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Abstract
Marine plastic debris floating on the ocean surface is amajor environmental problem.However, its
distribution in the ocean is poorlymapped, andmost of the plastic waste estimated to have entered the
ocean from land is unaccounted for. Better understanding of howplastic debris is transported from
coastal andmarine sources is crucial to quantify and close the global inventory ofmarine plastics,
which in turn represents critical information formitigation or policy strategies. At the same time,
plastic is a unique tracer that provides an opportunity to learnmore about the physics and dynamics of
our ocean acrossmultiple scales, from the Ekman convergence in basin-scale gyres to individual waves
in the surfzone. In this review, we comprehensively discuss what is known about the different
processes that govern the transport offloatingmarine plastic debris in both the open ocean and the
coastal zones, based on the published literature and referring to insights fromneighbouring fields such
as oil spill dispersion,marine safety recovery, plankton connectivity, and others.We discuss how
measurements ofmarine plastics (both in situ and in the laboratory), remote sensing, and numerical
simulations can elucidate these processes and their interactions across spatio-temporal scales.

1. Introduction

Plastic debris has rapidly become one of the most
pervasive and permanent pollutants, particularly in
marine ecosystems. It occurs in all compartments of
the ocean worldwide, and has a range of adverse
environmental and economic impacts. Although there
are many critical environmental issues (notably linked
to human population growth and the climate crisis,
Stafford and Jones 2019), plastic pollution has
attracted considerable attention in recent years, with
numerous initiatives to tackle the problem from the
United Nations, the G7 and G20, the European
Commission and many national and local authorities,
as well as non-governmental organisations.

The widespread nature of plastics in marine sys-
tems is generally assumed to result from their long-
evity in the environment (they degrade very slowly,
mainly through mechanical abrasion and exposure to
UV radiation) and relatively high buoyancy, which
facilitates long-distance transport from source areas
(Andrady 2005). By mass, roughly half of all plastics
produced are less dense than seawater, and thus
should float at sea (Geyer et al 2017). Many plastic
items also contain trapped air (e.g. expanded poly-
styrene, intact bottles, buoys), which further increases
their buoyancy and therefore increases windage, sub-
sequently aiding their dispersal.

It is widely assumed that most plastic debris
derives from land-based sources, mainly from densely
populated continental areas, although some studies
suggest (e.g. Bergmann et al 2017a, Lebreton et al
2018) that sea-based sources play an important role
too. Nevertheless, there is a large mismatch between
the estimates of the amount of municipal solid plastic
waste generated on land that enters coastal waters
(5–12million tonnes yr−1, Jambeck et al 2015) and the
total amount of plastic floating at sea (less than 0.3
million tonnes, Cózar et al 2014, Eriksen et al 2014,
van Sebille et al 2015b). Also, there is a discussion
about whether the amount of plastics measured at sea

over the last few decades (Lebreton et al 2019, Ostle
et al 2019, Wilcox et al 2019) has kept pace with the
growth in global plastic production (Goldstein et al
2012, Geyer et al 2017).

Taken together, these findings suggest that our
understanding of plastic fluxes, pathways and fate is
incomplete. Some of this discrepancy might be
because our understanding of plastic fluxes is not
complete, or because of the time delay between fluxes
into the ocean and arrival in the regions where most
measurements are taken (Lebreton et al 2019). But
there are also a number of physical processes that may
account for some of this discrepancy between esti-
mates of plastic inputs and the pool of floating plastic
at sea: beaching, sedimentation and fragmentation to
sizes that have not been measured. There is evidence
that the size and composition of large debris changes
with distance from major land-based sources
(Ryan 2015), possibly as a result of these mechanisms.
Biological processes (e.g. ingestion or settlement)may
also aid the (horizontal and vertical) transport of plas-
tics within the oceans. In order to better address the
plastic pollution challenge, we need a better under-
standing of the physical, chemical, and biological pro-
cesses that influence the transport of plastics on the
surface of the ocean.

With the growing attention onmarine plastic deb-
ris by scientists and the public alike, there has been a
plethora of scientific reviews in the last few years (e.g.
Andrady 2011, Law 2017, Zhang 2017, Hardesty et al
2017a, Kane and Clare 2019, Maximenko et al 2019,
Amaral-Zettler et al 2020, Hale et al 2020). However,
none of these reviews focus exclusively on the physical
processes that control the transport and the resulting
distribution of plastic debris on all spatial scales, ran-
ging from the ocean gyres to beaches. Here, we aim to
provide a coherent and complete review of all these
physical processes. We limit ourselves to the floating
plastic debris, as most observations have been col-
lected and theories developed for the dynamics of plas-
tic at the ocean surface. Furthermore, the plastic at the
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surface of the ocean likely has the largest impact on
marine life (e.g. Wilcox et al 2015, Compa et al 2019),
and large debris (e.g. abandoned fishing nets) can also
be navigational hazards (Hong et al 2017).

The objective of this review is not only to give an
overview of the processes governing the dispersion of
floating plastics, but also to highlight the opportunities
to cross scales in physical oceanography by analysing
floating plastics. Plastic is a unique tracer in that it is a
solid material related to human activity with sources
non-uniformly distributed along the world’s coast-
lines, shipping lanes and fishing regions. Therefore, we
hope that this review is of interest not only to oceano-
graphers working onmarine plastics, but also to physi-
cal oceanographers who aim to understand the way
ocean processes interact across different scales (from
basin-scale gyre circulation to individual waves). Note
that, while we have assembled an author group with
broad expertise, it is unavoidable that there are some
biases because some expertise is better represented
than others.

2.Methods on literature and data gathering

Plastic is a relatively new class ofmaterials in the ocean.
However, there is extensive literature on the transport
and dispersion of other materials in the ocean which
can supply a strong support to describe plastic trans-
port. This literature includes natural particulates such
as sea ice, sediment grains, macroalgae, wood and
plants, pumice and a whole range of planktonic
organisms from bacteria to Sargassum (Siegel et al
2003, Thiel and Gutow 2005). There is also much
experience in prediction of transport for oil spills (e.g.
Reed et al 1994, Fingas 2016, D’Asaro et al 2018) and in
search and rescue (Breivik et al 2013, Zhang et al 2017),
as well as theoretical work on the transport of material
by oceanic Lagrangian Coherent Structures (e.g.
Haller 2015). In this review, we analyse findings from
these other fields, integrating fundamental classical
works where appropriate with most recent investiga-
tions of leading research groups all over theworld.

We identified key research questions in the field as
well as relevant literature through three processes:

1. discussions with top scientists in the field at SCOR
WG153meetings in SanDiego (USA) andUtrecht
(NL) (www.scor-flotsam.it)

2. searching theweb literature; and

3. asking colleagues around the world not included
in the original SCOR group to provide us with
references and written contribution. Scientists
from all continents were involved.

The SCOR group drafted the very first outline pro-
vided by Stefano Aliani and Erik van Sebille further

developed and assembled the text with the online
contribution of all authors.

To obtain additional information we collected
abstracts and chaired sessions on the topic of plastic
pollution at most relevant international conferences
worldwide in the last three years, including the Ocean
Sciences Meeting 2018, the 6th International Marine
Debris Conference, Micro2018, two IEEE Oceanic
Engineering Society international workshops orga-
nized in 2018 and 2019 in Brest (France), the Eur-
opean Geosciences Union General Meeting, Ocean
Optics XXIV, and the International Ocean Colour Sci-
ence meeting. The authors are members of the most
relevant global working groups on the topic, including
AMAP, PAME, SAPEA and GESAMP and had access
to topics and literature discussed therein.

3.Definingfloatingmarine debris

Plastic debris items in the oceans vary widely in terms
of size, shape or chemical composition. In this review
paper, we focus specifically on floating plastic marine
debris. Thatmeans that the plastic particles considered
here are positively buoyant, i.e. their density is lower
than the local water density. However, this does not
mean that plastics remain at the sea surface at all times.
Breaking waves and ocean turbulence can temporarily
mix them down to several or even tens or hundreds of
meters (Kukulka et al 2012, Poulain et al 2019), from
where the particles ascend back to the surface after
waves and turbulence decay. This tendency of particles
to rise to the surface depends on the particle’s terminal
rise velocity (which, in turn, is also controlled by its
shape and dimension) as well as on the density
difference between plastic and sea water (Allen 1985,
Chubarenko et al 2016). For example, for a given
plastic density, the rise velocity generally increases as a
function of sphere diameter.

As environmental plastic debris consists of mix-
tures of numerous particles and items, their sizes, den-
sities and shapes can be represented by continuous
distributions (Kooi and Koelmans 2019). Importantly,
these plastic particle characteristics change con-
tinuously over time due to several processes (see also
section 4) such as embrittlement, fragmentation, bio-
fouling, weathering and erosion (e.g. ter Halle et al
2016). Some of these processes are not only physical or
chemical, but alsomediated by biological activity (Zet-
tler et al 2013, Dawson et al 2018). Densities of the par-
ticles start from those of the parent polymer or
product material density; however, because of the
transformation processes listed above, particle den-
sities measured from open ocean samples can range
from808 to 1240 kgm−3 (Morét-Ferguson et al 2010).

Furthermore, vertical mixing can affect the vertical
distribution of both positively and negatively buoyant
particles in themixing layer (Kukulka et al 2012, Brunner
et al 2015, Enders et al 2015, Reisser et al 2015,
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Kooi et al 2017, Poulain et al 2019), which, in the pre-
sence of the vertical shear of ocean currents, can then also
affect their horizontal dispersion (Wichmann et al 2019).
Such differentiation of transport pathways determined
by the vertical distribution of particles in the surface
mixed layer was shown for oil droplets in oil spill model-
ling (Reed et al 1994, Röhrs et al 2018). Specific to plas-
tics, it was shown that particle size and shape determine
their orientation and movements under the influence of
waves (DiBenedetto and Ouellette 2018) and inertia
(Beron-Vera et al2019).

Sizes of plastic particles discussed in this review
range from 1 μm to 1 m. This very broad size range is
often divided into different categories (microplastics,
mesoplastics, macroplastics, megaplastics), but there
is no community-wide agreement on where the
boundaries between these categories lie. Here, we will
not attempt to define such categories again, but rather
we will use the nomenclature that is used within the

respective papers. Shapes vary from very elongated
shapes, such as fibres and ropes, to shapes with a lower
surface area to volume ratio, such as fragments and
spheroids (Ryan 2015).

4. The physical processes that govern
transport offloating plastic debris

In this section, we will describe the different processes
that govern the transport of floating plastics. These
processes have been summarised in figure 1, in which
we have schematically depicted where in the ocean
these processes are most relevant, from the littoral
zone to the open ocean. Transport here is defined
loosely as any movement of plastic particles from one
location to another in three-dimensional space. When
modelling this transport, it is typically decomposed
into a deterministic and a stochastic component, the
latter accounting for (turbulent)mixing processes that

Figure 1. Schematic of the physical processes that affect the transport of plastic (pink items) in the ocean (top panel). The table (lower
panel) identifies inwhich regions different processes are important. Thick pink lines in the tablemean that the process is among the
most important in that water depth, while thin pink linesmean that the process is only of secondary importance. Transport by
organisms is not a physical process and therefore representedwith a green line instead of a pink one.
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result from the unresolved part of the ocean currents,
including wind and wave forcing fields varying ran-
domly in space and time. Because of this stochastic
component, it is more convenient in most cases to
study particle transport with a large ensemble of plastic
particles. Here, this ensemble transport is referred to
as dispersion.

4.1. Large-scale open ocean processes
The horizontal large-scale flow is the most efficient
way of transporting debris over large distances on the
global scale, allowing connections between ecoregions
and transport across basins. It is also the scale onwhich
we know most about transport of floating plastics,
partly because the Global Drifter Program that has
been operational since the late 1970s is designed to
measure this (Elipot et al 2016).

Large-scale physical oceanography is built upon
geophysical fluid dynamics (Pedlosky 1987, Val-
lis 2006), a foundational theory well supported by
ocean observations since the early 20th century. For
the purposes of this review, large-scale circulation is
driven by surface winds, generating so-called Ekman
drift at the sea surface under the influence of the
Earth’s rotation, which is directed to the right of the
wind in theNorthernHemisphere and to the left in the
Southern Hemisphere. Ekman transport, integrated
over the upper 10s of meters, creates regions of surface
convergence and divergence, which in turn drive the
large-scale geostrophic flow in the ocean interior. These
areas of convergence are, on the large scale, found in all
five subtropical gyres, which are basin-scale current sys-
tems defined bywind stress patterns and coastal bound-
aries (figure 2). Surface divergence, on the other hand, is
found in the subpolar gyres and over parts of the South-
ernOcean. Floating plastic items that do not experience
waves (see section 4.4) or wind (see section 4.6) are
transported by surface currents and will accumulate in
areas where surface waters converge. In contrast, areas
of divergence (outside of subtropical gyres) typically
have lower concentrations of floating plastic

(e.g. Maximenko et al 2012, Law et al 2014). In the
basin-scale convergence regions, the surface water is
pumped down (so-called Ekman downwelling) to
depths of a few hundred meters. However, the down-
ward vertical velocity of the water near the surface is
typicallymuch smaller (10 s ofmeters per year) than the
rise velocity of buoyant plastic (Reisser et al 2015, Pou-
lain et al 2019), so that thefloating plastic stays behind.

This Ekman/geostrophy theory is remarkably cap-
able of predicting the large-scale distribution of float-
ing microplastic in the ocean (Kubota 1994, Martinez
et al 2009, Onink et al 2019). This distribution reveals
large-scale accumulation of plastics in the centres of
the subtropical gyres in areas termed ‘garbage pat-
ches’. Despite a persistent, commonmisconception of
a ‘garbage patch’ as a giant floating island of trash
(which do not exist), concentrations there are still
fairly low. Based on field observations across the five
subtropical gyres (Cózar et al 2014, Eriksen et al 2014,
Law et al 2010, 2014), Cózar et al (2015) provided a
more accurate description of the ‘garbage patch’, as
large accumulation zones (millions of km2 in area)
dominated by tiny plastic piecesmainly on the order of
millimeters, not easily perceptible by an observer on a
ship. When the sea is calm, these plastic particles are
present in nearly 100% of net surface tows in these
areas, each covering around 1000 m2, but the density
of plastic pieces is not as high as the term ‘patch’may
suggest. The typical mean spatial concentration mea-
sured with net tows is around 1 plastic item in 4 m2,
reaching 1–10 items m−2 in the most polluted area.
The accumulation zones in the subtropical gyres show
high heterogeneity at multiple scales (e.g. Goldstein
et al 2012, Brach et al 2018), and their borders are dif-
fuse and changing. The gyres are not stationary in
space nor static in time. Rather, the gyres, and with
them the accumulation zones, change shape andmove
with time (Howell et al 2012, Lebreton et al 2018), and
plastics are not trapped indefinitely in these gyres (van
Sebille et al 2012a,Maes et al 2016).

Figure 2. Schematic of large-scale ocean surface currents (gyres, convergence zones) based onmean velocities of undrogued surface
drifters, with colouring indicative of speed. Floating plastic has been predicted andmeasured to accumulate in the centres of thefive
subtropical gyres, which can be seen in thefigure as the points aroundwhich the drifters circulate centred at 30 degrees latitude in both
hemispheres.
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While the large-scale open ocean processes can
reasonably well explain the observed debris pattern
(with some notable exceptions, e.g. in the North
Atlantic accumulation zone, see also van Sebille et al
(2015b), it is important to realise that these theories do
not make any statements about the pathways and time
scales of real plastic particles from sources into the
open ocean accumulation zones. Furthermore, the
vertical structure of near-surface currents (upper 10 s
of meters, see also sections 4.4, 4.7 and 4.8) appears to
have a considerable impact on the large-scale circula-
tion patterns (Wichmann et al 2019), especially in the
Indian and South Indian Oceans, where van der
Mheen et al (2019) found that drifters drogued at 15m
depth give different accumulation patterns than
undrogued drifters (see also Poulain et al 2009, Lump-
kin et al 2012).

4.2.Mesoscale open ocean processes
Across the basin-scale gyre patterns, the ocean is full of
eddies. Mesoscale eddies are slowly rotating vortices,
with diameters of hundreds of kilometers (technically
defined by the scale at which the Rossby number (e.g.
Pedlosky 1987) is much less than order one), depths of
few hundreds to thousands of meters and lifespans of
weeks to years (Chelton et al 2011). Mesoscale eddies
also form fronts and filaments between them by
straining the surface waters; these fronts and filaments
become unstable and in turn form submesoscale
eddies, which are smaller and faster evolving than
mesoscale eddies (1–10 km diameter, with lifetimes of
days to weeks). Eddies exist in two types: cyclonic
eddies (rotating counter-clockwise in the Northern
Hemisphere, and clockwise in the Southern Hemi-
sphere), for which the radial component of the surface
flow is mostly outward; and anticyclonic, for which
the radial component is mostly inward (note that the
same is true for gyres, explaining the above conv-
ergence in anticyclonic subtropical gyres, and the
divergence in cyclonic subpolar gyres). This inward
surface flow for anticyclones could explain the obser-
vation that an anticyclonic eddy had more floating
debris in its core than a cyclonic one (Brach et al 2018),
although submesoscale eddies are more effective in
accumulating debris (see section 4.3).

Nevertheless, the mesoscale eddies are certainly
important, not only because they can retain debris, but
also because the westward drift of these potentially
long-lived structures can result in transport over thou-
sands of kilometers, as has been shown for surface
drifters (Dong et al 2011), as well as radioactive isotope
markers (Budyansky et al 2015), plankton, jellyfish
(Johnson et al 2005, Berline et al 2013), heat and salt
(Dong et al 2014). The explicit consideration ofmesos-
cale eddy variability has, for example, shown a con-
vergent pathway of seawater connecting the South
Indian subtropical region with the convergence zone
of the South Pacific through the Great Australian

Bight, the Tasman Sea, and the southwest Pacific
Ocean (Maes et al 2018), as well as into the Atlantic
Ocean via the Agulhas leakage (e.g. Beal et al 2011, van
Sebille et al 2011).

Quasi-permanent jet-like features, commonly
referred to as striations (Maximenko et al 2008, Bel-
madani et al 2017), may also play a role in the transport
of floating plastics. Such small-scale structures are able
to modulate the transport of surface material from the
core of the convergence subtropical zones, revealing
possible exit routes (Maes et al 2016). Such long dis-
tance pathways of dispersion represent a challenge for
ocean modelling, and the exact role of mesoscale and
submesoscale processes, as well as the relative impor-
tance of these processes in different ocean basins, are
still not well known.

4.3. Submesoscale open ocean processes
In the last few decades, there has been increasing
interest in oceanographic processes on scales smaller
than a few tens of kilometers. Much progress has been
made on describing, quantifying and developing a
theory for these submesoscale features (Fox-Kemper
et al 2011, Thomas et al 2013, McWilliams 2016).
These submesoscale processes are known to be very
important locally for drifters and Sargassum accumu-
lation (Szekielda et al 2010, Pearson et al 2019), as well
as oil spills transport and dispersion (Zhong and
Bracco 2013), as they systematically increase mixing
(Poje et al 2014,McWilliams 2019).

Particularly relevant to how floating plastic parti-
cles are affected by submesoscale processes was the
finding in D’Asaro et al (2018) that flotsam accumu-
lates at density fronts and in cyclonic vortices (as
opposed to the anticyclonic mesoscale eddies). The
mechanism that causes this accumulation in cyclonic
vortices is complicated, but is related to vortex stretch-
ing of the submesoscale vortices. In eddies, the fronto-
genesis and secondary radial-overturning circulation
that cause surface convergence depend on the Rossby
number. These processes are considerably stronger at
the submesoscale than at the mesoscale for the same
level of kinetic energy per unit area (e.g. Rascle et al
2017). Although often revealed from high-resolution
satellite imagery (e.g. Kudryavtsev et al 2012), these
submesoscale processes are typically not resolved even
in ‘high-resolution’models.

4.4.Open ocean Stokes drift
During its periodic motion, a particle floating on the
free surface of a surface gravity wave experiences a net
drift velocity in the direction of wave propagation,
known as the Stokes drift (Stokes 1847). More
generally, the Stokes drift velocity is the difference
between the average Lagrangian flow velocity of a fluid
parcel and the average Eulerian flow velocity of the
fluid (see van den Bremer and Breivik (2018) for a
review). Fluid parcels are followed in the Lagrangian
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reference frame, whereas in the Eulerian framework
fluid motion is described at fixed spatial locations.
Stokes drift arises due to the fact that particles subject
to a surface wave field move forward at the top of their
orbits faster than backward at the bottom and spend
longer in crests where their velocity is positive than in
troughswhere their velocity is negative.

Surface gravity waves on the open ocean aremostly
caused by winds. For this reason, it is often assumed
that any net transport carried by waves can be para-
meterised as a fraction of the wind speed in the same
direction as the wind (Weber 1983). However, waves
are slower to build to strength and are more persistent
than winds, and, once they have evolved into swell
waves, they can travel long distances with low dissipa-
tion (Ardhuin et al 2009a, Hanley et al 2010,Webb and
Fox-Kemper 2015). Thus, the waves at a particular
location and time may have been caused by earlier
winds at another location. Wave models, such as
WAM and WaveWatch-III (Tolman 2009), were
developed to predict the propagation and strength of
waves, and can therefore be used to predict Stokes
drift.

Even though Stokes drift is a second-order effect
(in the generally small steepness of the waves), whose
magnitude is much less than the magnitude of the
wave orbital motions themselves, themagnitude of the
Stokes drift is frequently significant (McWilliams and
Restrepo 1999). Either empirical wave spectra for
fully-developed waves (Pierson and Moskowitz 1964,
Hasselmann et al 1976) or the output of wave models
can be used to accurately predict the Stokes drift
(Webb and Fox-Kemper 2011, 2015) under the
assumption of weak surface slope. The simplification
of monochromatic waves at the peak wave period,
commonly adopted in Eulerian oceanmodels, leads to
a Stokes drift that decays exponentially with depth,
although alternative parameterisations have been pro-
posed that more accurately capture the depth profile
for realistic spectra (Breivik et al 2016). For realistic
waves, the Stokes drift is strongly surface-intensified,
decaying faster than exponentially for a typical spec-
trum (Webb and Fox-Kemper 2011, 2015). From an
observational perspective, Stokes drift can be inferred
from high-frequency radar (Ardhuin et al 2009b) and
has the potential to be estimated from satellite mea-
surements (Ardhuin et al 2019). It can be accurately
measured in the laboratory (e.g. van den Bremer et al
2019).

Whether floating marine plastic particles are actu-
ally transported with the velocity of their surrounding
Lagrangian flow (and thus with the Stokes drift) and
whether particles of all shapes, densities and sizes are
transported at the same speed under similar condi-
tions remain open questions. Objects that are sub-
merged, small and of the same density as the
surrounding fluid will travel with the Lagrangian flow
(Maxey and Riley 1983). For fully submerged particles
that have a different density from the surrounding

fluid, it has been shown (Eames 2008, Santamaria et al
2013) that their inertia can cause lighter (and thus
upward settling) particles to be transported more
rapidly than the Stokes drift of the surrounding fluid
and vice versa for heavier (downward settling) parti-
cles. Furthermore, the response of particles to eddies
and turbulence may also be different (Maxey and
Riley 1983). The shape of the particles determines their
orientation under waves but not necessarily their
transport velocity (DiBenedetto and Ouellette 2018).
For very steep waves, particles may surf on the wave
(Pizzo 2017) or be subject to transport faster than the
Stokes drift due towave breaking (Pizzo et al 2019).

Floating objects are subject not only to Stokes drift
but also to motions with longer time scales (e.g. geos-
trophic flow), as well as windage (see section 4.6).
Observations of these different transports indepen-
dently are rare (e.g. Ardhuin et al 2009a). Despite the
poorly understood complexity in the relationship
between Stokes drift and transport of floating mat-
erial, Stokes drift is one of the key components of
many simulations of the drift of floatingmarine plastic
particles. Different authors have considered its effects
on different types of objects: for example, Stokes drift
can make a significant contribution to the trajectories
of drifters (Röhrs et al 2012, Meyerjürgens et al 2019);
it must be accounted for in search and recovery mis-
sions (e.g. the crashed airplane MH370; Trinanes et al
2016, Durgadoo et al 2019); and it can be key in the
local modelling of oil spills (Christensen and Ter-
rile 2009, Drivdal et al 2014). In addition to transport,
a random wave field and its associated random Stokes
drift field have the capacity to disperse or ‘diffuse’ a
cloud of floating tracers (Herterich and Hassel-
mann 1982), but this effect is generally small, local and
dominated by other sources of dispersion (Herterich
andHasselmann 1982, Spydell et al 2007).

