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Abstract: The main objective of this work was to retrieve surface soil moisture (SSM) by using
scattering models and a support vector machine (SVM) technique driven by backscattering coefficients
obtained from Sentinel-1 satellite images acquired over bare agricultural soil in the Tensfit basin of
Morocco. Two backscattering models were selected in this study due to their wide use in inversion
procedures: the theoretical integral equation model (IEM) and the semi-empirical model (Oh). To this
end, the sensitivity of the SAR backscattering coefficients at VV (σ◦vv) and VH (σ◦vh) polarizations
to in situ soil moisture data were analyzed first. As expected, the results showed that over bare
soil the σ◦vv was well correlated with SSM compared to the σ◦vh, which showed more dispersion
with correlation coefficients values (r) of about 0.84 and 0.61 for the VV and VH polarizations,
respectively. Afterwards, these values of σ◦vv were compared to those simulated by the backscatter
models. It was found that IEM driven by the measured length correlation L slightly underestimated
SAR backscatter coefficients compared to the Oh model with a bias of about −0.7 dB and −1.2 dB
and a root mean square (RMSE) of about 1.1 dB and 1.5 dB for Oh and IEM models, respectively.
However, the use of an optimal value of L significantly improved the bias of IEM, which became near
to zero, and the RMSE decreased to 0.9 dB. Then, a classical inversion approach of σ◦vv observations
based on backscattering model is compared to a data driven retrieval technic (SVM). By comparing
the retrieved soil moisture against ground truth measurements, it was found that results of SVM
were very encouraging and were close to those obtained by IEM model. The bias and RMSE were
about 0.28 vol.% and 2.77 vol.% and −0.13 vol.% and 2.71 vol.% for SVM and IEM, respectively.
However, by taking into account the difficultly of obtaining roughness parameter at large scale, it was
concluded that SVM is still a useful tool to retrieve soil moisture, and therefore, can be fairly used to
generate maps at such scales.
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1. Introduction

Estimates of the regional spatial-temporal variability of surface soil moisture (SSM) are in crucial
need for better understanding the energy, water, and carbon exchanges at the land–atmosphere
interface [1]. Indeed, surface soil moisture is a key state variable in various processes occurring on
this interface, such as the partitioning of precipitation into infiltration and runoff [2] or of incoming
solar radiation into sensible and latent heat [3–5]. Therefore, the involvement of accurate estimates
of SSM in hydro-meteorological, climatic, and agricultural research and operations can be very
useful for monitoring droughts [6], flood predictions [7,8], precipitations estimates [9,10], crop yield
estimates [11], and weather forecasting [12]. For agricultural applications, an accurate description of
soil moisture conditions at the field scale is of crucial importance before sowing and during the first
stage of crop growth in order to determine the optimal sowing date and to schedule irrigation inputs.
Conventionally, soil moisture can be accurately retrieved through in situ measurements, such as the
time-domain reflectometry [13], cosmic-ray neutron method [14,15], and the gravimetric method [16].
However, for large scale applications, single measurements provided by these techniques have
limited meaning because the moisture exhibits a strong spatio-temporal variability at several scales
in relation to the heterogeneity of soil texture, topography, vegetation, and climate [17]. In practice,
the straightforward solution for retrieving soil moisture at a large scale is to deploy a network of single
measurements devices and then extrapolate the observations to provide spatial area-averaged values.
However, due to high instrumental, logistic, and time costs, this solution cannot be implemented on
an operational basis.

In this regard, the synthetic aperture radar systems (SAR) can be a valuable tool to provide
fine spatial-temporal resolution for soil moisture estimation over agricultural areas [18–22]. Recently
launched, Sentinel-1, which comprises two identical satellites (1A and 1B), potentially provides
backscatter coefficient data at 20 m resolution every 3 days [23]. Considering bare soil, backscatter
coefficient is closely related to soil moisture, mainly through its dielectric constant [18,24–26]. Thus,
many backscattering models, varying in the degree of complexity, precision, and validity, have
been developed for retrieving SSM over bare soil. These models can be categorized into three
groups [21,27,28]: empirical, semi-empirical, and theoretical models. Based on a large number of
experimental measurements and without any physical basis, purely empirical models were constructed
to retrieve SSM from radar backscattering coefficient only under site specific conditions [29–32]. However,
these models are generally non-transferable directly to others sites [27,29,33–37]. Semi-empirical models,
such as the ones developed in [33,38], have been proposed as practical solutions to overcome the
problem of the non-transferability. In spite of this advantage, the validity domain of these models is
still limited to the range of data used for calibration [21]. Unlike empirical and semi-empirical models,
physical models, such as the integral equation model (IEM) [39] can be fairly used in a wide range
of configuration of acquisitions and of surface parameters [27,40]. Nevertheless, the main limiting
factor to the use of theoretical models for surface soil moisture retrieval, particularly over large areas,
appears to be the difficulty of describing the surface roughness [21,41]. Indeed, even with extensive in
situ sampling of surface roughness, it remains difficult to characterize surface roughness at the field
scale or larger due to the natural variability of the soil [42].

