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Abstract: In three-dimensional simulations of free-surface flow where the vertical velocities are
relevant, such as in lakes, estuaries, reservoirs, and coastal zones, a nonhydrostatic hydrodynamic
approach may be necessary. Although the nonhydrostatic hydrodynamic approach improves the
physical representation of pressure, acceleration and velocity fields, it is not free of numerical diffusion.
This numerical issue stems from the numerical solution employed in the advection and diffusion
terms of the Reynolds-averaged Navier–Stokes (RANS) and solute transport equations. The combined
use of high-resolution schemes in coupled nonhydrostatic hydrodynamic and solute transport models
is a promising alternative to minimize these numerical issues and determine the relationship between
numerical diffusion in the two solutions. We evaluated the numerical diffusion in three numerical
experiments, for different purposes: The first two experiments evaluated the potential for reducing
numerical diffusion in a nonhydrostatic hydrodynamic solution, by applying a quadratic interpolator
over a Bilinear, applied in the Eulerian–Lagrangian method (ELM) step-ii interpolation, and the
capability of representing the propagation of complex waves. The third experiment evaluated the
effect on numerical diffusion of using flux-limiter schemes over a first-order Upwind in solute
transport solution, combined with the interpolation methods applied in a coupled hydrodynamic
and solute transport model. The high-resolution methods were able to substantially reduce the
numerical diffusion in a solute transport problem. This exercise showed that the numerical diffusion
of a nonhydrostatic hydrodynamic solution has a major influence on the ability of the model to
simulate stratified internal waves, indicating that high-resolution methods must be implemented in
the numerical solution to properly simulate real situations.

Keywords: numerical diffusion; Eulerian–Lagrangian method; interpolation; flux limiter

1. Introduction

When the ratio of vertical to horizontal motion scales is not small (e.g., flows over abruptly
changing bottom topography, orbital movements in short-wave motions, or intensive vertical
circulation), a nonhydrostatic approach may be necessary to accurately simulate three-dimensional
free-surface flows in large aquatic ecosystems such as lakes, estuaries, reservoirs, and coastal
zones [1–3]. There is a trade-off between method efficiency and the computational costs when
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hydrostatic and nonhydrostatic approaches are compared. The nonhydrostatic approach, in general,
requires more complex interactive numeric methods [4,5], which increases the computation cost
compared to the hydrostatic approach using the same computation grid. The nonhydrostatic approach
also improves the physical representation of the phenomenon and requires fewer vertical layers to
obtain physically satisfactory results than does the hydrostatic approach. Therefore, to obtain similar
results, the hydrostatic approach requires more vertical layers, necessitating a higher computation cost
than the nonhydrostatic approach [6].

Whatever the approach (hydrostatic or nonhydrostatic), the numerical diffusion issue
remains critical, and many studies have attempted to reduce it by adopting diverse approaches.
Higher-resolution techniques (e.g., quadratic, cubic and spline interpolators, and flux limiters)
have proven to be a promising alternative in order to minimize these numerical issues [7–11].
Despite previous studies showing that higher-resolution schemes might not maintain some important
characteristics of a numerical solution (e.g., spurious oscillations of internal waves) [12], they may
better represent the nonlinear behavior of a velocity field than low-resolution schemes (upwind solute
transport solver, bilinear interpolation). In general, linear schemes might be more stable, monotonic,
and easily implemented, but they still might give unsatisfactory results due to higher numerical
diffusion. Generally, higher-resolution techniques are applied to evaluate the reduction of numerical
diffusion separately in RANS-based (Reynolds-averaged Navier–Stokes) or solute transport models,
without determining the interrelationship with the numerical diffusion caused by both solutions.

The Eulerian–Lagrangian Method (ELM) is one of the most popular and accurate techniques
used to numerically solve the advection terms in RANS and solute transport equations [7,8,13–20].
The purpose of ELM is to combine the simplicity of the fixed Eulerian computational grid with
a stable and accurate Lagrangian approach. In summary, the ELM has two major steps [21]:
(1) a particle-tracking method, which consists of obtaining the location of the departure point of
a fluid particle in the Lagrangian step by integrating a characteristic equation backward in time using
a certain number of sub-time steps, and (2) a repeated interpolation of the advected field in each
sub-time step required to estimate the velocity components at the departure point. As the result of
the interpolation errors in the two steps, the ELM may introduce a substantial numerical diffusion
when low-resolution interpolation schemes are used, or spurious oscillation when high-resolution
interpolation schemes are used in the hydrodynamic and mass transport solutions [7,8,22].

The interpolation technique used in the second step has a major impact on the total numerical
diffusion produced in ELM, especially when low-resolution interpolation schemes are used, as both
particle tracking and velocity retrieval are substantially affected by the interpolation process [21].
Accordingly, Hodges et al. [16] proposed a stable non-conciliatory quadratic Lagrange interpolation
for a three-dimensional mesh, where 27 grid points are used to estimate the velocity values during
the particle-tracking process. This technique has not yet been formally analyzed (Hodges et al. [23],
without any posterior record of formal analyses), although previous studies successfully modeled
hydrodynamic and solute transport simulations, strongly indicating that the solution satisfactorily
represented internal gravity waves and may improve the ability of ELM to solve the free surface
motion [16,23–28].

The solute transport solution can also be obtained using other numerical schemes besides ELM,
such as high-order Total Variation Diminishing (TVD) schemes, Random Walk Particle Tracking
(RWPT), and Smoothed Particle Hydrodynamics (SPH), which have been thoroughly discussed by
Boso et al. [29]. One simple scheme to discretize the mass conservation equation, with a low cost
of implementation, is the first-order Upwind, to which the flux-limiter technique can be applied in
order to reduce the well-known numerical diffusion of this discretization [30,31]. The flux-limiter
scheme proved to be one of the most effective approaches to constructing a nonlinear high-resolution
scheme [9]. These schemes are simple functions that define a convection scheme based on a ratio of
local gradients in the solution field, with a limited behavior in order to maintain the monotonicity,
usually defined by a Total Variation Diminishing (TVD) condition [9,32]. This method has been
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widely used to retrieve less diffusive and stable solutions, even in critical situations, such as in sharp
concentration gradients in regions with a small Courant number [10,11,17,19,30,31,33,34].

For solute transport models, it is usually assumed that the numerical solution is free of
hydrodynamic numerical diffusion and that any error is leads to the mass transport solution,
and therefore the formal evaluation of the effect of hydrodynamic numerical diffusion on the
solute transport solution may not have been properly addressed [7,8,13]. Therefore, coupling of
hydrodynamic and solute transport models may be useful in order to determine the interrelationship
between numerical diffusion in the two solutions, which is still underexplored. Usually, studies
using a coupled model propose improvements (high-resolution methods or higher order equations)
of the hydrodynamic or transport module to investigate numerical diffusion in one of the solutions,
separately; Without accounting for the possibility that the use, or not, of high-resolution methods in
one solution may affect the other [10,11,17,19,30,31,35]. Thus, further effort is needed to understand
how numerical diffusion, produced by low-resolution schemes in the hydrodynamic solution, may be
transferred to solute transport and the interrelationship between solutions.