In an early study focusing on debris accumulation
nearHawaii, Kubota (1994) found that Stokes drift did
not significantly contribute to debris transport, but
only took into account Stokes drift derived directly
from the local wind fields and not swell. A number of
recentmodelling studies took into account Stokes drift
from the entire wave field, combining wind and swell
waves, and found a greater role for Stokes drift. In the
Sea of Japan, Stokes drift moved plastic particles
between 5 and 10mm towards the Japanese coast dur-
ing winter (Iwasaki et al 2017). A similar effect was
found in the Norwegian Sea (Delandmeter and van
Sebille 2019). Stokes drift can also lead to leakage of
particles out of the Indian Ocean (Dobler et al 2019)
and can cause drifting particles to cross the strong cir-
cumpolar winds and currents and reach the Antarctic
coast (Fraser et al 2018). On a global scale, Stokes drift
does not per se contribute to large-scale accumulation
of microplastics in the subtropics, but does lead to an
increased transport to polar regions where storm-gen-
erated waves are larger and occur more frequently
(Onink et al 2019).
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As the Stokes drift depends strongly on the shape
of the waves (it is proportional to the square of their
steepness), rapid changes in thewaves can lead to rapid
changes in particle transport. This plays a role in the
coastal zone, where waves steepen and ultimately
break (see section 4.11), and during storms, when
waves rapidly steepen and the Stokes drift rapidly
increases. This change is crucial for plastic debris
beaching: developing steep stormy waves may ‘grab’
plastics and sediments from the beach, and transport
these offshore; whilst smoother waves, which
remain after the wind ceases, slowly return plastics
and sediments back to shore (Chubarenko and
Stepanova 2017).

Finally, it cannot be emphasized enough that the
Stokes drift and the Eulerian currents do not evolve
independently. Two effects need to be distinguished.
First, a realistic ocean is not made up of regular waves,
but the broad-banded spectral content of its waves
leads to a group-like structure. For wave groups, the
net positive transport associated with the Stokes drift
becomes divergent on the group scale and is accom-
panied by an opposing Eulerian return flow at depth
(Longuet-Higgins and Stewart 1962, Haney and
Young 2017). In the open ocean, this return flow is
very small and will not have any significant effect on
the transport of floating plastics (van den Bremer and
Taylor 2016).

Second, there are important connections between
the Stokes drift and the Eulerian currents through the
Stokes forces (Hasselmann 1970, Craik and Leibo-
vich 1976, McWilliams et al 1997, Ardhuin et al 2007,
Lane et al 2007, Polton and Belcher 2007, Suzuki et al
2016). While the dynamical details of these interac-
tions exceed the goals of this paper, it is sufficient to
note that, at leading order, there is often an important
anti-Stokes response of the Eulerian current to the pre-
sence of Stokes drift, and such an anti-Stokes flow has
been observed in situ in coastal areas (Lentz and Few-
ings 2012). This tendency for the Eulerian flow to
oppose the Stokes current is caused by the Stokes for-
ces that connect the Stokes drift to the Eulerian cur-
rents, primarily the Stokes-Coriolis and Stokes
advection terms. If these forces are unbalanced, then
effectively a net force from the waves is applied to the
Eulerian currents until they oppose the Stokes drift.
This effect recasts the standard large-scale geophysical
fluid dynamics problems to include Stokes effects:
wavy Ekman layers (McWilliams et al 2012), wavy
geostrophic fronts and filaments (McWilliams and
Fox-Kemper 2013), and wavy hydrodynamic instabil-
ities (Haney et al 2015). On large scales, the con-
sequence is that the net Lagrangian transport
(combining the Stokes and Eulerian currents) behaves
much like the traditional large-scale transport theory
predicts: Ekman layers and geostrophic currents dri-
ven by Ekman convergence. The anti-Stokes response
explains how Stokes advection by itself can cause a lar-
ger impact than Stokes advection plus other Stokes

forces (Breivik et al 2015). On the mesoscale and sub-
mesoscale, the Stokes vortex and Stokes shear forces
become important (McWilliams and Fox-Kem-
per 2013, Suzuki and Fox-Kemper 2016), which can
influence frontogenesis, instabilities, and turbulence
(Haney et al 2015, Suzuki et al 2016) and indeed leads
to a further reinforcement of the anti-Stokes effect
(Pearson 2017). On smaller scales, the Stokes vortex
and shear forces play a major role and lead to Lang-
muir circulations and Langmuir turbulence.

In regards to the transport of plastics and other
pollutants by Stokes drift, one must be careful to con-
sider the forces of interaction between the Stokes and
Eulerian flows. In a modelling context, this means
simultaneously solving a wave model and an ocean
transport model with the correct coupling between
them. Models that explore this are e.g. COAWST
(Warner et al 2010), SWAN+ADCIRC (Dietrich et al
2012) andUWIN-CM (Curcic et al 2016, Li et al 2018).
Exploring the consequences of such coupled model-
ling for the transport of marine debris will be one of
themost important challenges ahead.

4.5. Internal tides
The movement of the tides over banks, reefs, and the
continental shelf break generates large internal
waves generated by internal tides (Kao et al 1985,
Hibiya 1990). Surface convergencesmoving with these
waves have been demonstrated to concentrate and
transport larval invertebrates, fish and tar balls from
an oil spill (Shanks 1983, 1987, 1988). The most
common site for the generation of these internal waves
is the continental shelf break. As the tide ebbs off the
shelf, a lee wave or hydraulic jump is produced over
the continental slope. When the tide changes to flood,
this lee wave propagates up onto the shelf and
shoreward where it evolves into a train of internal
waves. As the waves move into shallow water they can
break forming an internal (underwater) bore
(Cairns 1967,Winant 1974, Pineda 1995).

Surface currents are generated over the internal
waves (Shanks 1995). Over waves of depression (the
nonlinear wave has a trough but no crest), the surface
current is in the direction of wave propagation. At the
surface over the leading edge of the wave, the surface
current turns downward forming a surface conv-
ergence, whichmoves alongwith the wave. Over larger
waves of depression the surface current can be as fast
or faster than wave propagation and, under these con-
ditions, objects at the surface, for example surface-
oriented larvae or buoyant flotsam, are carried into the
convergence, concentrated there and transported
alongwith the internal wave (Shanks et al 2000).

Waves generated at the shelf break may cause
transport across the shelf. Where waves are generated
over a bank, they can propagate over deep water for
long distances, e.g. large internal waves are generated
over the Pearl Bank in the Sulu Sea and propagate
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across the basin hitting the coast of Palawan Island
(Apel et al 1985). In the Caribbean, internal waves are
formed around Trinidad and Tobago and propagate
northward (Giese et al 1990). In the Mediterranean,
they are formed over the Camarinal Sill at the Strait of
Gibraltar (Bruno et al 2002).

Convergences over sets of internal waves are visi-
ble from space in both visible and synthetic aperture
radar (SAR) images (Apel et al 1975, Alpers 1985).
When winds are light, convergences appear as slicks of
smooth water; oils in the surface film are transported
into the convergence dampening capillary waves.
Often floating material, algae and flotsam, become
concentrated and transported along with the waves.
Each wave of a set can generate a surface slick. Similar
to surface waves, tidally generated internal waves are
refracted by the bottom topography; hence, the sur-
face slicks tend to be oriented parallel to bottom con-
tours. Sailing perpendicular to a set of waves,
convergence zones appear as long (100s of meters)
slicks oriented parallel to the bottom contours with
distances separating the slicks on the order of 100s of
meters. The edges of the slicks are sharply delineated.
This set of features is characteristic of tidally generated
internal waves and can be used as a diagnostic tool to
identify their surface expression (Shanks 1983).

4.6. Transport due to direct wind force (windage)
Windage is the effect of wind on items with a
freeboard, i.e. an area protruding out of the water.
While the wind-induced displacement velocity may be
directly related to the wind speed (Tapia et al 2004,
Astudillo et al 2009), it is important to realise that
windage does not correspond to the portion of surface
flow field driven by the wind, which is already
contained in the surface current, but to the direct wind
drag exerted on items at the sea surface (Zambianchi
et al 2014). In practice, the effects of windage and
Stokes drift (at least that of the locally wind-driven
waves) are typically combined, and the so-called
‘leeway’ is defined as the wind and wave-induced
motion of a drifting object relative to the ambient
current (Richardson 1997, Kako et al 2010, Breivik
et al 2011).

Ignoring its Stokes drift component, windage
results from the combination of a skin drag and a form
drag forces (e.g. Petty et al 2017). Skin drag results
from the viscous friction on the surface of the object
exposed to the wind. Form drag arises because of the
wind pressure on the part of the object above the sea
surface. The latter depends quantitatively on the buoy-
ancy ratio (the ratio between the cross-sections of
floating objects normal to the wind direction above
and below the sea surface), which in turn depends on
both the density and shape of a floating body (Zam-
bianchi et al 2014, Ryan 2015). This aspectmay be very
relevant for floating marine debris, as it might be
responsible for sorting plastics with different

buoyancies and sizes. This affects their wind drag coef-
ficient (Chubarenko et al 2016, Pereiro et al 2018) and
hence their dispersion (Aliani andMolcard 2003), ulti-
mately affecting both residence time and beaching
characteristics of floating items (Yoon et al 2010).
Model simulations ofMaximenko et al (2018) of drift-
ing debris generated by the 2011 tsunami in Japan have
been validated using observational reports, and
demonstrated that ‘high-windage’ objects crossed the
North Pacific in less than a year and were relatively
quickly pushed from the ocean onto the North Amer-
ican coastline, while heavy, low-windage debris col-
lected in themid-basin convergence zone.

4.7. Langmuir circulation
In some circumstances, the surface flow can attain the
form of coherent roll structures: pairs of counter-
rotating vortices aligned horizontally. The most well-
known flow of this type is the Langmuir circulation
(Langmuir 1938), which can be recognised by the
formation of windrows.

Windrows are common and clearly identifiable
features of the surface ocean. They are lines of bubbles
and surface debris generally aligned with the wind that
are the visible surface manifestation of the conv-
ergence zones between wind-wave-induced, counter-
rotating, wind-parallel helical vortex pairs referred to
as Langmuir circulation (figure 3). Planktonic organ-
isms also accumulate in Langmuir circulation cells,
potentially enhancing the biofouling of flotsam, as
well as increasing the likelihood of accidental entan-
glement in, and ingestion of, plastic items by more
mobile predators due to the close proximity between
plastic and biota (Gove et al 2019).

The formation of Langmuir cells is the manifesta-
tion of the interaction between the wind-induced
shear flow and the wave-induced Stokes drift
(Craik 1977, Leibovich 1977, 1980). It can be shown
mathematically that shear flow becomes unstable in
the presence of vertically sheared Stokes drift. Small
perturbations in the downwind flow lead to the forma-
tion of downwind-directed rolls, so that water parcels
describe spiral trajectories. Langmuir circulation cells
generally occur under wind speeds greater than 3–5 m
s−1, and their formation and/or re-formation takes
only about a few minutes (Thorpe 2004). Alternate
cells, which can be kilometers long, rotate in opposite
directions, causing formation of lines with converging
and diverging surface flows associated with down-
welling and upwelling, respectively, beneath these
lines. The water in the cells also moves downwind, so
thatmotion is helical.

Convergence and divergence zones in Langmuir
circulation are difficult to spot over the water surface
(Faller 1964), but become visible when there is foamor
flotsam on the surface accumulated by the conv-
ergence. After only 15–20 min of wind action, floating
material can already be accumulated in stripes, and is
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kept there as long as the particular row persists (Chang
et al 2019). Over time, the cells become larger and
merge together, leading to the formation of
Y-junctions at the surface (Thorpe 2004, Marmorino
et al 2005), pointing generally down-wind in deep
waters or equally up- and down-wind in shallow areas
(Chubarenko et al 2010). The lifespan of Y-junctions is
only 2–5 min, after which the regular structure of
windrows is re-established.

Even when windrows may not be apparent or are
highly disordered, the vertical velocity magnitude of
near-surface turbulence can be enhanced by the pre-
sence of Stokes forces, a condition known as Langmuir
turbulence (McWilliams et al 1997, McWilliams and
Sullivan 2000, D’Asaro et al 2014). Because of the close
connection between vertical velocities and surface
convergence, the disordered windrows may still parti-
cipate in the active accumulation of surface material
on horizontal scales of 10s to 100s of meters (Carlson
et al 2018).

Langmuir circulations, submesoscale fronts, inter-
nal waves, and other related roll-like instabilities with
surface convergence (van Roekel et al 2012) may
explain occasional observations from ships of extre-
mely high concentrations of floating debris ordered in
2–3 m wide stripes that stretch to the horizon
(Faller 1964, Barstow 1983, Law et al 2014, Carlson
et al 2018). These parallel windrows were seen in the
centres of the gyres under low-wind conditions; how-
ever, the exact census of the dynamics forming them is
incomplete, and their frequency of occurrence is
poorly constrained observationally. However, climate
models that parameterise Langmuir turbulence and
submesoscale fronts and eddies predict them to be

globally ubiquitous (Fox-Kemper et al 2011, Li et al
2016).

The relatively strong vertical flows in Langmuir
circulation may remove smaller items from the sur-
face, especially when the buoyancy of plastic particles
is small compared to the vertical current (Brunner et al
2015, Kukulka and Brunner 2015). Observed vertical
profiles of microplastics concentrations are only con-
sistent with turbulence-resolving simulations if Lang-
muir circulation is explicitly included in the model
(Brunner et al 2015). Submesoscale structures, such as
strong fronts, can play a similar role (Smith et al 2016,
Suzuki et al 2016, Taylor 2018). Sampling of micro-
plastics from nets that only skim the surface may
underestimate abundance in areas of divergence or
overestimate in areas of convergence.

Non-neutrally buoyant particles (whether sinking
or rising) in a laminar, near-surface flow will describe
closed elliptic trajectories within a ‘zone of retention’
under the water surface (Stommel 1949), and the com-
bination of these coherent structures and turbulence
will tend to homogenise the particles across the reten-
tion zone (Farmer and Li 1994). For positively buoyant
particles there are two qualitatively different beha-
viours (Bees et al 1998): some particles are trapped in
closed orbits at some distance below the surface (the
Stommel retention zone), whereas others accumulate
at the line of convergence at the fluid surface. In the
absence of any other transport or diffusive processes,
buoyant particles that begin at the surface cannot sub-
merge and, hence, will not enter the Stommel reten-
tion zone no matter how fast the fluid flow is in the
Langmuir circulation. It is rare to find such circum-
stances, however, as waves and the occasional white-
capping or breaker typically coexist with Langmuir

Figure 3. Schematic of Langmuir circulation andwater dynamics therein. Pink particles are plastic particles, which accumulate in
regions where Lagmuir cells converge at the surface. Adapted fromDethleff et al (2009).
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turbulence. Analysis of forces (the buoyancy force and
the dynamic pressure force) acting on particles (Deth-
leff et al 2009, Chubarenko et al 2010), shows that par-
ticles recirculate, describing different retention
trajectories depending on particle size and density (see
also Woodcock 1993). Thus, Langmuir turbulence
inter-mixes particles near the surface of the ocean by
forcing particles with different buoyancy to follow dif-
ferent paths.

Stokes drift, Langmuir circulation, and the buoy-
ancy of marine debris also influence the horizontal
dispersion of buoyant material in the ocean surface
layer (Colbo and Li 1999, Kukulka and Veron 2019).
Horizontal dispersion is driven by vertically sheared
horizontal mean currents and turbulent velocities.
Less buoyant material is mixed throughout the ocean
boundary layer (which is about 10–100 m deep), so
that dispersion by shear is predominant, whereas
more surface-trapped (but still fully submerged)
buoyant particles are dispersed by turbulent currents
(Liang et al 2018).

Realistic ocean models where Stokes drift has
been included (Warner et al 2010) show significant
improvements in regions where wave-current interac-
tions are strong. On the other hand, Langmuir circula-
tion and turbulence are not commonly included
explicitly in regional or global ocean models, although
recent software developments in GOTM (Umlauf and
Burchard 2003) and CVMix (Griffies et al 2015) may
make using parameterisations of Langmuir turbulence
easier (Li et al 2019). In idealised settings, Langmuir
turbulence has led to improvements in parameterisa-
tions of vertical mixing in the boundary layer (McWil-
liams and Sullivan 2000, Kantha and Clayson 2004,
Harcourt 2012, Noh et al 2015), which could form the
basis for stochastic parameterisations of three-dimen-
sional transport of particles (e.g. Holm2015).

4.8. Vertical transport andmixing
The vertical distribution of floating plastic depends
not only on the particle’s buoyancy, but also on the
dynamic pressure due to vertical movements of ocean
water. Understanding of the vertical flow in the ocean
is challenging because it is induced by several processes
acting at different temporal and spatial scales. It can
exist as coherent structures such as large-scale
(Ekman) pumping, upwelling and downwelling,
fronts, and turbulence-induced roll structures such as
convection cells and Langmuir circulations. Wave-
enhanced turbulence is also present without large-
scale features (e.g. Kukulka et al 2012). There can also
be vertical mixing in estuaries and rivermouths, but in
the presence of strong stratifications and tidal motion,
the vertical mixing of plastics is much more complex
there (see sections 4.10 and 4.11). The typical scales of
these processes in the open ocean are presented in
table 1, ranked fromhighest to lowest averaged vertical
velocity.

Diurnal heating of the ocean surface layer also
influences near-surface vertical mixing processes.
Strong surface heatfluxes result in diurnal warm layers
with near-surface density gradients (Price et al
1986, Soloviev and Lukas 1997, Plueddemann and
Weller 1999). Such density stratification suppresses
turbulence and associated near-surface mixing (Li and
Garrett 1995, Min and Noh 2004, Kukulka et al 2013).
Turbulence-resolving large-eddy simulations indicate
that turbulent downward fluxes of buoyant tracers are
suppressed in heating conditions, so that buoyant
material is surface-trapped, which is consistent with
microplastics observations in the Atlantic and Pacific
Oceans (Kukulka et al 2016).

Measured rise velocities for various types of plas-
tics and size classes typically range in the order ofmilli-
metres to 10s of centimetres per second (Reisser et al
2015, Lebreton et al 2018, Poulain et al 2019), which
places the rise velocity right in the middle of the range
of vertical velocities typical of boundary layer turbu-
lence and the submesoscale (Taylor 2018) in table 1. It
may also be important to take into account the effect
of the positively-buoyant particles sized around the
Kolmogorov micro-scale (Ruiz et al 2004, Cózar et al
2014), and the dynamics of flow around suspended
particles (Maxey and Riley 1983). It is worth noting
here that the vertical dispersion of buoyant particles in
the water column has been studied in the past, for
example, in the context of frazil ice dynamics (Svens-
son and Omstedt 1998), algal blooms (Moreno-Ostos
et al 2009), and diurnal vertical migrations, and that
lessons could be learned from these case studies.

4.9. Ice formation,melting and drift
The polewardmigration of floating plastics from highly
populated latitudes to polar regions has been reported
in the Northeastern Atlantic sector of the Arctic Ocean
(Lusher et al 2015, Bergmann et al 2016, Cózar et al
2017), and the central Arctic Ocean (Kanhai et al 2018).
Once there, floating plastic takes part in the cycles of
formation andmelting of the sea ice.Observations show
(Obbard et al 2014, Peeken et al 2018a, 2018b) that
Arctic sea ice has microplastics concentrations that are
several orders of magnitude higher than that in the
water column. Sea ice has already been identified as a
major means of transport and redistribution for
sediments (Nürnberg et al 1994, Gregory et al 2002);
various pollutants and contaminants in polar regions
(Pfirman et al 1997, Rigor and Colony 1997, Korsnes
et al 2002), including oil spills (Blanken et al 2017); as
well asmicroplastics (Peeken et al 2018b).

As with other particles, plastic particles become
concentrated in sea ice during ice formation through a
process known as scavenging (figure 4), which con-
centrates particles by 1–2 orders of magnitude relative
to ambient seawater (Obbard et al 2014). Even though
this phenomenon has not yet been investigated for
plastics specifically, the details of the process probably
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depend on the shape, size and density of plastic parti-
cles. As ocean water cools to the freezing point (and
slightly below it), small needle-like ice crystals form
(typically 3 to 4 mm long; called frazil ice). These crys-
tals consist of nearly pure freshwater, releasing salt
into the surrounding sea water. At this stage, both
thermal and haline convection develops in the upper
water layer, sometimes to depths of several metres
(Lake and Lewis 1970, Ushio and Wakatsuchi 1993,
Peterson 2018). The frazil crystals are usually sus-
pended in the top few centimetres of the surface layer
of the ocean, but can be stirred to a depth of several
metres by wave-induced turbulence (Omstedt 1985,
Svensson and Omstedt 1998). With further cooling,
the growing number of floating frazil crystals aggre-
gate and freeze together, leading to the formation of
grease ice (a soupy layer on the surface), then slush and
shuga (behaving like a layer of a viscous fluid, a few cm
across), then nilas (elastic crusts up to 10 cm thick),
then pancake ice (typically up to 10 cm in thickness, 30
cm–3m in diameter). Brine releases during the growth
of the ice, and vertical (thermal plus haline) convec-
tion supports further mixing, transporting suspended
particles to the upper water layers. This way, both
floating and slightly-negatively buoyant plastic parti-
cles could come into contact with newly-freezing ice
needles and thus be captured into the ice.

In contrast to freezing, melting of sea ice takes
place at the air-sea interface. This provides a certain
‘lifting’ mechanism for the (plastic) particles under
freeze/thaw cycles: being captured by growing ice
from below, they become closer to the surface as the
icemelts.

Sea-ice can also transport plastic particles lat-
erally. Therefore, sea-ice movements can be used to
track the movement of trapped plastics (Peeken et al
2018b). Instruments such as passive microwave
satellite images combined with the motions of sea ice
buoys have been used to study sea ice drift patterns
(Tschudi et al 2010, Tekman et al 2017). Under-
standing these dynamics is especially important in
the context of future trends towards thinner sea ice
and ice-free summers, and changes in the extent of
ice-free areas, ice movement patterns in polar
regions and resulting changes in ocean circulation
transport. Changes caused by the shift from multi-
year ice extent to first-year icemight result in the ten-
dency of sea ice floes to diverge from the main drift
pattern such as the Transpolar Drift (Szanyi et al
2016), with complex effects on exchange processes of
any contaminants between the Exclusive Economic
Zones of the various Arctic nations (Newton et al
2017).

Table 1.Characteristic vertical spatial scales and averaged vertical velocities for different open ocean processes inducing vertical transport.

Vertical spatial scale Averaged vertical velocities

Langmuir circulation Related tomixing layer depth or Stokes drift

decay depth (Wang et al 2018), typically
between 5 and 50m (Thorpe 2004).

Typically a few cm s−1 and up to 20 cm s−1, increases

withwind and Stokes drift (Leibovich 1983,Weller

et al 1985,Harcourt andD’Asaro 2008)
Verticalmixing induced by

breakingwaves

<10m (Sullivan et al 2007), related to significant
wave height (Terray et al 1996)

Typically 5 cm s−1 (Sullivan et al 2007)

Convective cells 10–1000m Typically 2–4 cm s−1 in coastal seas and 2–12 cm s−1 in

polar deep ocean convection (Stommel et al 1971,

Schott and Leaman 1991, Gawarkiewicz andChap-

man 1995, Lavender et al 2002)
(Submesoscale) Fronts Around 40m (D’Asaro et al 2018) Typically 1 cm s−1 (D’Asaro et al 2018, Taylor 2018)
Ekman pumping 10s to 100s ofmetres 10smetre yr−1 (=fewμms−1) (Johnson et al 2001)

Figure 4. Schematic of how freezing of frazil ice captures and entrains plastic particles. Figure byAnnekeVries, based onDaly (2008).
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4.10. River plumes and coastal fronts
Large rivers can move plastic debris originating on
land out to sea (Lebreton et al 2017, Schmidt et al
2017). In (sub-)polar regions, this can be exacerbated
seasonally bymelting of riverine ice in spring, carrying
previously ice-locked plastics to sea (Holmes et al
2012). In river plumes, the river water and ocean water
are in direct contact, forming fronts that may persist
for 10s or 100s of kilometres into the open ocean.
Plume fronts are often visible from large distances
(including from space) due to the contrasting optical
properties of these water masses (Acha et al 2015). At
estuarine fronts, distinct differences between the water
masses can be observed, typically with the lighter
freshwater at the surface extending farther out to sea,
and the denser seawater below intruding farther
upriver.

Floating objects (both natural and anthropogenic)
tend to accumulate at these fronts for similar reasons
as for the submesoscale frontogenesis processes
described above, which is reflected in higher debris
abundance along the outer river plume edge (Atwood
et al 2019), as well as on the seafloor and on the shore
(Acha et al 2003). River plumes may also contribute to
the accumulation of floating debris on seashores
downstream of contaminated rivers. Microplastic
beaching rates have been shown to depend strongly on
the characteristics of the river mouth (Atwood et al
2019), and seashores downstream of the river outflow
had higher densities of anthropogenic debris than sea-
shores upstream or distant from river mouths (Rech
et al 2014, Cheung et al 2016). Finally, coastal fronts,
whether generated by river plumes, upwellings, or by
other processes, may also block the transport of float-
ing items, including marine plastics (Hinojosa et al
2011, Garden et al 2014, Ourmieres et al 2018). As has
been shown for sediments, nutrients and Persistent
Organic Pollutants (POPs), river mouths and coastal
zones can act as physico-chemical barriers, or filters,
retaining andmodifying a certain part of the flux of the
material towards the ocean (e.g. Emelyanov 2005).
Enhanced flocculation of clay and organic matter in
areas of contact of riverine andmarine watersmay also
favour the retention offloating plastic objects.

