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Abstract

Why a postfertile stage has evolved in females of some species has puzzled evolutionary

biologists for over 50 years. We propose that existing adaptive explanations have underesti-

mated in their formulation an important parameter operating both at the specific and the indi-

vidual levels: the balance between cancer risks and cancer defenses. During their life, most

multicellular organisms naturally accumulate oncogenic processes in their body. In parallel,

reproduction, notably the pregnancy process in mammals, exacerbates the progression of

existing tumors in females. When, for various ecological or evolutionary reasons, anticancer

defenses are too weak, given cancer risk, older females could not pursue their reproduction

without triggering fatal metastatic cancers, nor even maintain a normal reproductive physiol-

ogy if the latter also promotes the growth of existing oncogenic processes, e.g., hormone-

dependent malignancies. At least until stronger anticancer defenses are selected for in

these species, females could achieve higher inclusive fitness by ceasing their reproduction

and/or going through menopause (assuming that these traits are easier to select than anti-

cancer defenses), thereby limiting the risk of premature death due to metastatic cancers.

Because relatively few species experience such an evolutionary mismatch between antican-

cer defenses and cancer risks, the evolution of prolonged life after reproduction could also

be a rare, potentially transient, anticancer adaptation in the animal kingdom.
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In several animal species, females cease to reproduce before the end of their natural life span

[1]. This occurrence of postfertile life span (Fig 1) has been intensively discussed in mammals,

and so far, analyses of demographic data have revealed that females experience a postfertile life

stage (in which they outlive their last reproductive events by decades) in humans and in 3 spe-

cies of toothed whales [2,3]. In these species, postfertile life spans also include menopause,

which is an irreversible loss of the physiological capacity to produce offspring due to the per-

manent cessation of ovulation [4]. Conversely, in other long-lived social mammals (e.g., ele-

phants, blue whales), reproductive life span has extended commensurate with life span [5].

Despite extensive research over the last half-century, the reasons behind the evolution of pro-

longed postfertile life span and its distribution in the animal kingdom remain at the heart of a

continuing debate [6].

Among the most prominent (but still debated) hypotheses that have been put forward to

explain this phenomenon (see [7–14]), the “mother hypothesis” suggests that a postfertile life

span has evolved because it protects females from increasing age-related maternal mortality

risks, which indirectly protects her existing dependent offspring from a likely death if the

mother perishes [15]. Another (and probably the most popular explanation for reproductive

cessation) is the “grandmother hypothesis.” It posits that a long postfertile life span in females

improves the likelihood that their grandchildren (who carry a quarter of their genes on

Fig 1. Measuring postreproductive life span: The differences between postfertile viability, postreproductive

viability, reproductive senescence, and a postfertile life stage. (A) A woman’s hypothetical life span. Postfertile

viability is defined as the length of time between ALB, which typically occurs between 39 and 41 years (reviewed in

[69]) and AD. By contrast, postreproductive viability is defined as the length of time between AM and AD. (B)

Reproductive senescence. Reproductive senescence corresponds to fertility decline over age, which culminates in the

cessation of fertility (ALB). (C) Postreproductive representation. The extent to which a species displays a

postreproductive life stage is informed by the ratio of postfertile adult years lived relative to the total adult years lived.

For the sake of simplicity, the age at the onset of actuarial senescence was set at the age at first reproduction [7]. AD,

age at death; ALB, age at last birth; AM, age at menopause.

https://doi.org/10.1371/journal.pbio.3000565.g001
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average) reach the age of sexual maturity. Thus, by helping their relatives to survive and repro-

duce, perhaps through the transmission of cultural knowledge [16], postreproductive females

may increase their inclusive fitness through kin selection [17–19]. Adaptive hypotheses pro-

posed to explain the evolution of postfertile life span converge toward the idea that reproduc-

tion through time progressively compromises the health and survival prospects of females

(e.g., [20] [21], see also [22] for a synthesis in women), which ultimately jeopardizes the fate of

their offspring and grandoffspring, as observed in Asian elephants, Elephas maximus [23,24].

Several kinds of pregnancy-related complications and health problems have indeed been iden-

tified in aging women (e.g., [25,26]), although it is unclear whether this is a derived condition

[19]. Here, we contend that a crucial parameter underpinning the evolution of postreproduc-

tive fertile life span has been largely overlooked so far: the balance between cancer risks and

cancer defenses.

There are several reasons why we believe that this balance might have influenced the evolu-

tion of an extended postfertile life span:

1. Oncogenic processes are ubiquitous, and their abundances increase with age. Metazoans

have been living with cancer since the origins of multicellularity [27] and, in return, have

developed various cancer defenses [28]. However, these adaptations often keep oncogenic

progressions under control without necessarily eradicating them [29,30]. Not surpris-

ingly, oncogenic manifestations are highly prevalent in host populations, and it is thus a

normal phenomenon that all individuals harbor and accumulate precancerous lesions

and in situ tumors during their life in a variety of organs (e.g., prostate, lung, thyroid,

breast, pancreas) (see [31–37]), even if they do not necessarily lead to metastatic cancers.

Whereas cancer incidence increases with age in Western populations [38] (with, however, a

plateau or a decline at very old ages [39]), cancer seems to be a rare occurrence in populations

facing conditions more closely resembling those during which postfertile life span might have

evolved (i.e., high fertility and high mortality). The few data collected among hunter–gatherer

populations suggest that cancer incidence is low, in particular, with respect to breast, endome-

trial, and ovarian cancers (among the Tsimane [40]) or colon cancers (among the Inuits [41]),

cancers known to be associated with a Western lifestyle (higher exposure to reproductive hor-

mones due to lower and delayed fertility, rich diet, etc) [42]. However, women living in tradi-

tional populations are likely to face a risk of cancer from infectious diseases, as indeed about

20% of cancers are caused by pathogens [43,44]. Reproductive tract infections represent 47.3%

(43.7–51.0) among women living in the rural Gambia [45], and among the Guarani women of

Argentina, pap smears show an inflammatory pattern for 96% of patients, with a possible

infectious agent found in 58% of cases [46]. In Papua New Guinea, 59% of reproductive-aged

women present a sexually transmitted infection [47]. Finally, among Dai women living in

rural South China, human papillomavirus infection prevalence is the highest in the older age

group (>56 years) [48]. More data in traditional populations are needed to evaluate how can-

cer risk increases with age and pregnancy in women.