To explore this question, we applied high-resolution methods to hydrodynamic and solute
transport solutions using a coupled model. We also investigated the individual performance of each
method in reducing numerical diffusion in one of the solutions, and the performance of the combined
use of the methods. Thus, demonstrating the impact that numerical diffusion in one solution can have
on another solution. Specifically, we tested a nonlinear quadratic interpolation in contrast to a linear
one in ELM step-ii, combined with several flux-limiter schemes applied in the solute transport module,
to reduce numerical diffusion, and evaluated the effect of the combined use of these methods on the
solute transport numerical diffusion. We used a coupled hydrodynamic solute transport model with
nonhydrostatic and flux-limiter approaches to evaluate the numerical diffusion in three numerical
experiments, for different purposes: (a) the first two experiments evaluated the potential for reducing
the numerical diffusion in the hydrodynamic solution, by applying a nonlinear interpolator rather
than a linear one, and the capability of representing the propagation of complex waves; (b) the third
experiment evaluated the effect of using, or not, high-resolution schemes on the numerical diffusion of
combined hydrodynamic and solute transport models.

2. Mathematical Considerations

2.1. Governing Equations

The RANS equations are used to describe three-dimensional free-surface flows. These equations
express the physical principle of volume, mass, and momentum conservation. The momentum
equations for an incompressible fluid have the following form,

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
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− f v = −∂pa
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∂x
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where u(x, y, z, t), v(x, y, z, t), and w(x, y, z, t) are the velocity components in the horizontal (x and y)
and vertical (z) directions, respectively; νh e νv are the horizontal and vertical turbulent eddy
viscosity coefficients, respectively; t is the time; pa(x, y, z, t) is the atmospheric pressure; and η is
the free-surface elevation from a water-level reference. The second and third terms on the right-hand
side of Equations (1) and (2) represent the barotropic and the baroclinic contributions to the hydrostatic
pressure; q(x, y, z, t) denotes the nonhydrostatic pressure component; f is the Coriolis parameter; and g
is the gravitational acceleration.

When a simple hydrostatic approach is considered, Equation (3) is neglected and q is assumed
to be equal to zero in Equations (1) and (2). In this case, it is assumed that the vertical acceleration
does not have a significant effect on the velocity field in comparison with the horizontal acceleration,
which is the assumption usually applied for simulation of shallow waters (see, e.g., in [36–39]).

The volume conservation is expressed by the incompressibility condition and the continuity
equation, given by

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (4)

Integrating Equation (4) over depth leads to the following equation,

∫ η

−h

[
∂u
∂x

+
∂v
∂y

+
∂w
∂z

]
dz =

∫ η

−h

∂u
∂x

dz +
∫ η

−h

∂v
∂y

dz +
∫ η

−h

∂w
∂z

dz = 0 (5)

where h is the bathymetry measured from the theoretical undisturbed water surface. Using the Leibniz
integration rule in each direction, in Equation (5), and using a kinematic condition at the free surface,
leads to the following free-surface equation,

∂η

∂t
+

∂

∂x

∫ η

−h
udz +

∂

∂y

∫ η

−h
vdz = 0 (6)

Finally, the mass conservation of a conservative scalar variable may be expressed by the
following equation,

∂C
∂t

+
∂(uC)

∂x
+

∂(vC)
∂y

+
∂(wC)

∂z
=

∂

∂x
(Kh ∂C

∂x
) +

∂

∂y
(Kh ∂C

∂y
) +

∂

∂z

(
Kv ∂C

∂z

)
(7)

where C is the concentration of a conservative substance being transported (e.g., salinity), and Kh and
Kv are the horizontal and vertical turbulent eddy diffusivity coefficients, respectively.

For both the velocity field and scalar transport solutions, the boundary conditions are
implemented under the assumption of “free-slip” boundaries. The Dirichlet and Neumann conditions
were assigned to represent the normal and tangential velocities in the solid boundaries, respectively.
For the scalar solution, a no-flux boundary condition is assumed in solid boundaries.

The tangential stress boundary conditions for the momentum equations at the free-surface are
specified by the prescribed wind stresses, which can be approximated as

νv ∂u
∂z

= γT(ua − u), νv ∂v
∂z

= γT(va − v); at z = η (8)

where ua and va are the horizontal wind velocity components and γT is a non-negative wind stress
coefficient. The bottom friction is specified by

νv ∂u
∂z

= γBu, νv ∂v
∂z

= γBv; at z = −h (9)

where γB is a non-negative bottom friction coefficient, which is typically represented by means of
a Manning or Chezy coefficient.
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2.2. Grid and Variable Locations

The computation grid can be described as a generic unstructured orthogonal grid, having Np

elements, each having an arbitrary number of sides Si ≥ 3, i = 1, 2, . . . , Np (Figure 1).

Figure 1. Model representation of the grid (Source: [5]).

Let Ns be the total number of sides in the grid. The length of each side is λj, j = 1, 2, . . . , Np.
The vertical faces of the i-th element are identified by an index j(i,l), l = 1, 2, . . . , Si, so that
1 ≤ j(i,l) ≤ Ns. Similarly, the two polygons that share the j-th vertical face of the grid are identified by
the indices i(j,1) and i(j,2), so that 1 ≤ i(j,1) ≤ Np and 1 ≤ i(j,2) ≤ Np. The non-zero distance between
centers of two adjacent polygons that share the j-th side is denoted by δj.

Along the vertical direction, a simple finite difference discretization, not necessarily uniform,
is adopted. By denoting a given level surface as ∆zk+ 1

2
the vertical discretization step is defined by

∆zk = ∆zk+ 1
2
− ∆zk− 1

2
k = 1, 2, . . . , Ns (10)

The three-dimensional space discretization consists of elements whose horizontal faces are the
polygons of a given orthogonal grid, represented by the layers at k + 1

2 (upper face) or k− 1
2 (bottom

face), and whose height, for each layer, is ∆zk. The water surface elevation (η) is located at the
barycenter of the upper horizontal face for each i-th element. The velocity component normal to each
horizontal face is assumed to be constant over the face of each computation cell, which is defined at
the point of intersection between the face and the segment joining the centers of the two prisms that
share the face. The nonhydrostatic pressure component qn

i,k and the concentrations Cn
i,k are located at

the center of the i-th computation cell, halfway between ∆zk+ 1
2

and ∆zk− 1
2
. Finally, the water depth hj

is specified and assumed constant on each vertical face of an element.