4.11. Coastal currents, surfacewaves and beaching
The dominant hydrodynamics in coastal waters that
control the transport of plastic particles differ signifi-
cantly from the hydrodynamics occurring in the open
ocean. The complex 3D circulation patterns control-
ling plastic transport on the onshore side of the inner
shelf region are largely influenced by wind, waves and
tides, with the relative importance of forcing depend-
ing on water depth (Lentz and Fewings 2012). Tidal
currents generate turbulence near the bottom (Trow-
bridge and Lentz 2018). In estuaries, tides and density
fields also interact in complex ways, for example
resulting in converging fronts or particle trapping

(MacCready and Geyer 2010). The coastline morph-
ology and its interaction with the hydrodynamics also
impact particle transport and, due to the shallowness
of the water, even horizontal transport of floating
plastics is influenced by the seafloor.

The presence of the seabed results in a substantial
nonlinear evolution of the waves from their deep-
water state (Elgar andGuza 1985). The shape of indivi-
dual shoaling waves changes from an almost symme-
trical profile in deep water to a shape with sharp crests
and broad, flat troughs in coastal waters (Elgar and
Guza 1985, Doering and Bowen 1995). This increase
in steepness has important implications for the
strength of the Stokes drift (see section 4.4). Further-
more, as ocean surface gravity waves move from off-
shore regions to coastal waters, they start to feel the
seabed and some of the wave energy is dissipated by
friction, resulting in a thin boundary layer.Within this
layer, the horizontal and vertical orbital velocities are
not exactly π/2 out of phase, resulting in a net hor-
izontal wave Reynolds stress acting in the direction of
wave propagation, known as boundary layer stream-
ing (Longuet-Higgins 1953), which acts in addition to
the Stokes drift.

The wave asymmetry increases until the waves
become unstable and eventually break.Wave breaking
enhances the Lagrangian drift close to the surface
(Deike et al 2017, Pizzo et al 2019). The enhanced tur-
bulence due to wave breaking increases mixing, which
can cause resuspension of particles from the seabed
(Deigaard 1993). Broken waves propagate further in
the inner surf zone until they reach the shoreline,
where they collapse and climb up and down the beach
face in the swash zone. The transport of plastic in the
swash zone depends on plastic buoyancy and swash
zone flow asymmetry (Hinata et al 2017). Large float-
ing particles that are seaward of the shoreline but
within a distance of approximately half of the run-up
length are susceptible to beaching (Baldock et al 2008).
Particles with low settling velocity are recaptured by
small eddies (with diameters of centimeters to meters)
induced by swash waves and then transported sea-
ward, while large particles with high settling velocities
remain in the swash region (Hinata et al 2017). This
obviously has impacts on the residence time of plastic
close to the beach face. Plastic particles washed ashore
by large waves will deteriorate at rates that depend on
weathering history and residence time on the beach,
and fragment into small pieces that can be backwashed
offshore by swash waves and wave-induced nearshore
currents (Isobe et al 2014, Kataoka andHinata 2015).

The wave evolution and dissipation also induces
currents, which are three-dimensional, and their
influence can be separated into a cross-shore
component (perpendicular to the coastline) and a
longshore component (parallel to the coastline).
Waves approaching the coastline at an angle result in a
net longshore current that moves particles along the
coast (Longuet-Higgins and Stewart 1962, Taffs and
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Cullen 2005). In the cross-shore direction, an off-
shore-directed mean velocity, termed the mean return
flow or undertow, exists within the surf zone as a result
of a vertical imbalance between the wave-induced
momentum flux (radiation stress) and the pressure
gradient generated by the mean water surface slope
(Svendsen 1984).

Buoyant plastic particles are affected more by the
onshore drift as they have a tendency to remain at the
sea surface, whereas small plastic particles are more
likely to be mixed into the water column and follow
the undertow offshore (Isobe et al 2014, Kataoka and
Hinata 2015). As evidence of this, more floating plastic
bottles were found inside the surfzone than outside it
in an observational survey in the southern Mediterra-
nean (Pasternak et al 2018). Other studies describing
zooplankton accumulation have also reported a corre-
lation between the position of the plankton commu-
nity in the water column with onshore transport due
to surface Stokes drift or bottom streaming and off-
shore transport in the mid-water-column undertow
(Shanks et al 2015). Furthermore, because of this ver-
tical variation in the horizontal mean velocity, beach
morphology influences the direction of transport:
more dissipative beaches tend to trap plankton inside
the surf zone, while reflective beaches keep the plank-
ton outside the surf zone (Morgan et al 2017).

A particularly relevant wave-induced current is the
rip-current, which is a seaward-directed current that
originates within the surf zone, expands outside the
breaking region and can extend to the inner shelf (see
figure 5). Rip-currents eject surf zone water onto the
inner shelf and are potentially an important channel
for seaward transport of plastic particles. Rip-current
systems can trap floatingmaterial within the surf zone,
as the surf zone currents move particles toward the
centre of the rip (MacMahan et al 2010, Fujimura et al
2014).

There is still surprisingly little literature on the
processes that control how plastic and other buoyant
pollutants, such as oil, beach. Attempts have been
made to create data-driven estimates of litter on bea-
ches, where beach litter categories are predicted over
time using artificial neural networks, using data of
large debris on beaches from cleanup surveys (e.g.
Balas et al 2004, Schulz and Matthies 2014, Granado
et al 2019). Another approach is based on the fact that
natural sorting and retention of certain type of sedi-
ments (sand, granules, pebbles) are observed on coast-
lines (Reniers et al 2013). The same could be
happening with plastic particles: beach characteristics
like steepness and sediment type could determine
which particles get stranded (Hardesty et al 2017b).
For example, surface roughness and the pore size of
the beach sediments are likely to be important when
plastic objects are pushed on the shore by the wave
run-up.

Finally, coastlines are also considered to be hot-
spots for microplastic generation (Andrady 2011).
Degradation of plastic appears to be related to ultra-
violet radiation and/or mechanical abrasion by sedi-
ments (Song et al 2017) and fragmentation in the sea
swash and wave breaking zone, especially during
storm events (Chubarenko and Stepanova 2017, Chu-
barenko et al 2018, Efimova et al 2018). The fragmen-
tation rate of beached plastic might be closely related
to the residence time on beaches (Kataoka and
Hinata 2015, Fanini and Bozzeda 2018) and is depen-
dent on polymer type (Song et al 2017) and temper-
ature (Andrady 2011).

4.12. Extreme events
While extreme events such as floods, tsunamis and
storms are known to play an important role in the
release of plastic and other materials into the ocean

Figure 5. Schematic of the processes that transport plastics in the coastal zone. Adapted from figure 1.2 of van der Zanden (2016).
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(e.g. Thiel and Haye 2006, Axelsson and van
Sebille 2017, Gündoğdu et al 2018, Hurley et al 2018,
Maximenko et al 2018), very little is known about how
these phenomena affect the transport of floating
marine plastic debris. Some information about the
arrival of debris flushed out to sea during the 2011
Japan tsunami onto shores of North America and
Hawaii is provided by Carlton et al (2017). There is
evidence that storms significantly affect the transport
of floating items in the North Sea (Stanev et al 2019).
However, not much more has been reported in the
literature at present.

4.13. Transport by organisms
Organisms can also transport plastic debris, either
after ingestion or entanglement. Examples are plastic
particles moved by seabirds to breeding colonies (e.g.
Buxton et al 2013, Le Guen et al 2020). Transport to
land by birds takes several routes, including predation
(e.g. Ryan and Fraser 1988) and regurgitation to chicks
(Ryan 1988), which may either die ashore or regur-
gitate plastic and other indigestible prey remains prior
to fledging (Lavers et al 2018), thereby effectively
transporting plastic. Migrating animals can also ingest
and excrete plastic, thereby redistributing it (e.g.
Rummel et al 2016). Furthermore, biota have a large
role in moving floating plastic from the sea surface to
depth (see section 5), and may also cause fragmenta-
tion through biting or grinding occuring during
digestion.

5.Howplastic particles sink from the ocean
surface

It is generally accepted that the seabed is a sink of
plastic debris (Van Cauwenberghe et al 2013, Woodall
et al 2014, Corcoran 2015). While sinking towards the
seafloor is rather obvious for initially negatively-buoy-
ant objects, which imminently start to settle upon
entering the marine environment, there is substantial
evidence of positively buoyant particles in the water
column and in marine sediments (Bergmann et al
2017b, Song et al 2018). Sedimentation of initially
buoyant (or floating) marine debris occurs as a result
of various transformation processes listed below. Note
that the first four of these processes are relevant only
for the small-scaled plastic particles, typically micro-
and nano-plastics.

(1) Plastic particles might become entrained in or
stick to so-called marine snow (organic detritus)
to form sinking aggregates. Regional in situ
observations reveal that up to 70% of analysed
marine snow aggregates contained microplastic
(Zhao et al 2018, de Haan et al 2019). Laboratory
experiments show that incorporation into artifi-
cial marine aggregates strongly enhances the
sinking velocity of plastic, reaching sinking

velocities of several hundredmetres per day (Long
et al 2015, Michels et al 2018, Porter et al 2018).
Agglomeration of nano- and microplastic parti-
clesmay be facilitated by exopolymeric substances
(Summers et al 2018) and biofilm formation on
the plastic surface (Michels et al 2018).

(2) Plastic particles might be incorporated into sink-
ing fecal pellets. Microplastics are known to be
ingested by plankton, fishes, seabirds and marine
mammals, and part of the ingested debris ulti-
mately is packaged into fecal pellets (Lee et al
2013, Cole et al 2015, 2016, Katija et al 2017). Not
only does this incorporation in fecal pellets
significantly increase the settling velocity of plastic
particles, the plastic can also significantly alter the
structural integrity, density, and sinking rates of
fecal pellets egested by marine zooplankton (Cole
et al 2016).

(3) Plastic particles might be carried with the ‘plastic
pump’ by giant larvaceans (Katija et al 2017),
zooplankton (Sun et al 2018), and mesopelagic
fishes such as lantern fishes, myctophids and
others (Boerger et al 2010, Choy andDrazen 2013,
Lusher et al 2016). These are among the most
abundant pelagic groups in our oceans and,
through their vertical migrations, are known to
rapidly transport carbon and nutrients to the deep
sea (Wieczorek et al 2018). Feeding near the
surface at night and migrating to depths during
the day, they might be responsible for the trans-
port and removal of large quantities of micro-
plastics from the surface ocean to the deep sea
(Lusher et al 2016, Sun et al 2018, Choy et al 2019).

(4) Plastic particles may aggregate with suspended
inorganic particles such as clay, and therefore
increase in density and sink, as was shown
experimentally for nano-sized polystyrene
spheres (Besseling et al 2017). In polar regions,
sea-ice derived (cryogenic) gypsum could poten-
tially serve as an effective ballast mineral for
microplastics in the same way as shown by
Wollenburg et al (2018) for Phaeocystis
aggregates.

(5) Plastic buoyancy may be affected by biofouling
(Kooi et al 2017). Epibionts growing on plastic
particles add mass and, depending on the organ-
ism’s specific density, cause changes in overall
buoyancy of the fouled particle (Zettler et al
2013), increasing settling velocity (Kaiser et al
2017). These effects are more important on
particles with large surface area to volume ratios
that have lower initial buoyancy (Ryan 2015) and
can rapidly lead to sinking of fouled particles
(Fazey andRyan 2016).

(6) Plastic particles may be transported by hyperpyc-
nal flows, typically generated by flash floods
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(Pierdomenico et al 2019) or deep-water cascad-
ing events (Sanchez-Vidal et al 2015, Tubau et al
2015). Once the debris is funnelled into submar-
ine canyons, it may be further re-mobilized by
sedimentary gravity flows triggered by storms,
floods or earthquakes.

While all of these processes have been observed in
the lab or in the field, their relative importance is gen-
erally unclear between different regions of the ocean
(figure 6). For example, it could be hypothesised that
microplastic sedimentation primarily happens in the
regions of high productivity such as river plumes or
upwelling zones. On the other hand, zooplankton-
plastics encounters would be more probable in oligo-
trophic waters since plastic to plankton ratios are
higher there, leading to the (unverified) hypothesis
that plastic ingestion is more common in oligotrophic
oceans. The spatial distribution of vertical transport
processes is a large knowledge gap.

6. The tools to investigate transport
processes

6.1. In situmeasurements
The transport of floating marine plastic particles can
be investigated with the aid of Lagrangian observa-
tions. Recently, Langrangian observations have been
derived from satellite-tracked drifters (Elipot et al
2016) and have contributed to the description of the
dynamics of ‘garbage patches’ in the Atlantic and
Pacific Ocean (Maximenko et al 2012, van Sebille et al
2012a). Zambianchi et al (2017) used trajectories of
more than 1400 surface drifters to describe retention
times of floating marine debris in the Mediterranean
Sea. Drifter experiments have improved the under-
standing of physical processes related to motion of
aquatic floating objects (e.g. Carlson et al 2016, 2017).
Several studies analysed the pairwise dispersion of
drifters to estimate mixing regimes and diffusivities
from submesoscales and mesoscales to larger scales

(Koszalka et al 2009, Poje et al 2014, van Sebille et al
2015a, Corrado et al 2017). The understanding of these
processes is very valuable for the accurate parameter-
isation of turbulent diffusivities in particle tracking
models (e.g. Christensen et al 2018). D’Asaro et al
(2018) showed with surface drifter experiments that
floating materials can concentrate at density fronts
and that oil spills, for instance, could increase in
thickness by a factor of 104 in convergence areas.
Examination of where surface drifters end up on the
shore (e.g. Lumpkin et al 2012) can help to understand
coastal sinks offloating debris.

The transport of drifters on the ocean surface is
highly influenced by the windage and thus by size,
shape and buoyancy of the drifters. The windage
depends on the drag area ratio of the drifter, which is
defined by the cross-sectional area below the water
surface divided by the cross-sectional area above the
water line that is directly exposed to the air. The very
popular Surface Velocity Program drifter design,
which uses subsurface drogues to minimize the direct
wind drag, typically has a drag area ratio around 40
and is primarily used for investigating complex surface
current systems (Lumpkin et al 2017).

Drifter designs that focus on transport and disper-
sion of pollutants like floating marine debris or oil
spills typically have a lower drag area ratio and target
the transport in the upper metre, taking into account
wind- and wave-induced motions. A recent observa-
tional study shows a strong near-surface current shear
in the upper metre of the water column that implies
that larger plastics are primarily transported by these
wind- and wave-induced motions (Laxague et al
2018). Some of the most recent drifter designs have
adjustable drag area ratios to simulate different float-
ing objects with different characteristics, and can
continue transmissions while being beached and
recaptured (Meyerjürgens et al 2019, Stanev et al
2019). Other novel drifters are extremely low-tech
(e.g. bamboo plates), but are designed to be tracked in

Figure 6. Schematic of the different transport processes bywhich organisms can affectmovements of initially buoyant plastics. Green
circles represent plankton.
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high resolution from cameras mounted on aerostats
(Carlson et al 2018).

In situ horizontal and vertical samples of plastic
particles on various spatial and temporal scales can
provide data on the plastic distribution and properties
such as morphology, density and size. It is important
to note that any particular sampling design (e.g. plank-
ton nets, bulk water sampling, visual surveying, etc)
measures only a portion of the particle size spectrum,
which spans nanometers (albeit not yet measurable in
nature) to tens of meters in size. Parameterisations
that correct the microplastic density in surface mea-
surements based on the wind field and sea state have
been developed (Kukulka et al 2012).

Additional field observations, including samples
recovered from marine biota, can be used to evaluate
biological interaction such as biofilm, aggregation,
and fecal pellet formation, ingestion and vertical
migration, and their geographical distribution and
relative contribution to the vertical transport of plas-
tics. These data are especially important as input for
and validation of numerical models (Kooi and Koel-
mans 2019, Poulain et al 2019), discussed in
section 6.4 below. Field experiments to investigate the
transport of floating plastic with actual (micro)plastic
itself are challenging, especially in the deep ocean.
However, there is at least one good example of a field
experiment in the coastal zone (Hinata et al 2017).
Short-term experiments with surface drifters in
coastal waters can also provide useful information
about drift trajectories and velocities (Astudillo et al
2009). Temporal deposition dynamics were studied
through the assessment of new versus old plastic pel-
lets on a Mediterranean beach (Fanini and Boz-
zeda 2018). Given the growing interest in the topic
from the experimental coastal community, we expect
more of suchfield experiments in the future.

The different types of in situ measurements yield
different data, that are often not easy to compare or
combine. Hence, Maximenko et al (2019) recently
proposed the development of an Integrated Marine
Debris Observation System, where strategies and
methodologies are developed to integrate the different
measurements, including also remote sensing data
(see section 6.3 below).

6.2. Laboratory experiments
Laboratory experiments can help us understand many
aspects of the behaviour of marine plastic debris in the
ocean and validate parameterisations before they are
used in large-scale ocean models, including their
transport by waves, beaching, vertical mixing and the
resulting vertical distribution, abrasion, and fragmen-
tation. The laboratory is a well-controlled environ-
ment and, consequently, it is possible to focus on a
specific process and properly describe its influence on
plastic transport. It is imperative in these experiments,
as is common in physics, to present results in a non-

dimensional way, introducing non-dimensional num-
bers such as the (particle)Reynolds number, the Stokes
number, the Langmuir number, and the Schmidt
number. Only then can insights from the laboratory be
applied to the ocean.

Exemplary laboratory measurements on floating
plastic transport are the experiments relating to the
wave-induced Stokes transport (reviewed in van den
Bremer and Breivik 2018), withmore recent contribu-
tions examining very steep non-breaking waves in
intermediate depth including boundary layer stream-
ing (Grue andKolaas 2017), wave groups in deepwater
including their Eulerian return flow (van den Bremer
et al 2019), and the orientation of non-spherical parti-
cles (DiBenedetto et al 2019). Although the behaviour
of infinitesimally small, neutrally buoyant submerged
particles in small-steepness non-breaking waves is well
understood, laboratory experiments offer ample scope
to improve our understanding of the transport of
floating particles of different sizes, shapes and density
in different water depths in steep and breakingwaves.

Laboratory experiments also present a useful tool
to study the motion of plastics in the nearshore
environment, including plastic beaching. Detailed
information on surf and swash zone hydrodynamics
and the motion of sediment particles can be obtained
experimentally (Alsina andCáceres 2011, van der Zan-
den et al 2017), with potential influence on themotion
of lower-density plastic particles. Laboratory experi-
ments have also provided measurements of the advec-
tion scale of neutrally buoyant particles from the inner
surf to the swash zone (Baldock et al 2008), which is
the spatial scale relevant to the beaching of plastic par-
ticles. However, further experiments are needed to
fully characterize this beaching and the influence of
different variables such as beach configuration, sedi-
ment size, particle size, and density. The beaching of
plastic particles is important to understand themarine
plastic cycle and it is often introduced in parametric
form in numerical models (e.g. Jalón-Rojas et al 2019).
To study plastic beaching, laboratory measurements
should be complemented with field observations and
measurements. Challenges in measuring plastic
beaching in the laboratory arise from the need for
accurate wave generation and control of the mean
Eulerian flows, and resulting vorticity in the labora-
tory flume or basin, which depend on laboratory-spe-
cific conditions (e.g. Monismith et al 2007, van den
Bremer et al 2019). Equally challenging is the accurate
tracking of particles in a highly turbulent and bubbly
environment, such as the surf and swash zones. Video
cameras have been used for Stokes-drift-type experi-
ments, where accurate measurements are needed, as
the net motion in every period is small compared to
the periodic orbital motions themselves. Measuring
the beaching of plastic particles requires even longer
measurements and greater spatial coverage than pre-
vious experiments (i.e. from the inner surf zone to the
maximum run-up).
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The role of wave-induced transport cannot be
assessed, nor can estimates of the total amount of plas-
tic in the ocean be made without understanding its
vertical distribution. As previously mentioned, one of
the key parameters that controls this vertical distribu-
tion is the particle rise/settling velocity. The para-
metric expression for this velocity, a balance between
the drag and the buoyancy forces, is known for regular
shapes, such as spheres, disks, and ellipsoids (Clift et al
1978, Leith 1987), though it is less-well understood for
irregularly shaped particles. This approach—widely
used in sedimentology—was verified experimentally
in fluid at rest for plastics between 1 and 5 mm with
regular shapes (Waldschläger and Schüttrumpf 2019)
and for smaller particles (Khatmullina and Isa-
chenko 2017, Kaiser et al 2019). However, plastics
have random and ragged shapes and Poulain et al
(2019) developed a tool to predict upper and lower
bounds for rise velocity for particles of sizes between 1
and 5 mm. The dynamics of fibres or very small plas-
tics, on the other hand, remains poorly documented,
and overall the interaction between particles and tur-
bulence is amajor knowledge gap in a realistic descrip-
tion of the vertical distribution of plastics in the ocean.
More experiments are also needed to parameterise the
influence of plastic degradation and biofilm formation
on the rise/settling velocity (Kaiser et al 2017). The
vertical distribution is also influenced by particle con-
centration, through affecting the turbulence (Bennett
et al 2013), and size (Bennett et al 2014). Experiments
have yet to be carried out to quantify the effects of
these characteristics on floating plastics. Recently
developed optical techniques, especially in four
dimensions, could be useful in the context of plastic
transport, and these new tools could also be useful to
study the coupling between vertical mixing and hor-
izontal transport.

Laboratory experiments are also needed to mea-
sure how particles on the coastal seafloor get resus-
pended back to the surface. The resuspension
threshold controls at which shear stress (applied by the
current just above the bed) a particle is captured and
transported by the flow (Chubarenko and Stepa-
nova 2017). The applicability of thresholds from the
sedimentology literature is a matter for further study,
as plastics (even when accounting for their different
densities compared to sediments) are present in a vari-
ety of one, two or three-dimensional shapes. More-
over, sedimentological studies generally have a
different goal: they mainly address the problem of bed
erosion, searching for the beginning of rolling/salta-
tion/sheet-flow motions of particles covering the
entire bed (Shields 1936, Bagnold 1955). For plastics,
the problem is different: plastic particles in the ocean
are re-suspended from the bed covered by sediments
with different properties (grain size, density, shape,
water content). This means that the same plastic parti-
cle will have different motion threshold on different
sediment types. On a rough bed, where the plastic

particle size is less than the sediment grain size, the
threshold becomes dependent on particle orientation
to the flow, requiring statistical approaches to thresh-
old quantification. In addition, bioturbation may lead
to retention and burial of particles into deeper sedi-
ment layers (Iribarne et al 2000, Soltwedel et al 2019).
Thus, laboratory approaches and theoretical formal-
ism developed in sedimentology need to be adjusted to
answer specific questions regarding the re-suspension
of plastic particles.

Biological interaction is one of the key mechan-
isms to remove floating plastics from the sea surface
and transport them to the water column, deep sea and
sea floor (section 5), and the removal rate of floating
(micro)plastics is an important input parameter for
horizontal transportation models (section 6.4). How-
ever, removal rates due to biofilm formation, aggrega-
tion, fecal pellet sinking, ingestion and vertical
migration are not well parameterised yet. Laboratory
microcosm and outdoor mesocosm experiments on
short and long time scales are thus required in various
biological and environmental conditions with (micro)
plastics of different morphology, size and polymer
type to determine the removal and vertical transporta-
tion rates.

While the abrasive wear and resulting life time of
synthetic polymers is usually tested by industry under
the conditions they are designed for, these tests do not
generally include unintended environments like the
ocean, nor lifetimes beyond the intended duration of
use of thesematerials. Consequently, the abrasive wear
of plastics under conditions of repeated mixing with
natural beach sediments is only known for modelling
carried out in laboratory experiments. For example,
laboratory experiments have been used to quantify the
mechanical abrasion and fragmentation of plastic par-
ticles in the swash zone where waves repeatedly run up
and run down on shoreface sediments (Efimova et al
2018, Chubarenko et al 2020) or in water (Resmeriţă
et al 2018). As is common in experiments on the abra-
sive wear of materials, the next step for marine plastics
is to obtain statistics. The methodology is effective,
simple, cheap, and robust even though quite labor-
ious, and can be extended to more types of plastics,
with different sediments and sediment mixtures, to
examine the influence of solar radiation, temperature,
and other key factors expected to be important. The
latter should be checked at both high and low (envir-
onmentally-relevant) temperatures, because the prop-
erties of plastics change quite significantly, from high
plasticity on tropical beaches to brittle in polar ice
(Lancaster 1969).

6.3. Remote sensing
Remote sensing using sensors mounted on satellites,
high altitude pseudo-satellites, aircrafts, unmanned
aerial systems, ships, fixed platforms or handheld
sensors can generate geophysical and chemical proxy
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information about optically active targets from a
distance. To this end, prospective application of
remote sensing tools to understand the dynamics and
pathways of plastics can be performed (i) directly by
using optical, radar sensors as well as visual inspection,
and (ii) indirectly by inferring relevant distribution
information based on observations of other Essential
Ocean Variables (Mace 2012, Garaba and Diers-
sen 2018 and references therein). At present, most
progress in the direct remote sensing of plastic has
been made in the field of optical remote sensing
operating in the visible (350 nm) to shortwave infrared
(2500 nm) spectrum. Direct applications and scientific
progress involving optical remote sensing for detect-
ing, quantifying, classifying and tracking floating
plastic debris, has recently been reviewed in Max-
imenko et al (2019) andMartinez-Vicente et al (2019).
The two main approaches that have been widely
implemented in analyses of imagery include auto-
mated image/object recognition and spectral analyses.