To surmount the limitations of empirical, semi-empirical, and physical models, machine-learning
approaches provide an alternative tool to solve prediction problems based on an analysis of the data
that characterizes the system under study with only a limited number of assumptions about the
physical behavior of this system [43,44]. Among these approaches, one can cite the artificial neural
network algorithm [45–47] and the support vector machine (SVM) technique. The latter, which is
based on statistical learning theory, has been applied to a variety of themes, such as the inversion and
classification problems, and has attracted the attention of many researchers due to their prediction
accuracy and modeling conveniences [48–53]. Note that this technique which was first developed
for the purpose of a classification problem (referred to as SVC) by [54], can be also used to perform
regression tasks [48,55,56]. A version of a SVM for regression was first proposed in 1997 by [57] and
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is called support vector regression (SVR). The main difference between both algorithms is that SVC
predicts discrete categorical labels by involving one slack variable to each training data point in the
optimization function, whereas SVR predicts continuous ordered variables using two slack variables
for each training data point.

Concerning the application of SVR for the prediction of soil moisture, one can cite, for example,
the work of [58], which demonstrated the potential of this technique compared to an artificial neural
network (ANN) algorithm for predicting soil moisture for four and seven days in advance using
meteorological variables. Additionally, [48], have used this technique for retrieving soil moisture
from remote sensing data by combining backscatter from the Tropical Rainfall Measuring Mission
(TRMM), and a normalized difference vegetation index (NDVI) from an advanced very high resolution
radiometer (AVHRR), and they revealed that this technique performs better for soil moisture retrieval
than the multivariate linear regression model (MLR). Recently, [59], confirmed the accuracy of the SVR
model to predict soil moisture from soil temperature, NDVI, rainfall, and soil moisture observed the
day before. To our knowledge, although SVR has been used in past studies for soil moisture retrieval,
none of the studies have tested this algorithm with high resolution radar data. Moreover, there is
no previous work that has evaluated the efficiency of SVR, driven specifically with Sentinel-1 data,
on bare agricultural soils by comparison to more traditional techniques based on soil backscattering
model inversion. In this research, the efficiency of SVR was evaluated against the soil backscattering
model’s inversion for soil moisture retrieval over bare agricultural soil using Sentinel-1 data. This
paper is organized as follows: In Section 2, the study site and experimental setup are presented.
Section 3 describes the backscattering models used to retrieve surface soil moisture. Section 4 contains
a discussion about the results obtained. Finally, the conclusions are presented in the last section.

2. Study Site and Data Description

2.1. Study Site

The study took place in Sidi Rahal region, which is located 60 km east of Marrakech city, Morocco
(Figure 1). The region is characterized by a semi-arid Mediterranean climate, with an average yearly
precipitation in the order of 250 mm and an evaporative demand of around 1600 mm per year
according to the FAO method [60,61]. The terrain is flat with elevation of 550 m above sea level, and the
soil is characterized by a fine texture with 47% clay, 33% loam, and 18.5% sand. The agricultural
fields, mainly irrigated and rainfall wheat crops [62], remained under bare soil conditions during
the 2015–2016 agricultural season due to an unusual lack of precipitation in autumn 2015. In this
study, only one experimental field of 1 ha, which is bounded by yellow in Figure 1, was selected to
investigate the potential of backscatter models and SVR for retrieving surface soil moisture (SSM). The
surface characteristics (SSM and surface roughness) were measured within this field. The red contour
(Figure 1) which contains the experimental field was used to map SSM.

2.2. Ground Observations

At the center of the experimental field (Figure 1), a 2 m meteorological tower was installed in
December 2013 in the frame work of the Joint International Laboratory TREMA (a French acronym
for remote sensing and water resources in the semi-arid Mediterranean [61]). This tower is equipped
with a set of sensors for measuring rainfall, global radiation, temperature, relative humidity, and wind
speed at a half-hourly time step. The half hourly soil moisture (SM) is continuously measured using
CS616 water content reflectometers (Campbell Scientific Ltd.) at different depths (5, 10, 20, 30, 50,
70 cm). These sensors were installed in a soil pit of 1 m depth located just below the meteorological
tower. Two sensors were installed at 5 cm depth and only one sensor for the other depths. For
comparison with the Sentinel-1 data, only the in situ measurements of the topsoil (5 cm) moisture
content were used in this study. Data were extracted on the 42 dates when C-SAR Sentinel-1 images
were available. Over the study region, these images were taken at 06:30 and 18:30; therefore, only
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the average of the values collected between 06:00 and 19:00 was used. Additionally, the soil surface
roughness was measured using a 1 m long needle-profilometer (Figure 2) and a sampling interval of
2 cm. Ten measurements were taken at several locations over the experimental field and were used to
calculate the two roughness parameters’ rmss (root mean squares)—surface height (s) and correlation
length (L)—by using the mean of all experimental correlation functions.The processing of these data
was done using a matlab software by providing all taken photos (as shown in (Figure 2)) and yielded
averaged values of s and L over the experimental field.