2.3. Numerical Approach

2.3.1. Rans Equations

We used a semi-implicit method (θ-method in [40]) in a finite-difference finite-volume model,
with a Eulerian–Lagrangian Method [14] to solve the convective and viscous terms of the RANS
equations, and a fractional-step framework [5] to solve the pressure component by splitting the
pressure into hydrostatic and nonhydrostatic parts. The first step of the hydrodynamic solution is
to compute the provisional water velocity and surface elevation, neglecting the implicit contribution
of the nonhydrostatic pressure. In the second fractional step, the provisional velocity (ũ, ṽ, and w̃)
and provisional surface elevation (η̃) are corrected by nonhydrostatic pressure terms. A complete
description of the numerical solution for nonhydrostatic flows was provided by Casulli and Lang [5],
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and is here named CL04. Here, we describe in detail only the Eulerian–Lagrangian method to clarify
where the high-resolution methods were applied.

One difficulty in the numerical treatment of RANS equations arises from the discretization
of the convective and viscous terms of the convection-diffusion equation in three dimensions
(Equations (1)–(3)). The advection–diffusion equation without Coriolis and pressure terms can be
described as

dc
dt

=
∂c
∂t

+ u
∂c
∂x

+ v
∂c
∂y

+ w
∂c
∂z

= µ

(
∂2c
∂x2 +

∂2c
∂y2

)
+

∂

∂z

(
ν

∂c
∂z

)
(11)

where c is a generic variable (e.g., velocity components u, v, and w) [14]. To simply, solve, and
improve the stability and accuracy of an explicit finite-difference method, consider Equation (11) in the
Lagrangian form:

dc
dt

= µ

(
∂2c
∂x2 +

∂2c
∂y2

)
+

∂

∂z

(
ν

∂c
∂z

)
(12)

where the substantial derivative d
dt indicates that the rate of change over time, which is calculated

along the stream line, is defined by

dx
dt

= u,
dy
dt

= v,
dz
dt

= w (13)

An explicit discretization of Equation (13) can be given by

(Cn+1
j,k − C∗j,k)

∆t
=

νk+ 1
2

Cn+1
j,k+1−Cn+1

j,k
∆z

j,k+ 1
2

− νk− 1
2

Cn+1
j,k −Cn+1

j,k−1
∆z

j,k− 1
2

∆zj,k
+ µ∆hC∗j,k (14)

where C∗i,j,k denotes a generic variable at the j-th side of a grid at vertical level and time step n.
So as to apply the Lagrangian discretization in a Eulerian grid, a backward stream line is required

to estimate the departure velocity at time “n” (Lagrangian approach) required to reach the final
position “j,k” at time “n + 1” (Eulerian approach). To estimate the particle departure point, the ELM
step-i interpolation is applied, which requires a particle-tracking method. A multistep backward
Euler (MSE) was applied, but other methods can be satisfactorily applied as well (e.g., fifth-order
Runge–Kutta) [22]. However, the departure position is not a grid point, and an interpolation formula
using known node points must be used to define C∗j,k (ELM step-ii).

A consistent semi-implicit finite difference discretization is used to calculate the provisional
horizontal velocity component from momentum Equations (1) and (2) and takes the following
form (CL04),

ũn+1
j,k = Fun

j,k − (1− θ)
∆t
δj

[
g(ηn

i(j,r) − ηn
i(j,l)) + (qn

i(j,r),k − qn
i(j,l),k)

]
−

θg
∆t
δj
(ηn+1

i(j,r) − ηn+1
i(j,l)) +

∆t
∆Zn

j,k

νv
j,k+ 1

2

ũn+1
j,k+1 − ũn+1

j,k

∆Zn
j,k+ 1

2

− νv
j,k− 1

2

ũn+1
j,k − ũn+1

j,k−1

∆Zn
j,k− 1

2


k = mj, mj+1, . . . , Mn

j

(15)

where un
j,k denotes the horizontal velocity component normal to the j-th side of the grid at vertical

level k, and time step n; ηn
i(j,r) is the free-surface level at the right neighbor i-th element from the j-th

side and ηn
i(j,l) from left neighbor; qn

i(j,r),k denotes the nonhydrostatic pressure component; and F is
an explicit finite-difference operator, which accounts for the contributions from discretization of the air
pressure, Coriolis, baroclinic pressure, advection, and horizontal friction terms.
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Analogously to Equation (15), a semi-implicit finite-difference discretization for the provisional
vertical velocity component (neglecting the nonhydrostatic pressure contribution) at the top of each
computation cell is derived from Equation (3):

w̃n+1
i,k = Fwn

i,k+ 1
2
− (1− θ)

∆t
∆Zn

i,k+ 1
2

(
qn

i,k+1 − qn
i,k

)
+

∆t
∆Zn

i,k+ 1
2νv

i,k+1

w̃n+1
i,k+ 3

2
− w̃n+1

i,k+ 1
2

∆Zn
i,k+1

− νv
i,k

w̃n+1
i,k+ 1

2
− w̃n+1

i,k− 1
2

∆Zn
i,k

 k = mi, mi+1, . . . , Mn
i − 1

(16)

where Fw accounts only for contributions from the discretization of the advection and horizontal
friction terms. The Eulerian–Lagrangian method can be applied to discretize the finite difference
operator F in Equations (15) and (16), given by

Fun
j,k = u∗j,k + νh∆t∆hu∗j,k + f ∆tv∗j,k − g

∆t
δjρ0

Mj

∑
`=k

ω`

[
ρn

i(j,2),` − ρn
i(j,1),`

]
∆zn

j,` (17)

Fwn
i,k+ 1

2
= w∗i,k+ 1

2
+ νh∆t∆hw∗i,k+ 1

2
(18)

where u∗j,k denotes the horizontal velocity component normal to the j-th side of the grid interpolated
at time tn at the end of the Lagrangian trajectory; v∗j,k denotes the horizontal velocity component
orthogonal to u∗j,k; w∗

i,k+ 1
2

denotes the vertical velocity component normal to the upper horizontal face

of element “i” at layer “k + 1
2 ”. ωk =

1
2 and ω` = 1, for ` 6= k; ∆h is the discretization of the horizontal

Laplacian. The Lagrangian trajectory is calculated by integrating the velocity backward in time from
a face’s (j,k) barycenter at tn+1 to its location at time tn. The second step of the interpolation technique
is discussed further below.

2.3.2. Solute Transport Equation

We used a conservative finite-volume scheme, with a semi-implicit approach based on CL04 with
time-accurate local time stepping based on that in [41], to discretize the solute transport equation.
The CL04 approach yields a conservative solution, also respecting the max-min property.