Plastic debris can be identified using visual recog-
nition, either by trained observers (e.g. Garaba et al
2018) or by automated processing of digital imagery
developed through machine learning (e.g. Martin et al
2018). The current suite of satellite missions has vary-
ing geo-spatial and spectral capabilities (Garaba and
Zielinski 2015, Greb et al 2018). In terms of geo-spatial
capabilities,Maxar TechnologiesWorldViewmissions
can produce imagery with a pixel size of∼0.3×0.3m.
Although this is very high-resolution imaging, distin-
guishing individual particles has not been fully
achieved using captured imagery.

The other approach builds on the science of opti-
cal remote sensing and the unique spectral reflectance
of plastics. The key end-product of ocean colour
remote sensing is reflectance, the ratio of light reflec-
ted from the ocean surface and incident light (Nicode-
mus et al 1977). Ocean colour remote sensing has been
very successful in monitoring water quality para-
meters such as concentrations of algae, dissolved
organic matter and suspended particles through their
optically active properties. Recent studies have repor-
ted promising findings suggesting the potential detec-
tion and identification of floating and slightly
submerged plastic debris using optical sensing in the
visible to short wave infrared spectrum (Garaba and
Dierssen 2018, Garaba et al 2018, Goddijn-Murphy
andDufaur 2018, Goddijn-Murphy et al 2018, Topou-
zelis et al 2019). However, it has been very challenging
to detect microplastics submerged in the water col-
umn because water strongly absorbs light in the infra-
redwavelengths that characterize plastics.

It has become clear that spectral remote sensing
would improve by using complementary measure-
ments based on different sensing technologies (Max-
imenko et al 2019). Manned and unmanned platforms
equipped with LIDAR and thermal infrared (TIR)
imaging have potential applications in the remote sen-
sing of floating plastic debris (Girard-Ardhuin et al

2005, Pichel et al 2012, Veenstra and Churnside 2012,
Topouzelis et al 2019). TIR remote sensing measures
the surface emissivity of the ocean and routinely pro-
vides sea surface temperature estimations. For directly
measuring plastic debris on top of the water surface,
Goddijn-Murphy and Williamson (2019) expect it to
work best at locations where the air-sea temperature
difference is largest. Because TIR radiance is strongly
absorbed in water, it cannot sense suspended micro-
plastics. Passive microwave sensing also measures the
surface emissivity of the ocean, but in the microwave
region of the electromagnetic spectrum. Measure-
ments, commonly expressed as brightness temper-
ature, relate to sea surface properties like temperature,
salinity and roughness.

Active microwave sensors (which emit micro-
waves and measure the back scatter) have not yet
demonstrated the capability to detect plastic debris
directly, but provide information that aids in the iden-
tification of potential debris convergence points and
pathways. Surfactants, man-made and natural, accu-
mulate in surface current convergence zones, where
debris will also accumulate (D’Asaro et al 2018). These
surfactants modify surface tension and, hence, the
Bragg waves responsible for radar scattering, and show
as darker ocean patches in radar imagery. These dark
patch signatures in SAR data have been used success-
fully tomonitor oil spills (Fingas and Brown 2014) and
provide candidate areas for debris accumulation. The
radar altimeter constellation measures ocean surface
heights, fromwhich geostrophic currents products are
generated and distributed operationally by the Archiv-
ing, Validation and Interpretation of Satellite Oceano-
graphic data data distribution site at http://aviso.
oceanobs.com. These geostrophic currents have been
used to identify ocean fronts and filaments, where
debris may accumulate, by means of the geostrophic
current field Lyapunov exponents (e.g. Nencioli et al
2013).

Radar scatterometers provide global high resolu-
tion (12.5 km) wind speed and direction data which
may be used to estimate Ekman currents (Dohan and
Maximenko 2010), and which are used to generate esti-
mated surface current products, such as OSCAR (Bon-
jean and Lagerloef 2002). Scatterometer derived winds
may also be used to estimate windage and have been
shown to have significant skill in predicting Stokes drift
(Clarke and Gorder 2018). Finally, in recent years, the
technology to measure surface currents directly using
Doppler scatterometry have been demonstrated using
airborne and spaceborne sensors (Chapron et al 2005,
Romeiser et al 2010, Kudryavtsev et al 2012, Rodríguez
et al 2018). These advances have resulted in proposals
for future space missions to measure surface currents
and winds (WaCM, Rodríguez et al 2019), surface
currents and waves (SKIM, Ardhuin et al 2019), or
high-resolution surface currents, winds and waves
(SEASTAR, Gommenginger et al 2019), whichmay add
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significant skill in predicting the pathways for man-
madedebris dispersal.

Thermal infrared sensors, altimeters, scatte-
rometers, passive microwave as well as visible spec-
trum sensors are all used to study sea ice. The potential
for microwave remote sensing to directly observe
floating plastic debris has not yet been exploited.How-
ever, all aforementioned observations of the ocean
surface can help predict pathways, locations and dis-
tribution of floating ocean plastics. Satellite observa-
tions are essential to complement numerical
simulations in locating fronts (e.g. Rascle et al 2014),
eddies, gyres and plumes, sometimes through tracking
surfactants (Munk et al 2000), making it possible to
identify potential zones of accumulation in the open
ocean. An overview of satellite remote sensing for
studying physical processes at the ocean surface is
given by Shutler et al (2016).

6.4. Numerical simulations
Most of our knowledge about the distribution of ocean
plastic comes from simulations of the transport of
plastic particles with numerical models. Given the
sparsity of observations, numerical simulations can be
used to both ‘fill in the gaps’ between these observa-
tions, and to test hypotheses about how plastic
particles behave in the ocean. See Hardesty et al
(2017a) for an extensive review on how numerical
model simulations can be used to improve the under-
standing ofmicroplastic distribution and pathways.

There are essentially two complementary approa-
ches that can be used to simulate plastic transport. The
first is the Eulerian framework, which is commonly
used in sediment simulations (e.g. Michallet and
Mory 2004, Chauchat 2018), for example. On a global
scale, plastic can be simulated within these Eulerian
models as a tracer, somewhat similar to how other tra-
cers such as temperature and salinity are treated
(Mountford andMoralesMaqueda 2019).

The Eulerian framework is also used in a one-
dimensional setup, for example, to estimate the turbu-
lence-corrected concentration from plastics measure-
ments at sea (Kukulka et al 2012, Enders et al 2015,
Poulain et al 2019). These Eulerian models solve a set
of two-phase equations on a grid: the fluid phase, and
the particle phase through the particle concentration.
The vertical mixing is modelled by a turbulent diffu-
sivity parameterisation that takes into account the tur-
bulence source (through the eddy viscosity) and the
particle-fluid coupling (through the turbulent
Schmidt number). The value of this Schmidt number
is an open question (Tominaga and Stathopou-
los 2007, Gualtieri et al 2017). It should probably differ
between sediment and buoyant particles such as plas-
tics (Mathai et al 2015), and a size dependence should
also be considered.

The second approach is the Lagrangian framework
(see van Sebille et al 2018 for a recent review), which is

commonly used in oceanography to analyse the three-
dimensional transport of sea water (e.g. Drijfhout et al
1996, Blanke and Raynaud 1997, Döös et al 2008) and
ocean dynamics (e.g. van Sebille et al 2012b, Ypma et al
2015). It is also the most commonly used framework
to compute the pathways and distributions of plastic
particles in the ocean (e.g. Lebreton et al 2012, Maes
and Blanke 2015, Iwasaki et al 2017, Jalón-Rojas et al
2019, Onink et al 2019, van Gennip et al 2019). These
Lagrangian simulations use (pre-computed) Eulerian
velocity data derived from observations or models to
compute the pathways of virtual particles, by integrat-
ing the (spatially- and temporarily-varying) velocity
field in time. This is done with time integration, either
using ‘homebrew’ codes or off-the-shelf community
packages such as OceanParcels (Lange and van
Sebille 2017, Delandmeter and van Sebille 2019),
TrackMPD (Jalón-Rojas et al 2019), OpenDrift
(Dagestad et al 2018), the Connectivity Modelling Sys-
tem (Paris et al 2013), Ariane (Blanke and Ray-
naud 1997, Durgadoo et al 2019), TRACMASS (Döös
et al 2013) or PaTATO (Fredj et al 2016).

The three-dimensional motion of plastic particles
in the ocean can be decomposed, somewhat arbi-
trarily, into a deterministic, or resolved, component
and a turbulent, unresolved contribution. This unre-
solved contribution has to be modelled by stochastic
terms in Lagrangian models. In the horizontal plane,
mixing is often understood as the diffusive component
in the advection equation, capturing the unresolved
scales of the flow. Mesoscale and submesoscale eddy
turbulence is often represented as a random walk in
Lagrangian particle modelling (e.g. Haza et al 2012,
Maximenko et al 2018, Lacerda et al 2019), where the
turbulent diffusion coefficient has been assumed con-
stant. However, this uniform turbulent diffusion will
not be able to capture mixing in areas with varying
eddy activity. Some studies have been carried out to
determine the horizontal diffusion coefficient for spe-
cific regions (e.g. Zhurbas 2004, Rühs et al 2018), and
it might be worthwhile to use this approach in simula-
tions of plastic particle dispersion.

In the vertical direction, empirical parameterisa-
tions exist for the wind-driven mixing (Thorpe et al
2003), breaking waves (Kukulka and Brunner 2015),
Langmuir cells (Brunner et al 2015), and the combina-
tion of winds, convection, and Langmuir cells (Har-
court 2012, 2014, Li et al 2016), as well as overturning
transport by submesoscale mixed layer eddies (Fox-
Kemper et al 2011) and symmetric instabilities (Bach-
man et al 2017). However, a variety of other types of
frontal convergence and submesoscale phenomena
such as intrusions and ramps remain to be para-
meterised. Furthermore, although breaking waves and
the Langmuir cells play a key role in homogenizing
currents and density in the ocean mixed boundary
layer (Kukulka and Veron 2019), especially when the
sea is fully developed (Li et al 2005), they are not routi-
nely taken into account to correct sampling at sea.
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Indeed, we often ignore the quantitative contribution
of each of these processes in the vertical mixing and
their coupling with plastic dynamics. In practical
applications, drift simulations using even the best
models often produce large discrepancies with obser-
vations (Potemra 2012,Maximenko et al 2018).

While Lagrangian models of virtual plastic parti-
cles have been widely used in open-ocean domains,
their application to nearshore systems with compli-
cated geometry are less mature (e.g. Yoon et al 2010,
Neumann et al 2014, Critchell and Lambrechts 2016,
Zhang 2017). Recently, it has been shown that the
Lagrangian connectivity of nearshore flows depends
strongly on the horizontal resolution of the underlying
Eulerian hydrodynamic data (Dauhajre and McWil-
liams 2019). In particular, the simulation of beaching
of virtual particles is mostly unexplored (Hinata et al
2017). Many Eulerian coastal flow models such as
Delft3D (Lesser et al 2004) and X-Beach (Roelvink et al
2009) already include sediment transport; however,
they are not ideal for simulating floating plastic
because these models often do not adequately resolve
surface processes such as wave breaking.

Because of the shallow water and high mixing
levels, the interactions of both the hydrodynamics and
the plastic particles with the seafloor and its sediments
cannot be neglected within the surf and swash zone,
even for positively buoyant particles. The boundary
between the wet seafloor and dry beach is complex to
model, although very important for the stranding
probability of plastics.

Coastal flowmodels that resolve the fast and inter-
mittent swash flow do exist (e.g. SWASH; see Zijlema
et al 2011) but often do not fully resolve the surface
dynamics and vertical flow components induced by
wave breaking. This makes it difficult to capture the
physical stranding and refloating of particles on the
shoreline and the entrainment of particles under
breaking waves. Although models like OpenFOAM
(Weller et al 1998) and DualSPHysics (Crespo et al
2015) resolve wave breaking and particle-flow interac-
tion (so could potentially give insight in the small-scale
processes), computational power is still too limited to
solve flow on a time scale longer than a few single wave
events. Therefore, there is great potential to develop
the combination of empirical parametrizations based
on results from controlled laboratory experiments (for
example: behaviour of plastic under breaking waves,
or stranding of particles at dry beach) together with
Lagrangian tracking of particles in numerical flow
fields of coastalflowmodels.

7. Conclusions and discussion

Plastic litter in the ocean is an atrocity and a testament
to our wasteful societies. At the same time, floating
plastic debris is also a unique tracer and, as a result,
might provide an opportunity to further improve our

understanding of the physical laws and dynamics of
the global ocean. In particular, the distribution of
plastics may potentially be used to infer how sus-
pended particles are transported by ocean flows across
a wide range of spatial scales. In this review paper, we
summarised the state of the art of our understanding
of the physical processes controlling the transport and
movement of plastics on the surface of the ocean. We
have focused on floating plastic because that is the
best-understood fraction of marine plastics, if not the
largest fraction by weight. We have highlighted where
knowledge gaps exist, and how field and laboratory
measurements, remote sampling and numerical mod-
elling can help to address these knowledge gaps.

Although the large majority of the literature on
marine plastic debris is less than a decade old, much
can be learned from more established fields and com-
munities that work with other pollutants and particu-
late matter in the ocean such as oil, sediments, ice and
plankton. The main hydrodynamical parameters such
as terminal settling/rise velocity and critical shear
velocity have been studied intensively in sedimentol-
ogy, hydrology, hydrodynamics, etc. The effects of
shape, density and size on these parameters were suc-
cessfully parameterised in semi-empirical dependen-
cies, which can also be applied to plastic particles. We
therefore strongly encourage and invite these other
communities to collaborate on marine debris studies
to elucidate the processes that govern floating plastic
debris transport.

Most of the discussion above has assumed a steady,
non-changing ocean circulation. However, low-fre-
quency variations, such as the El Niño Southern Oscil-
lation (ENSO) and the Pacific Decadal Oscillation
(PDO), modify the ocean circulation and modulate
the processes described in this paper, and trends asso-
ciated with climate change can amplify some of these
processes in the future. Winds and waves are expected
to increase in a warmer atmosphere (Young and
Ribal 2019), which will affect the vertical mixing of
buoyant plastic particles. Western boundary currents
and gyres are intensifying (Yang et al 2016), with
implications for the large-scale transport of floating
plastic. Higher-intensity storms could increase disper-
sion due to Stokes drift (e.g. Fraser et al 2018). Finally,
sea level rise might affect coastal transport patterns
and release large amounts of plastics trapped in coastal
sediments or intermittently flooded urban areas (e.g.
Axelsson and van Sebille 2017). While climate change
potentially impacts plastic transport in several ways
(through increased near-surface stratification, for
example), the feedback of plastic pollution on climate
change due to plastic degradation may also increase
local emissions of the greenhouse gas methane, even
though the global contribution may be small (Royer
et al 2018).

The desire to know how currents move plastic
around our seas and oceans is not only driven by our
scientific curiosity. A risk assessment of the impacts of
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contamination by plastic debris on marine wildlife
first requires an assessment of exposure, which is
directly related to transport of debris from its sources
(e.g. Hardesty and Wilcox 2017, Everaert et al 2018,
Compa et al 2019). Effective and efficient coordination
of mitigation measures of the plastic problem, such as
plastic removal from beaches or from the ocean,
requires accurate knowledge on how plastic is trans-
ported (Kataoka and Hinata 2015, Sherman and van
Sebille 2016, De Frond et al 2019). Hence, further
research into the physical oceanography of marine
plastic debris will help inform the stakeholders and
policy makers that aim to tackle one of today’s most
visible environmental problems.
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Echevarrıá F andRuiz J 2002The boiling-water phenomena
at Camarinal Sill, the strait of GibraltarDeep Sea Res. II 49
4097–113

BudyanskyMV,GoryachevVA,KaplunenkoDD, LobanovVB,
Prants SV, Sergeev A F, ShlykNV andYuUM2015Role of
mesoscale eddies in transport of Fukushima-derived cesium
isotopes in the oceanDeep Sea Res. I 96 15–27

BuxtonRT, Currey CA, Lyver PO and Jones C J 2013 Incidence of
plastic fragments among burrow-nesting seabird colonies on
offshore islands in northernNewZealandMar. Pollut. Bull.
74 420–4

Cairns J L 1967Asymmetry of internal tidal waves in shallow coastal
waters J. Geophys. Res. 72 3563–5

CarlsonDF et al 2016Observed andmodeled surface Lagrangian
transport between coastal regions in theAdriatic Seawith
implications formarine protected areasCont. Shelf Res. 118
23–48

CarlsonDF et al 2018 Surface ocean dispersion observations from
the ship-tethered aerostat remote sensing system Front.Mar.
Sci. 5

CarlsonDF, Suaria G, Aliani S, Fredj E, Fortibuoni T, Griffa A,
RussoA andMelli V 2017Combining litter observations with
a regional oceanmodel to identify sources and sinks of
floating debris in a semi-enclosed basin: the adriatic sea Front.
Mar. Sci. 4 78

Carlton J T, Chapman JW,Geller J B,Miller J A, CarltonDA,
McCullerM I, TrenemanNC, Steves B P andRuiz GM2017
Tsunami-driven rafting: transoceanic species dispersal and
implications formarine biogeography Science 357 1402–6

ChangH et al 2019 Small-scale dispersion in the presence of
langmuir circulation J. Phys. Oceanogr. 49 3069–85

Chapron B, Collard F andArdhuin F 2005Directmeasurements of
ocean surface velocity from space: interpretation and
validation J. Geophys. Res. Oceans 110C07008

Chauchat J 2018A comprehensive two-phase flowmodel for
unidirectional sheet-flows J. Hydraul. Res. 56 15–28

CheltonDB, SchlaxMGand Samelson RM2011Global
observations of nonlinearmesoscale eddies Prog. Oceanogr.
91 167–216

Cheung PK,Cheung LTOand Fok L 2016 Seasonal variation in the
abundance ofmarine plastic debris in the estuary of a
subtropicalmacro-scale drainage basin in SouthChina Sci.
Total Environ. 562 658–65

ChoyCA et al 2019The vertical distribution and biological
transport ofmarinemicroplastics across the epipelagic and
mesopelagic water column Sci. Rep. 9 7843

ChoyCA andDrazen JC 2013 Plastic for dinner?Observations of
frequent debris ingestion by pelagic predatory fishes from the
centralNorth PacificMar. Ecol. Prog. Ser. 485 155–63

ChristensenK, BreivikØ,DagestadK-F, Röhrs J andWard B 2018
Short-termpredictions of oceanic driftOceanography 31
59–67

ChristensenKH andTerrile E 2009Drift and deformation of oil
slicks due to surfacewaves J. FluidMec. 620 313–32

Chubarenko I P, Bagaev A, ZobkovMandEsiukova E 2016On
some physical and dynamical properties ofmicroplastic
particles inmarine environmentMar. Pollut. Bull. 108
105–12

Chubarenko I P, Chubarenko BV, Esiukova E andBaudlerH 2010
Mixing by Langmuir circulation in shallow lagoonsBaltica 23
13–24

Chubarenko I P, Esiukova E E, Bagaev AV, BagaevaMA and
GraveAN2018Three-dimensional distribution of
anthropogenicmicroparticles in the body of sandy beaches
Sci. Total Environ. 628–629 1340–51

Chubarenko I P, Efimova I, BagaevaMA, Bagaev A and Isachenko I
2019Microplastics generation in sea swash zone: from
laboratory experiments to applications Environ. Pollut.
submitted

Chubarenko I, Efimova I, BagaevaM, Bagaev A and Isachenko I
2020Onmechanical fragmentation of single-use plastics in
the sea swash zonewith different types of bottom sediments:
insights from laboratory experimentsMar. Pollut. Bull. 150
110726

Chubarenko I P and StepanovaN 2017Microplastics in sea coastal
zone: lessons learned from the Baltic amber Environ. Pollut.
224 243–54

ClarkeA J andGorder SV 2018The relationship of near-surface
flow, stokes drift and thewind Stress J. Geophys. Res. Oceans
123 4680–92

Clift R,Grace J R andWeberME 1978Bubbles, Drops, and Particles
(NewYork: Academic)

ColboK and LiM1999 Parameterizing particle dispersion in
Langmuir circulation J. Geophys. Res. Oceans 104 26059–68

ColeM, Lindeque P, FilemanE,HalsbandC andGalloway T S 2015
The impact of polystyrenemicroplastics on feeding, function
and fecundity in themarine copepod calanus helgolandicus
Environ. Sci. AmpTechnol. 49 1130–7

ColeM, Lindeque PK, Fileman E, Clark J, Lewis C,HalsbandC and
GallowayT S 2016Microplastics alter the properties and
sinking rates of zooplankton faecal pelletsEnviron. Sci.
Technol. 50 3239–46

CompaM,AlomarC,WilcoxC, van Sebille E, Lebreton L,
Hardesty BD andDeudero S 2019Risk assessment of plastic
pollution onmarine diversity in themediterranean sea Sci.
Total Environ. 678 188–96

Corcoran P L 2015 Benthic plastic debris inmarine and freshwater
environmentsEnviron. Sci. Process. Impacts 17 1363–9

CorradoR, LacorataG, Palatella L, Santoleri R andZambianchi E
2017General characteristics of relative dispersion in the
ocean Sci. Rep. 7 46291

CraikADD1977The generation of Langmuir circulations by an
instabilitymechanism J. FluidMech. 81 209–23

CraikADDand Leibovich S 1976A rationalmodel for Langmuir
circulations J. FluidMech. 73 401–26

CrespoA JC,Domínguez JM, Rogers BD,Gómez-GesteiraM,
Longshaw S, Canelas R, Vacondio R, Barreiro A and
García-Feal O 2015DualSPHysics: open-source parallel CFD
solver based on smoothed particle hydrodynamics (SPH)
Comput. Phys. Commun. 187 204–16

Critchell K and Lambrechts J 2016Modelling accumulation of
marine plastics in the coastal zone; what are the dominant
physical processes?Estuar. Coast. Shelf Sci. 171 111–22

CurcicM,Chen S S andÖzgökmenTM2016Hurricane-induced
oceanwaves and stokes drift and their impacts on surface
transport and dispersion in theGulf ofMexicoGeophys. Res.
Lett. 43 2773–81

Cózar A et al 2014 Plastic debris in the open oceanProc. Natl Acad.
Sci. 111 10239–44

Cózar A et al 2017TheArctic ocean as a dead end for floating plastics
in theNorth Atlantic branch of the thermohaline circulation
Sci. Adv. 3 e1600582

Cózar A, Sanz-MartínM,Martí E, González-Gordillo J I, Ubeda B,
Gálvez J Á, IrigoienX andDuarte CM2015 Plastic
accumulation in themediterranean seaPLoSOne 10
e0121762

DagestadK-F, Röhrs J, BreivikØ andÅdlandsvik B 2018OpenDrift
v1.0: a generic framework for trajectorymodellingGeosci.
Model Dev. 11 1405–20

Daly S F 2008 Evolution of Frazil ice using new technologies to
understandwater-ice interaction Proc. 19th IAHR Int. Symp.