2.3. SAR Satellite Images

Forty-two C-band SAR images acquired by the Sentinel-1 sensors between January and September
2016 over the study site were used in this work. Sentinel-1 comprises two identical satellites, 1A and
1B, which were launched in 2014 and 2016 respectively. With both satellites operating, the repeat
cycle is 6 days. Table 1 lists the dates of the Sentinel-1 overpasses over our site during the study
period. Over land, S1A and S1B operate in Interferometric Wide Swath mode, providing data at
the cross polarization VH (vertical-horizontal) and co-polarization VV (vertical-vertical) mode with
a 250 km swath at a 5 by 20 m spatial resolution. The incidence angle of S1A and S1B over the
study site is about 40◦. Level 1 S1A and S1B products were preprocessed using the Google Earth
Engine cloud-based platform [63], in four steps: (i) thermal noise removal, (ii) radiometric calibration,
(iii) terrain correction using SRTM (Shuttle Radar Topography Mission) DEM (Digital Elevation Model)
at 30 m, and (iv) filtering speckle effects using the 5× 5 refined Lee speckle filter described in [64,65].
Finally, the backscattering coefficients were then expressed in decibels (dB) using the formula:

σ◦(dB) = 10 log10(σ
◦) (1)

Figure 1. Location of Sidi Rahal site (east of Marrakech) in the Tensift basin, central Morocco.
The experimental site (green contour), experimental field (yellow contour), positions of meteorological
tower, in situ soil moisture measurements, and the areas of soil moisture (red contour) are marked.
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Figure 2. Example of the needle-profilometer used in this study.

Table 1. Dates of the Sentinel-1 overpasses over our site during the study period. The Sentinel-1 images
used for training or validation sets are also presented.

Overpasses Date (dd/mm/yyyy) Training and Validation Datasets

07/01/2016 Training
15/01/2016 Validation
19/01/2016 Training
27/01/2016 Validation
31/01/2016 Training
08/02/2016 Validation
12/02/2016 Training
20/02/2016 Validation
24/02/2016 Training
03/03/2016 Validation
07/03/2016 Training
19/03/2016 Validation
27/03/2016 Training
31/03/2016 Validation
08/04/2016 Training
12/04/2016 Validation
20/04/2016 Training
24/04/2016 Validation
02/05/2016 Training
06/05/2016 Validation
14/05/2016 Training
18/05/2016 Validation
26/05/2016 Training
30/05/2016 Validation
07/06/2016 Training
11/06/2016 Validation
01/07/2016 Training
05/07/2016 Validation
13/07/2016 Training
17/07/2016 Validation
25/07/2016 Training
29/07/2016 Validation
06/08/2016 Training
10/08/2016 Validation
18/08/2016 Training
22/08/2016 Validation
30/08/2016 Training
03/09/2016 Validation
11/09/2016 Training
15/09/2016 Validation
23/09/2016 Training
27/09/2016 Validation
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3. Backscattering Models

The relation between the soil surface moisture and SAR backscattering products is usually
analyzed using backscattering models. Among numerous backscattering models, the most widely
applied are the theoretical integral equation (IEM) and the semi-empirical Oh models. Herein, two
versions of the physical integrated equation model were tested: the original one (IEM) and that
modified recently by [66] IEM_B which uses an empirical model for estimating the correlation length l
instead of using measured value. However, for the Oh model, only the version developed in 1992 was
used. Indeed, several studies have showed that, in the C-band, this version simulates slightly better the
backscattering in VV polarization than those developed later in 1994, 2002, and 2004 ([67,68]). In what
follows, a description of both models is presented. As the Sentinel-1 provides only the backscattering
coefficients in VH and VV polarizations, only the semi-empirical and theoretical expressions of these
coefficients are provided.