Assume that S+
k represents the set of vertical faces belonging to the computation cell (i,k), through

which water is leaving the respective computation cell; S−k represents the set of vertical faces, through
which water is entering the same computation cell; and p(i,j) is the neighbor of the computation cell
(i,k) that shares the vertical face (i,j). For each computational cell, Equation (7) for scalar transport is
discretized as follows,

Pi∆zn+1
i,k Cn+1

i,k = Pi∆zn
i,kCn

i,k − ∆t

 ∑
j∈S+

i,k

|Qn+θ
j,k |C

n
i,k − ∑

j∈S−i,k

|Qn+θ
j,k |C

n
r(i,j),k


− ∆t

[
|Qn+θ

i,k+ 1
2
|Cn

i,k − |Q
n+θ
i,k− 1

2
|Cn

i,k−1

]
+ ∆t ∑

j∈S+
i,k∪S−i,k

dn+θ
j,k [Cn

r(i,j),k − Cn
i,k]

− ∆t
[

dn+θ
i,k+ 1

2
(Cn+1

i,k+1 − Cn+1
i,k )− dn+θ

i,k− 1
2
(Cn+1

i,k − Cn+1
i,k−1)

]
− ∆t

2

[
ψn

i,k+ 1
2
|Qn+θ

i,k+ 1
2
|(Cn

i,k+1 − Cn
i,k)− ψn

i,k− 1
2
|Qn+θ

i,k− 1
2
|(Cn

i,k − Cn
i,k−1)

]
− ∆t

2 ∑
j∈S+

i,k∪S−i,k

ψn
j,k|Q

n+θ
j,k |(C

n
r(i,j),k − Cn

i,k)

(19)
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where

dn+θ
i,k± 1

2
= max

(
0, Dn

i,k± 1
2
− 1

2

∣∣∣∣Qn+θ
i,k± 1

2

∣∣∣∣) (20)

dn+θ
j,k = max

(
0, Dn

j,k −
1
2

∣∣∣Qn+θ
j,k

∣∣∣) (21)

where Qn+θ
j,k = λj∆zn

j,kun+θ
j,k and Qn+θ

i,k± 1
2
= Piwn+θ

j,k± 1
2

are the advective flux coefficients, and Dn
j,k =

λj∆zn
j,k

Kh
j,k

δj
and Dn

i,k± 1
2
= Pi

Kv
i,k± 1

2
∆zn

i,k± 1
2

are the diffusive flux coefficients. In Equation (19) the first term on

the right side is the mass in layer k at time n; the second is the horizontal-advection term; the third is
the vertical advection, followed by the horizontal and vertical-diffusion terms. The last two terms are
the numerical diffusion reduction terms, which depend on the high-resolution scheme to estimate ψ.

The ψ represents the flux limiter itself, given by

ψn
j,k = Φn

j,k − ϕn
j,k (22)

where Φ is the partial flux limiter and φ is a function that assures the independence between the
max-min property and mesh size, given by

ϕn
j,k = min

1,
2Dn

j,k

Qn+θ
j,k

 (23)

When the horizontal and vertical diffusion is set equal to zero, ϕn
j,k = 0, hence ψn

j,k = Φn
j,k .

The upwind scheme may be easily obtained when Φ (r) = 0.

3. High-Resolution Schemes to Reduce Numerical Diffusion

For the hydrodynamic solution, two different interpolators at ELM step-ii were tested: a simple
bilinear interpolation [14] and a quadratic interpolator [16], both applied in a regular structure grid.
Regarding the solute transport solution, three different flux limiters were used—MUSCL, Superbee,
and Ultimate Quickest—which performed best for coupled hydrodynamic and transport simulations
in previous studies [11,16,19,30].

3.1. Flux-Limiter

In order to retrieve some accuracy from the solute transport first order upwind scheme,
an additional “antidiffusive” term is used (Equation (22)), the so-called flux limiter function.
The high-resolution methods applied to the solute transport solution are described as follows,

1. UpWind
Φ(rf) = 0 (24)

2. MUSCL [42]
Φ(rf) = max[φn

j,k; min(2rf; 0, 5 + 0, 5rf; 2)] (25)

3. Superbee [43]
Φ(rf) = max[φn

j,k; min(1; 2rf); min(2, rf)] (26)

4. Ultimate Quickest [44]

Φ(rf) = max
[

φn
j,k; min

(
1
2
(1 + rf) +

1
6
(1− rf)(1− 2|C|); 2

1− |C| ;
2rf
|C|

)]
(27)

where Cr here is the Courant number.
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The consecutive gradients (rfactor) play an important role in the numerical diffusion of the
mass transport equation. Several ways to estimate the rfactor have been proposed [10,11,30,33,45,46].
The rfactor proposed in [10,11] gave the best results among all existing methods Ye et al. [11]. For the
sake of simplicity, we adopted the rfactor proposed in [10], which we found to be easier to implement,
as the rfactor is calculated only based on the concentration of neighbor cells.

The rfactor is calculated only for horizontal and vertical water-leaving faces. For vertical faces
(horizontal flux), the consecutive gradient is given by

rn
j,k =

Cn
i,k − Cn

r(i,jo),k

Cn
r(i,j),k − Cn

i,k
(28)

where jo represents the opposite face from face j. For horizontal faces (vertical flux), the rfactor is
given by:

rn
j,k− 1

2
=

Cn
i,k − Cn

i,k+1

Cn
i,k−1 − Cn

i,k
(29)

rn
j,k+ 1

2
=

Cn
i,k − Cn

i,k−1

Cn
i,k+1 − Cn

i,k
(30)

3.2. Bilinear Interpolator

For a structure rectangular grid, the bilinear interpolator [14] uses eight node points within a cell.
The interpolated velocity component at tn can be found by

cn
i−a,j−b,k−d = (1− d) (1− a) [(1− b) un

1 + b un
2 ] + a [(1− b) un

4 + b un
3 ] + d (1− a)

[(1− b) un
5 + bun

6 ] + a [(1− b) un
8 + bun

7 ]
(31)

where a, b, and d are the distances of the particle position at the end of a sub-time step (xp, yp, zp)

normalized by the position of the nodes in each direction, where u1 was set as the initial position
(xu1, yu1, zu1). For the following example (Figure 2), the normalized distances are set as

a =
|xp − xu1|
|xu1 − xu2|

; b =
|y− yu1|
|yu1 − yu4|

; d =
|zp − zu5|
|zu1 − zu2|

(32)

Figure 2. Example of the velocity points used in the bilinear interpolation for the (a) vertical faces
(left), example for the particle stopped in up position, and (b) horizontal faces (right), with the particle
stopped in the fourth-quadrant position.
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We used two different procedures to select the eight node points used for bilinear interpolation
of Fu and Fw at the end of the Lagrangian trajectory: Regarding Fu (Figure 2 left), the interpolation
process follows the steps:

(1) For each time step, the particle starts at the barycenter of the j-th face at layer k, where the
multistep backward Euler stream line is defined by linear interpolations to find the particle
position at the end of a sub-time step (ELM step-i);

(2) For each sub-time step, the particle position is analyzed in relation to the initial position (up-right,
up-left, down-right, or down-left);

(3) Eight node points are selected in the cell, with four points in layer k (the same layer where the
particle stops) and four points in layer k± 1, depending on the particle position (up or down).
The used points are always 4-face barycenters and 4 edge centers, except for the top and bottom
cells, which uses 2-face barycenters, 4 edge centers, and 2 nodes;

(4) The node indices are defined anticlockwise, where the first node is the initial position of the
particle at time n+1;

(5) Equation (31) is used to calculate the velocity component in the particle position in the
sub-time step;

(6) Steps (1–5) are repeated until the end of the Lagrangian trajectory.