24

Environ. Res. Lett. 15 (2020) 023003 E van Sebille et al

https://doi.org/10.1016/j.apor.2011.01.005
https://doi.org/10.1016/j.apor.2011.01.005
https://doi.org/10.1016/j.apor.2011.01.005
https://doi.org/10.1016/j.ocemod.2016.01.005
https://doi.org/10.1016/j.ocemod.2016.01.005
https://doi.org/10.1016/j.ocemod.2016.01.005
https://doi.org/10.1002/2014JC010565
https://doi.org/10.1002/2014JC010565
https://doi.org/10.1002/2014JC010565
https://doi.org/10.1002/2015JC010840
https://doi.org/10.1002/2015JC010840
https://doi.org/10.1002/2015JC010840
https://doi.org/10.1016/S0967-0645(02)00144-3
https://doi.org/10.1016/S0967-0645(02)00144-3
https://doi.org/10.1016/S0967-0645(02)00144-3
https://doi.org/10.1016/S0967-0645(02)00144-3
https://doi.org/10.1016/j.dsr.2014.09.007
https://doi.org/10.1016/j.dsr.2014.09.007
https://doi.org/10.1016/j.dsr.2014.09.007
https://doi.org/10.1016/j.marpolbul.2013.07.011
https://doi.org/10.1016/j.marpolbul.2013.07.011
https://doi.org/10.1016/j.marpolbul.2013.07.011
https://doi.org/10.1029/JZ072i014p03563
https://doi.org/10.1029/JZ072i014p03563
https://doi.org/10.1029/JZ072i014p03563
https://doi.org/10.1016/j.csr.2016.02.012
https://doi.org/10.1016/j.csr.2016.02.012
https://doi.org/10.1016/j.csr.2016.02.012
https://doi.org/10.1016/j.csr.2016.02.012
https://doi.org/10.3389/fmars.2018.00479
https://doi.org/10.3389/fmars.2017.00078
https://doi.org/10.1126/science.aao1498
https://doi.org/10.1126/science.aao1498
https://doi.org/10.1126/science.aao1498
https://doi.org/10.1175/JPO-D-19-0107.1
https://doi.org/10.1175/JPO-D-19-0107.1
https://doi.org/10.1175/JPO-D-19-0107.1
https://doi.org/10.1029/2004JC002809
https://doi.org/10.1080/00221686.2017.1289260
https://doi.org/10.1080/00221686.2017.1289260
https://doi.org/10.1080/00221686.2017.1289260
https://doi.org/10.1016/j.pocean.2011.01.002
https://doi.org/10.1016/j.pocean.2011.01.002
https://doi.org/10.1016/j.pocean.2011.01.002
https://doi.org/10.1016/j.scitotenv.2016.04.048
https://doi.org/10.1016/j.scitotenv.2016.04.048
https://doi.org/10.1016/j.scitotenv.2016.04.048
https://doi.org/10.1038/s41598-019-44117-2
https://doi.org/10.3354/meps10342
https://doi.org/10.3354/meps10342
https://doi.org/10.3354/meps10342
https://doi.org/10.5670/oceanog.2018.310
https://doi.org/10.5670/oceanog.2018.310
https://doi.org/10.5670/oceanog.2018.310
https://doi.org/10.5670/oceanog.2018.310
https://doi.org/10.1017/S0022112008004606
https://doi.org/10.1017/S0022112008004606
https://doi.org/10.1017/S0022112008004606
https://doi.org/10.1016/j.marpolbul.2016.04.048
https://doi.org/10.1016/j.marpolbul.2016.04.048
https://doi.org/10.1016/j.marpolbul.2016.04.048
https://doi.org/10.1016/j.marpolbul.2016.04.048
https://doi.org/10.1016/j.scitotenv.2018.02.167
https://doi.org/10.1016/j.scitotenv.2018.02.167
https://doi.org/10.1016/j.scitotenv.2018.02.167
https://doi.org/10.1016/j.scitotenv.2018.02.167
https://doi.org/10.1016/j.scitotenv.2018.02.167
https://doi.org/10.1016/j.marpolbul.2019.110726
https://doi.org/10.1016/j.marpolbul.2019.110726
https://doi.org/10.1016/j.envpol.2017.01.085
https://doi.org/10.1016/j.envpol.2017.01.085
https://doi.org/10.1016/j.envpol.2017.01.085
https://doi.org/10.1029/2018JC014102
https://doi.org/10.1029/2018JC014102
https://doi.org/10.1029/2018JC014102
https://doi.org/10.1029/1999JC900190
https://doi.org/10.1029/1999JC900190
https://doi.org/10.1029/1999JC900190
https://doi.org/10.1021/es504525u
https://doi.org/10.1021/es504525u
https://doi.org/10.1021/es504525u
https://doi.org/10.1021/acs.est.5b05905
https://doi.org/10.1021/acs.est.5b05905
https://doi.org/10.1021/acs.est.5b05905
https://doi.org/10.1016/j.scitotenv.2019.04.355
https://doi.org/10.1016/j.scitotenv.2019.04.355
https://doi.org/10.1016/j.scitotenv.2019.04.355
https://doi.org/10.1039/C5EM00188A
https://doi.org/10.1039/C5EM00188A
https://doi.org/10.1039/C5EM00188A
https://doi.org/10.1038/srep46291
https://doi.org/10.1017/S0022112077001980
https://doi.org/10.1017/S0022112077001980
https://doi.org/10.1017/S0022112077001980
https://doi.org/10.1017/S0022112076001420
https://doi.org/10.1017/S0022112076001420
https://doi.org/10.1017/S0022112076001420
https://doi.org/10.1016/j.cpc.2014.10.004
https://doi.org/10.1016/j.cpc.2014.10.004
https://doi.org/10.1016/j.cpc.2014.10.004
https://doi.org/10.1016/j.ecss.2016.01.036
https://doi.org/10.1016/j.ecss.2016.01.036
https://doi.org/10.1016/j.ecss.2016.01.036
https://doi.org/10.1002/2015GL067619
https://doi.org/10.1002/2015GL067619
https://doi.org/10.1002/2015GL067619
https://doi.org/10.1073/pnas.1314705111
https://doi.org/10.1073/pnas.1314705111
https://doi.org/10.1073/pnas.1314705111
https://doi.org/10.1126/sciadv.1600582
https://doi.org/10.1371/journal.pone.0121762
https://doi.org/10.1371/journal.pone.0121762
https://doi.org/10.5194/gmd-11-1405-2018
https://doi.org/10.5194/gmd-11-1405-2018
https://doi.org/10.5194/gmd-11-1405-2018


on Ice (Vancouver: Int. Association ofHydraulic Engineering
andResearch)pp 29–50

D’Asaro EA et al 2018Ocean convergence and the dispersion of
flotsamProc. Natl Acad. Sci. 115 1162–7

D’Asaro EA, Thomson J, ShcherbinaAY,Harcourt RR,
CroninMF,HemerMAandFox‐Kemper B 2014
Quantifying upper ocean turbulence driven by surfacewaves
Geophys. Res. Lett. 41 102–7

DauhajreDP andMcWilliams JC 2019Nearshore Lagrangian
connectivity: submesoscale influence and resolution
sensitivity J. Geophys. Res. Oceans 124 5180–204

DawsonAL, Kawaguchi S, KingCK, TownsendKA,King R,
HustonWMandNash SMB2018Turningmicroplastics
into nanoplastics through digestive fragmentation by
Antarctic krillNat. Commun. 9 1001

De FrondHL, van Sebille E, Parnis JM,DiamondML,MallosN,
Kingsbury T andRochmanCM2019 Estimating themass of
chemicals associatedwith ocean plastic pollution to inform
mitigation efforts Integr. Environ. Assess.Manage. 15 596–606

deHaanWP, Sanchez-Vidal A andCanalsM2019 Floating
microplastics and aggregate formation in theWestern
Mediterranean SeaMar. Pollut. Bull. 140 523–35

Deigaard R 1993Anote on the three-dimensional shear stress
distribution in a surf zoneCoast. Eng. 20 157–71

Deike L, Lenain L andMelvilleWK2017Air entrainment by
breakingwavesGeophys. Res. Lett. 44 3779–87

Delandmeter P and van Sebille E 2019The Parcels v2.0 Lagrangian
framework: new field interpolation schemesGeosci.Model
Dev. 12 3571–84

Dethleff D, KempemaEW,KochR andChubarenko I P 2009On
the helicalflowof Langmuir circulation—approaching the
process of suspension freezingCold Reg. Sci. Technol. 56 50–7

DiBenedettoMH,Koseff J R andOuelletteNT2019Orientation
dynamics of nonspherical particles under surface gravity
wavesPhys. Rev. Fluids 4 034301

DiBenedettoMHandOuelletteNT2018 Preferential orientation of
spheroidal particles inwavyflow J. FluidMech. 856 850–69

Dietrich J C, Tanaka S,Westerink J J, DawsonCN, Luettich RA,
ZijlemaM,Holthuijsen LH, Smith JM,Westerink LG and
WesterinkH J 2012 Performance of the unstructured-mesh,
SWAN+ADCIRCmodel in computing hurricane waves
and surge J. Sci. Comput. 52 468–97

DoblerD,HuckT,MaesC,GrimaN, Blanke B,Martinez E and
Ardhuin F 2019 Large impact of Stokes drift on the fate of
surfacefloating debris in the South Indian BasinMar. Pollut.
Bull. 148 202–9

Doering JC andBowenA J 1995 Parametrization of orbital velocity
asymmetries of shoaling and breakingwaves using bispectral
analysisCoast. Eng. 26 15–33

DohanK andMaximenkoN2010Monitoring ocean currents with
satellite sensorsOceanography 23 94–103

DongC, Liu Y, Lumpkin R, LankhorstM, ChenD,
McWilliams J C andGuanY 2011A scheme to identify loops
from trajectories of oceanic surface drifters: an application in
the kuroshio extension region J. Atmos. Ocean. Technol. 28
1167–76

DongC,McWilliams J C, Liu Y andChenD2014Global heat and
salt transports by eddymovementNat. Commun. 5 3294

Drijfhout S S,Maier-Reimer E andMikolajewiczU 1996Tracing the
conveyor belt in theHamburg large-scale geostrophic ocean
general circulationmodel J. Geophys. Res. Oceans 101
22563–75

DrivdalM, BroströmGandChristensenKH2014Wave-induced
mixing and transport of buoyant particles: application to the
Statfjord a oil spillOcean Sci. 10 977–91

Durgadoo JV, BiastochA,NewAL, Rühs S,Nurser A JG,
Drillet Y andBidlot J-R 2019 Strategies for simulating the
drift ofmarine debris J. Oper. Oceanogr. 0 1–12

DöösK, Kjellsson J and JonssonB F 2013TRACMASS—A
Lagrangian TrajectoryModel (Heidelberg: Springer
International Publishing) pp 225–49

DöösK,Nycander J andCowardAC2008 Lagrangian
decomposition of theDeacon cellCell J. Geophys. Res. Oceans
113C07028

Eames I 2008 Settling of particles beneathwater waves J. Phys.
Oceanogr. 38 2846–53

Efimova I, BagaevaM, Bagaev A, KilesoA andChubarenko I P 2018
Secondarymicroplastics generation in the sea swash zone
with coarse bottom sediments: laboratory experiments Front.
Mar. Sci. 5 313

Elgar S andGuzaRT1985 Shoaling gravity waves: comparisons
between field observations, linear theory, and a nonlinear
model J. FluidMech. 158 47–70

Elipot S, Lumpkin R, Perez RC, Lilly JM, Early J J and Sykulski AM
2016A global surface drifter data set at hourly resolution
J. Geophys. Res. Oceans 121 2937–66

Emelyanov EM2005The Barrier Zones in theOcean (Berlin:
Springer)

Enders K, Lenz R, StedmonCA andNielsen TG2015Abundance,
size and polymer composition ofmarinemicroplastics�10
μmin theAtlanticOcean and theirmodelled vertical
distributionMar. Pollut. Bull. 100 70–81

EriksenM, Lebreton LCM,CarsonHS, ThielM,Moore C J,
Borerro J C,Galgani F, Ryan PG andReisser J 2014 Plastic
pollution in theWorld’s Oceans:more than 5 trillion plastic
pieces weighing over 250 000 tons afloat at seaPLoSOne 9
e111913

Everaert G, VanCauwenberghe L,DeRijckeM,Koelmans AA,
Mees J, VandegehuchteMand JanssenCR 2018Risk
assessment ofmicroplastics in the ocean:modelling approach
andfirst conclusionsEnviron. Pollut. 242 1930–8

Faller A J 1964The angle of windrows in the oceanTellus 16 363–70
Fanini L andBozzeda F 2018Dynamics of plastic resin pellets

deposition on amicrotidal sandy beach: informative variables
and potential integration into sandy beach studies Ecol. Indic.
89 309–16

FarmerD and LiM1994Oil dispersion by turbulence and coherent
circulationsOcean Eng. 21 575–86

Fazey FMCandRyan PG2016 Biofouling on buoyantmarine
plastics: an experimental study into the effect of size on
surface longevity Environ. Pollut. 210 354–60

FingasM2016Oil Spill Science and Technology 2nd edn
(Amsterdam: Elsevier)

FingasM andBrownC2014Review of oil spill remote sensingMar.
Pollut. Bull. 83 9–23

Fox-Kemper B, DanabasogluG, Ferrari R, Griffies SM,
Hallberg RW,HollandMM,MaltrudME, Peacock S and
Samuels B L 2011 Parameterization ofmixed layer eddies. III:
implementation and impact in global ocean climate
simulationsOceanModel. 39 61–78

Fraser C I,MorrisonAK,Hogg AM,Macaya EC, van Sebille E,
Ryan PG, PadovanA, Jack C,ValdiviaN andWaters JM2018
Antarctica’s ecological isolationwill be broken by storm-
driven dispersal andwarmingNat. Clim. Change 8 1–7

Fredj E, CarlsonDF, Amitai Y,Gozolchiani A andGildorH2016
The particle tracking and analysis toolbox (PaTATO) for
Matlab Limnol. Oceanogr.Methods 14 586–99

FujimuraAG, Reniers A JHM, Paris-LimouzyCB, Shanks A L,
MacMahan JH andMorgan SG 2014Numerical simulations
of larval transport into a rip-channeled surf zone Limnol.
Oceanogr. 59 1434–47

Garaba S P, Aitken J, Slat B,DierssenHM, Lebreton LCM,
ZielinskiO andReisser J 2018 Sensing ocean plastics with an
airborne hyperspectral shortwave infrared imager Environ.
Sci. Technol. 52 11699–707

Garaba SP andDierssenHM2018Anairborne remote sensing case
study of synthetic hydrocarbondetectionusing shortwave
infrared absorption features identified frommarine-harvested
macro- andmicroplasticsRemote Sens. Environ.205 224–35

Garaba S P andZielinskiO 2015An assessment of water quality
monitoring tools in an estuarine systemRemote Sens. Appl.
Soc. Environ. 2 1–10

25

Environ. Res. Lett. 15 (2020) 023003 E van Sebille et al

https://doi.org/10.1073/pnas.1718453115
https://doi.org/10.1073/pnas.1718453115
https://doi.org/10.1073/pnas.1718453115
https://doi.org/10.1002/2013GL058193
https://doi.org/10.1002/2013GL058193
https://doi.org/10.1002/2013GL058193
https://doi.org/10.1029/2019JC014943
https://doi.org/10.1029/2019JC014943
https://doi.org/10.1029/2019JC014943
https://doi.org/10.1038/s41467-018-03465-9
https://doi.org/10.1002/ieam.4147
https://doi.org/10.1002/ieam.4147
https://doi.org/10.1002/ieam.4147
https://doi.org/10.1016/j.marpolbul.2019.01.053
https://doi.org/10.1016/j.marpolbul.2019.01.053
https://doi.org/10.1016/j.marpolbul.2019.01.053
https://doi.org/10.1016/0378-3839(93)90059-H
https://doi.org/10.1016/0378-3839(93)90059-H
https://doi.org/10.1016/0378-3839(93)90059-H
https://doi.org/10.1002/2017GL072883
https://doi.org/10.1002/2017GL072883
https://doi.org/10.1002/2017GL072883
https://doi.org/10.5194/gmd-12-3571-2019
https://doi.org/10.5194/gmd-12-3571-2019
https://doi.org/10.5194/gmd-12-3571-2019
https://doi.org/10.1016/j.coldregions.2008.10.002
https://doi.org/10.1016/j.coldregions.2008.10.002
https://doi.org/10.1016/j.coldregions.2008.10.002
https://doi.org/10.1103/PhysRevFluids.4.034301
https://doi.org/10.1017/jfm.2018.738
https://doi.org/10.1017/jfm.2018.738
https://doi.org/10.1017/jfm.2018.738
https://doi.org/10.1007/s10915-011-9555-6
https://doi.org/10.1007/s10915-011-9555-6
https://doi.org/10.1007/s10915-011-9555-6
https://doi.org/10.1016/j.marpolbul.2019.07.057
https://doi.org/10.1016/j.marpolbul.2019.07.057
https://doi.org/10.1016/j.marpolbul.2019.07.057
https://doi.org/10.1016/0378-3839(95)00007-X
https://doi.org/10.1016/0378-3839(95)00007-X
https://doi.org/10.1016/0378-3839(95)00007-X
https://doi.org/10.5670/oceanog.2010.08
https://doi.org/10.5670/oceanog.2010.08
https://doi.org/10.5670/oceanog.2010.08
https://doi.org/10.1175/JTECH-D-10-05028.1
https://doi.org/10.1175/JTECH-D-10-05028.1
https://doi.org/10.1175/JTECH-D-10-05028.1
https://doi.org/10.1175/JTECH-D-10-05028.1
https://doi.org/10.1038/ncomms4294
https://doi.org/10.1029/96JC02162
https://doi.org/10.1029/96JC02162
https://doi.org/10.1029/96JC02162
https://doi.org/10.1029/96JC02162
https://doi.org/10.5194/os-10-977-2014
https://doi.org/10.5194/os-10-977-2014
https://doi.org/10.5194/os-10-977-2014
https://doi.org/10.1080/1755876X.2019.1602102
https://doi.org/10.1080/1755876X.2019.1602102
https://doi.org/10.1080/1755876X.2019.1602102
https://doi.org/10.1175/2008JPO3793.1
https://doi.org/10.1175/2008JPO3793.1
https://doi.org/10.1175/2008JPO3793.1
https://doi.org/10.3389/fmars.2018.00313
https://doi.org/10.1017/S0022112085002543
https://doi.org/10.1017/S0022112085002543
https://doi.org/10.1017/S0022112085002543
https://doi.org/10.1002/2016JC011716
https://doi.org/10.1002/2016JC011716
https://doi.org/10.1002/2016JC011716
https://doi.org/10.1016/j.marpolbul.2015.09.027
https://doi.org/10.1016/j.marpolbul.2015.09.027
https://doi.org/10.1016/j.marpolbul.2015.09.027
https://doi.org/10.1371/journal.pone.0111913
https://doi.org/10.1371/journal.pone.0111913
https://doi.org/10.1016/j.envpol.2018.07.069
https://doi.org/10.1016/j.envpol.2018.07.069
https://doi.org/10.1016/j.envpol.2018.07.069
https://doi.org/10.3402/tellusa.v16i3.8932
https://doi.org/10.3402/tellusa.v16i3.8932
https://doi.org/10.3402/tellusa.v16i3.8932
https://doi.org/10.1016/j.ecolind.2018.02.027
https://doi.org/10.1016/j.ecolind.2018.02.027
https://doi.org/10.1016/j.ecolind.2018.02.027
https://doi.org/10.1016/0029-8018(94)90007-8
https://doi.org/10.1016/0029-8018(94)90007-8
https://doi.org/10.1016/0029-8018(94)90007-8
https://doi.org/10.1016/j.envpol.2016.01.026
https://doi.org/10.1016/j.envpol.2016.01.026
https://doi.org/10.1016/j.envpol.2016.01.026
https://doi.org/10.1016/j.marpolbul.2014.03.059
https://doi.org/10.1016/j.marpolbul.2014.03.059
https://doi.org/10.1016/j.marpolbul.2014.03.059
https://doi.org/10.1016/j.ocemod.2010.09.002
https://doi.org/10.1016/j.ocemod.2010.09.002
https://doi.org/10.1016/j.ocemod.2010.09.002
https://doi.org/10.1038/s41558-018-0209-7
https://doi.org/10.1038/s41558-018-0209-7
https://doi.org/10.1038/s41558-018-0209-7
https://doi.org/10.1002/lom3.10114
https://doi.org/10.1002/lom3.10114
https://doi.org/10.1002/lom3.10114
https://doi.org/10.4319/lo.2014.59.4.1434
https://doi.org/10.4319/lo.2014.59.4.1434
https://doi.org/10.4319/lo.2014.59.4.1434
https://doi.org/10.1021/acs.est.8b02855
https://doi.org/10.1021/acs.est.8b02855
https://doi.org/10.1021/acs.est.8b02855
https://doi.org/10.1016/j.rse.2017.11.023
https://doi.org/10.1016/j.rse.2017.11.023
https://doi.org/10.1016/j.rse.2017.11.023
https://doi.org/10.1016/j.rsase.2015.09.001
https://doi.org/10.1016/j.rsase.2015.09.001
https://doi.org/10.1016/j.rsase.2015.09.001


GardenC J, Currie K, Fraser C I andWaters JM2014Rafting
dispersal constrained by an oceanographic boundaryMar.
Ecol. Prog. Ser. 501 297–302

GawarkiewiczG andChapmanDC1995Anumerical study of
densewater formation and transport on a shallow, sloping
continental shelf J. Geophys. Res. Oceans 100 4489–507

Geyer R, Jambeck J R and LawKL2017 Production, use, and fate of
all plastics evermade Sci. Adv. 3 e1700782

GieseG S, ChapmanDC, Black PG and Fornshell J A 1990
Causation of large-amplitude coastal seiches on the
CaribbeanCoast of Puerto Rico J. Phys. Oceanogr. 20 1449–58

Girard-Ardhuin F,Mercier G, Collard F andGarello R 2005
Operational oil-slick characterization by SAR imagery and
synergistic data IEEE J. Ocean. Eng. 30 487–95

Goddijn-Murphy L andDufaur J 2018 Proof of concept for amodel
of light reflectance of plasticsfloating on natural watersMar.
Pollut. Bull. 135 1145–57

Goddijn-Murphy L, Peters S, van Sebille E, JamesNA andGibb S
2018Concept for a hyperspectral remote sensing algorithm
forfloatingmarinemacro plasticsMar. Pollut. Bull. 126
255–62

Goddijn-Murphy L andWilliamsonB 2019On thermal infrared
remote sensing of plastic pollution in natural watersRemote
Sens. 11 2159

GoldsteinMC,RosenbergMandCheng L 2012 Increased oceanic
microplastic debris enhances oviposition in an endemic
pelagic insectBiol. Lett. 8 817–20

GommengingerC et al2019SEASTAR: amission to studyocean
submesoscaledynamics and small-scale atmosphere-ocean
processes inCoastal, Shelf andPolar SeasFront.Mar. Sci.6457

Gove JM et al 2019 Prey-size plastics are invading larvalfish
nurseries Proc. Natl Acad. Sci. 116 24143–9

Granado I, BasurkoOC, RubioA, Ferrer L,Hernández-González J,
Epelde I and Fernandes J A 2019Beach litter forecasting on
the south-eastern coast of the Bay of Biscay: a bayesian
networks approachCont. Shelf Res. 180 14–23

Greb S,Dekker A, BindingC and IOCCG2018EarthObservations in
Support of GlobalWater Quality (International OceanColour
CoordinatingGroup (IOCCG)) (https://oceanbestpractices.
net/handle/11329/535)

Gregory JM, Stott PA, Cresswell D J, RaynerNA,GordonC and
SextonDMH2002Recent and future changes in Arctic sea
ice simulated by theHadCM3AOGCMGeophys. Res. Lett. 29
28-1–4

Griffies SM, LevyM,Adcroft A, DanabasogluG,Hallberg RW,
JacobsenD, LargeWGandRingler TD2015Theory and
Numerics of the CommunityOceanVerticalMixing (CVMix)
Project (https://github.com/CVMix/CVMix-description/
blob/master/cvmix.pdf)

Grue J andKolaas J 2017 Experimental particle paths and drift
velocity in steepwaves atfinite water depth J. FluidMech.
810R1

Gualtieri C, Angeloudis A, Bombardelli F, Jha S and Stoesser T 2017
On the values for the turbulent schmidt number in
environmental flows Fluids 2 17

Gündoğdu S, Çevik C, Ayat B, AydoğanB andKaraca S 2018How
microplastics quantities increase with flood events?An
example fromMersin BayNELevantine coast of Turkey
Environ. Pollut. 239 342–50

Hale RC, SeeleyME,GuardiaM J L,Mai L andZeng EY 2020A
global perspective onmicroplastics J. Geophys. Res. Oceans
accepted 125 e2018JC014719

HallerG 2015 Lagrangian coherent structuresAnnu. Rev. Fluid
Mech. 47 137–62

Haney S, Fox-Kemper B, JulienK andWebbA 2015 Symmetric and
geostrophic instabilities in thewave-forced oceanmixed layer
J. Phys. Oceanogr. 45 3033–56

Haney S andYoungWR2017Radiation of internal waves from
groups of surface gravity waves J. FluidMech. 829 280–303

Hanley KE, Belcher S E and Sullivan PP 2010A global climatology
of wind–wave interaction J. Phys. Oceanogr. 40 1263–82

Harcourt RR 2012A second-moment closuremodel of langmuir
turbulence J. Phys. Oceanogr. 43 673–97

Harcourt RR 2014An improved second-moment closuremodel of
langmuir turbulence J. Phys. Oceanogr. 45 84–103

Harcourt RR andD’Asaro EA 2008 Large-Eddy simulation of
langmuir turbulence in pure wind seas J. Phys. Oceanogr. 38
1542–62

Hardesty BD,Harari J, IsobeA, Lebreton LCM,MaximenkoNA,
Potemra J, van Sebille E, VethaakAD andWilcoxC 2017a
Using numericalmodel simulations to improve the
understanding ofmicro-plastic distribution and pathways in
themarine environment Front.Mar. Sci. 4 1985

Hardesty BD, LawsonT J, Van derVelde T, LansdellM,
PerkinsG andWilcoxC 2017bEstimating quantities and
sources ofmarine debris at a continental scale Front. Ecol.
Environ. 15 18–25

Hardesty BD andWilcoxC 2017A risk framework for tackling
marine debrisAnal.Methods 9 1–12

HasselmannK 1970Wave‐driven inertial oscillationsGeophys. Fluid
Dyn. 1 463–502

HasselmannK, SellW, RossDB andMüller P 1976A parametric
wave predictionmodel J. Phys. Oceanogr. 6 200–28

HazaAC,ÖzgökmenTM,Griffa A,Garraffo ZD and Piterbarg L
2012 Parameterization of particle transport at submesoscales
in theGulf Stream region using Lagrangian subgridscale
modelsOceanModel. 42 31–49

HerterichK andHasselmannK1982The horizontal diffusion of
tracers by surfacewaves J. Phys. Oceanogr. 12 704–11

Hibiya T 1990 Study of internal wave generation by tide-topography
interaction J. Oceanogr. Soc. Japan 46 21–32