3.1. The Semi-Empirical Oh Model

Based on existing theoretical scattering models, scatterometer measurements, and airborne SAR
observations over a wide variety of bare soil surfaces, [38] developed a semi-empirical backscattering
model in order to reproduce the radar backscattering coefficients in VH, VV, and HH polarizations
(σ◦vh, σ◦vv and σ◦hh). This model relates the co-polarized ratio p(= σ◦hh/σ◦vv) and the cross-polarized ratio
q(= σ◦vh/σ◦vv) to radar wave incident angle (θ, in radians), wave number (k = 2π/λ where λ is the
wavelength), standard deviation of surface height (Hrms), correlation length (L), and soil moisture
(mv) or soil dielectric constant(εr). The empirical expressions of σ◦vh, σ◦vv are as follows:

σ◦vv = g cos3 θ · [Rv + Rh]/
√

p (2)

σ◦vh = qσ◦vv (3)

where
q = 0.23(1− exp(−ks))

√
R◦ (4)

√
p = 1− exp(−ks).(2θ/π)[1/3R◦ ] (5)

g = 0.7
[
1− exp

(
−0.65(ks)1.8

)]
. (6)

R◦, Rv, Rh denote the Fresnel coefficients given by the following expressions:

R◦ =
∣∣∣∣1−√εr

1 +
√

εr

∣∣∣∣2 , Rv =
εr cos θ −

√
εr − sin2 θ(

εr cos θ −
√

εr − sin2 θ
)2 , Rh =

cos θ −
√

εr − sin2 θ(
cos θ −

√
εr − sin2 θ

)2 . (7)

3.2. The Physical Integral Equation Model (IEM)

The integral equation IEM is a theoretical backscattering model applicable to a wide range of
roughness conditions [39]. The model solves the integral equations for the surface fields, taking into
account the dielectric constant (εr), the standard deviation of surface height (Hrms), the form of the
correlation function, and the correlation length (L); and the sensor parameters, such as the incidence
angle (θ), the polarization (pq with p, q = h or v), and the radar wave number. The model is valid with
kHrms ≤ 3 which is commonly encountered for most agricultural surfaces. The backscatter coefficient
of the surface contribution is expressed as:
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σ◦pp =
k
2
| fpp|2e−4k2 Hrms2 cos2 θ

+∞

∑
n=1

(4k2Hrms2 cos2 θ)n

n!
W(n)(2k sin θ, 0)+

k
2

Re( f ∗ppFpp)e−3k2 Hrms2 cos2 θ
+∞

∑
n=1

(4k2Hrms2 cos2 θ)n

n!
W(n)(2k sin θ, 0)+

k
8
|Fpp|2e−2k2 Hrms2 cos2 θ

+∞

∑
n=1

(4k2Hrms2 cos2 θ)n

n!
W(n)(2k sin θ, 0). (8)

At cross polarization, the backscattering coefficient is as follows:

σ◦hv =
k

16π
e−2k2 Hrms2 cos2 θ

+∞

∑
n=1

+∞

∑
n=1

(4k2Hrms2 cos2 θ)n+m

n!m!∫∫ [
|Fhv(u, v)|2+F∗hv(−u,−v)

]
Wm(u + k sin θ, v)dudv, (9)

where:
fhh =

−2Rh
cos θ

; fvv =
−2Rv

cos θ
(10)

Fhh = 2
sin2 θ

cos θ

[
4Rh −

(
1− 1

εr

)
(1 + Rh)

2
]

(11)

Fvv = 2
sin2 θ

cos θ

[(
1− εr cos2 θ

µrεr − sin2 θ

)
(1− Rv)

2 +

(
1− 1

εr

)
(1 + Rv)

2
]

(12)

Fhv(u, v) =
uv

k cos θ

 8R2
√

k2 − u2 − v2
+
−2 + 6R2 + (1+R)2

εr
+ εr(1− R)2√

εrk2 − u2 − v2

 . (13)

R =
Rv − Rh

2
(14)

εr: dielectric constant obtained using the Hallikaimen empirical model (Reference).
µr: relative permittivity.
Re: real part of the complex number.
f ∗pp: conjugate of the complex number fpp.
W(n) is the Fourier transform of the nth power of the surface correlation.ρ(x, y) function:

W(n)(a, b) =
1

2π

∫∫
ρn(x, y)e−i(ax+by)dxdy. (15)

The expression of the correlation function ρ(x, y) is related to the nature of its distribution and
can be defined for one-dimensional roughness profiles as:

ρ(x, y) =


e−

x
L : exponential dsitribution

e−(
x
L )

2
: gaussian dsitribution

. (16)

In order to evaluate the accuracies of different approaches used in this study, the root mean square
(RMSE) and bias are calculated according to the following equations (ys and yo are the simulated and
observed values, respectively):

RMSE =

√
1
n

n

∑
k=1

(ysk − yok)2 (17)
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Bias =
1
n

n

∑
k=1

(ysk − yok) (18)