For Fw (Figure 2 right), a similar procedure is adopted:

(1) For each time step, the particle starts at the horizontal-face barycenter of the i-th element at layer
(k + 1

2 ), where the multistep backward Euler stream line is defined by linear interpolations to
find the particle position at the end of a sub-time step (ELM step-i)

(2) For each sub-time step, the particle position is analyzed in relation to the initial position (up or
down and in the direction of one of the four quadrants)

(3) Eight node points are selected in the cell, with four points in layer (k + 1
2 ) (the same layer where

the particle starts) and four points in layer (k− 1
2 ), if the particle goes down, or (k + 3

2 ), if the
particle goes up. The used point always has a two-horizontal face barycenter, 4 edge centers,
and 2 nodes;

(4) The node indices are defined anticlockwise, where the first node is the initial position of the
particle at time n + 1.

(5) Equation (31) is used to calculate the velocity component in the particle position in the
sub-time step.

(6) Steps (1–5) are repeated until the end of the Lagrangian trajectory.

3.3. Quadratic Interpolator

The Quadratic Lagrangian interpolation was adapted from Hodges et al. [16], who extended
the 8-point upwind bilinear stencil to a 27-grid point stencil using at least eight computation cells.
We proposed to use 27 node points inside a single computation cell, using the calculated velocities at the
face barycenters and interpolated velocities at the nodes, edge centers, face barycenters, and element
center (Figure 3).

The quadratic interpolation is more generic and uses the same procedure for the horizontal and
vertical faces. First, for each time step, the particle starts at the face barycenter, where the backward
stream line is defined in 10 sub-time steps by linear interpolation to find the departure position at time
n (ELM step-i). Second, for each sub-time step, the interpolation follows three major steps, illustrated
in Figure 3, to determine the Lagrangian polynomial coefficients (see, e.g., in [16]). The Lagrangian
polynomial coefficients are given by

Lβ =
2

∏
α=0 α 6=β

zp − zn±α

zn±β − zn±α
(33)
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where each interpolation has three L coefficients, one for each node used in the interpolation line. zp is
the particle position after the backtrack, β is the analyzed node position in the Upwind direction, and α

is the other two points, both assuming values of 1, 2, or 3.

Figure 3. Example of model node point velocities for the quadratic interpolation. This illustration
shows 27 points inside a computation cell, using information from nodes (in black), edge centers (in
white), and face barycenters (in gray). The subscripts (l,m) denote the position of the vertical line
(black lines) to be interpolated in the first step. n denotes the bottom, middle, or top of a computation
cell. The orange lines represent the second interpolation step, and the blue line represents the final
interpolation step to estimate velocity of the particle at time tn.

In summary, the interpolation process follows these steps:

(1) First, 9 z-direction interpolations are carried out (black lines in Figure 3). Each vertical
interpolation generates a velocity component in the horizontal plane that passes through the
z-position of the particle, given by

ũl+γ,m+ψ = L1
l+γ,m+ψul+γ,m+ψ,n + L2

l+γ,m+ψul+γ,m+ψ,n+1 + L3
l+γ,m+ψul+γ,m+ψ,n+2 (34)

where each Lβ is multiplied by the respective velocity node and γ and ψ are the “l” and “m”
displacement, respectively, to indicate which vertical line has been interpolated.

(2) Three x-direction interpolations are carried out (orange line), using the estimated velocities found
in step (1), resulting in three new velocity components (white diamonds in Figure 3), given by

ūm+ψ = L1
l,m+ψũl,m+ψ + L2

l+1,m+ψũl+1,m+ψ + L3
l+2,m+ψũl+2,m+ψ (35)

(3) One interpolation is made to compute the y-direction displacement and find the final velocity for
the particle at time tn

un
i−a,j−b,k−d = L1

j ūj + L2
j+1ūj+1 + L3

j+2ūj+2 (36)

(4) A new departure velocity is used to define the particle position in the next sub-time step.
(5) Steps (1–4) are repeated until the end of the Lagrangian trajectory.

4. Numerical Experiments

The proposed numerical approaches were used in three consolidated benchmarks usually use
to verification and validation of numerical models [5,6,15,19,47–49]. The first two experiments tested
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the numerical diffusion produced by the hydrodynamic solution, and the last experiment evaluated
the numerical diffusion of the coupled hydrodynamic and solute transport solution. Each numerical
experiment had a different purpose, as follows:

1. Standing waves in a three-dimensional closed basin: this test case verifies the capability of the
model to simulate 3D linear waves, including phase and amplitude representation [6,20,48].
The motion in the basin is caused only by the initial condition of the free surface. When the
roughness, viscosity and diffusivity coefficients are set equal to zero, the motion of the free surface
should not lose energy. However, a wave damping is caused by the numerical diffusion of the
hydrodynamic solution. We evaluated the differences in the numerical diffusion between the
bilinear and quadratic interpolations, applied in ELM step-ii, as well as the numerical diffusion
considering the no-advection scheme.We also compared the mass conservation of the computation
domain for each time step, the cumulative mass conservation over the course of the simulation,
and the mean computation time of one time-step simulation.

2. Wave propagation over a submerged bar: this was an experimental model idealized by Beji and
Battjes [50], and has been frequently used to validate numerical models (e.g., [4,47–49,51–53]).
The experiment was used to evaluate the accuracy of representing an irregular wave pattern
caused by physical changes at the bottom, by comparing the quadratic and bilinear interpolations
used in ELM step-ii.

3. Gravity wave test: consists of a finite-amplitude deep-water standing wave in an inviscid fluid in
a nonequilibrium situation, where the baroclinic pressure makes a major contribution to promote
flow. The experiment evaluated the numerical diffusion in terms of density interface expansion,
analyzing the difference between the combined uses of the interpolation techniques used in ELM
step-ii and different flux-limiter schemes applied in a solute transport solution. This test case
also evaluated the individual effect of each interpolation technique used in the hydrodynamic
solution on the solute transport solution, using different flux limiters. We also compared the
mean computation time of one time-step simulation.

All experiments were run using an Intel R© Xenon R© CPU-E5-1620 3.7 GHz computer with 32 GB
of RAM memory in a Fortran based numerical model. We used Bias, root-mean-squared error (RMSE),
Volume Error (%), and the Kling–Gupta (KGE) and Nash–Sutcliffe (NSE) coefficients of efficiency as
metrics to compare the performance of the methods in each experiment.