HinataH,Mori K,OhnoK,Miyao Y andKataoka T 2017An
estimation of the average residence times and onshore-
offshore diffusivities of beachedmicroplastics based on the
population decay of taggedmeso- andmacrolitterMar.
Pollut. Bull. 122 17–26

Hinojosa I A, RivadeneiraMMandThielM2011Temporal and
spatial distribution of floating objects in coastal waters of
central–southernChile and Patagonian fjordsCont. Shelf Res.
31 172–86

HolmDD2015Variational principles for stochasticfluid dynamics
Proc. R. Soc.Math. Phys. Eng. Sci. 471 20140963

Holmes RM et al 2012 Seasonal and annual fluxes of nutrients and
organicmatter from large rivers to theArcticOcean and
surrounding seasEstuaries Coasts 35 369–82

Hong S, Lee J and Lim S 2017Navigational threats by derelict fishing
gear to navy ships in theKorean seasMar. Pollut. Bull. 119
100–5

Howell EA, Bograd S J,Morishige C, SekiMP and Polovina J J 2012
OnNorth Pacific circulation and associatedmarine debris
concentrationMar. Pollut. Bull. 65 16–22

Hurley R,Woodward J andRothwell J J 2018Microplastic
contamination of river beds significantly reduced by
catchment-wide floodingNat. Geosci. 11 251–7

IribarneO, Botto F,Martinetto P andGutierrez J L 2000The role of
burrows of the SWatlantic intertidal crab chasmagnathus
granulata in trapping debrisMar. Pollut. Bull. 40
1057–62

IsobeA, KuboK, Tamura Y, Kako S,Nakashima E and Fujii N 2014
Selective transport ofmicroplastics andmesoplastics by
drifting in coastal watersMar. Pollut. Bull. 89 324–30

Iwasaki S, IsobeA, Kako S,UchidaK andTokai T 2017 Fate of
microplastics andmesoplastics carried by surface currents
andwindwaves: a numericalmodel approach in the Sea of
JapanMar. Pollut. Bull. 121 85–96

Jalón-Rojas I,WangXHand Fredj E 2019A3Dnumericalmodel to
trackmarine plastic debris (TrackMPD): sensitivity of
microplastic trajectories and fates to particle dynamical
properties and physical processesMar. Pollut. Bull. 141
256–72

Jambeck J R, Geyer R,WilcoxC, Siegler TR, PerrymanM,
AndradyA L,Narayan R andLawKL 2015 Plastic waste
inputs from land into the ocean Science 347 768–71

JohnsonD, PerryH andGrahamW2005Using nowcastmodel
currents to explore transport of non-indigenous jellyfish into
theGulf ofMexicoMar. Ecol. Prog. Ser. 305 139–46

26

Environ. Res. Lett. 15 (2020) 023003 E van Sebille et al

https://doi.org/10.3354/meps10675
https://doi.org/10.3354/meps10675
https://doi.org/10.3354/meps10675
https://doi.org/10.1029/94JC01742
https://doi.org/10.1029/94JC01742
https://doi.org/10.1029/94JC01742
https://doi.org/10.1126/sciadv.1700782
https://doi.org/10.1175/1520-0485(1990)020<1449:COLACS>2.0.CO;2
https://doi.org/10.1175/1520-0485(1990)020<1449:COLACS>2.0.CO;2
https://doi.org/10.1175/1520-0485(1990)020<1449:COLACS>2.0.CO;2
https://doi.org/10.1109/JOE.2005.857526
https://doi.org/10.1109/JOE.2005.857526
https://doi.org/10.1109/JOE.2005.857526
https://doi.org/10.1016/j.marpolbul.2018.08.044
https://doi.org/10.1016/j.marpolbul.2018.08.044
https://doi.org/10.1016/j.marpolbul.2018.08.044
https://doi.org/10.1016/j.marpolbul.2017.11.011
https://doi.org/10.1016/j.marpolbul.2017.11.011
https://doi.org/10.1016/j.marpolbul.2017.11.011
https://doi.org/10.1016/j.marpolbul.2017.11.011
https://doi.org/10.3390/rs11182159
https://doi.org/10.1098/rsbl.2012.0298
https://doi.org/10.1098/rsbl.2012.0298
https://doi.org/10.1098/rsbl.2012.0298
https://doi.org/10.3389/fmars.2019.00457
https://doi.org/10.1073/pnas.1907496116
https://doi.org/10.1073/pnas.1907496116
https://doi.org/10.1073/pnas.1907496116
https://doi.org/10.1016/j.csr.2019.04.016
https://doi.org/10.1016/j.csr.2019.04.016
https://doi.org/10.1016/j.csr.2019.04.016
https://www.oceanbestpractices.net/handle/11329/535
https://www.oceanbestpractices.net/handle/11329/535
https://doi.org/10.1029/2001GL014575
https://doi.org/10.1029/2001GL014575
https://doi.org/10.1029/2001GL014575
https://doi.org/10.1029/2001GL014575
https://github.com/CVMix/CVMix-description/blob/master/cvmix.pdf
https://github.com/CVMix/CVMix-description/blob/master/cvmix.pdf
https://doi.org/10.1017/jfm.2016.726
https://doi.org/10.3390/fluids2020017
https://doi.org/10.1016/j.envpol.2018.04.042
https://doi.org/10.1016/j.envpol.2018.04.042
https://doi.org/10.1016/j.envpol.2018.04.042
https://doi.org/10.1029/2018JC014719
https://doi.org/10.1146/annurev-fluid-010313-141322
https://doi.org/10.1146/annurev-fluid-010313-141322
https://doi.org/10.1146/annurev-fluid-010313-141322
https://doi.org/10.1175/JPO-D-15-0044.1
https://doi.org/10.1175/JPO-D-15-0044.1
https://doi.org/10.1175/JPO-D-15-0044.1
https://doi.org/10.1017/jfm.2017.536
https://doi.org/10.1017/jfm.2017.536
https://doi.org/10.1017/jfm.2017.536
https://doi.org/10.1175/2010JPO4377.1
https://doi.org/10.1175/2010JPO4377.1
https://doi.org/10.1175/2010JPO4377.1
https://doi.org/10.1175/JPO-D-12-0105.1
https://doi.org/10.1175/JPO-D-12-0105.1
https://doi.org/10.1175/JPO-D-12-0105.1
https://doi.org/10.1175/JPO-D-14-0046.1
https://doi.org/10.1175/JPO-D-14-0046.1
https://doi.org/10.1175/JPO-D-14-0046.1
https://doi.org/10.1175/2007JPO3842.1
https://doi.org/10.1175/2007JPO3842.1
https://doi.org/10.1175/2007JPO3842.1
https://doi.org/10.1175/2007JPO3842.1
https://doi.org/10.3389/fmars.2017.00030
https://doi.org/10.1002/fee.1447
https://doi.org/10.1002/fee.1447
https://doi.org/10.1002/fee.1447
https://doi.org/10.1039/C6AY02934E
https://doi.org/10.1039/C6AY02934E
https://doi.org/10.1039/C6AY02934E
https://doi.org/10.1080/03091927009365783
https://doi.org/10.1080/03091927009365783
https://doi.org/10.1080/03091927009365783
https://doi.org/10.1175/1520-0485(1976)006<0200:APWPM>2.0.CO;2
https://doi.org/10.1175/1520-0485(1976)006<0200:APWPM>2.0.CO;2
https://doi.org/10.1175/1520-0485(1976)006<0200:APWPM>2.0.CO;2
https://doi.org/10.1016/j.ocemod.2011.11.005
https://doi.org/10.1016/j.ocemod.2011.11.005
https://doi.org/10.1016/j.ocemod.2011.11.005
https://doi.org/10.1175/1520-0485(1982)012<0704:THDOTB>2.0.CO;2
https://doi.org/10.1175/1520-0485(1982)012<0704:THDOTB>2.0.CO;2
https://doi.org/10.1175/1520-0485(1982)012<0704:THDOTB>2.0.CO;2
https://doi.org/10.1007/BF02334221
https://doi.org/10.1007/BF02334221
https://doi.org/10.1007/BF02334221
https://doi.org/10.1016/j.marpolbul.2017.05.012
https://doi.org/10.1016/j.marpolbul.2017.05.012
https://doi.org/10.1016/j.marpolbul.2017.05.012
https://doi.org/10.1016/j.csr.2010.04.013
https://doi.org/10.1016/j.csr.2010.04.013
https://doi.org/10.1016/j.csr.2010.04.013
https://doi.org/10.1098/rspa.2014.0963
https://doi.org/10.1007/s12237-011-9386-6
https://doi.org/10.1007/s12237-011-9386-6
https://doi.org/10.1007/s12237-011-9386-6
https://doi.org/10.1016/j.marpolbul.2017.04.006
https://doi.org/10.1016/j.marpolbul.2017.04.006
https://doi.org/10.1016/j.marpolbul.2017.04.006
https://doi.org/10.1016/j.marpolbul.2017.04.006
https://doi.org/10.1016/j.marpolbul.2011.04.034
https://doi.org/10.1016/j.marpolbul.2011.04.034
https://doi.org/10.1016/j.marpolbul.2011.04.034
https://doi.org/10.1038/s41561-018-0080-1
https://doi.org/10.1038/s41561-018-0080-1
https://doi.org/10.1038/s41561-018-0080-1
https://doi.org/10.1016/S0025-326X(00)00058-8
https://doi.org/10.1016/S0025-326X(00)00058-8
https://doi.org/10.1016/S0025-326X(00)00058-8
https://doi.org/10.1016/S0025-326X(00)00058-8
https://doi.org/10.1016/j.marpolbul.2014.09.041
https://doi.org/10.1016/j.marpolbul.2014.09.041
https://doi.org/10.1016/j.marpolbul.2014.09.041
https://doi.org/10.1016/j.marpolbul.2017.05.057
https://doi.org/10.1016/j.marpolbul.2017.05.057
https://doi.org/10.1016/j.marpolbul.2017.05.057
https://doi.org/10.1016/j.marpolbul.2019.02.052
https://doi.org/10.1016/j.marpolbul.2019.02.052
https://doi.org/10.1016/j.marpolbul.2019.02.052
https://doi.org/10.1016/j.marpolbul.2019.02.052
https://doi.org/10.1126/science.1260352
https://doi.org/10.1126/science.1260352
https://doi.org/10.1126/science.1260352
https://doi.org/10.3354/meps305139
https://doi.org/10.3354/meps305139
https://doi.org/10.3354/meps305139


JohnsonGC,McPhadenM J and Firing E 2001 Equatorial pacific
ocean horizontal velocity, divergence, and upwelling J. Phys.
Oceanogr. 31 839–49

KaiserD, EstelmannA, KowalskiN,GlockzinMandWaniek J J
2019 Sinking velocity of sub-millimetermicroplasticMar.
Pollut. Bull. 139 214–20

KaiserD, KowalskiN andWaniek J J 2017 Effects of biofouling on
the sinking behavior ofmicroplastics Environ. Res. Lett. 12
124003

Kako S, IsobeA, Yoshioka S, Chang P-H,MatsunoT, KimS-H and
Lee J-S 2010Technical issues inmodeling surface-drifter
behavior on the East China Sea shelf J. Oceanogr. 66 161–74

Kane I A andClareMA2019Dispersion, accumulation, and the
ultimate fate ofmicroplastics in deep-marine environments:
a review and future directions Front. Earth Sci. 7 80

Kanhai LDK,Gårdfeldt K, LyashevskaO,HassellövM,
ThompsonRC andO’Connor I 2018Microplastics in sub-
surfacewaters of the Arctic Central BasinMar. Pollut. Bull.
130 8–18

Kantha LH andClaysonCA2004On the effect of surface gravity
waves onmixing in the oceanicmixed layerOceanModel. 6
101–24

KaoTW, Pan F-S andRenouardD1985 Internal solitons on the
pycnocline: generation, propagation, and shoaling and
breaking over a slope J. FluidMech. 159 19–53

Kataoka T andHinataH2015 Evaluation of beach cleanup effects
using linear system analysisMar. Pollut. Bull. 91 73–81

Katija K, ChoyCA, Sherlock RE, ShermanADandRobison BH
2017 From the surface to the seafloor: how giant larvaceans
transportmicroplastics into the deep sea Sci. Adv. 3 e1700715

Khatmullina L and Isachenko I 2017 Settling velocity ofmicroplastic
particles of regular shapesMar. Pollut. Bull. 114 871–80

KooiM andKoelmans AA 2019 Simplifyingmicroplastic via
continuous probability distributions for size, shape, and
density Environ. Sci. Technol. Lett. 6 551–7

KooiM,Nes EH, van, SchefferM andKoelmansAA 2017Ups and
downs in the ocean: effects of biofouling on vertical transport
ofmicroplastics Environ. Sci. AmpTechnol. 51 7963–71

Korsnes R, PavlovaO andGodtliebsen F 2002Assessment of
potential transport of pollutants into the Barents Sea via sea
ice—an observational approachMar. Pollut. Bull. 44 861–9

Koszalka I, LaCasce JH andOrvik KA 2009Relative dispersion in
theNordic Seas J.Mar. Res. 67 411–33

KubotaM1994Amechanism for the accumulation offloating
marine debris north ofHawaii J. Phys. Oceanogr. 24 1059–64

Kudryavtsev V,MyasoedovA, Chapron B, Johannessen JA and
Collard F 2012 Imagingmesoscale upper ocean dynamics
using synthetic aperture radar and optical data J. Geophys.
Res. Oceans 117C04029

KukulkaTandBrunnerK2015Passivebuoyant tracers in theocean
surfaceboundary layer: 1. Influenceof equilibriumwind-waves
onvertical distributions J.Geophys.Res.Oceans1203837–58

Kukulka T, LawKL and Proskurowski G 2016 Evidence for the
influence of surface heat fluxes on turbulentmixing of
microplasticmarine debris J. Phys. Oceanogr. 46 809–15

Kukulka T, PlueddemannA J and Sullivan PP 2013 Inhibited upper
ocean restratification in nonequilibrium swell conditions
Geophys. Res. Lett. 40 3672–6

Kukulka T, Proskurowski G,Morét-Ferguson S E,MeyerDWand
LawKL 2012The effect of windmixing on the vertical
distribution of buoyant plastic debrisGeophys. Res. Lett. 39
L07601

Kukulka T andVeron F 2019 Lagrangian investigation ofwave-
driven turbulence in the ocean surface boundary layer J. Phys.
Oceanogr. 49 409–29

LacerdaA L d F, Rodrigues L, dos S, van Sebille E, Rodrigues F L,
Ribeiro L, Secchi ER, Kessler F and ProiettiMC2019 Plastics
in sea surfacewaters around theAntarctic Peninsula Sci. Rep.
9 3977

Lake RA andLewis E L 1970 Salt rejection by sea ice during growth
J. Geophys. Res. 75 583–97

Lancaster J K 1969Abrasive wear of polymersWear 14 223–39

Lane EM, Restrepo JM andMcWilliams JC 2007Wave current
interaction: a comparison of radiation-stress and vortex-
force representations J. Phys. Oceanogr. 37 1122

LangeMand van Sebille E 2017 Parcels v0.9: prototyping a
LagrangianOcean analysis tool for the petascale ageGeosci.
Model Dev. 10 4175–86

Langmuir I 1938 Surfacemotion ofwater induced bywind Science
87 119–23

Lavender K L,Davis R E andOwensWB2002Observations of
open-ocean deep convection in the labrador sea from
subsurfacefloats J. Phys. Oceanogr. 32 511–26

Lavers J L,Hutton I andBondAL 2018 Ingestion ofmarine debris
bywedge-tailed shearwaters (Ardenna pacifica) on Lord
Howe Island, Australia during 2005–2018Mar. Pollut. Bull.
133 616–21

LawKL 2017 Plastics in themarine environmentAnnu. Rev.Mar.
Sci. 9 205–29

LawKL,Morét-Ferguson S E, GoodwinD S, Zettler ER,DeForce E,
Kukulka T and Proskurowski G 2014Distribution of surface
plastic debris in the Eastern PacificOcean from an 11-year
data setEnviron. Sci. Technol. 48 4732–8

LawKL,Morét-Ferguson S E,MaximenkoNA, Proskurowski G,
Peacock E E,Hafner J andReddyCM2010 Plastic
accumulation in theNorth Atlantic subtropical gyre Science
329 1185–8

LaxagueN JM et al 2018Observations of near-surface current shear
help describeOceanicOil and plastic transportGeophys. Res.
Lett. 45 245–9

Lebreton L, EggerM and Slat B 2019A globalmass budget for
positively buoyantmacroplastic debris in the ocean Sci. Rep. 9
1–10

Lebreton LCM et al 2018 Evidence that theGreat PacificGarbage
Patch is rapidly accumulating plastic Sci. Rep. 8 1–15

Lebreton LCM,Greer SD andBorerro JC 2012Numerical
modelling of floating debris in the world’s oceansMar. Pollut.
Bull. 64 653–61

Lebreton LCM, van der Zwet J, Damsteeg J-W, Slat B,
AndradyA L andReisser J 2017River plastic emissions to the
world’s oceansNat. Commun. 8 1–10

LeeK-W, ShimW J, KwonOY andKang J-H 2013 Size-dependent
effects ofmicro polystyrene particles in themarine copepod
tigriopus japonicusEnviron. Sci. Technol. 47 11278–83

LeGuenC, Suaria G, Sherley RB, Ryan PG, Aliani S, Boehme L and
Brierley A S 2020Microplastic study reveals the presence of
natural and syntheticfibres in the diet of King Penguins
(Aptenodytes patagonicus) foraging fromSouthGeorgia
Environ. Int. 134 105303

Leibovich S 1977Convective instability of stably stratifiedwater in
the ocean J. FluidMech. 82 561–81

Leibovich S 1980Onwave-current interaction theories of Langmuir
circulations J. FluidMech. 99 715–24

Leibovich S 1983The form and dynamics of langmuir circulations
Annu. Rev. FluidMech. 15 391–427

LeithD1987Drag on nonspherical objectsAerosol Sci. Technol. 6
153–61

Lentz S J and FewingsMR2012Thewind- andwave-driven inner-
shelf circulationAnnu. Rev.Mar. Sci. 4 317–43

LesserGR, Roelvink J A, vanKester J ATMand StellingG S 2004
Development and validation of a three-dimensional
morphologicalmodelCoast. Eng. 51 883–915

LiG, CurcicM, IskandaraniM,Chen S S andKnioOM2018
Uncertainty propagation in coupled atmosphere–Wave–
Ocean prediction system: a study ofHurricane earl (2010)
Mon.Weather Rev. 147 221–45

LiM andGarrett C 1995 Is langmuir circulation driven by surface
waves or surface cooling? J. Phys. Oceanogr. 25 64–76

LiM,Garrett C and Skyllingstad E 2005A regime diagram for
classifying turbulent large eddies in the upper oceanDeep Sea
Res. I 52 259–78

LiQ et al 2019Comparing ocean boundary verticalmixing schemes
with Langmuir turbulence J. Adv.Model. Earth Syst. 11
3545–92

27

Environ. Res. Lett. 15 (2020) 023003 E van Sebille et al

https://doi.org/10.1175/1520-0485(2001)031<0839:EPOHVD>2.0.CO;2
https://doi.org/10.1175/1520-0485(2001)031<0839:EPOHVD>2.0.CO;2
https://doi.org/10.1175/1520-0485(2001)031<0839:EPOHVD>2.0.CO;2
https://doi.org/10.1016/j.marpolbul.2018.12.035
https://doi.org/10.1016/j.marpolbul.2018.12.035
https://doi.org/10.1016/j.marpolbul.2018.12.035
https://doi.org/10.1088/1748-9326/aa8e8b
https://doi.org/10.1088/1748-9326/aa8e8b
https://doi.org/10.1007/s10872-010-0014-z
https://doi.org/10.1007/s10872-010-0014-z
https://doi.org/10.1007/s10872-010-0014-z
https://doi.org/10.3389/feart.2019.00080
https://doi.org/10.1016/j.marpolbul.2018.03.011
https://doi.org/10.1016/j.marpolbul.2018.03.011
https://doi.org/10.1016/j.marpolbul.2018.03.011
https://doi.org/10.1016/S1463-5003(02)00062-8
https://doi.org/10.1016/S1463-5003(02)00062-8
https://doi.org/10.1016/S1463-5003(02)00062-8
https://doi.org/10.1016/S1463-5003(02)00062-8
https://doi.org/10.1017/S0022112085003081
https://doi.org/10.1017/S0022112085003081
https://doi.org/10.1017/S0022112085003081
https://doi.org/10.1016/j.marpolbul.2014.12.026
https://doi.org/10.1016/j.marpolbul.2014.12.026
https://doi.org/10.1016/j.marpolbul.2014.12.026
https://doi.org/10.1126/sciadv.1700715
https://doi.org/10.1016/j.marpolbul.2016.11.024
https://doi.org/10.1016/j.marpolbul.2016.11.024
https://doi.org/10.1016/j.marpolbul.2016.11.024
https://doi.org/10.1021/acs.estlett.9b00379
https://doi.org/10.1021/acs.estlett.9b00379
https://doi.org/10.1021/acs.estlett.9b00379
https://doi.org/10.1021/acs.est.6b04702
https://doi.org/10.1021/acs.est.6b04702
https://doi.org/10.1021/acs.est.6b04702
https://doi.org/10.1016/S0025-326X(02)00087-5
https://doi.org/10.1016/S0025-326X(02)00087-5
https://doi.org/10.1016/S0025-326X(02)00087-5
https://doi.org/10.1357/002224009790741102
https://doi.org/10.1357/002224009790741102
https://doi.org/10.1357/002224009790741102
https://doi.org/10.1175/1520-0485(1994)024<1059:AMFTAO>2.0.CO;2
https://doi.org/10.1175/1520-0485(1994)024<1059:AMFTAO>2.0.CO;2
https://doi.org/10.1175/1520-0485(1994)024<1059:AMFTAO>2.0.CO;2
https://doi.org/10.1029/2011JC007492
https://doi.org/10.1002/2014JC010487
https://doi.org/10.1002/2014JC010487
https://doi.org/10.1002/2014JC010487
https://doi.org/10.1175/JPO-D-15-0242.1
https://doi.org/10.1175/JPO-D-15-0242.1
https://doi.org/10.1175/JPO-D-15-0242.1
https://doi.org/10.1002/grl.50708
https://doi.org/10.1002/grl.50708
https://doi.org/10.1002/grl.50708
https://doi.org/10.1029/2012GL051116
https://doi.org/10.1029/2012GL051116
https://doi.org/10.1175/JPO-D-18-0081.1
https://doi.org/10.1175/JPO-D-18-0081.1
https://doi.org/10.1175/JPO-D-18-0081.1
https://doi.org/10.1038/s41598-019-40311-4
https://doi.org/10.1029/JC075i003p00583
https://doi.org/10.1029/JC075i003p00583
https://doi.org/10.1029/JC075i003p00583
https://doi.org/10.1016/0043-1648(69)90047-7
https://doi.org/10.1016/0043-1648(69)90047-7
https://doi.org/10.1016/0043-1648(69)90047-7
https://doi.org/10.1175/JPO3043.1
https://doi.org/10.5194/gmd-10-4175-2017
https://doi.org/10.5194/gmd-10-4175-2017
https://doi.org/10.5194/gmd-10-4175-2017
https://doi.org/10.1126/science.87.2250.119
https://doi.org/10.1126/science.87.2250.119
https://doi.org/10.1126/science.87.2250.119
https://doi.org/10.1175/1520-0485(2002)032<0511:OOOODC>2.0.CO;2
https://doi.org/10.1175/1520-0485(2002)032<0511:OOOODC>2.0.CO;2
https://doi.org/10.1175/1520-0485(2002)032<0511:OOOODC>2.0.CO;2
https://doi.org/10.1016/j.marpolbul.2018.06.023
https://doi.org/10.1016/j.marpolbul.2018.06.023
https://doi.org/10.1016/j.marpolbul.2018.06.023
https://doi.org/10.1146/annurev-marine-010816-060409
https://doi.org/10.1146/annurev-marine-010816-060409
https://doi.org/10.1146/annurev-marine-010816-060409
https://doi.org/10.1021/es4053076
https://doi.org/10.1021/es4053076
https://doi.org/10.1021/es4053076
https://doi.org/10.1126/science.1192321
https://doi.org/10.1126/science.1192321
https://doi.org/10.1126/science.1192321
https://doi.org/10.1002/2017GL075891
https://doi.org/10.1002/2017GL075891
https://doi.org/10.1002/2017GL075891
https://doi.org/10.1038/s41598-019-49413-5
https://doi.org/10.1038/s41598-019-49413-5
https://doi.org/10.1038/s41598-019-49413-5
https://doi.org/10.1038/s41598-019-49413-5
https://doi.org/10.1038/s41598-018-22939-w
https://doi.org/10.1038/s41598-018-22939-w
https://doi.org/10.1038/s41598-018-22939-w
https://doi.org/10.1016/j.marpolbul.2011.10.027
https://doi.org/10.1016/j.marpolbul.2011.10.027
https://doi.org/10.1016/j.marpolbul.2011.10.027
https://doi.org/10.1038/ncomms15611
https://doi.org/10.1038/ncomms15611
https://doi.org/10.1038/ncomms15611
https://doi.org/10.1021/es401932b
https://doi.org/10.1021/es401932b
https://doi.org/10.1021/es401932b
https://doi.org/10.1016/j.envint.2019.105303
https://doi.org/10.1017/S0022112077000846
https://doi.org/10.1017/S0022112077000846
https://doi.org/10.1017/S0022112077000846
https://doi.org/10.1017/S0022112080000857
https://doi.org/10.1017/S0022112080000857
https://doi.org/10.1017/S0022112080000857
https://doi.org/10.1146/annurev.fl.15.010183.002135
https://doi.org/10.1146/annurev.fl.15.010183.002135
https://doi.org/10.1146/annurev.fl.15.010183.002135
https://doi.org/10.1080/02786828708959128
https://doi.org/10.1080/02786828708959128
https://doi.org/10.1080/02786828708959128
https://doi.org/10.1080/02786828708959128
https://doi.org/10.1146/annurev-marine-120709-142745
https://doi.org/10.1146/annurev-marine-120709-142745
https://doi.org/10.1146/annurev-marine-120709-142745
https://doi.org/10.1016/j.coastaleng.2004.07.014
https://doi.org/10.1016/j.coastaleng.2004.07.014
https://doi.org/10.1016/j.coastaleng.2004.07.014
https://doi.org/10.1175/MWR-D-17-0371.1
https://doi.org/10.1175/MWR-D-17-0371.1
https://doi.org/10.1175/MWR-D-17-0371.1
https://doi.org/10.1175/1520-0485(1995)025<0064:ILCDBS>2.0.CO;2
https://doi.org/10.1175/1520-0485(1995)025<0064:ILCDBS>2.0.CO;2
https://doi.org/10.1175/1520-0485(1995)025<0064:ILCDBS>2.0.CO;2
https://doi.org/10.1016/j.dsr.2004.09.004
https://doi.org/10.1016/j.dsr.2004.09.004
https://doi.org/10.1016/j.dsr.2004.09.004
https://doi.org/10.1029/2019MS001810
https://doi.org/10.1029/2019MS001810
https://doi.org/10.1029/2019MS001810
https://doi.org/10.1029/2019MS001810