4. Results and Discussion

In this study, the Sentinel-1 backscattering coefficient was averaged on the experimental
field surrounding the meteorological station (yellow contour in Figure 1). Additionally, the local
measurement of the soil moisture measured near to the meteorological tower (see ground observations
section) was assumed to be representative for the experimental field due the absence of the vegetation
and irrigation. As mentioned before, only an average of the values collected between 6 h p.m./a.m. and
7 p.m./a.m. was used. Additionally, the roughness characteristics, including rms surface height (s) and
correlation length (L), were averaged using sampling taken at different locations on the experimental
field. Overall, this section is organized as follows: firstly, the empirical relation between the Sentinel-1
backscattering coefficient and the top soil moisture is investigated. Secondly, the potential of Oh and
IEM models for simulating the backscattering coefficient, using the measured soil moisture and soil
surface roughness, is evaluated based on the comparison with Sentinel-1 backscattering coefficients.
Thirdly, the surface soil moisture over the experimental field is retrieved using two approaches:
non-linear regression (support vector regression—SVR) and the inversion of Oh and IEM models.
Both approaches were driven by Sentinel-1 backscattering coefficient. Likewise, the measured soil
roughness was used as input for the inverse algorithm of Oh and IEM. Finally, the SVR algorithm was
used to map surface soil moisture using only the averaged backscattering coefficient derived from
Sentinel-1 and extracted over the mapping area (red color, Figure 1)

4.1. Relation between Radar Backscattering Coefficient and Soil Moisture

The high spatial resolution of the Sentinel-1 data (10 m) made it possible to analyze the radar
signal according to surface parameters such as the soil moisture and roughness at the plot scale.
In the current study, the analysis was focused only on the soil moisture, assuming that the roughness
effect on radar signal was approximately the same for all of the experiment period. Indeed, the soil
was not ploughed up due to an unusual lack of precipitation in autumn/winter 2015. Additionally,
the sensitivity of radar signal to soil moisture SM is strongly affected by the incidence angle. Indeed,
previous studies, using C-band data, have pointed out that this sensitivity is greater at the low to
medium incidence angles (20◦–37◦) and decreases with increasing incidence angle [29,30,69]. However,
as mentioned before, the incidence angle of S1 over the study site was about 40◦, and therefore, its
sensitivity could not be analyzed in this work.

As reported in several research studies realized over bare agricultural areas [70–73], the Sentinel-1
backscattering coefficients σ◦vv and σ◦vh were related to measured soil moisture using linear regression
(Figure 3). During this study, the soil moisture values varied between 4 and 25 vol.% and the values
of σ◦vh and σ◦vv ranged from −21.61 dB to −25.05 dB (~3.43 dB) and from −11.97 dB to −16.73 dB
(~4.76 dB), respectively. By analyzing this figure, it can be clearly seen that the Sentinel-1 radar
at VV polarization is significantly correlated with the measured soil moisture compared to the VH
polarization which showed more dispersion. The correlation coefficients (r) were about 0.84 and 0.61
for the VV and VH polarizations, respectively. Additionally, the sensitivity of the radar backscatter
to measured soil moisture was estimated as 0.23 and 0.11 dB/vol.% for VV and VH polarizations,
respectively. Thus, an increase in moisture content of approximately 5% generates an increase in σ◦vv of
approximately 1.15 dB and only 0.55 dB in σ◦vh.

Overall, the results obtained over the experimental period, including all soil moisture data measured,
are consistent with the radar sensitivity over bare soils pointed out by several previous studies in the
case of data acquired in C-band [70,71,73–76], and confirm that the VV polarization is more suitable
for quantifying the soil contribution. By contrast, the VH has been shown to be more related to the
vegetation contribution to the radar backscatter since VH is more sensitive to the vegetation volume
scattering mechanism, due to the depolarization effect by vegetation-volume-scattering, which mainly
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depends on the vegetation characteristics [73,77–79]. Therefore, based on this result, only the VV
polarization is used throughout the rest of the manuscript.
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Figure 3. The relationship between SAR on-board Sentinel-1 backscatter coefficient and measured
soil moisture at 5 cm for both polarizations: VV (left) and VH (right). The linear regression lines are
also plotted.

4.2. Evaluation of the Oh and IEM Models

In this study, the backscatter coefficients of Oh and IEM models were simulated only at VV
polarization due its high sensitivity to soil moisture, as shown above (Section 4.1). The performance of
scattering models in simulating the backscatter coefficient is evaluated throughout the manuscript
using the mean difference between the simulated and Sentinel-1 backscattering coefficients (bias)
across all dates, the root mean square errors, and correlation coefficients (r). Figure 4 shows the
comparison between backscatter coefficients derived from the Sentinel-1 and those simulated by
Oh model where n represents the number of backscatter coefficients data. Based on the analysis of
statistical results, one can notice clearly that in spite of its semi-empirical behavior, the Oh model
correctly simulates the radar signal with difference between Sentinel-1 and simulated data of −0.7
dB. Besides, RMSE and r are of 1.1 dB and 0.85, respectively. This finding is in good accordance with
the previous studies which have reported the ability of Oh model for simulating the radar in VV
polarization, particularly in the C-band. For instance, [80] have showed that, in C-band, the Oh model
gave closer backscatter coefficients to the observed values from a truck-mounted scatterometer with a
r of about 0.88. Likewise, [81] have compared the output of Oh model at VV polarization with those
acquired from the airborne synthetic aperture radar (AIRSAR) in the C-band and they revealed that the
semi-empirical model gave a reasonable results with a RMSE of about 1.1 dB. Recently, by combining
several synthetic aperture radars such as ASAR, ERS, SIR-C, RADARSAT, and AIRSAR, another study
realized by [68] has proven the potential of the version of Oh model we used for simulating the
backscattering coefficient. Their results showed that Oh model developed in 1992 had the best fit of
the backscattering coefficients in VV polarization compared to the 1994, 2002, and 2004 versions. The
difference between SAR and simulated data was about 0.4 dB and the RMSE of about 2.3 dB.
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Figure 4. Comparison between backscattering coefficients derived from Sentinel-1 images and those
simulated by the Oh 1992 model at VV polarization.

