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Abstract
The development of renewable electricity in Africa could bemassive in coming decades, as a response
to the rapid rising electricity demandwhile complyingwith the Paris Agreements. This study shows
that in the high-resolution climate experiments of CORDEX-AFRICA, the annualmean solar
potential is expected to decrease on average by 4%overmost of the continent by the end of the
century, reaching up to 6%over theHorn of Africa, as a direct result of decrease in solar radiation and
increase in air surface temperature. These projections are associatedwith large uncertainties, in
particular over the Sahel and the elevated terrains of eastern Africa.While the expected decreasemay
affect the sizing of the numerous solar projects planned inAfrica for the next decades, this study
suggests that it does not endanger their viability. At last, this study indicates that the design of such
projects also needs to account for the non-negligible uncertainties associatedwith the resource.

1. Introduction

Most of Africa’s economy is growing at unprece-
dented speed, and the demand for electricity is
expected to triple by 2030 [1]. To meet this rising
demand while contributing to the objectives of the
Paris Agreement, most African countries are expected
to develop renewable electricity, typically solar, wind,
and hydropower. Africa has an exceptional solar
resource that can be harnessed for electricity genera-
tion [1]. Despite a strong influence of the nebulosity,
solar resource remains generally high throughout the
year over the entire continent [2]. Higher resource
and higher temporal stability are found near the mid-
latitudes despite a strong monsoon-related seasonal-
ity [3, 4, 5]. Lower resource and lower temporal
stability are found near the equator where a strong
nebulosity is found during most part of the year
(e.g. [2, 6]).

Whereas previous studies indicate a strong poten-
tial for solar energy over Africa under current condi-
tions (e.g. [2]), very little is known about the future
evolution of this potential. Yet, because solar power
depends on incoming surface solar radiation (amount
of sunlight reaching the Earth’s surface) as well as on
other atmospheric variables (e.g. temperature) affect-
ing the photovoltaic (PV) panel efficiency [7, 8], it is
expected to be sensitive to the long-term changes in
climate and pollution levels. Note that the develop-
ment of concentrated solar power (CSP) systems is
also expected to increase in the coming decades. How-
ever, because PV projects are less limited and more
numerous than CSP projects [9], we focus our study
on PV systems, thus investigating the changes in global
solar irradiance (GHI). A similar study could
obviously be carried out for CSP systems, but this
would involve investigating the changes in direct nor-
mal irradiance instead ofGHI.
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According to the projections of 39 global coupled
atmosphere-ocean models (GCMs) under the RCP8.5
scenario taken from the CMIP5 project, the potential
for solar energy is expected to decrease by mid-21st
century, over a large part of the world including Africa
[10]. The low resolution (temporal and spatial) of
GCMs, however, limits a precise assessment at a regio-
nal scale. A better assessment requires using regional
climate models (RCMs), which provide a higher spa-
tial and temporal resolution, and thus a better repre-
sentation of the topography, coastline, and small scale
processes through the use of parametrization schemes
[11–14]. Unfortunately, to date, with the noticeable
exception of the study of [15] for the European region,
no such study has been conducted at continental
scales. This gap has obviously to be filled rapidly in
regions where solar energy has been identified as a key
contributor to a climate-friendly energy transition,
such as Africa, where projections of solar resource are
only available as part of global studies [10, 16, 17] or at
the country (e.g. [18, 19]) or regional level [20].

In this study, we use the outputs of CORDEX-
AFRICA [21–23], the most up-to-date ensemble of
high-resolution regional climate projections for
Africa, to investigate how the solar potential and its
temporal variability are expected to change for this
continent in the next decades. Solar radiation, air
temperature and surface wind speed time series from
each climate experiment are used to estimate the
potential for solar power production and its expected
time evolution for each grid cell of the domain and for
nine regions with contrasted climates. The expected
changes in this potential (mean and variability) are
then assessed alongwith that of its weather drivers.We
further characterize the uncertainty associated with
expected changes and the proportion of this uncer-
tainty due to different uncertainty sources, namely
internal variability (IV) and model uncertainty due to
GCMs andRCMs, respectively. Hence, as compared to
previous regional studies (e.g. [20]), our study aims to
evaluate the PV potential and its sensitivity to climate
change over the whole African continent, in addition
to characterize the total uncertainty associated with

these projections and the different sources of this
uncertainty.

Section 2 describes the data and the methodology.
Section 3.1 investigates the future changes that are
expected in the mean solar potential and its drivers,
section 3.2 examines the future changes that are expec-
ted in the mean solar potential at a regional scale, and
section 3.3 examines the future changes in the daily
and annual temporal variability of solar energy poten-
tial. Section 4 discusses and concludes the study.