4.1. 3D Standing Waves in a Closed Basin

In this experiment, the numerical diffusion was evaluated in terms of the cumulative wave
damping, comparing the waves after 30 s of simulation. In the no-advection scheme, u∗, v∗, and
w∗ (Equations (17) and (18)) were set directly equal to the horizontal and vertical face velocities.
The numeric experiment set-up [6,20,48] are a closed cubic basin with edge of 10 m and wave amplitude
set to 0.1 m (Figure 4). The spatial domain was discretized using a regular grid with 0.5 m resolution,
resulting in 8000 computation cells. The time step was 0.01 s and the total simulation time was 30 s.
We evaluated the numerical diffusion produced by ELM, comparing the free-surface elevation at
x = y = 0.25 m with the exact solution. We also compared the mass conservation between bilinear
and quadratic interpolators, neglecting the convective terms.

The analytical solution of the free-surface water elevation is given by

η = A cos (kxx) cos
(
kyy
)

cos
(

2π
t
T

)
(37)

where t is the time (the initial condition of the free surface may be obtained by setting t = 0) and T
is the wave period equal to 3.1 s, with the wave number kx = ky = n/L and the total wave number

k =
√

k2
x + k2

y = 0.44 rad
m . The analytic solution for each velocity component is described as follows,
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u =
Agkx

ω

cosh [kx(h + z)]
cosh (kxh)

sin (kxx) cos (kyy) sin (ωt) (38)

v =
Agky

ω

cosh [ky(h + z)]
cosh (kyh)

cos (kxx) sin (kyy) sin (ωt) (39)

w =
Agkx

ω

sinh [kx(h + z)]
cosh (kxh)

cos (kxx) cos (kyy) sin (ωt) (40)

where ω is given by

ω =
√

gK tanh (Kh) (41)

Figure 4. The initial free-surface profile for a linear 3D standing wave oscillation in a closed basin.
Source: [48].

The results showed that the numerical diffusion can be reduced when a higher-order interpolation
is used (Figure 5). The numerical diffusion of the quadratic interpolator (measured in terms of
the amplitude error compared to the analytical solution) is ~10 times smaller than the bilinear
interpolator after 30 s of simulation. The bilinear scheme did not show a substantial improvement
over the simulation neglecting the convective terms (the numerical diffusion was only 10% lower).
The quadratic results show best performance between methods (Bias of 0.18 mm and KGE of 0.87,
see Table 1), indicating best agreement with the analytical solution, despite similar RMSE and NSE
found in the other methods.

Figure 5. Comparisons of the free-surface elevation at x = y = 0.25 m. The solid black line is the
analytical result, the dash-dot line is the quadratic interpolator result, the solid red line is the bilinear
interpolator result, and the dashed black line is the result with the no-advection scheme.

The phase representation showed good agreement with the analytical solution for all tested
methods, showing a cumulative phase error of only 0.3 s at the end of the simulation, which is
similar to previous studies [20,48]. As expected, the simulation neglecting the convective terms
had a shorter computation time (~1.65 s) than the bilinear (~2.23 s) and quadratic interpolations
(~2.37 s). The computation cost using a quadratic interpolation was slightly higher (~6%) than the
bilinear interpolation.
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Table 1. Metrics between the analytical and simulated results each method for 30 s of simulation.

Metrics Quadratic Bilinear No-Advection

RMSE (mm) 21.86 20.80 20.70
BIAS (mm) 0.18 0.52 0.56
Error (%) 27.22 25.94 25.79

KGE 0.87 0.66 0.64
NSE 0.90 0.91 0.91

The mass conservation analysis showed a more conservative behavior for the quadratic simulation
(Figure 6). The simulation neglecting the convective terms showed a substantial decreasing pattern
after 5 s of simulation, differently from when the bilinear was used, in which the pattern appeared after
20 s. The quadratic interpolation showed a more conservative pattern than the bilinear interpolation.

Figure 6. Mass conservation of the computational domain over the simulation (top) and the cumulative
mass conservation (bottom) over the simulation time for the tested methods: no-advection (red dashed
line), bilinear (solid black line), and quadratic (blue dotted line).

4.2. Wave Propagation over a Submerged Bar

A scheme of the experiment of the wave propagation over a submerged bar with an uneven
bottom is seen in Figure 7 [50]. At the upward slope of the bar, the shoaling wave becomes nonlinear
due to the generation of a higher bound harmonic. At the downward slope, the depth increases rather
fast and these harmonics become free, resulting in an irregular wave pattern [47]. The numerical
reproduction of this pattern has proven to be very demanding with respect to the accuracy of the
computed dispersion frequency [4].

The computation domain has a total length of 30 m, with an initial undisturbed water level of
0.4 m, and was discretized using a regular grid of 0.025 m resolution. The time step was 0.005 s and the
total simulation time was 39 s. At the left boundary, a sinusoidal wave condition, with period T = 2 s
and amplitude A = 0.01 m, was imposed to represent the wave generator of the original experiment.
At the right outflow boundary, the experimental absorbed beach was computationally represented
by a 5-m sponge layer with a combination of a sponge layer technique [54] and a Sommerfeld-type
radiation boundary condition, applied to minimize wave reflection, given by
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εi =

β
(

xi−xio
li

)2 ( zm−z
zm−zM

)
ui i f xi ≥ xio

0 i f xi < 0
(42)

where εi is the sponge layer coefficient, xio is the initial point, and li the total length. This term must be
added in the right side of Equations (1) and (2).

Figure 7. Scheme of experimental bottom geometry and location of wave-level gauges. Source:
Modified from Beji and Battjes [50].

The methods performance was compared using a few metrics (RMSE, BIAS, Volume Error,
KGE, and NSE), and also through graphic visualization (Figure 8) of the wave pattern at each of the
six stations. We evaluated the capability of the model to correctly represent the measured free-surface
water elevation at between 33 and 39 s of simulation, comparing the bilinear and quadratic interpolation
solutions with the experimental results for the “low-amplitude waves” (LW), generated by the shoaling
process, and the “higher-amplitude waves” (HW).

The results indicated that the shoaling process on the upward slope was well described by both
interpolation techniques, although the bilinear interpolation poorly represented the LW at station
“A”. At the beginning of the downward slope, at station “B”, the bilinear simulation showed higher
free-surface elevation, poorly representing the LW minimums (B at 34.7 and 36.7 s), which is physically
incoherent with the measurements and simulations by other studies (e.g., Stelling and Zijlema [4]),
due to an overincreased velocity in the de-shoaling process. The quadratic simulation more accurately
represented the de-shoaling process, although it did not accurately represent the maximum height of
HW (35 and 37 s). Moreover, the simulation without advection scheme was not able to represent the
de-shoaling process and was numerically unstable, due to a larger overincrease in velocity at the same
point as the bilinear interpolation overincreased it.

The bilinear overestimation of the free-surface level was propagated to the other stations. For the
other four stations, the bilinear case better represented the HW maximum amplitudes than the
quadratic simulation, but poorly represented the LW phase and shape (see “D” and “F” LW over the
oscillation pattern for the bilinear interpolation).