LiQ,WebbA, Fox-Kemper B, Craig A,DanabasogluG,
LargeWGandVertensteinM2016 Langmuirmixing effects
on global climate:WAVEWATCH III inCESMOceanModel.
103 145–60

Liang J-H,WanX, RoseKA, Sullivan PP andMcWilliams J C 2018
Horizontal dispersion of buoyantmaterials in the ocean
surface boundary layer J. Phys. Oceanogr. 48 2103–25

LongM,Moriceau B, GallinariM, Lambert C,Huvet A,
Raffray J and Soudant P 2015 Interactions between
microplastics and phytoplankton aggregates: impact on their
respective fatesMar. Chem. 175 39–46

Longuet-HigginsMS 1953Mass transport inwater wavesPhil.
Trans. Roy. Soc. LondonA 245 535–81

Longuet-HigginsMS and Stewart RW1962Radiation stress and
mass transport in gravity waves, with application to ‘surf
beats’ J. FluidMech. 13 481–504

Lumpkin R,MaximenkoNA and PazosM2012 Evaluatingwhere
andwhy drifters die J. Atmos. Ocean. Technol. 29 300–8

Lumpkin R,OzgokmenTMandCenturioni L 2017Advances in the
application of surface driftersAnnu. Rev.Mar. Sci. 9 59–81

Lusher A L, Tirelli V,O’Connor I andOfficer R 2015Microplastics
in Arctic polar waters: thefirst reported values of particles in
surface and sub-surface samples Sci. Rep. 5 14947

Lusher A L,O’Donnell C,Officer R andO’Connor I 2016
Microplastic interactions withNorth Atlanticmesopelagic
fish ICES J.Mar. Sci. 73 1214–25

MacCready P andGeyerWR2010Advances in estuarine physics
Annu. Rev.Mar. Sci. 2 35–58

Mace TH2012At-sea detection ofmarine debris: overview of
technologies, processes, issues, and optionsMar. Pollut. Bull.
65 23–7

MacMahan J et al2010MeanLagrangianflowbehavioronanopen
coast rip-channeledbeach: anewperspectiveMar.Geol.2681–15

MaesC andBlanke B 2015Tracking the origins of plastic debris
across the Coral Sea: a case study from theOuvéa Island,New
CaledoniaMar. Pollut. Bull. 97 160–8

MaesC, Blanke B andMartinez E 2016Origin and fate of surface
drift in the oceanic convergence zones of the eastern Pacific
Geophys. Res. Lett. 43 3398–405

MaesC, GrimaN, Blanke B,Martinez E, Paviet‐SalomonT and
HuckT 2018A Surface ‘Superconvergence’ Pathway
Connecting the South IndianOcean to the Subtropical South
PacificGyreGeophys. Res. Lett. 45 1915–22

MarmorinoGO, SmithGB and LindemannG J 2005 Infrared
imagery of large-aspect-ratio Langmuir circulationCont.
Shelf Res. 25 1–6

MartinC, Parkes S, ZhangQ, ZhangX,McCabeMF and
Duarte CM2018Use of unmanned aerial vehicles for
efficient beach littermonitoringMar. Pollut. Bull. 131 662–73

Martinez E,MaamaatuaiahutapuK andTaillandier V 2009 Floating
marine debris surface drift: convergence and accumulation
toward the South Pacific subtropical gyreMar. Pollut. Bull. 58
1347–55

Martinez-Vicente V et al 2019Measuringmarine plastic debris from
space: initial assessment of observation requirementsRemote
Sens. 11 2443

Mathai V, PrakashVN, Brons J, SunC andLohseD2015Wake-
driven dynamics offinite-sized buoyant spheres in
turbulencePhys. Rev. Lett. 115 124501

MaxeyMR andRiley J J 1983 Equation ofmotion for a small rigid
sphere in a nonuniform flowPhys. Fluids 26 883–9

MaximenkoN et al 2019Towards the integratedmarine debris
observing system Front.Mar. Sci. 6 447

MaximenkoN,Hafner J, KamachiM andMacFadyenA 2018
Numerical simulations of debris drift from theGreat Japan
Tsunami of 2011 and their verificationwith observational
reportsMar. Pollut. Bull. 132 5–25

MaximenkoNA,Hafner J andNiiler P P 2012 Pathways ofmarine
debris derived from trajectories of Lagrangian driftersMar.
Pollut. Bull. 65 51–62

MaximenkoNA,MelnichenkoOV,Niiler P P and SasakiH 2008
Stationarymesoscale jet-like features in the oceanGeophys.
Res. Lett. 35 L08603

McWilliams J C 2016 Submesoscale currents in the ocean Proc. R.
Soc.Math. Phys. Eng. Sci. 472 20160117

McWilliams J C 2019A survey of submesoscale currentsGeosci. Lett.
6 3

McWilliams J C and Fox-Kemper B 2013Oceanic wave-balanced
surface fronts and filaments J. FluidMech. 730 464–90

McWilliams J C,Huckle E, Liang J-H and Sullivan PP 2012The
Wavy Ekman layer: Langmuir circulations, breakingwaves,
and reynolds stress J. Phys. Oceanogr. 42 1793–816

McWilliams J C andRestrepo JM1999Thewave-driven ocean
circulation J. Phys. Oceanogr. 29 2523–40

McWilliams J C and Sullivan PP 2000Verticalmixing by langmuir
circulations Spill Sci. Technol. Bull. 6 225–37

McWilliams J C, Sullivan PP andMoengC-H1997 Langmuir
turbulence in the ocean J. FluidMech. 334 1–30

Meyerjürgens J, BadewienTH,GarabaSP,Wolff J-OandZielinskiO
2019Astate-of-the-art compact surfacedrifter revealspathways
offloatingmarine litter in theGermanbightFront.Mar. Sci.658

MichalletH andMoryM2004Modelling of sediment suspensions
in oscillating grid turbulence FluidDyn. Res. 35 87–106

Michels J, Stippkugel A, LenzM,Wirtz K and Engel A 2018Rapid
aggregation of biofilm-coveredmicroplastics withmarine
biogenic particlesProc. R. Soc.B 285 20181203

MinHS andNohY 2004 Influence of the surface heating on
langmuir circulation J. Phys. Oceanogr. 34 2630–41

Monismith SG,Cowen EA,NepfHM,Magnaudet J andThais L
2007 Laboratory observations ofmean flows under surface
gravity waves J. FluidMech. 573 131–47

Moreno-Ostos E, Cruz-Pizarro L, Basanta A andGeorgeDG2009
The influence of wind-inducedmixing on the vertical
distribution of buoyant and sinking phytoplankton species
Aquat. Ecol. 43 271–84

Morgan SG, ShanksA L,MacMahan J, Reniers A JHM,
Griesemer CD, JarvisM and FujimuraAG2017 Surf zones
regulate larval supply and zooplankton subsidies to nearshore
communities Limnol. Oceanogr. 62 2811–28

Morét-Ferguson S E, LawKL, Proskurowski G,Murphy EK,
Peacock E E andReddyCM2010The size,mass, and
composition of plastic debris in thewesternNorthAtlantic
OceanMar. Pollut. Bull. 60 1873–8

MountfordA S andMoralesMaquedaMA2019 Eulerianmodelling
of the three-dimensional distribution of seven popular plastic
types in the global ocean J. Geophys. Res. Oceans 124
8558–73

MunkW,Armi L, Fischer K andZachariasen F 2000 Spirals on the
seaProc. R. Soc.A 456 1217–80

Nencioli F, d’Ovidio F, Doglioli AMandPetrenkoAA2013 In situ
estimates of submesoscale horizontal eddy diffusivity across
an ocean front J. Geophys. Res. Oceans 118 7066–80

NeumannD, Callies U andMatthiesM2014Marine litter ensemble
transport simulations in the southernNorth SeaMar. Pollut.
Bull. 86 219–28

NewtonR, Pfirman S, Tremblay B andDeRepentigny P 2017
Increasing transnational sea-ice exchange in a changing
ArcticOcean Earths Future 5 633–47

Nicodemus F E, Richmond JC,Hsia J J, Ginsberg IW and
Limperis T 1977Geometrical considerations and
nomenclature for reflectance Final Rep.Natl. Bur. Stand.
Wash.DC Inst Basic Stand.

NohY,OkH,LeeE,ToyodaTandHiroseN2015Parameterizationof
Langmuir circulation in theoceanmixed layermodelusingLES
and its application to theOGCM J. Phys.Oceanogr.4657–78

NürnbergD,Wollenburg I, Dethleff D, EickenH,KassensH,
Letzig T, Reimnitz E andThiede J 1994 Sediments inArctic
sea ice: implications for entrainment, transport and release
Mar. Geol. 119 185–214

ObbardRW, Sadri S,WongYQ,KhitunAA, Baker I and
ThompsonRC2014Global warming releasesmicroplastic
legacy frozen in Arctic Sea iceEarths Future 2 315–20

Omstedt A 1985On supercooling and ice formation in turbulent
sea-water J. Glaciol. 31 263–71

OninkV,WichmannD,Delandmeter P and van Sebille E 2019The
role of Ekman currents, geostrophy and Stokes drift in the

28

Environ. Res. Lett. 15 (2020) 023003 E van Sebille et al

https://doi.org/10.1016/j.ocemod.2015.07.020
https://doi.org/10.1016/j.ocemod.2015.07.020
https://doi.org/10.1016/j.ocemod.2015.07.020
https://doi.org/10.1175/JPO-D-18-0020.1
https://doi.org/10.1175/JPO-D-18-0020.1
https://doi.org/10.1175/JPO-D-18-0020.1
https://doi.org/10.1016/j.marchem.2015.04.003
https://doi.org/10.1016/j.marchem.2015.04.003
https://doi.org/10.1016/j.marchem.2015.04.003
https://doi.org/10.1098/rsta.1953.0006
https://doi.org/10.1098/rsta.1953.0006
https://doi.org/10.1098/rsta.1953.0006
https://doi.org/10.1017/S0022112062000877
https://doi.org/10.1017/S0022112062000877
https://doi.org/10.1017/S0022112062000877
https://doi.org/10.1175/JTECH-D-11-00100.1
https://doi.org/10.1175/JTECH-D-11-00100.1
https://doi.org/10.1175/JTECH-D-11-00100.1
https://doi.org/10.1146/annurev-marine-010816-060641
https://doi.org/10.1146/annurev-marine-010816-060641
https://doi.org/10.1146/annurev-marine-010816-060641
https://doi.org/10.1038/srep14947
https://doi.org/10.1093/icesjms/fsv241
https://doi.org/10.1093/icesjms/fsv241
https://doi.org/10.1093/icesjms/fsv241
https://doi.org/10.1146/annurev-marine-120308-081015
https://doi.org/10.1146/annurev-marine-120308-081015
https://doi.org/10.1146/annurev-marine-120308-081015
https://doi.org/10.1016/j.marpolbul.2011.08.042
https://doi.org/10.1016/j.marpolbul.2011.08.042
https://doi.org/10.1016/j.marpolbul.2011.08.042
https://doi.org/10.1016/j.margeo.2009.09.011
https://doi.org/10.1016/j.margeo.2009.09.011
https://doi.org/10.1016/j.margeo.2009.09.011
https://doi.org/10.1016/j.marpolbul.2015.06.022
https://doi.org/10.1016/j.marpolbul.2015.06.022
https://doi.org/10.1016/j.marpolbul.2015.06.022
https://doi.org/10.1002/2016GL068217
https://doi.org/10.1002/2016GL068217
https://doi.org/10.1002/2016GL068217
https://doi.org/10.1002/2017GL076366
https://doi.org/10.1002/2017GL076366
https://doi.org/10.1002/2017GL076366
https://doi.org/10.1016/j.csr.2004.08.002
https://doi.org/10.1016/j.csr.2004.08.002
https://doi.org/10.1016/j.csr.2004.08.002
https://doi.org/10.1016/j.marpolbul.2018.04.045
https://doi.org/10.1016/j.marpolbul.2018.04.045
https://doi.org/10.1016/j.marpolbul.2018.04.045
https://doi.org/10.1016/j.marpolbul.2009.04.022
https://doi.org/10.1016/j.marpolbul.2009.04.022
https://doi.org/10.1016/j.marpolbul.2009.04.022
https://doi.org/10.1016/j.marpolbul.2009.04.022
https://doi.org/10.3390/rs11202443
https://doi.org/10.1103/PhysRevLett.115.124501
https://doi.org/10.1063/1.864230
https://doi.org/10.1063/1.864230
https://doi.org/10.1063/1.864230
https://doi.org/10.3389/fmars.2019.00447
https://doi.org/10.1016/j.marpolbul.2018.03.056
https://doi.org/10.1016/j.marpolbul.2018.03.056
https://doi.org/10.1016/j.marpolbul.2018.03.056
https://doi.org/10.1016/j.marpolbul.2011.04.016
https://doi.org/10.1016/j.marpolbul.2011.04.016
https://doi.org/10.1016/j.marpolbul.2011.04.016
https://doi.org/10.1029/2008GL033267
https://doi.org/10.1098/rspa.2016.0117
https://doi.org/10.1186/s40562-019-0133-3
https://doi.org/10.1017/jfm.2013.348
https://doi.org/10.1017/jfm.2013.348
https://doi.org/10.1017/jfm.2013.348
https://doi.org/10.1175/JPO-D-12-07.1
https://doi.org/10.1175/JPO-D-12-07.1
https://doi.org/10.1175/JPO-D-12-07.1
https://doi.org/10.1175/1520-0485(1999)029<2523:TWDOC>2.0.CO;2
https://doi.org/10.1175/1520-0485(1999)029<2523:TWDOC>2.0.CO;2
https://doi.org/10.1175/1520-0485(1999)029<2523:TWDOC>2.0.CO;2
https://doi.org/10.1016/S1353-2561(01)00041-X
https://doi.org/10.1016/S1353-2561(01)00041-X
https://doi.org/10.1016/S1353-2561(01)00041-X
https://doi.org/10.1017/S0022112096004375
https://doi.org/10.1017/S0022112096004375
https://doi.org/10.1017/S0022112096004375
https://doi.org/10.3389/fmars.2019.00058
https://doi.org/10.1016/j.fluiddyn.2004.04.004
https://doi.org/10.1016/j.fluiddyn.2004.04.004
https://doi.org/10.1016/j.fluiddyn.2004.04.004
https://doi.org/10.1098/rspb.2018.1203
https://doi.org/10.1175/JPOJPO-2654.1
https://doi.org/10.1175/JPOJPO-2654.1
https://doi.org/10.1175/JPOJPO-2654.1
https://doi.org/10.1017/S0022112006003594
https://doi.org/10.1017/S0022112006003594
https://doi.org/10.1017/S0022112006003594
https://doi.org/10.1007/s10452-008-9167-x
https://doi.org/10.1007/s10452-008-9167-x
https://doi.org/10.1007/s10452-008-9167-x
https://doi.org/10.1002/lno.10609
https://doi.org/10.1002/lno.10609
https://doi.org/10.1002/lno.10609
https://doi.org/10.1016/j.marpolbul.2010.07.020
https://doi.org/10.1016/j.marpolbul.2010.07.020
https://doi.org/10.1016/j.marpolbul.2010.07.020
https://doi.org/10.1029/2019JC015050
https://doi.org/10.1029/2019JC015050
https://doi.org/10.1029/2019JC015050
https://doi.org/10.1029/2019JC015050
https://doi.org/10.1098/rspa.2000.0560
https://doi.org/10.1098/rspa.2000.0560
https://doi.org/10.1098/rspa.2000.0560
https://doi.org/10.1002/2013JC009252
https://doi.org/10.1002/2013JC009252
https://doi.org/10.1002/2013JC009252
https://doi.org/10.1016/j.marpolbul.2014.07.016
https://doi.org/10.1016/j.marpolbul.2014.07.016
https://doi.org/10.1016/j.marpolbul.2014.07.016
https://doi.org/10.1002/2016EF000500
https://doi.org/10.1002/2016EF000500
https://doi.org/10.1002/2016EF000500
https://doi.org/10.1175/JPO-D-14-0137.1
https://doi.org/10.1175/JPO-D-14-0137.1
https://doi.org/10.1175/JPO-D-14-0137.1
https://doi.org/10.1016/0025-3227(94)90181-3
https://doi.org/10.1016/0025-3227(94)90181-3
https://doi.org/10.1016/0025-3227(94)90181-3
https://doi.org/10.1002/2014EF000240
https://doi.org/10.1002/2014EF000240
https://doi.org/10.1002/2014EF000240
https://doi.org/10.1017/S0022143000006596
https://doi.org/10.1017/S0022143000006596
https://doi.org/10.1017/S0022143000006596


accumulation offloatingmicroplastic J. Geophys. Res. Oceans
124 1474–90

Ostle C, ThompsonRC, BroughtonD,Gregory L,WoottonMand
JohnsDG2019The rise in ocean plastics evidenced from a
60-year time seriesNat. Commun. 10 1622

Ourmieres Y,Mansui J,MolcardA, Galgani F and Poitou I 2018The
boundary current role on the transport and stranding of
floatingmarine litter: the French Riviera caseCont. Shelf Res.
155 11–20

Paris CB,Helgers J, van Sebille E and SrinivasanA2013
Connectivitymodeling system: a probabilisticmodeling tool
for themulti-scale tracking of biotic and abiotic variability in
the ocean Environ.Model. Amp Softw. 42 47–54

PasternakG, Zviely D, Ariel A, Spanier E andRibic CA2018
Message in a bottle—the story of floating plastic in the eastern
Mediterranean seaWasteManage. 77 67–77

PearsonB 2017Turbulence-induced anti-stokes flow and the
resulting limitations of Large-Eddy simulation J. Phys.
Oceanogr. 48 117–22

Pearson J, Fox-Kemper B, BarkanR,Choi J, BraccoA and
McWilliams J C 2019 Impacts of convergence on structure
functions from surface drifters in theGulf ofMexico J. Phys.
Oceanogr. 49 675–90

Pedlosky J 1987Geophysical FluidDyn (NewYork: Springer)
Peeken I, BergmannM,GerdtsG, KatleinC, KrumpenT,

Primpke S andTekmanMB2018aMicroplastics in the
Marine Realms of the Arctic with special emphasis on sea ice
Arct. Rep. Card 2018 89–99

Peeken I, Primpke S, Beyer B, Gütermann J, KatleinC, KrumpenT,
BergmannM,Hehemann L andGerdtsG 2018bArctic sea ice
is an important temporal sink andmeans of transport for
microplasticNat. Commun. 9 1505

PereiroD, SoutoC andGago J 2018Calibration of amarine floating
litter transportmodel J. Oper. Oceanogr. 11 125–33

PetersonAK2018Observations of brine plumes belowmelting
Arctic sea iceOcean Sci. 14 127–38

Petty AA, TsamadosMCandKurtzNT 2017Atmospheric form
drag coefficients over Arctic sea ice using remotely sensed ice
topography data, spring 2009-2015 J. Geophys. Res. Earth
Surf. 122 1472–90

Pfirman S L, Kögeler JWandRigor I 1997 Potential for rapid
transport of contaminants from theKara Sea Sci. Total
Environ. 202 111–22

PichelWG et al 2012GhostNetmarine debris survey in theGulf of
Alaska—Satellite guidance and aircraft observationsMar.
Pollut. Bull. 65 28–41

PierdomenicoM,CasalboreD andChiocci F L 2019Massive
benthic litter funnelled to deep sea by flash-flood generated
hyperpycnal flows Sci. Rep. 9 5330

PiersonW J andMoskowitz L 1964A proposed spectral form for
fully developedwind seas based on the similarity theory of S.
A. Kitaigorodskii J. Geophys. Res. 69 5181–90

Pineda J 1995An internal tidal bore regime at nearshore stations
alongwesternU.S.A.: predictable upwellingwithin the lunar
cycleCont. Shelf Res. 15 1023–41

PizzoN,MelvilleWK andDeike L 2019 Lagrangian transport by
nonbreaking and breaking deep-water waves at the ocean
surface J. Phys. Oceanogr. 49 983–92

PizzoNE 2017 Surfing surface gravity waves J. FluidMech. 823
316–28

PlueddemannA J andWeller RA 1999 Structure and evolution of
the oceanic surface boundary layer during the surfacewaves
processes program J.Mar. Syst. 21 85–102

Poje AC et al 2014 Submesoscale dispersion in the vicinity of the
DeepwaterHorizon spill Proc. Natl Acad. Sci. 111 12693–8

Polton J A andBelcher S E 2007 Langmuir turbulence and deeply
penetrating jets in an unstratifiedmixed layer J. Geophys. Res.
Oceans 112C09020

Porter A, Lyons BP,GallowayT S and Lewis C 2018Role ofmarine
snows inmicroplastic fate and bioavailabilityEnviron. Sci.
Technol. 52 7111–9

Potemra J T 2012Numericalmodeling with application to tracking
marine debrisMar. Pollut. Bull. 65 42–50

PoulainM,MercierM J, Brach L,MartignacM,Routaboul C,
Perez E, DesjeanMCand terHalle A 2019 Small
microplastics as amain contributor to plasticmass balance in
the north atlantic subtropical gyreEnviron. Sci. Technol. 53
1157–64

Poulain P-M,Gerin R,Mauri E and Pennel R 2009Wind effects on
drogued and undrogued drifters in the Eastern
Mediterranean J. Atmos. Ocean. Technol. 26 1144–56

Price J F,Weller RA and Pinkel R 1986Diurnal cycling:
observations andmodels of the upper ocean response to
diurnal heating, cooling, andwindmixing J. Geophys. Res.
Oceans 91 8411–27

RascleN, Chapron B, Ponte A, Ardhuin F andKlein P 2014 Surface
roughness imaging of currents shows divergence and strain in
thewind direction J. Phys. Oceanogr. 44 2153–63

RascleN,Molemaker J,Marié L,Nouguier F, Chapron B,
LundB andMoucheA 2017 Intense deformation field at
oceanic front inferred fromdirectional sea surface roughness
observationsGeophys. Res. Lett. 44 5599–608

Rech S,Macaya-CaquilpánV, Pantoja J F, RivadeneiraMM,
JofreMadariagaD andThielM2014Rivers as a source of
marine litter—a study from the SE PacificMar. Pollut. Bull.
82 66–75

ReedM, Turner C andOduloA 1994The role of wind and
emulsification inmodelling oil spill and surface drifter
trajectories Spill Sci. Technol. Bull. 1 143–57

Reisser J, Slat B,Noble K, du Plessis K, EppM, ProiettiM,
de Sonneville J, Becker T and Pattiaratchi C 2015The vertical
distribution of buoyant plastics at sea: an observational study
in theNorth Atlantic GyreBiogeosciences 12 1249–56

Reniers A JHM,Gallagher E L,MacMahan JH, Brown J A,
vanRooijen AA, vanThiel deVries J SMand
vanProoijen BC 2013Observations andmodeling of steep-
beach grain-size variability J. Geophys. Res. Oceans 118
577–91

ResmeriţăA-M,CoroabaA,Darie R,Doroftei F, Spiridon I,
Simionescu BC andNavard P 2018 Erosion as a possible
mechanism for the decrease of size of plastic pieces floating in
oceansMar. Pollut. Bull. 127 387–95