2. Parity (the number of pregnancies reaching viable gestational stage, including live births

and stillbirth) promotes the growth of existing tumors. Data from Western populations

show that parity has a dual effect on breast cancer risk [49]. Full-term pregnancies, espe-

cially when they occur in early life (<30 years), decrease breast cancer risk in the long

term [50–52]. However, in the short term, pregnancy also transiently increases cancer

risk, because it boosts the development of oncogene-activated cells into tumors and/or

promotes a metastatic cascade [53,54]. The most common malignant proliferations

occurring during pregnancy include malignant melanoma, malignant lymphomas, and
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leukemia, as well as cervix, breast, ovary, colon, and thyroid cancers [55, 56]. The highest

risk occurs in the first 5 years after giving birth, and parous women remain at an

increased risk of breast cancer for more than 20 years as compared with nulliparous

women [57]. Reasons behind this higher risk are multiple, including the local suppression

of the adaptive immune system, especially during the first trimester when the mother’s

cell-mediated immunity is strategically suppressed to allow for successful implantation

[58]. This period is also characterized by relatively high inflammatory status, which is

necessary for implantation [54,59]. Hormonal changes, permeability, and vascularization

are also involved in the pathophysiology of cancer associated with pregnancy [60,61].

3. Reproductive cessation and/or menopause could prevent a metastatic cascade. In light of

the two aforementioned considerations, we propose that reproductive cessation in

females has evolved because after a given age, pregnancy would be associated with a

higher probability of premature death due to invasive cancers (Fig 2). This is because

boosting the growth of an already large number of existing tumors (see previous) would

increase the probability of tipping the balance toward the initiation of metastatic, uncon-

trollable cancers. In addition to pregnancy itself, the normal physiology of fertile women

is also expected to promote the growth of tumors, notably, cancers that are dependent on

hormones for growth and/or survival. For instance, fluctuating levels of circulating estro-

gen and progesterone during the menstrual cycle are known to increase breast cancer sus-

ceptibility in women (e.g., estrogen receptor and breast cancer [62,63], see also [64] for a

recent review, but see also [65,66]). Menopause (i.e., the cessation of menstrual bleeding

following a 12-month period of amenorrhea [67,68]) typically occurs between 45 and 55

years of age in women [69] and may have thus evolved as a “natural hormonal therapy” to

stop, or limit, the growth of such kind of malignancies before a fatal threshold is reached

(see also [70]).

The existence of a postfertile life span in hominids is not a recent phenomenon. Since hom-

inin longevity exceeded 50 years of age more than 1 million years ago [71], postfertile and post-

reproductive life spans (Fig 1) probably existed in early Homo erectus and H. ergaster [72]. The

same thinking applies to early H. sapiens, as 17% of prehistoric foragers among them appar-

ently survived beyond age 40 years [73]. In addition, although estimates vary between studies,

one-third of foragers in traditional populations without easy access to modern medicine lived

beyond age 40 years [74]. Interestingly, epidemiological studies (e.g., [40,75]) suggest that

some reproductive cancers (ovarian, breast, prostate, and endometrium) are rare in traditional

populations compared with industrialized ones, which is in accordance with our hypothesis.

Indeed, reproductive cessation efficiently protects women from cancers in populations having

a lifestyle close to the one experienced thousands of years ago, whereas it becomes insufficient

for women from industrialized countries, recently exposed to novel evolutionary mismatches

exacerbating cancer risks (e.g., [76]). Because women outlived their last birth during much of

humans’ historical and evolutionary past, it is now challenging to evaluate the fitness benefits

(in terms of cancer avoidance) of early reproductive cessation. One indirect way (although

imperfect given numerous environmental changes) to assess this benefit would be to quantify

cancer risk in postmenopausal women from industrialized countries/Western societies who

are receiving hormone replacement therapy (see next).

The reason why the physiological process of menopause typically occurs several years after

the last delivery (at least in humans and the short-finned pilot whale, Globicephala macro-
rhynchus [77] [78]) can be explained if the normal physiology of fertile women, although onco-

genic because of hormonal exposure, is less oncogenic than pregnancy itself. Avoiding
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pregnancy early without stopping reproductive capacity would allow individuals to experience

a period of time with an attenuated cancer risk. Such a postfertile but premenopausal period

might also free individuals from the health issues that are triggered by menopause and associ-

ated declining levels of estrogen (e.g., osteoporosis and cardiovascular diseases in Western

populations [79–82]; hot flushes in the United States, Europe, and Africa; and depression in

Asia, Africa, and Europe [83]), potentially facilitating parental and grandparental care. Gener-

ally speaking, the relationship between hormonal levels and menopause symptoms is complex

and mediated by sociocultural factors. Although comparative evidence suggests that there are

no fewer symptoms among women living in developing populations, it is difficult to ascertain

whether contemporary chronic diseases are reflective of past conditions. Still, the possibility

that ceasing reproduction first and ceasing reproductive capacity only after could be the best

compromise to preserve long-term female health is, as of yet, unexplored.

