a non-linear way, helping to
overcome this issue.

To summarize, the ML techniques already used in TEs are mainly RF, DT, and SVM.
Although most publications use supervised learning, some articles can be found using
unsupervised learning, mainly for extracting and selecting characteristics. Only two articles
were found that applied DL (one publication used FNN and the other CNN) to the
classification of TE, but they aimed to predict TE orders. Therefore, more research is
needed on DL approaches.

Parameters and metrics applied in algorithms and architectures (Q3)
To ensure that ML architectures do not exclusively learn patterns of the training dataset,
there are several techniques used to split information into different datasets, such as
the hold-out and k-cross-validation methods. These methods should be used in problems
with information of any kind. Particularly with data of genomic origin, k-cross-validation
seems to be the most popular (Ma, Zhang & Wang, 2014). Using k = 10, different
studies demonstrated high accuracies for long non-coding RNAs (Chen et al., 2018;
Zhang et al., 2018), for selecting features for classification of biological sequences (Kamath,
De Jong & Shehu, 2014), analyzing insertion sites of somatic LINEs in ovarian cancer
(Tang et al., 2017), and improving the classification of TEs (Loureiro et al., 2013b;
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Nakano et al., 2018b). Meanwhile, k = 5 was used by Segal et al. (2018) to infer the
importance of specific genes for growth under laboratory conditions.

In ML tasks, it is essential to have curated datasets (Loureiro et al., 2013a). The quality of
TE and other genomic datasets is complex to evaluate, and their nature can influence
the final results. Databases such as PGSB contain genomic TE sequences from many
species, while repetDB or RepBase comprise consensus sequences of TEs. Ashlock & Datta
(2012) proposed that, although consensus sequences have been used to train several
ML algorithms (i.e., TEclass (Abrusan et al., 2009) and REPCLASS (Feschotte et al., 2009)),
this type of datasets caused poor results. The authors also recommended taking this into
account for ML projects in genomics.

A key aspect in the field of artificial intelligence is the calculation of metrics that
represent the performance of the algorithms and architectures. Classification or detection
tasks mostly rely on defining two classes, positive and negative. Accordingly, the predicted
results are marked as true positive if they were classified as positive and are contained in
the positive class, while as false negatives if they were rejected but did not belong to
the negative class. Also, candidates that appear in the negative set that were classified as
positives are counted as false positives, and all others are classified as true negatives
(Tsafnat et al., 2011). Most metrics are based on the frequencies of these markers (Table 5).

The most popular metrics in ML projects are accuracy, sensitivity, specificity, precision,
recall, F-score, and ROC curves (Ma, Zhang & Wang, 2014). However, these are not
appropriate in every case, especially when the positive and negative data sets are
unbalanced. For example, ROC curves are not used in TE classification, because only a
small portion of the genome contains certain TE superfamilies. In this case, it is more
interesting to recognize positive results than predict negative candidates correctly through
precision-recall curves (PRC) (Schietgat et al., 2018). Also, instead of using accuracy,
AUC and PRC are used for the feature construction and selection of classification
of biological sequences (Kamath, De Jong & Shehu, 2014) and the identification of long
non-coding RNA (Ventola et al., 2017).

In hierarchical classification problems, there is no consensus on which metrics should
be used (Zamith Santos et al., 2018), although a set of evaluation measures have been
proposed such as hierarchical Precision, hierarchical Recall, and hierarchical F-measure
(Fig. 10) (Nakano et al., 2017). Since TE classification systems follow a hierarchical
topology, these metrics can contribute to improving the measurement of algorithms and
architectures to classify TEs.

In brief, because the detection and classification of TE can be covered from different
approaches (binary problems, multi classes or hierarchical classification), multiple metrics
can be applied. However, it is necessary to use those metrics that are not affected by
unbalanced data sets, which is a problem linked to these types of data. Although in
genomics, the k-cross-validation method is the most common, the k-value depends on the
size of the training dataset. The articles evaluated in this review used values of k = 5 and 10.
On the other hand, it was found that the nature of the data (genomic sequences or
consensus) affects the performance of ML algorithms, so some authors recommend the
use of genomic sequences.
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Table 5 Metrics used in TEs and other similar task. Adopted from (Kamath, De Jong & Shehu, 2014; Brayet et al., 2014;Ma, Zhang &Wang, 2014;
Yu, Yu & Pan, 2017; Smith et al., 2017; Chen et al., 2018; Schietgat et al., 2018; Segal et al., 2018). D for detection and C for classification.