The quadratic interpolator had the best performance among methods (see Table 2). It better
represented the amplitude and the wave pattern for all stations (NSE between 0.47 and 0.94, and RMSE
between 2.17 and 4.29 mm). The results showed a considerable volume error (between 23% and 83%),
and the bias indicates that, in general, there was an overestimation of the free-surface level in most cases
(except for some methods at stations b, c, d, and f ). In summary, the quadratic solution was better in
interacting with uneven bottoms to represent complex nonlinear wave simulations. Similar results to the
quadratic interpolation solution were reported by Chen [3], Walters [18], Dingemans [47], Cui et al. [53],
and Monteiro and Schettini [20].
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Figure 8. Comparisons between experimental (circles) and computed data with a bilinear interpolator
(dashed line) and quadratic interpolator (solid line) at 6 different level gauges.

Table 2. Metrics between simulated and experimental results for the six stations for bilinear and
quadratic results.

M Station a: x = 13.5 m Station d: x = 17.3 m

Bilinear Quadratic Bilinear Quadratic

RMSE (mm) 3.57 2.17 5.18 4.29
BIAS (mm) 2.01 0.18 0.87 −0.56
Error (%) 47.52 23.65 83.78 60.00

KGE −0.90 0.82 0.23 0.46
NSE 0.83 0.94 0.56 0.70

Station b: x = 14.5 m Station e: x = 19.0 m

RMSE (mm) 4.79 4.25 4.97 3.81
BIAS (mm) 0.14 −0.64 2.49 0.76
Error (%) 64.77 50.22 52.79 45.31

KGE 0.39 0.35 −6.12 −1.18
NSE 0.33 0.47 0.60 0.76

Station c: x = 15.7 m Station f: x = 21.0 m

RMSE (mm) 4.66 3.51 4.04 3.67
BIAS (mm) −0.19 −1.25 1.34 −0.28
Error (%) 56.71 39.63 57.48 43.84

KGE 0.65 −1.07 −4.92 −0.26
NSE 0.67 0.81 0.69 0.75
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4.3. Gravity Wave

This benchmark set-up is used to evaluate the numerical diffusion of numerical models under
sharp density gradients [19]. The equation that represents the initial density condition is

ρ(x, z) = −∆ρ

2
tanh

[
2 tanh−1 α

kδ

(
kz− kζ +

k
2

)]
(43)

where α = 0, 99, k = π is the wave number, ka represents the fluid interface inclination, kδ is the
nondimensional interface thickness, and kζ is the interface initial condition, given by [55]

kζ(x) = ka
[(

1− (ka)2

64

)
cos(kx)− (ka)2

8
cos(3kx)

]
(44)

The constant values follow those used in [19]; ka = 0.1, kδ = 0.05, and the density difference
between the layers is ∆ρ

ρ0
= 0.03, with an analytical wave period of 9.43 s. In this test, the bottom

roughness and diffusion coefficients were both equal to zero. The spatial domain was a 1 m × 1 m,
discretized using a regular grid of 0.0125 m resolution, resulting in 6400 computation cells. The time
step was 0.0236 s and the total simulation time was two wave periods.

Because the vertical and horizontal diffusion were set equal to zero (i.e., pure advection transport),
the initial and final shape of the gravity wave must be the same. We evaluated the numerical diffusion
produced, neglecting the convective terms, and using both bilinear and quadratic interpolations in
ELM step-ii combined with different flux-limiter schemes. The model outcomes (i.e., water density
profiles) were compared with the exact solution. So as to evaluate the effects of different schemes
and interpolation techniques on the numerical diffusion, we calculated the Lerror norm of the density
(Table 3), and compared the simulated vertical density profiles at x = 0.0 m and at x = 0.4 m with the
exact solution.

The Lerror was calculated using the following expression,

Lerror =
∑Ni

i=1 ∑Nk
k=1 |ρ

2T
i,k − ρ̃i,k|δAi,k

∑Ni
i=1 ∑Nk

k=1 |ρ̃i,k|δAi,k
(45)

where ρ̃ is the density from the exact solution, ρ2T is the simulated density after two wave periods,
and δAi,k is the area of grid cell (i, k), which in our case is equal for all computation cells.

Table 3. Relative errors (%) for the different advection schemes after two wave periods for the bilinear
and quadratic interpolators.

Flux Limiters LNoAdvc LBilinear LQuadratic Fringer et al., 2005

UpWind 5.10 4.98 4.98 3.9
MUSCL 1.66 1.23 0.48 0.6

Ultimate-Quickest 1.40 0.94 0.46 0.4
SuperBee 1.36 0.88 0.30 0.4

The comparison between the simulated density profiles and the exact solution is shown in Figure 9.
Our findings indicated that the numerical diffusion produced by the hydrodynamic solution had
a major influence on the total numerical diffusion.
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Figure 9. Comparisons of density’s profiles between the exact no-diffusive solution and the
no-advection (left), bilinear (middle), and quadratic (right) interpolators for several flux-limiter
schemes, after two wave periods.

The upwind scheme showed a higher numerical diffusion than the high-resolution schemes,
considering the two interpolation techniques in ELM step-ii (RMSE ~2.8 times higher, Table 4). For the
high-resolution schemes, the numerical diffusion was reduced mainly when combined with the
quadratic interpolation in ELM (RMSE ~3 times smaller). A similar numerical diffusion pattern was
found when the convective terms were neglected or when a bilinear interpolation was used in ELM
step-ii, with a higher diffusive behavior in the middle of the spatial domain and an antidiffusive pattern
near the boundary domain for the higher-resolution schemes, as seen in Figures 9 and 10.

Table 4. Root-mean-squared errors (kg/m3) for the different flux limiter schemes after two wave
periods, for the no-advection scenario, bilinear, and quadratic interpolators.

Flux Limiters RMSENoAdvc RMSEBilinear RMSEQuadratic

Upwind 2.08 1.97 1.97
MUSCL 1.16 0.72 0.38

Ultimate-Quickest 1.15 0.69 0.28
Superbee 1.16 0.70 0.24

The upwind scheme showed a higher relative error (Lerror norm ~5%) for all simulations.
The results showed that the high-resolution methods substantially reduced the relative errors
compared to the upwind scheme, and the Superbee performed best among the higher-resolution
schemes. The quadratic and Fringer et al. [19] had similar results to the tested high-resolution
methods; however, the hydrodynamic discretization and its influence in the result was not discussed
in Fringer et al. [19]. The Lerror indicated that the bilinear interpolation substantially improved the
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representation of the density profile compared to the simulations neglecting the convective terms.
Regarding the computation cost, the higher-resolution methods had similar computation times
for each time step, differing only with the interpolation technique, with 1.25, 1.51, and 1.62 s for
the no-advection, bilinear, and quadratic interpolations, respectively. The upwind scheme had a
shorter computation time, with 1.01, 1.15, and 1.61 s for the no-advection, bilinear, and quadratic
interpolations, respectively.

Figure 10. Comparisons between density profiles of the exact solution and the no-advection (top),
bilinear (middle), and quadratic (bottom) interpolations for all flux-limiter schemes, after two wave
periods, at x = 0.0 m (left) and x = 0.4 m (right).