Several observations seem to support our hypothesis. For instance, it is well established that

late pregnancies are indeed associated with a significantly enhanced risk of breast cancer for

women [84,85]. Late menopause (i.e., after age 55) is also associated, all else being equal, with

Fig 2. Evolution of postreproductive life stage in relationship with the balance between cancer defense and cancer risk. (A) In species possessing cancer defenses in

alignment with cancer risks, oncogenic lesions only slowly accumulate through time (blue line). Even if reproductive episodes exacerbate the growth of existing tumors

(blue circles), they are not sufficient to induce metastatic cancers: reproduction occurs throughout the life span, and the fitness is maximal. (B) When cancer defenses

are too weak, given cancer risks (because of ecological and/or evolutionary mismatches), oncogenic processes rapidly accumulate (red line), and reproductive episodes

can prematurely induce metastatic cancers in aging females, with a short life span and a low fitness as a result. Natural selection can (1) favor in these species the

evolution of stronger cancer defenses, yielding again to a situation comparable to (A), here (A’), but also (2) favor females ceasing their reproduction prematurely to

preserve their health (C). In that case, females’ fitness is higher than in (B) because a post-reproductive stage permits grandparental care, which enhances inclusive

fitness. The (C) scenario can be just a transient situation until additional cancer defenses are selected and bring back the species to the (A/A’) situation.

https://doi.org/10.1371/journal.pbio.3000565.g002
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an increased risk of ovarian, breast, and uterine cancers, because longer exposure to estrogen

increases a woman’s risk of cancers [86]. Also, as women go through menopause and experi-

ence declining levels of estrogen, they have a significantly reduced breast cancer risk, the inten-

sity of hot flushes being even inversely associated with the risk [87]. Reciprocally, women

treated with hormone replacement therapy (HRT) (e.g., estrogen and progestin, a form of arti-

ficial progesterone) to relieve menopausal symptoms have an enhanced risk of hormonally

dependent cancer, because continued hormone exposure among postmenopausal women pro-

motes the late stages of carcinogenesis and facilitates the proliferation of malignant cells

[88,90]. The magnitude of the increase in breast cancer risk per year of hormone use is similar

to that associated with delaying menopause by a year [89]. Very recently [91], it has been esti-

mated that 6.3% of women who never used HRT developed breast cancer, compared with

8.3% of women who used the drug continually for 5 years. This study also indicates that the

longer women used menopausal hormone therapy, the greater their risk of breast cancer. This

higher risk is maintained more than a decade after they have stopped taking the drug.

Although this work does not demonstrate that menopausal hormone therapy per se causes

breast cancer, it suggests that hormone replacement therapy mediates this risk: using HRT

maintains women in a kind of premenopausal state, keeping them from getting the protective

benefits of menopause on cancer risk.

Finally, although reproductive cessation could be argued to be a by-product of antagonistic

pleiotropy and selection for fertility early in life [92,93], women who naturally possess an

enhanced risk of cancer, due to, for instance, germline mutations in human tumor suppressor

genes (also known as caretaker genes) BRCA1 and BRCA2, also have an earlier onset of ovar-

ian senescence [94] and an earlier natural menopause compared with unaffected women (on

average, 3 years [95]). This suggests that an early menopause could be an evolved adaptation to

higher cancer risk. Further studies would, however, be necessary to determine if this poten-

tially evolved mechanism is genetically linked to the BRCA1 or 2 loci and/or results from phe-

notypic plasticity when an enhanced risk of cancer (e.g., high rate of malignant cell

productions) is perceived by the organism.

Although an extended postreproductive life span has been suggested to evolve via kin selec-

tion [96,97], other mathematical models [6,97,98] and some empirical evidence in contempo-

rary foragers [8] suggest that the benefit of parental [98] or grandparental [8, 98] care alone [6,

99] is not strong enough to favor the evolution of an extended postfertile life span: a combina-

tion of factors is needed [6]. Thus, the “intergenerational reproductive conflict hypothesis”

[5,100] has been proposed to account for the evolution of the decoupling between actuarial

and reproductive senescence (i.e., the decline in age-specific survival and reproductive proba-

bilities, respectively). This view posits that an extended postreproductive life span can evolve

as a consequence of female reproductive competition within families in female-dispersing pop-

ulations. If paternal grandmothers are genetically related to their daughters-in-law’s children,

the reverse is not true. Thus, in the case of a reproductive overlap between women of the same

social unit, paternal grandmothers would suffer disproportionate fitness costs as compared

with their daughters-in-laws. The model predicts that the costs of reproductive competition

combined with the benefits of grandparenting would lead to the evolution of female early

reproductive cessation in female-dispersing populations. Although this theory has received

empirical support in killer whales [100], studies in humans have reported mixed results, which

is partly due to the contrasted environments faced by human populations. A reproductive con-

flict between in-laws has been shown to impact child survival [101] among historical Finns. In

the contemporary Gambia, such a conflict is avoided because mothers-in-law have stopped

reproducing when their son’s wives give birth to their first child [102]. By contrast, cobreeding

has been linked with fitness benefits, rather than costs, in a historical Norwegian population
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[11], and reproductive senescence is not accelerated in a female-dispersing population in Indo-

nesia [103]. Thus, to explain the evolution of the unique, long postfertile life span in humans,

additional mechanisms are needed. Malignant proliferations could intervene as a selective

force because mothers developing tumors are likely to be in a poorer condition than healthy

mothers, providing a suboptimal fetal environment (e.g., smaller nutritional intake, chronic

inflammation, compromised placental function yielding a poor delivery of nutrients and oxy-

gen to the fetus), with subsequent detrimental consequences for their child health (indepen-

dently of treatments, e.g., [104]). In addition, several maternal cancers in older women,

especially melanoma but also hematopoietic malignancies and lung cancer, have been reported

to metastasize from the placenta to the fetus [105,106].