Metric Representation Observations Tasks in which
it was used

Accuracy ðTP þ TNÞ
ðTP þ FP þ FN þ TNÞ

Measures the percentage of samples
that are correctly classified

D, C

Precision
TP

ðTP þ FPÞ Percentage of correct predictions D

Sensitivity (recall)
TP

ðTP þ FNÞ Represents the proportion of
positive samples that are correctly
predicted

D, C

Specificity
TN

ðTN þ FPÞ Represents the proportion of
negative samples that are
correctly predicted

D

Matthews correlation
coefficient

TP � TN � FN � FP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FNÞ � ðTN þ FPÞ � ðTP þ FPÞ � ðTN þ FNÞ

p It can be a key measurement
because it is a balanced
measurement, even if the sizes of
positive and negative samples
have great differences

D

Positive predictive
value

TP
ðTP þ FPÞ Percentage of correctly classified

positive samples among all
positive-classified ones

D, C

Performance
coefficient

TP
ðTP þ FN þ FPÞ Ratio of correct predictions

belonging to the positive class and
predictions belonging to the
false class

D

F1 score
2� TP

ð2� TP þ FP þ FNÞ Harmonic mean of precision and
sensitivity

D

Precision-recall
curves

Graphics Plots the precision of a model as a
function of its recall

D, C

Receiver operating
characteristic
curves (ROCs)

Graphics Commonly used to evaluate the
discriminative power of the
classification model at different
thresholds

C

Area under the ROC
curve (AUC)

Graphics Summary measure that indicates
whether prediction performance
is close to random (0:5) or perfect
(1:0). Also describes the
sensitivity vs. the specificity of the
prediction

D, C

Area under the
Precision-Recall
(auPRC)

Graphics Measures the fraction of negatives
misclassified as positives and
plots the precision vs. recall ratio

D

False positive rate 1–Specificity Percentage of predictions marked
as belonging to the positive
class, but that are part of the
negative class.

D
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Most used DNA coding schemes (Q4)
One of the most critical tasks in ML algorithms is correct data representation. In contrast
to other datasets, DNA nucleotide sequences are human-readable characters, C, T, A, and
G, so it is necessary to encode them in a machine-readable form (Yu, Yu & Pan, 2017).
Table 6 shows coding schemes that can be applied to representing nucleotides by different
approaches. Using deep neural networks, (Yu, Yu & Pan, 2017) demonstrated that the
complementary scheme had the best performance, while the other schemes achieved
similar predictive rates.

In some cases, input sequences need to be first transformed into k-mer counts (Zamith
Santos et al., 2018). For example, for distinguishing between Endogenous Retroviral LTRs
from SINEs, the dinucleotide (2-mer) “TT” appears more frequently in LTRs than in SINEs
and LTRs have more TAs, TGs, As, and Gs before their first C than SINEs. These k-mer
features add more information than the raw DNA sequences in the classification process
(Ashlock & Datta, 2012). Additionally, k-mer frequencies of k = 2, 3, 4 have been used
(Nakano et al., 2017, 2018a) for TE classification through DL. Other examples that apply
k-mer occurrences to sequence transformation are the prediction of DNA promoter regions,
cis sites, HS sites, splice sites, among others (reviewed in Kamath, De Jong & Shehu (2014)).

Table 6 Coding schemes for translating DNA characters in numerical representations. Adapted from (Yu, Yu & Pan, 2017).

Encoding schemes Codebook References

DAX {‘C’:0, ‘T’:1, ‘A’:2, ‘G’:3} Yu et al. (2015)

EIIP {‘C’:0.1340, ‘T’:0.1335, ‘A’:0.1260, ‘G’:0.0806} Nair & Sreenadhan (2006)

Complementary {‘C’:-1, ‘T’:-2, ‘A’:2, ‘G’:1} Akhtar et al. (2008)