2.Methodology anddata

2.1.Datasets
Weuse an ensemble of 17 regional climate simulations
taken from the most up-to-date ensemble of high-
resolution RCM projections produced in the recent
years for Africa: CORDEX-AFRICA [21–23]. In this
ensemble, five RCMs are used to downscale 10 GCMs
under the climate scenario RCP8.5 (table 1). The
simulations span the period 1976–2099 at a daily time
step, and cover Africa (24.64°W–60.28°E; 45.76°S–
42.24 °N)with a spatial resolution of 0.5° (∼50 km) in
latitude and longitude. For each simulation and each
grid cell, daily time series of surface downwelling
shortwave radiation (RSDS), surface air temperature
(TAS), and 10metersWind speed (W10) are retrieved.
As explained in the Methodology section, TAS and
W10 are used to compute the solar potential, as they
affect the temperature of the PV cells.

As an important prerequisite for this work, we
evaluated the simulated RSDS for the period
1995–2005, by comparison with observed GHI taken
from the high resolution satellite SARAH2 [24]. The
data from SARAH2 is available since 1983, but
because [25] found some horizontal stripes artifacts
in the Meteosat SIS data over the period 1983–1994,
we only use the data from 1995 onwards. In all four
seasons, we find that the 17 climate experiments are
able to capture the observed spatial distribution of
the mean resource and its temporal variability,
both being dominated by a significant latitudinal gra-
dient (supplementary figure 1 is available online at

Table 1. Summary of 17 simulations (GCM/RCMchains) taken from theCORDEX-AFRICAdata. In this ensemble, five RCMs are used to
downscale 10GCMs. Each experiment comprises one historical and one scenario (RCP8.5) run, spanning the periods 1976–2005 and
2006–2099 respectively. The horizontal resolution of all simulations is 0.5° in both latitude and longitude.

RCM\GCM HIRHAM5 (v2) CCLM4-8-17 (v1) RACMO22 T (v1) RCA4 (v1) REMO2009 (v1)

ICHEC-EC-EARTH x x x x

CNRM-CERFACS-CNRM-CM5 x x

MPI-M-MPI-ESM-LR x x x

NCC-NorESM1-M x

NOAA-GFDL-GFDL-ESM2M x

IPSL-IPSL-CM5A-MR x

MIROC-MIROC5 x

CSIRO-QCCCE-CSIRO-Mk3-6-0 x

CCCma-CanESM2 x

MOHC-HadGEM2-ES x x
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stacks.iop.org/ERL/14/124039/mmedia). Higher
(lower) values of mean resource are found near the
mid-latitudes (along the equator) in both datasets.
Larger biases (>10%) are found over the southern
subtropics in December–January–February (DJF),
the tropics in DJF (including West Sahel and Guinea
Coast), and the Horn of Africa in March–April–May
(MAM; supplementary figure 1). In all four seasons,
both datasets show a daily variability (20%) that is a fac-
tor 10 higher than the interannual variability (2%), with
the models slightly overestimating the observed inter-
annual variability. Overall, the general agreement
between the two datasets encourages the use of the
CORDEX-AFRICA ensemble for investigating the pro-
jections of future solar potential inAfrica.

2.2.Methodology
In this study, we focus on how the mean potential
production of solar power (PVpot) for any given site is
expected to evolve as a result of climate change. Itmust
be noticed that this potential production is not directly
related to the real production as the latter depends on
the installed capacity. The installed capacity will likely
grow rapidly in Africa owing to a lot of utility scale and
offgrid projects of solar farms [1], and its evolution is
a priori not linked to the climate evolution. The
potential production PVpot characterizes the amount
of solar energy that can be retrieved for a given site
using PV cells. It depends on the local meteorological
conditions and is thus linked to climate characteristics.
For any given time t, the potential production (PVpot

(t)) is defined as the ratio between (1) the production
that would be obtained for that time as a result of the
current weather conditions (wind, temperature and
solar radiation) and (2) the production that would
have been obtained under standard test weather
conditions. PVpot(t) is sometimes referred to as the
‘capacity factor’ of the PV cells for time t [26]. It is
dimensionless. In the present work, we compute
PVpot(t) on a daily basis following [15, 27], as
described in the ‘Annex Methodology’. Changes in
annual and seasonal mean PVpot values are then
processed using the methodology described in the
following.