Because oncogenic processes are extremely widespread among metazoans [107], one might

be surprised (if our hypothesis is correct) to see that despite extensive evidence of reproductive

senescence (decline in the reproductive system as one aspect of general degenerative aging

processes, e.g., age-specific decrease in the size of sexual traits linked to fertilization efficiency

and in the quality and quantity of parental care) [108], reproductive cessation and especially

menopause remain rare in the animal kingdom. Following the logic of our hypothesis, these

traits should be selected for as a life-history adaptation to cancer in species that do not other-

wise possess defenses that are efficient enough against malignant proliferation, given the size

and longevity of organisms and/or their level of exposure to mutagenic substances. Different

processes can lead to this situation. First, let’s recall that cancer itself exerts a selective pressure

that has shaped numerous adaptations in multicellular organisms, either preventing the forma-

tion of neoplasms or controlling their growth and progression [109]. Broadly, cancer defense

mechanisms fall into two categories: (1) the ability to eradicate tumors and (2) the capacity to

limit the proliferative potential of neoplasms [28]. However, it is also increasingly suggested

that individuals bearing tumors might adjust their life-history strategy, for instance, by breed-

ing at a younger age or by investing more in reproduction to compensate for a potential

decrease of fitness caused by the development of malignancies (e.g., in Drosophila [110] and

Tasmanian devils (Sarcophilus harrisii) [111]). There is thus no conceptual obstacle to cancer

being a selective pressure shaping late life-history traits (e.g., reproductive senescence and ces-

sation, menopause) as well.

In parallel, several evolutionary processes can generate a mismatch between cancer defenses

and cancer risks. Genetic drift and inbreeding processes can, for instance, exacerbate malig-

nant problems [112]. Also, species that, for any reason, have recently underwent a change of

size and/or longevity could be at a higher risk of cancer. Leroi and colleagues [113] predicted

that cancer selection (to prevent or alleviate fitness costs due to cancer) should be especially

important as animals evolve new morphologies or larger, longer-lived bodies. Because this

selection necessarily takes more or less time depending on contexts [114], some species can

transiently experience a mismatch between their cancer risks and their level of defenses. As a

typical example, the increased incidence of bone cancer in larger dogs compared with smaller

ones [114] suggests that, during the domestication process, selection on genes responsible for

higher stature (and hence an enhanced number of cells) has not been accompanied by selec-

tion for more efficient cancer defenses (e.g., [115–117]). Humans are another typical example.

Even if data are undoubtedly much less accurate in nonhuman animals, our lifetime risk of

developing malignant cancer in Western populations (38.4%) is one of the highest in the ani-

mal kingdom [115,118,119]. Although recent mismatches (abundance of food, tobacco, alco-

hol, lack of physical activity, etc) undoubtedly explain a significant part of these statistics, we

cannot exclude that there is a significant contribution of older mismatches for which only rela-

tively imperfect solutions have been until now retained by selection. Interestingly, as compared

with other species, humans have also experienced major and recent evolutionary changes in
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their anatomy, physiology, and life history, especially longevity, in which the proportion of

individuals surviving to old ages has increased since the Early Upper Paleolithic (e.g., [120–

124]). It has also been suggested that an extended life span in females could result from a by-

product of selection for longevity in males [125] and/or because younger females prefer older

males [126]. Certain authors (e.g., [1]), however, argue that these processes cannot explain

why long-lived females cease reproduction long before death. Our hypothesis could solve this

enigma because an increasing amount of evidence (e.g., [119,127]) suggests that humans pos-

sess cancer defenses that are too weak given the cancer risks they have incurred following their

recent evolution. Evolutionary mismatches in our species also undoubtedly occurred each

time we modified our environmental conditions (e.g., sanitation, healthcare, reduced preda-

tion, increase in food availability). Until additional effective cancer defenses are selected for in

species exhibiting an evolutionary mismatch between cancer risk and their cancer defenses

(see [28]), it is expected that aging females will experience higher cancer risks, with reproduc-

tive cessation and menopause being a transient way to reduce fitness costs induced by onco-

genic processes.

The extent to which the 3 species of toothed whales that experience postreproductive life

span are more like humans than other long-lived mammals like elephants and blue whales is

unclear, although some speculation remains possible. The long-finned pilot whale (G. melas)
and short-finned pilot whale (G. macrorhynchus) are closely related species. However,

although cancers have been reported in both species [128], only the latter experiences repro-

ductive cessation. G. macrorhynchus is also much bigger (i.e., with more cells) (800 kg versus

1,000–3,000 kg) suggesting (and assuming that cancer is only limited by the occurrence of

oncogenic mutations, but see [54]) that it could potentially be, in the absence of supplementary

cancer defenses as compared with G. melas, at a higher risk of cancer. For killer whales (Orci-
nus orca), who are huge predators, a large size is likely to be a trait favored by natural selection,

as it permits the hunting of large preys. Contrary to other large and/or long-lived animals (e.g.,

other whales, elephants, naked mole rats) for which it has been recently demonstrated that

they possess remarkable anticancer defenses [115,129,130], killer whales may not possess fully

effective anticancer defenses given their size. Recently, detailed postmortem analyses of ovar-

ian activities in toothed whales suggest that a postreproductive life span might also have

evolved in beluga whales (Delphinapterus leucas) and narwhals (Monodon monoceros) [77].

These recent case studies provide an indirect support for our hypothesis because beluga are

large and vulnerable to cancer (as illustrated by their propensity to easily convert environmen-

tal pollution into malignant pathologies [131]) and narwhals display a low level of genetic

diversity [132], which could indirectly exacerbate cancer risk [112]. The genetics of narwhals

indicates that populations have grown rapidly since the start of the last glacial period around

115,000 years ago but before this had been slowly declining for about a million years [133].

This low genetic diversity level is therefore not recent, suggesting that compensatory adapta-

tions to cancer risks may have been selected.

Among primates, females show a unique pattern of extended postreproductive life span.