Enthalpy {‘CC’:0.11, ‘TT’:0.091, ‘AA’:0.091, ‘GG’:0.11, ‘CT’:0.078, ‘TA’:0.06, ‘AG’:0.078,
‘CA’:0.058, ‘TG’:0.058, ‘CG’:0.119, ‘TC’:0.056, ‘AT’:0.086, ‘GA’:0.056, ‘AC’:0.065,
‘GT’:0.065, ‘GC’:0.1111}

Kauer & Blöcker (2003)

Galois (4) {‘CC’:0.0, ‘CT’:1.0, ‘CA’:2.0, ‘CG’:3.0, ‘TC’:4.0, ‘TT’:5.0, ‘TA’:6.0, ‘TG’:7.0, ‘AC’:8.0,
‘AT’:9.0, ‘AA’:1.0, ‘AG’:11.0, ‘GC’:12.0, ‘GT’:13.0, ‘GA’:14.0, ‘GG’:15.0}

Rosen (2006)

Orthogonal (one-hot)
Encoding

{‘A’: [1, 0, 0, 0], ‘C’: [0, 1, 0, 0], ‘T’: [0, 0, 1, 0], ‘G’: [0, 0, 0, 1]} Baldi et al. (2001)

2* *
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Figure 10 Equations for hierarchical metrics. Zi and Ci correspond, respectively, to the set of true
and predicted classes for an instance i. (A) Hierarchical precision, (B) hierarchical recall and (C)
hierarchical F1-score. Full-size DOI: 10.7717/peerj.8311/fig-10
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Recently, an innovative way to convert sequences into numerical representations
was proposed by Jaiswal & Krishnamachari (2019). The authors considered three
physicochemical properties, namely, average hydrogen bonding energy per base pair (bp),
stacking energy (per bp), and solvation energy (per bp), which are calculated by taking
the first di-nucleotide and then moving a sliding window, one base at a time. Accordingly,
a classification task was performed using this process. Although this classification was
carried out on the Saccharomyces cerevisiae genome, it can be extrapolated to other species
with distinct types of TEs.

To summarize, the use of k-mers frequencies seems to be more common and get better
results in ML algorithms. On the other hand, in DL architectures, they mainly use the
one-hot coding scheme because the extraction is carried out automatically. Interestingly,
the problem of TEs detection could be addressed using the physico-chemical
characteristics of the di-nucleotides.

CONCLUSIONS AND FUTURE WORK
ML is a powerful tool that can extract patterns, novel information, and relations from
labeled data (supervised learning) or unlabeled data (unsupervised learning). These
artificial intelligence approaches improve complex tasks and automate processes that
would otherwise be done manually. Although ML and DL fields have been applied in areas
such as genomics, human health, face recognition, and many others, the use of ML and
DL in TEs is still limited. This is especially true for deep neural networks such as
CNNs, which could provide opportunities to extract features that are undetected by
conventional bioinformatics methods. Although TE detection and classification are
very complex tasks because of the variability of these elements, there are databases with
thousands of TE sequences that have been recently released. These databases can
contribute training sets for obtaining better and generalized models to improve the
accuracy and reliability of the results. TEs are associated with many aspects in humans
(such as diseases) and plants (like intra and inter-species diversity, adaptation to the
environment, among others). Therefore, a broader understanding of these elements can
provide better knowledge of our genomes as well as about important crops. Accordingly,
this can lead to faster and reliable diagnostic and clinical treatments in diseases like
cancer and more resistant and productive crops. Unquestionably, ML and DL can support
novel methods to detect, classify, and analyze repeated sequences. To date, there are
few publications on the application of DL in TEs, so the door is open to proposing
innovative methodologies and architectures.

Taking into account this systematic review of literature, we propose the following ideas
as future work:

– To use Autoencoders to increase the size of the training datasets (data augmentation) on
the TEs already classified and validated by the bioinformatics community, in order to
obtain a better generalization of the ML and DL algorithms.

– To use sets of simultaneous classifiers (SVM, RF, DT, LR, among others) in order to
generate separation frontiers of classes more adapted to the nature of this type of problem
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and thus be able to increase the percentages of precision in the detection and classification
of TEs.

– To train new artificial neural network architectures using transfer learning techniques
from the results obtained by the neural networks proposed in the literature.

– To use techniques of selection of characteristics (RF) or reduction of dimensionality
(PCA) in order to diminish the databases’ complexity and to increase the percentages of
precision in the detection and classification of TEs.
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