The CORDEX-AFRICA multimodel ensemble
used for this analysis (table 1) is associated with differ-
ent sources of uncertainty, namely model uncertainty
(uncertainty due to imperfections of climate models,
i.e. GCMs or RCMs) and climate IV (variability in pro-
jections due to the chaotic and nonlinear nature of the
climate system, which includes interannual variability
here). To better understand the importance of these
different uncertainty sources, they are partitioned and
quantified using QUALYPSO [28], an advanced Baye-
sian ANOVA method based on data augmentation
techniques and on the quasi-ergodicity assumption of
climate outputs [29]. We quantify uncertainty sources
for each grid cell of the African continent, for the pro-
jections of annual mean (aggregated from the daily
time series) RSDS, W10, TAS, and PVpot. In addition,
we split Africa into nine climatic regions, as described
in figure 1, and apply the QUALYPSO method to the

Figure 1.Regional analyses are performed on the nine climatic regions adapted from [30]: 1. NorthAfrica (30°−37°N; 18°W−36°E),
2. Sahara (18°−30°N; 18°W−36° E), 3.West Sahel (10°−18°N; 18°−10°W), 4. East Sahel (10°−18°N; 10°W−36°E), 5. Guinea Coast
(12°S−10°N; 18°W−22°E), 6. East Africa (12°S−10°N; 22°−36° E), 7.Horn of Africa (12°S−18°N; 36°−52° E), 8. Sub-South Africa
(20°−12°S; 5°−42°E), 9. SouthAfrica (35°−20°S; 10°−36° E).
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projections of annual mean values of the nine PVpot
regional means. Finally, we compute the changes in
the temporal variability of PVpot, as well as the chan-
ges in PVpot that are due to a change in either TAS
(TAS-induced) or W10 (W10-induced), following
[15]. Details of the computation are described in the
‘AnnexMethodology’.

3. Results

3.1. Expected changes ofmeanPVpot and its drivers
We comment here changes in mean PVpot expected
by the end of the century (2070–2099). Figure 2 shows
the ensemble mean change and the bounds of the 90%
confidence interval of the projections for this variable
(figure 2(d)) and its drivers (figures 2(a)–(c)). By the
end of the century, except for some regions where it is
expected to increase (up to+2% in parts of southern
Africa and along parts of the northern coast), PVpot is
expected to decrease on average by 4% over the

continent, reaching up to 6% over the Horn of Africa.
These projections comewith a large uncertainty and at
the exception of the Sahara, the sign of change is
actually uncertain (figure 2(d)). Thus, even though the
mean change is relatively small (−4% on average by
the end of the century), large changes may actually
occur in reality (from less than −8% to more
than+8%, figure 2(d)). By the end of the century, the
response to uncertainty ratio (R2U, figure 3) is only
larger than 1 over the Sahara (region 2), East Sahel
(region 4), and the Horn of Africa (region 7). It falls
down to 0.6 overWest Sahel and East Africa (regions 3
and 6), 0.5 over the Gulf of Guinea and South Africa
(regions 5 and 9), and even 0.2 over Sub-South Africa
(region 8).

Figure 4 shows the decomposition of the total
uncertainty of PVpot. This total uncertainty is particu-
larly large over the Sahel and the elevated terrains of
eastern Africa (figure 4(a)), where a large part of
total uncertainty results from RCM uncertainty

Figure 2.Ensemblemean climate change responseμ for the end of the century (2070–2099), in (a)RSDS, (b)TAS, (c)W10, and (d)
PVpot, inW m−2, °C,%, and%, respectively, and in the PVpot changes that would be induced by the changes in either (e)TAS alone
or (f)W10 alone, in%. Also shown are the corresponding bounds (Q95 andQ05) of the 90% confidence interval. See theMethods
section for details.
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(figure 4(c)), as a result of large differences in the main
effects obtained for RCM2 and RCM5 in Sahel and for
RCM1 and RCM4 in the elevated terrains of eastern
Africa (supplementary figure 2). Elsewhere, total
uncertainty is smaller and resultsmostly from IV.

Hence, the projections of PVpot (figure 2(d))
mainly resemble the ones of RSDS (figure 2(a)). By the
end of the century, RSDS is expected to decrease on
average by 4Wm−2 over most the continent, reaching
up to 12Wm−2 over the Horn of Africa (figure 2(a)).
Exceptions where RSDS is expected to increase are
southern Africa (up to+6Wm−2) and parts of the
northern and the western coasts. Uncertainty in RSDS
projections is also logically similar to that of PVpot. It
is also largely due to RCM uncertainty over the Sahel
and the elevated terrains of eastern Africa, and IV
elsewhere.

Expected changes in TAS and W10 can also mod-
ulate changes in PVpot. By the end of the century, TAS
is expected to increase by +5.5 °C over western Sahel
and Namibia/Botswana, +5 °C over the mid-
latitudes,+4.5 °C over the equatorial region, and
+4 °C along the coasts, under the RCP8.5 scenario
(figure 2(b)). The dispersion between climate projec-
tions is up to 3 °C by the end of the century; the total
uncertainty mostly results from IV and GCM

uncertainty (supplementary figure 3(b)). Overall, the
significance of expected changes is high when com-
pared to total uncertainties (R2U>1 whatever the
region, figure 3(b)). Except along the northern coast
and parts of central Africa where it decreases by up to
4% (figure 2(c)), W10 is expected to increase every-
where by up to+8%. For this variable, the dispersion
between the projections is large, especially in equator-
ial regions (R2U<1 in most regions, figure 3(c)).
Total uncertainty mostly results from IV (up to 80%
over the Sahel, Western Sahara, Horn of Africa, and
along the southern coast) andGCMuncertainty (up to
80% over large parts of eastern Sahara (supplementary
figure 3(c)).