Figure 5 compares the Sentinel-1 and simulated backscatter coefficients for the original IEM using
the in situ measurement of the correlation length L and the exponential distribution of the correlation
function. It is worth noting that the IEM slightly underestimates the backscatter coefficients compared
to the Oh model. The mean difference between Sentinel-1 and simulated data was about −1.2 dB,
an underestimation 0.5 dB more than the Oh model. Additionally, the RMSE was about 1.5 dB, larger
than the value given by Oh model by about 0.4 db, while the r values were more or less similar (about
0.84 for IEM). It is interesting to note that the use of Gaussian correlation yielded a poor correlation
between Sentinel-1 and simulated backscatter coefficients (not shown). The simulated backscatter
coefficients were very low compared to the Sentinel-1 ones and their average was around −39 dB,
while that of Sentinel-1 was about −14.5 dB. This result was expected due to the nature of the study
site, which is characterized by low value of surface roughness [22,67]. This is in accordance with
several previous studies which have found that, for agricultural surfaces, the exponential function
provides the best match between predicted and SAR backscatters [82–85]. Generally speaking, in spite
of the slight underestimation, one can state that the simulations of IEM by using the measured L are
very satisfying with respect to what have been reported in previous works [20,67,80,81,86]. However,
measuring the correlation length is a problematic task because of its dependence on the profile length,
as well as the standard deviation of surface height (Hrms) [86], and thus its is considered as the most
difficult parameter to be measured at the field with a good accuracy. In the same vein, several studies
have reported that the discrepancies between backscattering coefficients simulated by IEM and those
measured by SAR sensors are mainly related to the value of L measured [87,88]. The uncertainties
in this important key input can probably generate error in soil moisture retrieval from backscatter
coefficients by inverting IEM. Indeed, [89] have stated that an error magnitude of 2 dB induces an
imprecision of 7% on soil moisture retrieval. Therefore, in order to improve the simulations by IEM, L
was replaced by an optimal one (Lopt), as described in [68], which was obtained by forcing the IEM
until a good agreement was reached between simulations and SAR data. To this end, the data were
equally subdivided into a calibration and validation sets. The calibration dataset (training dataset in
Table 1) was used to optimize Lopt, while the validation dataset (validation dataset in Table 1) was
used to validate the modified IEM using the new calibrated empirical model of Lopt. The choice of
these data was made as follows: one of two images was used for calibration and another for validation.
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Figure 5. Comparison between backscattering coefficients derived from Sentinel-1 images and those
simulated by the IEM model at VV polarization using measured L.

Figure 6 displays the Sentinel-1 and simulated backscatter coefficients using the modified (Lopt)
and original (measured L) versions of IEM for the validation dataset. Results show that the new
simulations by the modified IEM provide more accurate results compared to those of the original
version by selecting only a validation dataset. The later yielded values of bias, RMSE, and r of about
−1.5 dB, 1.7 dB, and 0.92. RMSE decreases from 1.7 dB to 0.9 dB and the slight underestimation
was clearly eliminated since the bias was near to zero (about −0.4 dB) with a similar value of r.
These findings can be considered fairly good results and are in accordance with previous works.
Recently, using several bands, including C-band, [68], has proven that with the use of Lopt, the modified
IEM improved significantly backscatter coefficients in comparison to the original version in VV
polarization, with a difference between SAR data and model simulations approximately equal to +0.1
dB, RMSE was about 2 dB. Additionally, by comparing with the Oh model for the same dataset, it can
be noticed that the modified version ploughed improves slightly the simulated backscatter coefficients.