Indeed, detailed analyses of 7 primate populations longitudinally monitored have revealed that

the number of females experiencing a postreproductive life was particularly low in nonhuman

primates (from 1% in baboons, Papio cynocephalus to 6% in muriquis, Brachyteles hypox-
anthus), as compared with the population of human foragers considered in the study (42.5%

in the !Kung population) [133]. In light of our hypothesis, this finding appears particularly

striking and deserves explanations. Tumors are common in primates [107], and these species

also show clear evidence of reproductive senescence at both the demographic (e.g., [133]) and

physiological (e.g., [134]) levels. As natural condition likely shapes reproductive senescence

patterns across species [135], one might expect that the female rate of reproductive senescence
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is fastened when the risk of getting cancer increases disproportionately with the age-specific

reproductive allocation, especially in primates in which offspring survival and condition are

enhanced by the presence of their grandmother (e.g., vervet monkeys, Chlorocebus aethiops
sabaeus, [136]). However, even in a species like the Japanese macaque (Macaca fuscata), in

which the presence of a grandmother increases juvenile survival [137], the proportion of

females experiencing a postreproductive life span remains extremely low [2]. Taken together,

these results suggest that cancer defense mechanisms are sufficiently efficient in nonhuman

primates to align reproductive life span with the mortality pattern of aging individuals. This

assumption is also supported by recent studies showing that nonhuman primates, contrary to

humans, possess tumor suppression systems that function through life (e.g., a reduced require-

ment for the primate-specific adrenal androgen-mediated kill switches tumor suppression sys-

tem, e.g., [119]). Thus, although nonhuman primates also accumulate various kinds of

genomic damage, the subclass of oncogenic processes able to initiate tumorigenesis is effi-

ciently extinguished. Because it is uncommon in nature to observe organisms displaying evolu-

tionary mismatches, it could also explain why reproductive cessation and menopause are so

rare in primates and, more generally, across the entire animal kingdom.

There are several possibilities for testing our hypothesis empirically, both within and across

species. Whenever we refer to “reproductive schedule,” we envision several traits: skewed

reproduction (i.e., the front loading of reproductive events and stopping reproduction early),

reproductive senescence patterns, age at last birth, age at menopause, and also the length of the

perimenopausal period (cross-culturally, most women describe menopause as a prolonged

process rather than a distinct event [81]). Whether the “cancer hypothesis” is better suited to

explaining patterns of variation in all or only some of those traits remains to be investigated.

Following on from our hypothesis, we tentatively suggest a few predictions, as follows:

1. A postreproductive life stage is not expected to evolve in species with adequate cancer resis-

tance mechanisms. In Asian elephants, the evolution of highly efficient cancer defenses

might explain why, despite the presence of mothers and grandmothers enhancing calf sur-

vival and reproduction [24], relatively few individuals reach a postreproductive life stage.

The absence of selection on postreproductive life span despite its impact on inclusive fitness

in those species could be explained by the low prevalence of cancer at all ages (<5% [115]).

Elephants are known for their efficient cancer defense mechanisms, including the high

number of copies of the tumor suppressor gene tumor protein p53 (TP53) in both African

and Asian elephants [138, 139] and the accelerated evolution of the DNA repair gene Fan-

coni anemia complementation group L (FANCL) in African elephants [140]. By contrast, in

humans, the number of TP53 copies is limited to 1 (as compared with 20 in African ele-

phants), and at least in killer whales, there is no evidence for an accelerated evolution of the

FANCL gene following selection for increased body size [140], suggesting inadequate can-

cer resistance mechanisms (i.e., that reduce fitness) in this species. In order to provide a

direct test of our hypothesis, however, a phylogenomics analysis of cancer defense genes in

mammal species characterized by extended maternal investment would be needed to disen-

tangle phylogenetics from cancer effects on life-history variation. Similarly, this hypothesis

could be explored experimentally, given that the same changes could be engineered in labo-

ratory animals like mice.

2. Cancer selects for the evolution of a postreproductive life stage in species that display both

inadequate cancer defenses and parental investment. Previous studies have shown that can-

cer can accelerate life history in Drosophila [110] and Tasmanian devils [111]. However,

whether cancer is a strong enough pressure to select for the evolution of reproductive cessa-

tion and menopause currently lacks direct empirical evidence. One could conduct artificial
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selection experiment in 2 closely related mammal species characterized by different levels

of maternal investment and manipulate both the efficiency of cancer defenses (e.g., by artifi-

cially selecting for longevity without selecting for better DNA repair mechanisms) and can-

cer risk (e.g., through exposure to pollutants). We predict that increasing exposure to

cancer would select for the acceleration of reproductive senescence in species with both

maternal investment and inadequate cancer defenses (difference between cancer defenses

and cancer exposure) but not (or less so) in others. In theory, cancer could also select for a

postreproductive life span in males of species that display both obligate paternal investment

(e.g., in titi and owl monkeys) and inadequate cancer defenses.

3. Contrasted cancer risks can select for different patterns of reproductive schedule. If popula-

tions present a history of high cancer risk in old ages (e.g., due to recent increases in stature

or longevity), selection for the front loading of fertility events and early reproductive cessa-

tion is expected. Conversely, if populations present a history of low cancer risk, for instance,

because of a diet rich in antioxidants, as is often the case among populations characterized

by extreme longevity, selection for late reproduction is expected. This might explain an

association reported by a recent study conducted in a population of Sardinian women

showing that late last birth increases the probability of becoming centenarian [141]. This

association suggests that late births, which might occur because of a slower rate of ovarian

aging and/or different cultural norms around age at last birth, are not associated with an

increased risk of mortality in women. In this context, the selective pressure to stop repro-

ducing early because of cancer risk is likely to be relaxed as compared with other popula-

tions. The extent to which late reproduction among centenarians results from positive

selection on specific genetic variants, strategic plastic adjustments to early life, or simply a

slow aging process is yet to be investigated.