Figures 2(e) and (f) show the changes in PVpot that
would be induced by the end of the century solely by
the changes in either TAS or W10, respectively.
Change in TAS is expected to reduce PVpot over the
entire continent, on average by 2.5% (figure 2(e)).
Conversely, changes in wind speed are not expected to
really affect mean PVpot (induced changes are below
1%,figure 2(f)).

Hence, our results show that the PVpot spatial pat-
tern of change (figure 2(d)) resembles the one of RSDS
(figure 2(a)), albeit altered by the projected warming.
Over parts of southern Africa and along parts of the

Figure 3.Ensemblemean climate change responseμ for the end of the century (2070–2099), in (a)RSDS (W/m2), (b)TAS (°C), (c)
W10 (%), and (d)PVpot (%), as seen infigure 1. The gray shaded area represents areas where R2U<1 (U=total uncertainty). See
theMethods section for details.
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western and the northern coasts, the warming is
indeed strong enough to offset the increase in RSDS
and produce a decline in PVpot.

In addition figure 5 shows that the expected chan-
ges in PVpot can also depend on the season, especially
for JJA and DJF. For example in June–July–August,
PVpot is expected to increase on average by+4% over
the Sahel and along southwestern Africa by the end of
the century, and decrease on average by 4% elsewhere,
reaching up to −8% along the coast of Guinea Coast.
In September–October–November (SON), DJF, and
MAM, PVpot is expected to increase by up to+4% in
parts of southern Africa and along parts of the north-
ern coast, and decrease on average by 4% elsewhere,
reaching up to 6% (8%) over the Horn of Africa in
SON (DJF).

3.2. Expected changes ofmeanPVpot at regional
scales
Figure 6 shows the PVpot changes over 1990–2099 in
each region depicted in figure 1. Shown are the
ensemble mean climate change response μ (dark blue
curve), the 90% confidence interval (black curves),
and the individual contribution of each source of
uncertainty (red: GCM uncertainty, green: RCM
uncertainty, magenta: IV, black: model residuals).

Except in region 8 where it remains constant, PVpot
steadily decreases throughout the 21st century in all
the regions. The mean projected changes exceed total
uncertainty (R2U>1) after 2024 in region 2, 2060 in
region 4, 2085 in region 7, 2099 in region 1, and never
elsewhere. Accounting for this uncertainty, we find
that the probability for PVpot to decrease by more
than 5% (which corresponds to a significant change
for electricity production) by 2050 (2099) is of 0%
(0.4%) in region 1, 0% (5.9%) in region 2, 3.2%
(14.7%) in region 3, 1.2% (13.2%) in region 4, 4.1%
(17.5%) in region 5, 2.2% (10.6%) in region 6, 3.3%
(18.7%) in region 7, 0.8% (2.2%) in region 8, and 0.9%
(5.2%) in region 9. Thus, even though the probability
for a meaningful decrease is relatively small by 2050, it
becomes likely (10%–20%) by the end of the century
over most of the continent (Sahel, Guinea Coast, and
eastern Africa (regions 3, 4, 5, 6 and 7, respectively)).
In all regions, the confidence interval of the projected
changes increases throughout the century as a result of
increasing model uncertainty. Results can vary from
one region to the other: in the northern regions, the
confidence interval remains relatively small and the
three sources of uncertainty equally contribute after
about 2050; in the tropical regions and the Sahel
however, the contribution from RCM uncertainty

Figure 4.Decomposition of the total uncertainty of PVpot changes for the end of the century (2070–2099). Shown is the total
uncertainty standard deviation (STD=√T) of PVpot in% (a), and the contribution from each source of uncertainty (GCM (b), RCM
(c), internal variability (d), and residual (e)), expressed in%of contribution to total uncertainty. Here,T corresponds to the total
uncertainty variance, as described in the ‘AnnexMethodology’.
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strongly increases throughout the century and prevails
after about 2050; at last in the southern regions, the
contribution from IV remains very high throughout
the century, and in South Africa, the contribution
from GCM uncertainty is higher than the one from
RCMafter 2050.