-25 -20 -15 -10 -5 0

SAR backscatter coefficient [dB]

-25

-20

-15

-10

-5

0

IE
M

 b
a

c
k
s
c
a

tt
e

r 
c
o

e
ff

ic
ie

n
t 

[d
B

]

Lopt : r = 0.92, Bias=-0.4 dB, RMSE=0.9 dB, n = 21

L : r = 0.92, Bias=-1.5 dB, RMSE=1.7 dB, n = 21

Figure 6. Comparison between backscattering coefficients derived from Sentinel-1 images and those
simulated by the IEM model at VV polarization using measured L (green color) and optimal Lopt (blue
color) correlation length for the validation data (n = 21).
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4.3. Soil Moisture Inversion

In this section, the potential of Oh and IEM models, and the use of the SVR algorithm for predicting
the soil moisture from the Sentinel-1 backscattering coefficient data over bare soil is investigated.
Validation for the proposed algorithms is based on a comparison against ground-truth measurements
of soil moisture ranging from dry to wet over the tested site. As of the calibration of the correlation
length, to run the SVR algorithm, the data were subdivided into a training and a validation datasets
(see table 1). As cited before, the choice of these data is made as follows: one of two images was used
for calibration and another for validation. In order to correctly evaluate SVR against the inversed
algorithms of Oh and IEM models, only the validation dataset is used in this section.

Figures 7 and 8 show the scatter plot of measured and retrieved soil moisture from radar
backscattering coefficient using Oh and IEM (modified version by using the measured hrms and
Lopt) models, respectively. Overall, the results show that the retrieved soil moisture by inverting Oh
model slightly over-estimates the ground-truth measurements with a bias of about 2.45 vol.%. Besides,
the RMSE and r were about 3.19 vol.% and 0.92, respectively. Although some discrepancies can be
observed, this result is similar to those reported in previous studies such as [38,90–92]. However, for
the IEM model using the Lopt, it was found that the retrieved soil moisture matched well with the
ground-truth measurements compared to Oh model, although a small under-estimation can be noticed
when the soil is very wet (soil moisture is larger than 20%). RMSE, bias, and r were approximately
2.4 vol.%, 0.71 vol.%, and 0.91, respectively. It is worth mentioning that the comparison between the
measured and retrieved soil moisture from IEM model using the measured L yielded less performance
than that obtained by Oh and IEM (using the Lopt) models (not shown). The values of RMSE and
bias were approximately 4.47 vol.% and 3.99 vol.%, respectively. Similar results have been achieved
by [40], who have stated that the use of adjusted L instead of the measured one improves, considerably,
the soil moisture retrieval with a significant decrease of RMSE from 0.13 to 0.05 vol.%. Therefore,
based on its physical basis behavior compared to semi-empirical models, it can be concluded that this
finding may demonstrate that it is probably the input parameters that result in poor performance of
the IEM model rather than the model itself [93]. It should be noted that the adjustment of L is based
on the assumption that hrms can be accurately measured in the field [87,94]. In [40], they obtained
little additional improvement in the soil moisture retrieval by adjusting hrms and L simultaneously.
Nonetheless, they revealed that the adjusting of both parameters can cause a large influence on the
accuracy of soil moisture retrieval, particularly in wetter conditions.
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Figure 7. Comparison between retrieved soil moisture using Oh model and ground-truth measurements.
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Figure 8. Comparison between retrieved soil moisture using IEM model and ground-truth measurements.

As the ultimate goal of this work was to evaluate SVR based mainly on statistical learning
against semi-empirical and theoretical soil backscattering models, SVR was also driven by Sentinel-1
backscattering coefficient data for retrieving soil moisture retrieval. Usually, machine learning methods
used to retrieve soil moisture were trained with backscattering coefficient data generated from
backscattering models and validated using radar data [47,95]. However, the error associated with the
use of these models can be directly translated into an error in soil moisture retrieval. In this specific
study, the training dataset was used to build a regression SVR model (MDL), whereas the validation
dataset was used to compare the performance of the predicted model with a calibrated MDL as an input.
It should be noted that, based on the selected method for the training and validation sets, the range of
soil moisture variation was almost similar for both datasets (from dry to wet conditions). Additionally,
the surface roughness was constant during the study period because the soil was not plowed due to
the late of rainfall. Figure 9 displays the comparison between measured and retrieved soil moisture
using SVR algorithm driven by Sentinel-1 backscattering coefficient data. A good correlation between
measured and retrieved soil moisture is detected, with values of r, RMSE, and bias of about 0.89,
2.72 vol.%, and −0.13 vol.%, showing that this approach is a powerful algorithm for retrieving soil
moisture. The obtained performance in the statistical metrics, which is probably related to the fact that
soil roughness conditions were very specific, may be lessened under conditions of greater roughness.
These statistical results are close to those found by the IEM model using the adjusted L (Figure 8).
Additionally, as shown by IEM model, the SVR algorithm underestimates the soil moisture slightly for
values larger than 15 vol.%. This can be related to the limit of training dataset within this range of soil
moisture variation. As a matter of fact, as with all machine learning methods, SVR needs numerous
training dataset in order to correctly build the regression model.