4. Reproductive senescence protects against cancer. First, genetic polymorphism in cancer

resistance is predicted to shape age-specific relationships between pregnancy and cancer

progression. For instance, in humans, the TP53 gene exhibits polymorphism across popula-

tions and individuals, with p53 codon 72 polymorphism being associated with the risk of

developing gastric, colorectal, and other cancers [142,143]. Whether such polymorphism

also correlates with patterns of reproductive senescence (e.g., the age at which pregnancy

significantly increases the probability of developing cancer) has not, to our knowledge,

been explored to date. Second, for cancer to act as a selective pressure on reproductive

senescence, an increase in cancer-related mortality postpregnancy must be at least as

important as the increase in mortality due to childbirth or other sources of mortality. This

condition is potentially met in social species in which the risk of environmentally driven

mortality is buffered [144]. A possibility would be to investigate whether age at last birth is

a better predictor of cancer-related mortality relative to all-causes mortality, controlling for

parity. A test of this prediction in humans should be conducted in high-fertility subsistence

populations facing higher risks of mortality both in infancy and from childbirth and not

only in women from Western countries. If the condition is not met, it does not necessarily

mean that reproductive cessation does not protect from cancer, but it would suggest that

cancer is unlikely to have selected for reproductive cessation.

5. Cancer has favored the evolution of phenotypic plasticity in reproductive schedule. It is not

excluded that human phenotypic variation in reproductive senescence could be partly

explained by cancer risk determined through development. Indeed, the age-specific cost of

pregnancy in terms of cancer progression potentially varies as a function of early life condi-

tions. Telomere length, a cancer defense, is known to be influenced by development. For
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instance, maternal obesity predicts shorter telomeres among elderly female offspring [145],

which suggests that polymorphism in cancer resistance is partly shaped by the early life

environment. In addition, telomeres are longer in women with late maternal age, suggesting

that polymorphism in cancer resistance in mothers [146], itself partly shaped by the early

life environment, predicts variation in maternal age at last birth. There is also evidence for a

critical role of the childhood environment in shaping the number of oocytes and the rate of

follicular atresia in humans [72]; thus, early life conditions can produce a positive correla-

tion between cancer risk in old ages and the rate of reproductive senescence. Such a positive

correlation might be understood as the by-product of an accelerated somatic senescence or

an adaptive response to an acceleration of the age at which cancer defenses cannot counter-

act the impact of pregnancy on cancer progression. Although it has been shown that

adverse early conditions lead to the acceleration of reproductive development [147] and,

thus, a faster somatic senescence through pleiotropic effects [148], it remains to be investi-

gated whether childhood conditions influence even more strongly the age at which preg-

nancy promotes cancer progression. Note that the adjustment of reproductive patterns to

environmental conditions experienced early in life could be achieved through either biolog-

ical (i.e., rate of follicular atresia) or cultural mechanisms (i.e., early age at marriage in

women, stopping reproduction before menopause).

6. Cancers occur in the longevity gain period provided by sheltered environments. Thanks to

protected environmental conditions offered by zoos, most captive mammalian populations

show a delayed onset of actuarial senescence and an extended life span compared with their

wild counterparts [149]. As a consequence of the uncoupling between actuarial and repro-

ductive senescence [135], extended periods of post-reproductive lifespan are observed in a

wider range of captive populations as compared to wild ones [1]. We predict that the occur-

rence of cancer should be exacerbated during the “longevity gain period” observed in zoos

because females having reproduced at their full potential during their reproductive life

should display a particularly high risk of cancer (see previous section). In addition, the

number of cancers reported within this (artifactitious) postreproductive life span period

should be particularly pronounced in primate females showing a reproductive allocation

pattern close to the one observed in humans (e.g., Callitrichidae [150]). Everything else

being equal, we also predict that this elevated risk of cancer during this longevity gain

period should be more pronounced in females than in males and should mostly concern

reproductive cancers.

Concluding remarks

The “cancer hypothesis” proposed here for the evolution of an extended postreproductive life

is not, per se, novel nor incompatible with other hypotheses. Because in existing theories,

oncogenic-related health problems already fall within the category of factors that could modu-

late the payoffs of old females reproducing themselves versus investing into existing offspring

and grandoffspring. In addition, although neoplasia are common in mammals [107], they are

less frequent in insects that can sometimes display menopause (e.g., the aphid glue-bomb

[151]). Here, the evolutionary scenario we propose for the evolution of postfertile life spans

typically concerns species that already display grandparental care and experience an evolution-

ary mismatch and for which reproduction favors, at least transiently, malignant proliferation

in females. Also, an important assumption in our hypothesis is that it is easier to evolve a post-

reproductive life span than more effective anticancer defenses. Although cultural mechanisms

could explain the rapid spread of early cessation of reproduction, this assumption remains to
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be investigated for the physiological process of menopause. Nevertheless, we believe that onco-

genic processes and, more precisely, the balance between their dynamics in relationship with

the level of host defenses could play a major role in the selection of postreproductive life in ani-

mals. Future mathematical formalizations are now needed to improve our understanding of

the conditions required for the cancer hypothesis to be a realistic scenario. In addition, there is

a need for data on how cancer risk (beyond breast cancer risk) increases with age and preg-

nancy in high-mortality populations following traditional lifestyles: How much does it increase

with age? Is cancer risk influenced by pregnancy events? What are the fitness costs associated

with postmenopausal diseases? How intense should the selection pressure exerted by cancer

risk be? Finally, because ecosystems all over the world are increasingly polluted with mutagenic

substances, it is also predicted that numerous species will experience, sooner or later, an evolu-

tionary mismatch between the efficiency of their anticancer defenses and their cancer risks.

Further studies would be necessary to determine whether in animal populations (with parental

investment) from highly polluted habitats, reproductive cessation in currently evolving as an

adaptive trait in females. To conclude, the importance of oncogenic processes for the evolution

of life-history traits in changing ecosystems offers promising new research avenues yet to be

exploited.
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101. Lahdenperä M, Gillespie DOS, Lummaa V, Russell AF. Severe intergenerational reproductive conflict

and the evolution of menopause. Ecol Lett. 2012 Aug 22; 15(11):1283–1290. https://doi.org/10.1111/j.