Furthermore, we show (supplementary figure 4)
that the confidence interval can be very different in the
seasonal means as compared to the annual means, and
from one season to another. For example, the con-
fidence interval over the Sahel is very large in JJA but
very small in DJF. Conversely over southern Africa,
the confidence interval is very large in DJF and MAM,
but much smaller in JJA and SON. In the annual
means and the seasonalmeans, the confidence interval
generally increases as a result of RCMuncertainty.

3.3. Expected changes in the temporal variability of
PVpot
Figures 7(a) and (b) show the mean changes in PVpot
annual (a) and daily (b) variability for each region by
the end of the century (red dot), in addition to the

results obtained for each simulation chain respectively
(blue dots). Annual and daily variability are not
expected to change a lot on average, whatever the
region. Annual variability is expected to change by a
maximum of 1% (as compared to the value of PVpot
over the reference period) depending on the simula-
tion, generally increasing in regions 1 (North Africa),
and decreasing in region 3, 8, and 9 (West Sahel and
southern Africa, figure 7(a)). The daily variability is
expected to change by a maximum of 1.5% (as
compared to the value obtained for PVpot over the
reference period) depending on the simulation, gen-
erally increasing in regions 5 and 6 (Guinea Coast and
East Africa), and decreasing in regions 1, 8, and 9
(North Africa and southern Africa, figure 7(b)). The
expected change is rather low on average for the whole
ensemble, but may be rather large depending on the
models. For a number of regions, even the sign of
change is not certain. For instance, the daily variability
may either increase or conversely decrease depending
on the simulation chain. Additional analyses (supple-
mentary figures 5) show that interannual variability is

Figure 5.Ensemblemean climate change responseμ for seasonalmean PVpot for the end of the century (2070–2099;%), as averaged
over (a) June–July–August (JJA), (b) September–October–November (SON), (c)December–January–February (DJF), and (d)March–
April–May (MAM).
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expected to stay relatively stable in all four seasons,
with a large dispersion across models, except for DJF
where it clearly decreases in almost all the models in
region 1 (North Africa) and 2 (Sahara), on average by
1% (as compared to the value of PVpot over the
reference period). Daily variability is also expected to
stay relatively stable in all four seasons, with a large
dispersion across models, especially over the Sahel
(region 3 and 4) in JJA and SON. In addition, daily
variability is expected to clearly increase in region 7
(Sub-South Africa) in SON and in region 5 (Guinea
Coast) in DJF, and clearly decrease in regions 8 and 9
(southern Africa) in JJA and SON, and in region 1 in
SONandMAM.

4.Discussion and conclusion

In agreement with previous studies (e.g. [10, 20]), we
find that except for a few regions (northern coast and
10 °S), the annual mean solar potential in Africa is
expected to decrease over the 21st century (on average
by 4%), in particular over the Horn of Africa (up to
6%). In addition, the solar potential is expected to

increase on average by +4% over the Sahel in JJA
(rainy season over the Sahel), and decrease by more
than 8% over the Horn of Africa in DJF. As in [20], we
find that the expected reduction in solar potential is a
direct result of decreasing solar radiation (except for
southern Africa where solar radiation increases) and
increasing temperature (decreases PVpot on average
by 2.5% points; we recall here that this estimation is
relatively approximative, as PVpot is computed from
daily means (see Annex Methodology)). The warm-
ing-induced reduction, also seen in Europe [15] and
West Africa [20], calls for future efforts to reduce the
dependency of the PV cells performance on the
ambient temperature [31]. As for Europe [15], our
results project little changes in the temporal stability
(daily, annual, and decadal) of the solar potential in all
seasons.

Large uncertainties are associated with our projec-
tions, except over the Sahara where uncertainty is very
small (only resulting from IV; figures 2–4, and 6). Else-
where, even the sign of change is not sure, depending
on the simulation chain considered. The same applies
for possible changes in variability (figure 7). This

Figure 6.Annual PVpot time series, in%, of the ensemblemean climate change responseμ (thick blue curve), as averaged over the
nine regions depicted infigure 1. The bounds of the 90% confidence interval, represented byQ95 andQ05 (most external black
curves), is decomposed into the individual contribution of each source of uncertainty, represented by different colored shades (GCM
uncertainty in red, RCMuncertainty in green, internal variability uncertainty inmagenta, andmethod residual in black). Also shown
are the probabilities, for each region, for PVpot to decrease bymore than 5%by 2050 and 2099.Note that the fact that the changes are
expressed in relative terms partly contributes to obtain the smallest changes over regionswith the highest potential. See theMethods
section for details.
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implies that despite a small change in the ensemble
mean (mean resource and variability of the resource),
important changes may actually occur in reality. In
particular, we find that the probability for the annual
mean solar potential to decrease below 5% is quasi null
by 2050, but reaches 10%–20% by the end of the cen-
tury over most of the continent (Sahara, Sahel, Guinea
Coast, and eastern Africa; figure 6). Over the Sahel,
this probability is still high in JJA (10.5% in 2050 and
18% by the end of the century) despite the projected
strong increase in mean solar potential (+4% on aver-
age by the end of the century; supplementary figure 4).
Over theHorn of Africa, this probability is very high in
DJF (26% in 2050 and 51.3% by the end of the cen-
tury) due to the strong decrease projected in the DJF
solar potential (more than 8%; supplementary figure
4). The stability of the resource (mean and variability)
is thus to be put in perspective compared to this rela-
tively large uncertainty. Although the significant
uncertainty associated to projections has not the capa-
city to endanger the development and viability of solar
projects in this region [32–35], it should be accounted
for during the design of solar projects.