In spite of the improvement obtained by reducing the input parameters of IEM by using an
optimal value of correlation length, the retrieved of regional soil moisture through backscatter models
still requires spatial measurements of root-mean-square (RMS) height, which is not an easy task
particularly over heterogeneous areas. Therefore, it can be concluded that the SVM technique which
uses only the radar backscatter data can be a good tool for large-scale soil moisture monitoring. For this
purpose, the SVR was tested to map soil moisture over a large bare soil area, which limits the study site.
Figure 10 displays two maps of soil moisture obtained by using SAR images acquired on 27/03/2016
(three days after rainfall event) and 25/07/2016 (dry conditions). As expected, the values of soil
moisture obtained for wet conditions were higher than those for dry conditions. Indeed, the mean
moisture level was approximately equal to 12 vol.% for wet conditions and was about 6 vol.% for dry
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conditions. Overall, the values of soil moisture over bare soils are within the limits of measurements
values. Under dry conditions, it can be seen that within some pixels, the values are very high. This due
to the existence of some fruits inside or in front of the building near to the experimental field. Likewise,
there is small fields of irrigated crops (alfalfa for example) within the mapping area and a fruit orchard
which can increase the soil moisture in the summer. This result confirms clearly the potential of SVR
technique for mapping soil moisture over bare soil areas, at least under our conditions.
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Figure 9. Comparison between retrieved soil moisture using support vector machine and ground-
truth measurements.

Figure 10. Mapping of soil moisture (vol.%) using support vector machine: dry (left) and wet
(right) conditions.

5. Conclusions

This study investigated the capability of using Sentinel-1 backscatter data to retrieve surface soil
moisture over bare agricultural soil in Tensift basin of Morocco. This retrieval was made through the
application of inversion algorithms based on the theoretical integral equation model (IEM) and the
semi-empirical model (Oh) or directly by using support vector regression technique. A field of 1 ha was
selected to investigate the potential of these algorithms. Within this field, measurements of soil moisture
and surface roughness were made. In a first step, a sensitivity analysis of the Sentinel-1 backscatter
coefficients at both VV and VH polarizations to ground truth measurements of soil moisture was done.
It was found that the linear regression obtained for the VV polarization presented less dispersion
than VH. Overall, this sensitivity was estimated as 0.23 and 0.11 dB for VV and VH polarizations,
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respectively. Therefore, only the backscattering coefficients at VV polarization were used to retrieve soil
moisture in this study. Afterwards, and before discussing the inversion procedure, the backscattering
coefficients estimated by Oh and IEM models were compared with Sentinel-1 backscatter data. This
comparison showed that the driven IEM model by an optimal value of correlation length instead of a
measured one improved the simulated backscatter coefficients and even gave slightly better results
compared to the Oh model.

In the second step, the soil moisture was retrieved from Sentinel-1 backscattering coefficient
data by inverting Oh and IEM models, and by the use of SVR. The comparison against ground-truth
data showed that IEM and SVR gave acceptable results with values of RMSE of about 2.72 vol.%
and 2.4 vol.% respectively, while the Oh model showed more discrepancies (RMSE = 3.19 vol.%)
with an overestimation of the soil moisture (2.45 vol.%). However, in spite of the improvement
obtained by reducing the input parameters of IEM by using an optimal value of correlation length,
the retrieved of regional soil moisture through backscatter models still requires spatial measurements
of root-mean-square (RMS) height, which is not an easy task, particularly over heterogeneous areas.

In parallel, the SVR algorithm gave a comparable result to the IEM model for the retrieval of
soil moisture. The acceptable statistical metrics obtained with SVR are probably related to the fact
that roughness conditions over bare agricultural soils are very specific. Indeed, roughness conditions
there were almost unchanging because the soil was not plowed due to the late rainfall. It is likely
that the application of our approach to other surfaces such as fallows would exhibit a drastic drop
of performances. Finally, it can be concluded that the SVR technique, which uses only the radar
backscatter data, can be a good tool for large-scale soil moisture monitoring over bare agricultural
soils, which is of crucial importance to determining the optimal sowing date and to schedule irrigation
inputs. Additionally, the result of this work can be fairly used to validate the products provided by
passive microwave sensors, such as SMOS or SMAP, using disaggregation algorithms. The current
research can be used as an alternative to the computationally expensive and data intensive physical
model. As far as short term prospects go, we intend to apply this technique to retrieve soil moisture
over wheat crops and compare the results to those from backscattering models by combining the
water cloud model and IEM model—which simulate the vegetation and soil contributions, respectively.
In addition, the values obtained will be used as in conjunction with the land surface temperature from
sentinel-3 in the new thermal-based two-source energy balance (TSEB-SM) developed by [96] to map
the evapotranspiration.
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