1461-0248.2012.01851.x PMID: 22913671

102. Mace R, Alvergne A. Female reproductive competition within families in rural Gambia. Proc R Soc B

Biol Sci. 2012 Jan 18; 279(1736). https://doi.org/10.1098/rspb.2011.2424 PMID: 22258635

103. Snopkowski K, Moya C, Sear R. A test of the intergenerational conflict model in Indonesia shows no

evidence of earlier menopause in female-dispersing groups. Proc R Soc B Biol Sci. 2014 Aug 7; 281

(1788). https://doi.org/10.1098/rspb.2014.0580 PMID: 24966311

104. Momen NC, Arendt LH, Ernst A, Olsen J, Li J, Gissler M, et al. Pregnancy-associated cancers and

birth outcomes in children: A Danish and Swedish population-based register study. BMJ Open. 2018;

https://doi.org/10.1136/bmjopen-2018-022946 PMID: 30518582

105. Alexander A, Samlowski WE, Grossman D, Bruggers CS, Harris RM, Zone JJ, et al. Metastatic mela-

noma in pregnancy: Risk of transplacental metastases in the infant. J Clin Oncol. 2003 Jun 1; 21

(11):2179–2186. https://doi.org/10.1200/JCO.2003.12.149 PMID: 12775744

106. Dildy GA, Moise KJ, Carpenter RJ, Klima T. Maternal malignancy metastatic to the products of con-

ception: A review. Obstet Gynecol Surv. 1989 Jul; 44(7):535–540. https://doi.org/10.1097/00006254-

198907000-00008 PMID: 2544836

107. Madsen T, Arnal A, Vittecoq M, Bernex F, Abadie J, Labrut S, et al. Cancer Prevalence and Etiology in

Wild and Captive Animals. Ecology and Evolution of Cancer. 2017:11–46. https://doi.org/10.1016/

B978-0-12-804310-3.00002–8

108. Nussey DH, Froy H, Lemaitre JF, Gaillard JM, Austad SN. Senescence in natural populations of ani-

mals: Widespread evidence and its implications for bio-gerontology. Ageing Research Reviews. 2013

Jan; 12(1):214–225. https://doi.org/10.1016/j.arr.2012.07.004 PMID: 22884974

109. Nunney L. Lineage selection and the evolution of multistage carcinogenesis. Proc R Soc B Biol Sci.

1999 Mar 7; 266(1418). https://doi.org/10.1098/rspb.1999.0664 PMID: 10189713

110. Arnal A, Jacqueline C, Ujvari B, Leger L, Moreno C, Faugere D, et al. Cancer brings forward oviposi-

tion in the fly Drosophila melanogaster. Ecol Evol. 2017 Dec 20; 7(1):272–276. https://doi.org/10.

1002/ece3.2571 PMID: 28070290

111. Jones ME, Cockburn A, Hamede R, Hawkins C, Hesterman H, Lachish S, et al. Life-history change in

disease-ravaged Tasmanian devil populations. Proc Natl Acad Sci. 2008 Jul 22; 105(29):10023–

10027. https://doi.org/10.1073/pnas.0711236105 PMID: 18626026

112. Ujvari B, Klaassen M, Raven N, Russell T, Vittecoq M, Hamede R, et al. Genetic diversity, inbreeding

and cancer. Proc R Soc B Biol Sci. 2018 Mar 21; 285(1875). https://doi.org/10.1098/rspb.2017.2589

PMID: 29563261

113. Leroi AM, Koufopanou V, Burt A. Cancer selection. Nature Reviews Cancer. 2003, Mar 1; 3:226–331.

https://doi.org/10.1038/nrc1016 PMID: 12612657

114. Nunney L. The real war on cancer: The evolutionary dynamics of cancer suppression. Evol Appl. 2013

Jan; 6(1):11–19. https://doi.org/10.1111/eva.12018 PMID: 23396311

115. Abegglen LM, Caulin AF, Chan A, Lee K, Robinson R, Campbell MS, et al. Potential mechanisms for

cancer resistance in elephants and comparative cellular response to DNA Damage in Humans. JAMA

—J Am Med Assoc. 2015 Nov 3; 314(17):1850–1860. https://doi.org/10.1001/jama.2015.13134

PMID: 26447779

116. Svetec N, Cridland JM, Zhao L, Begun DJ. The adaptive significance of natural genetic variation in the

DNA damage response of Drosophila melanogaster. PLoS Genet. 2016; 12:e1005869. https://doi.org/

10.1371/journal.pgen.1005869 PMID: 26950216

117. Paul ND, Gwynn-Jones D. Ecological roles of solar UV radiation: Towards an integrated approach.

Trends in Ecology and Evolution. 2003 Jan 1; 18(1):48–55. https://doi.org/10.1016/S0169-5347(02)

00014-9

118. Ahmad AS, Ormiston-Smith N, Sasieni PD. Trends in the lifetime risk of developing cancer in Great

Britain: Comparison of risk for those born from 1930 to 1960. Br J Cancer. 2015 Feb 3; 112:943–947.

https://doi.org/10.1038/bjc.2014.606 PMID: 25647015

119. Nyce JW. Detection of a novel, primate-specific ‘kill switch’ tumor suppression mechanism that may

fundamentally control cancer risk in humans: an unexpected twist in the basic biology of TP53. Endocr

Relat Cancer. 2018 Nov; 25(11): R497–R517. https://doi.org/10.1530/ERC-18-0241 PMID: 29941676