This uncertainty mainly results from RCM uncer-
tainty over most of the continent. A large part of total
uncertainty is also due to climate IV over southern
Africa, the Guinea Coast and parts of the northern
coast. In these regions, the irreducible IV will lead to
rather large, unpredictable, variations of the resource.
Elsewhere, uncertainty can be reduced with the
improvements of RCMs. In particular, we suggest that
the different parametrizations used in each RCM, and
more specifically the ones for cloud cover and convec-
tion (supplementary figure 6), play an important role
explaining this large RCM dispersion (e.g. [36, 37]).
An in-depth investigation is required to fully address
this issue, which is currently ongoing. Note also that
[11] shows that the projections of solar radiation is

different in the multimodel mean GCMs than it is in
the multimodel mean RCMs because of the different
behavior of the cloud cover in global and regional
models, which further highlights the important role of
cloud cover simulation. At last, it is important to recall
that an additional source of uncertainty, not accoun-
ted for in QUALYPSO, results from the quality of the
projections (mean and variability), that varies greatly
from a region to another (supplementary figure 1).

A more critical limitation is likely related to the
impacts of aerosols, abundant in Africa. Aerosols,
natural (e.g. Saharan dust) and anthropogenic (e.g.
pollution), can significantly affect the potential for
solar production (e.g. [38]). First, they fully modulate
RSDS via their direct impacts on the incoming solar
radiation and their indirect impacts on cloud cover.
In addition, their deposition on PV arrays is expected
to decrease the efficiency of PV cells. Thus, a mod-
ification of aerosols concentrations as a result of land
use changes, modification in dust events intensity
and frequency (and especially Saharan dusts), or pol-
lution, could have a critical effect on the potential for
solar production. For instance, the expected changes
in surface wind speed seen in figure 2(c) can affect the
solar potential via their impacts on the synoptic cir-
culation and the displacement of dust from the
source (e.g. Sahara) to the different regions of Africa.
Unfortunately, the RCMs used in CORDEX-AFRICA
poorly represent these different interactions of the
aerosols with the climate. In addition, the climate
scenarios used in CORDEX-AFRICA (e.g. RCP8.5)
have been shown to strongly underestimate the pre-
sent and future anthropogenic emissions of aerosols
in Africa [39]. Depending on the future policy scenar-
ios for anthropogenic emissions of aerosols, solar
potential over Africa could thus vary by up to 7% in
2030 [38]. According to the authors, this impact is
related to the global effect of the aerosols on the large

Figure 7.Projected changes of the PVpot (a) annual variability and (b) daily variability, in%, as averaged over the nine regions
depicted in figure 1. Shown are the anomalies ((2070–2099)–(1976–2005)) of the annual and daily variability, expressed in%as
compared to the referencemean value of PVpot, computed from the 17 raw simulations (blue dots) and the corresponding ensemble
mean (red dots). See theMethods section for details.
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scale circulation and associated cloud cover patterns,
rather than to their local effects on the atmospheric
properties. A deep investigation of the skill of current
models to simulate relevant aerosols dynamics and
concentration and in turn of the effects of aerosols on
solar resource is definitely to be carried out in future
works.

Finally, as in [10], our projections result solely
from the future changes imposed in the forcings under
the RCP8.5 scenario. Although the identification of
such forcings is beyond the scope of this study, we sug-
gest that the projected warming results at least partly
from the imposed increase in greenhouse gases (e.g.
[40]), while the projections of RSDS result at least
partly from the imposed changes in aerosols, through
their impacts on the local atmospheric optical proper-
ties and/or cloud cover patterns (e.g. [38]). In fact, the
resemblance between our projected RSDS pattern of
change and the projected cloud cover pattern of
change from the fifth assessment report (cloud cover is
projected to increase (decrease) by about+5% (5%)
over eastern (southern) Africa; [40]) points towards a
strong role of the nebulosity in explaining the projec-
tions of RSDS. As previously mention, the important
role of cloud cover is also suggested by [11], and our
study further supports this point.