5. Discussion

The numerical experiments in the hydrodynamic solution showed that the quadratic interpolation
method, using 27 node points in a single computation cell, substantially reduced the numerical
diffusion in the hydrodynamic solution, which had a positive effect on the solute transport solution.
This is the first study to verify and validate the proposed quadratic interpolation method in ELM step-ii.

The results of the first experiment showed a good amplitude representation of the waves,
with a satisfactory phase representation only 0.3 s slower than the analytical result. This was expected,
as the phase representation is more related to the nonhydrostatic pressure and vertical momentum
discretization [48,52]. The second experiment successfully validated the proposed interpolation, which
proved to be capable of representing complex wave problems. The bilinear interpolator applied at
ELM step-ii had a numerical diffusion ~10 times higher than the quadratic interpolation. Moreover,
the bilinear interpolation did not yield a substantial improvement in terms of numerical diffusion,
compared with the simulations neglecting the convective terms. The quadratic interpolation also
substantially improved the mass conservation over the course of the simulation, indicating that
a high-resolution method can be applied to find mass conservative solutions in free surface simulations
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in complex wave problems, including shallow or deep waters. Higher numerical diffusion was also
observed when the bilinear interpolator in ELM step-ii was used with different flux-limiter schemes
in the mass transport solution [7], indicating that high-resolution schemes can be successfully used
to attenuate the numerical diffusion for coupled hydrodynamic and transport solutions. The set of
numerical experiments showed that the quadratic interpolation is a powerful and promising method to
reduce numerical diffusion, with a slight increase in computation cost related to a bilinear interpolator
(7.3% longer), and also can be applied in 1D, 2D, or 3D models. Other key factors related to the
numerical solution are also responsible for the numerical diffusion, such as the fractional step error
[3], and are caused by splitting the pressure solution into hydrostatic and nonhydrostatic modules,
which was appropriately treated here following [56] and the interpolation method used to define the
stream line trajectory in ELM step-i [21].

In this study, we used different flux-limiter schemes to efficiently solve the mass transport
equation, which also proved to be an accurate alternative to reduce the numerical diffusion when
coupled with a quadratic interpolation in ELM. The last numerical experiment showed that the
Upwind scheme has serious numerical diffusion problems (Lerror norm ~5%), and can be considered
inappropriate for modeling stratified basins. The SuperBee flux limiter showed the best results among
the high-resolution methods used in this study (Lerror norm ~0.3% with quadratic interpolation).
Although further investigation is still needed to indicate the best flux limiter, the SuperBee has been
used as a default in some models (see, e.g., in [11,16,30,31]), has proven to be capable of simulating
stratified basins with or without sharp gradients, and has also been mass conservative. Despite
the satisfactory results, the flux limiters used here are only nonlinear second-order schemes [9,19].
Numerical diffusion can be reduced even more by a different linear or nonlinear higher-order
discretization, but this usually requires a complex numerical solution, which is computationally
expensive and also may be vulnerable to unphysical spatial oscillations (wiggles) under some
circumstances [44]. The flux limiter is a simple approach that is easily implemented, especially
when Kong’s rfactor is applied.

The results indicate that high-resolution schemes are suitable for reducing numerical diffusion,
but combining their use in hydrodynamic and solute transport solutions can improve the overall result
even more. When the Upwind scheme was used, the differences between interpolation techniques
were overcome by the higher Upwind numerical diffusion, although when flux-limiter methods
were also used, the differences were clearer. The combined use of high-resolution methods shows
that the interpolation technique in the hydrodynamic solution has a substantial effect on the mass
transport solution, and that, despite the improvement over Upwind, applying linear interpolators at
the ELM step-ii still yields a relative error that is 2 to 3 times larger than with a nonlinear interpolator,
with a similar behavior to the no-advection solution, which may generate unsatisfactory results for the
transport solution in cases of sharp stratification.

A higher diffusive behavior in the middle of the spatial domain of gravity wave than in the
nearby boundary domain was found for all simulations, as expected. Fringer et al. [19] showed that
in regions of the flowfield where the local Courant number is reduced (the middle), the interfacial
diffusion is increased, which makes a zone that is sensitive to the velocity field. The results of the
gravity-wave experiment were strongly influenced by the diffusion-over-time steps, because, as the
interface became more diffuse, the wave period and velocity field changed; that is, the use of a more
diffusive method in a hydrodynamic solution may generate cumulative errors, leading to unsatisfactory
results. The quadratic interpolation proved to better reduce the numerical diffusion in these critical
areas, due to the less diffusive behavior in the hydrodynamic solution, and better predicted the sharp
change of the velocity field in the middle region of the wave. Moreover, the results for the quadratic
interpolation indicated that it performed better than the bilinear interpolation and similarly to the
results reported by Fringer et al. [19] in the transport solution. The bilinear interpolation, although it
had a smaller relative error than the no-advection solution (1.5 times smaller), showed the same
unsatisfactory diffusive behavior in the middle region.
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The proposed combined use of the quadratic interpolation applied at ELM step-ii and the
flux-limiter technique substantially reduced the numerical diffusion in solving mass transport
problems, showing that high-resolution methods must be implemented in the numerical solution
to properly simulate more complex real situations. These methods can be easily implemented,
as proposed here, and applied in 1D, 2D, or 3D approaches, which are mass conservative and do not
introduce excessive numerical and stability problems, as discussed in Casulli and Lang [5].

These methods can be easily implemented, as proposed here, can be applied in 1D, 2D, or 3D
models, and they are mass conservative, with no additional stability problems than the inherent
numeric solution, as discussed in Casulli and Lang [5].

6. Conclusions

The combined use of high-resolution methods (quadratic interpolation and flux-limiter functions)
proved a suitable alternative to reduced numerical diffusion, and with low cost of implementation in
relation to higher order discolorations. The analyses in a coupled hydrodynamic and solute transport
numerical model allowed to understand how the numerical diffusion at one solution may affect the
other. We found that the numeric diffusion at the hydrodynamic solution promoted by low-resolution
methods (low-order interpolation at ELM) may have a substantial impact on the solute transport
solution, even if a high-resolution method were applied at the solute transport solution (relative error
and RMSE ~3 times higher). On the other hand, when a low-order method is used in the solute
transport solution (Upwind scheme), the numerical diffusion differences between methods in the
hydrodynamic solution were overcome by the higher Upwind numerical diffusion. Thus, to accurately
modeling stratified flows in real situations, the combined use of high-resolution methods is mandatory.

Numerical models that use low-resolution methods usually neglected the diffusive part of the
transport equation (Equation (7)), employing diffusivity coefficients equal to zero and assuming
the numerical diffusion as the physical diffusion, which may difficult the calibration of the model.
The applied high-resolution methods allows to use these diffusivity coefficients as parameters to the
model calibration. Therefore, we recommended the application of the implemented methods at real
situations to evaluated the model’s performance in the representation of the temperature dynamics of
stratified flows in deep lakes or reservoirs.
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