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000565 December 5, 2019 17 / 19

https://doi.org/10.1016/j.cub.2016.12.015
https://doi.org/10.1016/j.cub.2016.12.015
http://www.ncbi.nlm.nih.gov/pubmed/28089514
https://doi.org/10.1111/j.1461-0248.2012.01851.x
https://doi.org/10.1111/j.1461-0248.2012.01851.x
http://www.ncbi.nlm.nih.gov/pubmed/22913671
https://doi.org/10.1098/rspb.2011.2424
http://www.ncbi.nlm.nih.gov/pubmed/22258635
https://doi.org/10.1098/rspb.2014.0580
http://www.ncbi.nlm.nih.gov/pubmed/24966311
https://doi.org/10.1136/bmjopen-2018-022946
http://www.ncbi.nlm.nih.gov/pubmed/30518582
https://doi.org/10.1200/JCO.2003.12.149
http://www.ncbi.nlm.nih.gov/pubmed/12775744
https://doi.org/10.1097/00006254-198907000-00008
https://doi.org/10.1097/00006254-198907000-00008
http://www.ncbi.nlm.nih.gov/pubmed/2544836
https://doi.org/10.1016/B978-0-12-804310-3.000028
https://doi.org/10.1016/B978-0-12-804310-3.000028
https://doi.org/10.1016/j.arr.2012.07.004
http://www.ncbi.nlm.nih.gov/pubmed/22884974
https://doi.org/10.1098/rspb.1999.0664
http://www.ncbi.nlm.nih.gov/pubmed/10189713
https://doi.org/10.1002/ece3.2571
https://doi.org/10.1002/ece3.2571
http://www.ncbi.nlm.nih.gov/pubmed/28070290
https://doi.org/10.1073/pnas.0711236105
http://www.ncbi.nlm.nih.gov/pubmed/18626026
https://doi.org/10.1098/rspb.2017.2589
http://www.ncbi.nlm.nih.gov/pubmed/29563261
https://doi.org/10.1038/nrc1016
http://www.ncbi.nlm.nih.gov/pubmed/12612657
https://doi.org/10.1111/eva.12018
http://www.ncbi.nlm.nih.gov/pubmed/23396311
https://doi.org/10.1001/jama.2015.13134
http://www.ncbi.nlm.nih.gov/pubmed/26447779
https://doi.org/10.1371/journal.pgen.1005869
https://doi.org/10.1371/journal.pgen.1005869
http://www.ncbi.nlm.nih.gov/pubmed/26950216
https://doi.org/10.1016/S0169-5347(02)00014-9
https://doi.org/10.1016/S0169-5347(02)00014-9
https://doi.org/10.1038/bjc.2014.606
http://www.ncbi.nlm.nih.gov/pubmed/25647015
https://doi.org/10.1530/ERC-18-0241
http://www.ncbi.nlm.nih.gov/pubmed/29941676
https://doi.org/10.1371/journal.pbio.3000565


120. Hawks J, Wang ET, Cochran GM, Harpending HC, Moyzis RK. Recent acceleration of human adap-

tive evolution. Proc Natl Acad Sci. 2007 Dec 26; 104(52): 20753–20758. https://doi.org/10.1073/pnas.

0707650104 PMID: 18087044

121. Trinkaus E. Late Pleistocene adult mortality patterns and modern human establishment. Proc Natl

Acad Sci. 2011 Jan 25; 108(4): 1267–1271. https://doi.org/10.1073/pnas.1018700108 PMID:

21220336

122. Caspari R, Lee SH. Older age becomes common late in human evolution. Proc Natl Acad Sci U S A.

2004 Jul 27; 101(30):10895–10900. https://doi.org/10.1073/pnas.0402857101 PMID: 15252198

123. Jones JH. Primates and the evolution of long, slow life histories. Curr Biol. 2011 Sep 27; 21(18):

PR708–R717. https://doi.org/10.1016/j.cub.2011.08.025 PMID: 21959161

124. Bronikowski AM, Altmann J, Brockman DK, Cords M, Fedigan LM, Pusey A, et al. Aging in the natural

world: Comparative data reveal similar mortality patterns across primates. Science. 2011 Mar 11; 331

(6022):1325–1328. https://doi.org/10.1126/science.1201571 PMID: 21393544

125. Marlowe F. The patriarch hypothesis. Hum Nat. 2000 Mar; 11(1):27–42. https://doi.org/10.1007/

s12110-000-1001-7 PMID: 26193094

126. Tuljapurkar SD, Puleston CO, Gurven MD. Why men matter: Mating patterns drive evolution of human

lifespan. PLoS ONE. 2007 Aug 29; 2(8):e785. https://doi.org/10.1371/journal.pone.0000785 PMID:

17726515

127. Brown JS, Cunningham JJ, Gatenby R. The multiple facets of peto’s paradox: A life-history model for

the evolution of cancer suppression. Philos Trans R Soc B Biol Sci. 2015 Jul 19; 370(1673). https://

doi.org/10.1098/rstb.2014.0221 PMID: 26056365

128. Newman SJ, Smith SA. Marine mammal neoplasia: A review. Vet Pathol. 2006 Nov 1; 43(6):865–880.

https://doi.org/10.1354/vp.43-6-865 PMID: 17099143

129. Tollis M, Robbins J, Webb AE, Kuderna LFK, Caulin AF, Garcia JD, et al. Return to the sea, get huge,

beat cancer: an analysis of cetacean genomes including an assembly for the humpback whale (Mega-

ptera novaeangliae). Mol Biol Evol. 2019 May 9; 36(8):1746–1763. https://doi.org/10.1093/molbev/

msz099 PMID: 31070747

130. Seluanov A, Gladyshev VN, Vijg J, Gorbunova V. Mechanisms of cancer resistance in long-lived mam-

mals. Nature Reviews Cancer. 2018 Apr 5; 18:443–441. https://doi.org/10.1038/s41568-018-0004-9

PMID: 29622806

131. Martineau D, Lemberger K, Dallaire A, Labelle P, Lipscomb TP, Michel P, et al. Cancer in wildlife, a

case study: Beluga from the St. Lawrence estuary, Québec, Canada. Environ Health Perspect. 2002
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