Acknowledgments

The research leading to this publication received
funding from the French public research institution
IRD, and was supported by the French National
program LEFE (Les Enveloppes Fluides et l’Environ-
nement). We acknowledge the usage of the CORDEX-
AFRICA dataset from the World Climate Research
Program’s Working Group on Regional Climate
(http://cordex.org/data-access/esgf/), and the usage
of the SARAH2 dataset (https://wui.cmsaf.eu/safira/
action/viewDoiDetails?acronym=SARAH_V002).
This work is a contribution to CORDEX-AFRICA
initiative. The research leading to this publication is
co-funded by the NERC/DFID ‘Future Climate for
Africa’ program under the AMMA-2050 project,
Grant No. NE/M019969/1 and by IRD (Institut de
Recherche pour le Développement; France). We also
thank the staff at the IGE computation center (Patrick
Juen andWajdi Nechba) for their technical support, as
well as Nicolas Plain for his role in accessing the
SARAH2data and his insights into the dataset.

AnnexMethodology

A.1. Computation of the power generation potential
PVpot
Following [15, 27], the potential production of solar
power for a given time t can be computed as follows:

=( ) ( ) ( ) ( )/t P t tPVpot RSDS RSDS , 1R STC

where RSDS(t) is surface downwelling shortwave
radiation for t, the production for the standard test
conditions is RSDSSTC=1000Wm−2, and PR is the
performance ratio of the PV cells, expressed as

g= + -[ ( ) ] ( )( )P T t T1 , 2R t cell STC

where Tcell is the PV cell temperature, TSTC=25 °C,
and γ=−0.005 °C−1, considering the typical
response of monocrystalline silicon solar panels. Tcell
is expressed as a linear function of TAS, RSDS and
W10:

= + + +( ) ( ) ( ) ( )
( )

T t c c t c t c tTAS RSDS W10 ,
3

cell 1 2 3 4

with c1=4.3 °C, c2=0.943, c3=0.028 °Cm2W−1,
and c4=−1.528 °C s m−1 [41]. Hence, if ambient
conditions correspond to the standard conditions,
PVpot(t) equals 1 and PV power production reaches
the rated value. If Tcell>25 °C and/or RSDS<
1000Wm−2, then PVpot(t) <1 and the PV produc-
tion is lower than the rated value. Because CORDEX-
AFRICA is only available at the daily time step, we
apply the instantaneous PVpot(t) equations described
above to daily means. Although this may trigger a
slight difference due to the covariability between
temperature and radiation (low temperature at night,
large temperature during daytime), additional analyses
(not shown) show that in the West African stations
tested, simulations with high resolution data show no
significant differences with daily mean simulations.
We expect those results to be rather similar for the
whole continent.

We consider the impact of climate change on the
annual and seasonal mean potential production, as
well as on its day-to-day and year-to-year variability.
At last, we compute the changes in PVpot resulting
from changes in either TAS (TAS-induced) or W10
(W10-induced) as detailed in [15] and described fur-
ther down. At this point, note that our study does not
account for other parameters affecting the outdoor
performance of PVmodules efficiency such as deposi-
tion of dust on the PV panels, nor the tilt of the PV
panels, the solar spectrum distribution and the air
mass effect on it [42, 43].

A.2. Estimation of the different sources of
uncertainty usingQUALYPSO
Conversely to typical ANOVA approaches used for
such analysis, QUALYPSO [28] allows for a robust
partition and for an unbiased estimation of all
uncertainty components inmultimembermultimodel
ensembles of projections, even in the case of single run
ensembles (i.e. when only one experiment is available
for some or all simulation chains; which is the case
here as only one run is available for each GCM) and
even when ensembles are incomplete (i.e. when not all
GCM/RCM combinations are available which is also
the case here; only 17 GCM/RCM combinations are
available out of the 50 (=10×5) possible GCM/
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RCM combinations, see table 1). Using QUALYPSO,
we can estimate the mean climate change response of
the considered variable, the total uncertainty of the
projections and the contribution of the different
uncertainty components to it. More specifically, the
different steps ofQUALYPSO are as follows.

1. For each climate chain (each GCM/RCM combi-
nation), extraction of the climate response of the
chain for the considered variable achieved by
fitting a trendmodel.

2. For each climate chain, computation of the
change variables (i.e. absolute or relative differ-
ences) between a future and a reference period
(centered here on 1990).

3. Using the climate change responses of all available
GCM/RCM chains, estimation of the mean cli-
mate change response of the ensemble of chains.

4. Decomposition of the climate change response
using an analysis of variance (ANOVA) model.
The deviations of each GCM and each RCM from
the mean climate change response of the ensem-
ble are estimated using data augmentation and
Bayesianmethods.

5. The dispersion (variance) between the main
effects obtained for the different GCMs (resp.
RCMs) gives an estimate of themodel uncertainty
due to GCMs (resp. RCMs). We refer to this
dispersion as GCM (resp. RCM) uncertainty in
the text.

6. The IV is estimated by the variance of the
deviations from the climate change response of
the simulation chains.

For further details on the method, the reader is
referred to [28]. QUALYPSO estimates can be pro-
duced for each prediction lead time. Here, we mainly
present results obtained for changes between
2070–2099 and 1976–2005. Note that for W10 and
PVpot, QUALYPSO is applied on the change variable,
as we argue that for W10 and PVpot, the simulated
changes are more reliable than the absolute values.
Hence, for W10 and PVpot, the projected changes in
mean W10, mean PVpot, are expressed in relative
terms (%).

In our work, we give the ensemble mean and the
90% confidence interval of the projections derived
fromQUALYPSO. Under the assumption that change
variables for each year t are normally distributed, the
bounds of this interval are obtained from quantiles 95
(Q95) and 05 (Q05) as follows:

m

m

= +

´ = -

( ) ( ) ( )
( ) ( ) ( ) ( )

t t T t

t t T t

Q95 1.96 ,

and Q05 1.96 , 4

where μ(t) is the ensemble mean climate change
response, andT(t) is the total uncertainty variance.We

additionally compute the response-to-uncertainty
ratio (R2U), as the ratio between the ensemble mean
climate change response μ(t) and the total uncertainty
standard deviation =( ( ) ( ) )t T tSTD . Thus, R2U is
a measure of the significance of changes, i.e. when
R2U>1, the magnitude of the signal exceeds stan-
dard deviation of the ensemble.

A.3. Computation of TAS-induced andW10-
induced PVpot changes
For each of the 17GCM/RCMchains, we compute the
changes in PVpot due to a change in either TAS (TAS-
induced) orW10 (W10-induced) as follows. Following
[15], the changes in PVpot(t) that result from a change
in TAS can be expressed as

a
D

= D
( )

( ) ( ) ( )
t

t t

TAS_induced_PVpot

RSDS . TAS , 53

whereΔTAS(t) is the change in TAS (=TAS anomalies
computed from the TAS climate response of the
chain), RSDS(t) is the absolute value of RSDS taken
from the RSDS climate response of the chain, and
α3=−4.715× 10-6 Wm−2. Then, we express PVpot
in relative term as follows:

a
D

= D
( )

( ( ) ) ( )/

t

t

TAS_induced_PVpot_rel

RSDS . TAS PVpot , 63 ref

whereΔTAS_induced_PVpot_rel(t) is theΔTAS_in-
duced_PVpot(t) relative to the reference period,
and PVpotref is the absolute value of PVpot for
the reference period, taken from the PVpot
climate response of the chain. Using =( )tRSDS

( ) ( )/t PPVpot . RSDS tRSTC from equation (1) we
obtain

a
D

=
´ D

( )
( ( )
( )) ( )

/

/

t

t P

t

TAS_induced_PVpot_rel

.PVpot . RSDS

. TAS PVpot , 7
R3 STC

ref

where PR(t) is computed from the raw simulations
according to equation (2), and PVpot(t) and PVpotref
are taken from the PVpot climate response. The same
procedure is applied to W10 using (adaptation from
equation (5)) of [15]:

a
D

= D
( )

( ) ( )
t

t

W10_induced_PVpot

RSDS . W10, 84

where α4=7.64× 10−6 Wm−2 m s−1. Note that the
uncertainty range is not presented for TAS-induced
and W10-induced because they cannot be computed
due to the expression of equations (5)–(8).

A.4. Analyzing the temporal variability
Weanalyze temporal variability at the daily and annual
time scales. We compute both variables from 30 year
periods. For interannual variability, we first detrend
the time series of the annual values obtained for each
GCM/RCM chain using the climate response of the
chain (to avoid capturing long-term changes rather
than those occurring at the scales of interest). For daily
variability, the daily time series of each chain is also
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detrended, and the annual cycle is removed (to avoid
the masking effect of this cycle; practically, for each
calendar day, the interannual mean value for that
calendar day is removed). The daily and yearly
variability are computed as the normalized standard
deviation of these preprocessed time series, and
expressed in%. The normalization consists in dividing
the standard deviation by the climatology of the
reference period (1976–2005). The described proce-
dure is applied to each of the 17 raw time series of
PVpot before computing the corresponding ensemble
mean. Note that since variability is expressed in
percentages, the projected changes in variability are
given in percentage points.
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([45]; CORDEX-AFRICA CLM). The remaining
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soon be openly available at DOI: https://cera-www.
dkrz.de/WDCC/ui/cerasearch/q?
page=0&query=cordex+AFR-44&rows=15.
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