Richardson P L 1997Drifting in thewind: leeway error in shipdrift
dataDeep Sea Res. I 44 1877–903

Rigor I andColony R 1997 Sea-ice production and transport of
pollutants in the Laptev Sea, 1979–1993 Sci. Total Environ.
202 89–110

Rodríguez E, BourassaM,CheltonD, Farrar J T, LongD,
Perkovic-MartinD and Samelson R 2019Thewinds and
currentsmission concept Front.Mar. Sci. 6 438

Rodríguez E,Wineteer A, Perkovic-MartinD,Gál T, Stiles BW,
NiamsuwanN andRodriguezMonje R 2018 Estimating
Ocean vector winds and currents using aKa-band pencil-
beamdoppler scatterometerRemote Sens. 10 576

RoelvinkD, Reniers A, vanDongerenA, van Thiel de Vries J,
McCall R and Lescinski J 2009Modelling storm impacts on
beaches, dunes and barrier islandsCoast. Eng. 56 1133–52

Romeiser R, Suchandt S, RungeH, SteinbrecherU andGrunler S
2010 First analysis of TerraSAR-X along-track InSAR-
derived currentfields IEEE Trans. Geosci. Remote Sens. 48
820–9

Royer S-J, Ferrón S,Wilson S T andKarl DM2018 Production of
methane and ethylene fromplastic in the environment PLoS
One 13 e0200574

Rühs S, Zhurbas V, Koszalka IM,Durgadoo JV andBiastochA 2018
Eddy diffusivity estimates from lagrangian trajectories
simulatedwith oceanmodels and surface drifter data—a case
study for the greater agulhas system J. Phys. Oceanogr. 48
175–96

Ruiz J,MacíasD and Peters F 2004Turbulence increases the average
settling velocity of phytoplankton cellsProc. Natl Acad. Sci.
101 17720–4

RyanPG 1988 Effects of ingested plastic on seabird feeding:
evidence from chickensMar. Pollut. Bull. 19 125–8

RyanPG 2015Does size and buoyancy affect the long-distance
transport offloating debris?Environ. Res. Lett. 10 1–6

29

Environ. Res. Lett. 15 (2020) 023003 E van Sebille et al

https://doi.org/10.1029/2018JC014547
https://doi.org/10.1029/2018JC014547
https://doi.org/10.1029/2018JC014547
https://doi.org/10.1038/s41467-019-09506-1
https://doi.org/10.1016/j.csr.2018.01.010
https://doi.org/10.1016/j.csr.2018.01.010
https://doi.org/10.1016/j.csr.2018.01.010
https://doi.org/10.1016/j.envsoft.2012.12.006
https://doi.org/10.1016/j.envsoft.2012.12.006
https://doi.org/10.1016/j.envsoft.2012.12.006
https://doi.org/10.1016/j.wasman.2018.04.034
https://doi.org/10.1016/j.wasman.2018.04.034
https://doi.org/10.1016/j.wasman.2018.04.034
https://doi.org/10.1175/JPO-D-17-0208.1
https://doi.org/10.1175/JPO-D-17-0208.1
https://doi.org/10.1175/JPO-D-17-0208.1
https://doi.org/10.1175/JPO-D-18-0029.1
https://doi.org/10.1175/JPO-D-18-0029.1
https://doi.org/10.1175/JPO-D-18-0029.1
https://doi.org/10.1038/s41467-018-03825-5
https://doi.org/10.1080/1755876X.2018.1470892
https://doi.org/10.1080/1755876X.2018.1470892
https://doi.org/10.1080/1755876X.2018.1470892
https://doi.org/10.5194/os-14-127-2018
https://doi.org/10.5194/os-14-127-2018
https://doi.org/10.5194/os-14-127-2018
https://doi.org/10.1002/2017JF004209
https://doi.org/10.1002/2017JF004209
https://doi.org/10.1002/2017JF004209
https://doi.org/10.1016/S0048-9697(97)00108-3
https://doi.org/10.1016/S0048-9697(97)00108-3
https://doi.org/10.1016/S0048-9697(97)00108-3
https://doi.org/10.1016/j.marpolbul.2011.10.009
https://doi.org/10.1016/j.marpolbul.2011.10.009
https://doi.org/10.1016/j.marpolbul.2011.10.009
https://doi.org/10.1038/s41598-019-41816-8
https://doi.org/10.1029/JZ069i024p05181
https://doi.org/10.1029/JZ069i024p05181
https://doi.org/10.1029/JZ069i024p05181
https://doi.org/10.1016/0278-4343(95)80007-Z
https://doi.org/10.1016/0278-4343(95)80007-Z
https://doi.org/10.1016/0278-4343(95)80007-Z
https://doi.org/10.1175/JPO-D-18-0227.1
https://doi.org/10.1175/JPO-D-18-0227.1
https://doi.org/10.1175/JPO-D-18-0227.1
https://doi.org/10.1017/jfm.2017.314
https://doi.org/10.1017/jfm.2017.314
https://doi.org/10.1017/jfm.2017.314
https://doi.org/10.1017/jfm.2017.314
https://doi.org/10.1016/S0924-7963(99)00007-X
https://doi.org/10.1016/S0924-7963(99)00007-X
https://doi.org/10.1016/S0924-7963(99)00007-X
https://doi.org/10.1073/pnas.1402452111
https://doi.org/10.1073/pnas.1402452111
https://doi.org/10.1073/pnas.1402452111
https://doi.org/10.1029/2007JC004205
https://doi.org/10.1021/acs.est.8b01000
https://doi.org/10.1021/acs.est.8b01000
https://doi.org/10.1021/acs.est.8b01000
https://doi.org/10.1016/j.marpolbul.2011.06.026
https://doi.org/10.1016/j.marpolbul.2011.06.026
https://doi.org/10.1016/j.marpolbul.2011.06.026
https://doi.org/10.1021/acs.est.8b05458
https://doi.org/10.1021/acs.est.8b05458
https://doi.org/10.1021/acs.est.8b05458
https://doi.org/10.1021/acs.est.8b05458
https://doi.org/10.1175/2008JTECHO618.1
https://doi.org/10.1175/2008JTECHO618.1
https://doi.org/10.1175/2008JTECHO618.1
https://doi.org/10.1029/JC091iC07p08411
https://doi.org/10.1029/JC091iC07p08411
https://doi.org/10.1029/JC091iC07p08411
https://doi.org/10.1175/JPO-D-13-0278.1
https://doi.org/10.1175/JPO-D-13-0278.1
https://doi.org/10.1175/JPO-D-13-0278.1
https://doi.org/10.1002/2017GL073473
https://doi.org/10.1002/2017GL073473
https://doi.org/10.1002/2017GL073473
https://doi.org/10.1016/j.marpolbul.2014.03.019
https://doi.org/10.1016/j.marpolbul.2014.03.019
https://doi.org/10.1016/j.marpolbul.2014.03.019
https://doi.org/10.1016/1353-2561(94)90022-1
https://doi.org/10.1016/1353-2561(94)90022-1
https://doi.org/10.1016/1353-2561(94)90022-1
https://doi.org/10.5194/bg-12-1249-2015
https://doi.org/10.5194/bg-12-1249-2015
https://doi.org/10.5194/bg-12-1249-2015
https://doi.org/10.1029/2012JC008073
https://doi.org/10.1029/2012JC008073
https://doi.org/10.1029/2012JC008073
https://doi.org/10.1029/2012JC008073
https://doi.org/10.1016/j.marpolbul.2017.12.025
https://doi.org/10.1016/j.marpolbul.2017.12.025
https://doi.org/10.1016/j.marpolbul.2017.12.025
https://doi.org/10.1016/S0967-0637(97)00059-9
https://doi.org/10.1016/S0967-0637(97)00059-9
https://doi.org/10.1016/S0967-0637(97)00059-9
https://doi.org/10.1016/S0048-9697(97)00107-1
https://doi.org/10.1016/S0048-9697(97)00107-1
https://doi.org/10.1016/S0048-9697(97)00107-1
https://doi.org/10.3389/fmars.2019.00438
https://doi.org/10.3390/rs10040576
https://doi.org/10.1016/j.coastaleng.2009.08.006
https://doi.org/10.1016/j.coastaleng.2009.08.006
https://doi.org/10.1016/j.coastaleng.2009.08.006
https://doi.org/10.1109/TGRS.2009.2030885
https://doi.org/10.1109/TGRS.2009.2030885
https://doi.org/10.1109/TGRS.2009.2030885
https://doi.org/10.1109/TGRS.2009.2030885
https://doi.org/10.1371/journal.pone.0200574
https://doi.org/10.1175/JPO-D-17-0048.1
https://doi.org/10.1175/JPO-D-17-0048.1
https://doi.org/10.1175/JPO-D-17-0048.1
https://doi.org/10.1175/JPO-D-17-0048.1
https://doi.org/10.1073/pnas.0401539101
https://doi.org/10.1073/pnas.0401539101
https://doi.org/10.1073/pnas.0401539101
https://doi.org/10.1016/0025-326X(88)90708-4
https://doi.org/10.1016/0025-326X(88)90708-4
https://doi.org/10.1016/0025-326X(88)90708-4
https://doi.org/10.1088/1748-9326/10/8/084019
https://doi.org/10.1088/1748-9326/10/8/084019
https://doi.org/10.1088/1748-9326/10/8/084019


RyanPG and FraserMW1988The use of great skua pellets as
indicators of plastic pollution in seabirdsEmu—Austral
Ornithol. 88 16–9

Röhrs J, ChristensenKH,Hole L R, BroströmG,DrivdalM and
Sundby S 2012Observation-based evaluation of surface wave
effects on currents and trajectory forecastsOceanDyn. 62
1519–33

Röhrs J, DagestadK-F, AsbjørnsenH,NordamT, Skancke J,
Jones CE andBrekkeC 2018The effect of verticalmixing on
the horizontal drift of oil spillsOcean Sci. 14 1581–601

Sanchez-Vidal A, LlorcaM, FarréM,CanalsM, BarcelóD,
Puig P andCalafat A 2015Delivery of unprecedented
amounts of perfluoroalkyl substances towards the deep-sea
Sci. Total Environ. 526 41–8

Santamaria F, Boffetta G, AfonsoMM,MazzinoA,OnoratoMand
PuglieseD 2013 Stokes drift for inertial particles transported
bywater wavesEurophys. Lett. 102 14003

Schmidt C, Krauth T andWagner S 2017 Export of plastic debris by
rivers into the seaEnviron. Sci. Technol. 51 12246–53

Schott F and LeamanKD1991Observationswithmoored acoustic
doppler current profilers in the convection regime in the
Golfe du Lion J. Phys. Oceanogr. 21 558–74

SchulzM andMatthiesM2014Artificial neural networks for
modeling time series of beach litter in the southernNorth Sea
Mar. Environ. Res. 98 14–20

Shanks A 1983 Surface slicks associatedwith tidally forced internal
wavesmay transport pelagic larvae of benthic invertebrates
andfishes shorewardMar. Ecol. Prog. Ser. 13 311–5

Shanks AL 1987The onshore transport of an oil spill by internal
waves Science 235 1198–200

Shanks AL 1988 Further support for the hypothesis that internal
waves can cause shoreward transport of larval invertebrates
andfish Fish. Bull. 86 703–14

Shanks AL 1995Orientated swimming bymegalopae of several
easternNorth Pacific crab species and its potential role in
their onshoremigration J. Exp.Mar. Biol. Ecol. 186 1–16

Shanks AL, Largier J, Brink L, Brubaker J andHooff R 2000
Demonstration of the onshore transport of larval
invertebrates by the shorewardmovement of an upwelling
front Limnol. Oceanogr. 45 230–6

Shanks AL,MacMahan J,Morgan SG, Reniers A JHM, JarvisM,
Brown J, Fujimura A andGriesemer C 2015Transport of
larvae and detritus across the surf zone of a steep reflective
pocket beachMar. Ecol. Prog. Ser. 528 71–86

Sherman P and van Sebille E 2016Modelingmarine surface
microplastic transport to assess optimal removal locations
Environ. Res. Lett. 11 014006

Shields A 1936Application of Similarity Principles and Turbulence
Research to Bed-LoadMovement (Pasadena, CA: California
Institute of Technology)

Shutler J D et al 2016 Progress in satellite remote sensing for
studying physical processes at the ocean surface and its
borders with the atmosphere and sea iceProg. Phys. Geogr.
Earth Environ. 40 215–46

Siegel DA,Kinlan BP,Gaylord B andGaines SD 2003 Lagrangian
descriptions ofmarine larval dispersionMar. Ecol. Prog. Ser.
260 83–96

SmithKM,Hamlington PE and Fox-Kemper B 2016 Effects of
submesoscale turbulence on ocean tracers J. Geophys. Res.
Oceans 121 908–33

Soloviev A and Lukas R 1997 Sharp frontal interfaces in the near-
surface layer of the ocean in thewestern equatorial pacific
warmpool J. Phys. Oceanogr. 27 999–1017

Soltwedel T,HasemannC, VedeninA, BergmannM, Taylor J and
Krauß F 2019 Bioturbation rates in the deep FramStrait:
results from in situ experiments at the Arctic LTER
observatoryHAUSGARTEN J. Exp.Mar. Biol. Ecol. 511 1–9

SongYK,Hong SH, Eo S, JangM,HanGM, IsobeA and ShimWJ
2018Horizontal and vertical distribution ofmicroplastics in
KoreanCoastalWaters Environ. Sci. Technol. 52 12188–97

SongYK,Hong SH, JangM,HanGM, Jung SWand ShimW J 2017
Combined effects ofUV exposure duration andmechanical

abrasion onmicroplastic fragmentation by polymer type
Environ. Sci. Technol. 51 4368–76

SpydellM, Feddersen F, Guza RT and SchmidtWE2007Observing
surf-zone dispersionwith drifters J. Phys. Oceanogr. 37
2920–39

Stafford R and Jones P J S 2019Viewpoint—ocean plastic pollution:
a convenient but distracting truth?Mar. Policy 103 187–91

Stanev EV, Badewien TH, FreundH,Grayek S,Hahner F,
Meyerjürgens J, RickerM, Schöneich-Argent R I,
Wolff J-O andZielinskiO 2019 Extremewestward surface
drift in theNorth Sea: public reports of stranded drifters and
Lagrangian trackingCont. Shelf Res. 177 24–32

StokesGG1847On the theory of oscillatorywavesTrans. Camb.
Phil. Soc. 8 441

StommelH 1949Trajectories of small bodies sinking slowly through
convection cells J.Mar. Res. 8 24–9

StommelH, Voorhis AD andWebbDC1971 Submarine clouds in
the deep oceanAm. Sci. 59 716–22

Sullivan PP,McWilliams J C andMelvilleWK2007 Surface gravity
wave effects in the oceanic boundary layer: large-eddy
simulationwith vortex force and stochastic breakers J. Fluid
Mech. 593 405–52

Summers S,Henry T andGutierrez T 2018Agglomeration of nano-
andmicroplastic particles in seawater by autochthonous and
de novo-produced sources of exopolymeric substancesMar.
Pollut. Bull. 130 258–67

SunX, Liang J, ZhuM, ZhaoY andZhang B 2018Microplastics in
seawater and zooplankton from the Yellow SeaEnviron.
Pollut. 242 585–95

SuzukiN and Fox-Kemper B 2016Understanding Stokes forces in
thewave-averaged equations J. Geophys. Res. Oceans 121
3579–96

SuzukiN, Fox‐Kemper B,Hamlington PE andRoekel L PV 2016
Surfacewaves affect frontogenesis J. Geophys. Res. Oceans 121
3597–624

Svendsen I A 1984Massflux and undertow in a surf zoneCoast. Eng.
8 347–65

SvenssonU andOmstedt A 1998Numerical simulations of frazil ice
dynamics in the upper layers of the oceanCold Reg. Sci.
Technol. 28 29–44

Szanyi S, Lukovich J V andBarberDG2016 Lagrangian analysis of
sea-ice dynamics in theArcticOcean Polar Res. 35 30778

SzekieldaKH,MarmorinoGO, Bowles JH andGillis D 2010High
spatial resolution spectrometry of raftingmacroalgae
(Sargassum) J. Appl. Remote Sens. 4 043529

Taffs KHandCullenMC2005The distribution and abundance of
beach debris on isolated beaches of northernNew South
Wales AustraliaAustralas. J. Environ.Manage. 12 244–50

Tapia F J, Pineda J,Ocampo-Torres F J, FuchsHL, Parnell P E,
Montero P andRamos S 2004High-frequency observations
of wind-forced onshore transport at a coastal site in Baja
CaliforniaCont. Shelf Res. 24 1573–85

Taylor J R 2018Accumulation and subduction of buoyantmaterial
at submesoscale fronts J. Phys. Oceanogr. 48 1233–41

TekmanMB, KrumpenT andBergmannM2017Marine litter on
deepArctic seafloor continues to increase and spreads to the
North at theHAUSGARTENobservatoryDeep Sea Res. I 120
88–99

terHalle A, Ladirat L, Gendre X,GoudounecheD, Pusineri C,
Routaboul C, TenailleauC,Duployer B and Perez E 2016
Understanding the fragmentation pattern ofmarine plastic
debrisEnviron. Sci. Technol. 50 5668–75

Terray EA,DonelanMA,Agrawal YC,DrennanWM,KahmaKK,
WilliamsA J,Hwang PA andKitaigorodskii S A 1996
Estimates of kinetic energy dissipation under breakingwaves
J. Phys. Oceanogr. 26 792–807

ThielM andGutowL 2005The ecology of rafting in themarine
environment: I. The floating substrataOceanogr.Mar. Biol.
42 181–264

ThielM andHaye PA2006The ecology of rafting in themarine
environment: III. Biogeographical and evolutionary
consequencesOceanogr.Mar. Biol. 44 323–429

30

Environ. Res. Lett. 15 (2020) 023003 E van Sebille et al

https://doi.org/10.1071/MU9880016
https://doi.org/10.1071/MU9880016
https://doi.org/10.1071/MU9880016
https://doi.org/10.1007/s10236-012-0576-y
https://doi.org/10.1007/s10236-012-0576-y
https://doi.org/10.1007/s10236-012-0576-y
https://doi.org/10.1007/s10236-012-0576-y
https://doi.org/10.5194/os-14-1581-2018
https://doi.org/10.5194/os-14-1581-2018
https://doi.org/10.5194/os-14-1581-2018
https://doi.org/10.1016/j.scitotenv.2015.04.080
https://doi.org/10.1016/j.scitotenv.2015.04.080
https://doi.org/10.1016/j.scitotenv.2015.04.080
https://doi.org/10.1209/0295-5075/102/14003
https://doi.org/10.1021/acs.est.7b02368
https://doi.org/10.1021/acs.est.7b02368
https://doi.org/10.1021/acs.est.7b02368
https://doi.org/10.1175/1520-0485(1991)021<0558:OWMADC>2.0.CO;2
https://doi.org/10.1175/1520-0485(1991)021<0558:OWMADC>2.0.CO;2
https://doi.org/10.1175/1520-0485(1991)021<0558:OWMADC>2.0.CO;2
https://doi.org/10.1016/j.marenvres.2014.03.014
https://doi.org/10.1016/j.marenvres.2014.03.014
https://doi.org/10.1016/j.marenvres.2014.03.014
https://doi.org/10.3354/meps013311
https://doi.org/10.3354/meps013311
https://doi.org/10.3354/meps013311
https://doi.org/10.1126/science.235.4793.1198
https://doi.org/10.1126/science.235.4793.1198
https://doi.org/10.1126/science.235.4793.1198
https://doi.org/10.1016/0022-0981(94)00144-3
https://doi.org/10.1016/0022-0981(94)00144-3
https://doi.org/10.1016/0022-0981(94)00144-3
https://doi.org/10.4319/lo.2000.45.1.0230
https://doi.org/10.4319/lo.2000.45.1.0230
https://doi.org/10.4319/lo.2000.45.1.0230
https://doi.org/10.3354/meps11223
https://doi.org/10.3354/meps11223
https://doi.org/10.3354/meps11223
https://doi.org/10.1088/1748-9326/11/1/014006
https://doi.org/10.1177/0309133316638957
https://doi.org/10.1177/0309133316638957
https://doi.org/10.1177/0309133316638957
https://doi.org/10.3354/meps260083
https://doi.org/10.3354/meps260083
https://doi.org/10.3354/meps260083
https://doi.org/10.1002/2015JC011089
https://doi.org/10.1002/2015JC011089
https://doi.org/10.1002/2015JC011089
https://doi.org/10.1175/1520-0485(1997)027<0999:SFIITN>2.0.CO;2
https://doi.org/10.1175/1520-0485(1997)027<0999:SFIITN>2.0.CO;2
https://doi.org/10.1175/1520-0485(1997)027<0999:SFIITN>2.0.CO;2
https://doi.org/10.1016/j.jembe.2018.11.001
https://doi.org/10.1016/j.jembe.2018.11.001
https://doi.org/10.1016/j.jembe.2018.11.001
https://doi.org/10.1021/acs.est.8b04032
https://doi.org/10.1021/acs.est.8b04032
https://doi.org/10.1021/acs.est.8b04032
https://doi.org/10.1021/acs.est.6b06155
https://doi.org/10.1021/acs.est.6b06155
https://doi.org/10.1021/acs.est.6b06155
https://doi.org/10.1175/2007JPO3580.1
https://doi.org/10.1175/2007JPO3580.1
https://doi.org/10.1175/2007JPO3580.1
https://doi.org/10.1175/2007JPO3580.1
https://doi.org/10.1016/j.marpol.2019.02.003
https://doi.org/10.1016/j.marpol.2019.02.003
https://doi.org/10.1016/j.marpol.2019.02.003
https://doi.org/10.1016/j.csr.2019.03.003
https://doi.org/10.1016/j.csr.2019.03.003
https://doi.org/10.1016/j.csr.2019.03.003
https://doi.org/10.1017/S002211200700897X
https://doi.org/10.1017/S002211200700897X
https://doi.org/10.1017/S002211200700897X
https://doi.org/10.1016/j.marpolbul.2018.03.039
https://doi.org/10.1016/j.marpolbul.2018.03.039
https://doi.org/10.1016/j.marpolbul.2018.03.039
https://doi.org/10.1016/j.envpol.2018.07.014
https://doi.org/10.1016/j.envpol.2018.07.014
https://doi.org/10.1016/j.envpol.2018.07.014
https://doi.org/10.1002/2015JC011566
https://doi.org/10.1002/2015JC011566
https://doi.org/10.1002/2015JC011566
https://doi.org/10.1002/2015JC011566
https://doi.org/10.1002/2015JC011563
https://doi.org/10.1002/2015JC011563
https://doi.org/10.1002/2015JC011563
https://doi.org/10.1002/2015JC011563
https://doi.org/10.1016/0378-3839(84)90030-9
https://doi.org/10.1016/0378-3839(84)90030-9
https://doi.org/10.1016/0378-3839(84)90030-9
https://doi.org/10.1016/S0165-232X(98)00011-1
https://doi.org/10.1016/S0165-232X(98)00011-1
https://doi.org/10.1016/S0165-232X(98)00011-1
https://doi.org/10.3402/polar.v35.30778
https://doi.org/10.1117/1.3431044
https://doi.org/10.1080/14486563.2005.10648655
https://doi.org/10.1080/14486563.2005.10648655
https://doi.org/10.1080/14486563.2005.10648655
https://doi.org/10.1016/j.csr.2004.03.013
https://doi.org/10.1016/j.csr.2004.03.013
https://doi.org/10.1016/j.csr.2004.03.013
https://doi.org/10.1175/JPO-D-17-0269.1
https://doi.org/10.1175/JPO-D-17-0269.1
https://doi.org/10.1175/JPO-D-17-0269.1
https://doi.org/10.1016/j.dsr.2016.12.011
https://doi.org/10.1016/j.dsr.2016.12.011
https://doi.org/10.1016/j.dsr.2016.12.011
https://doi.org/10.1016/j.dsr.2016.12.011
https://doi.org/10.1021/acs.est.6b00594
https://doi.org/10.1021/acs.est.6b00594
https://doi.org/10.1021/acs.est.6b00594
https://doi.org/10.1175/1520-0485(1996)026<0792:EOKEDU>2.0.CO;2
https://doi.org/10.1175/1520-0485(1996)026<0792:EOKEDU>2.0.CO;2
https://doi.org/10.1175/1520-0485(1996)026<0792:EOKEDU>2.0.CO;2


Thomas LN, TandonA andMahadevanA 2013 Submesoscale
processes and dynamicsOceanModeling in an Eddying
Regime edMWHecht andHHasumi (Washington,DC:
AmericanGeophysical Union (AGU)) pp 17–38

Thorpe SA 2004 Langmuir circulationAnnu. Rev. FluidMech. 36
55–79

Thorpe SA,OsbornTR, FarmerDMandVagle S 2003 Bubble
clouds and langmuir circulation: observations andmodels
J. Phys. Oceanogr. 33 2013–31

TolmanHL 2009Usermanual and systemdocumentation of
WAVEWATCH III TMversion 3.14Technical Note (https://
polar.ncep.noaa.gov/mmab/papers/tn276/MMAB_
276.pdf)

Tominaga Y and Stathopoulos T 2007Turbulent Schmidt numbers
for CFD analysis with various types of flowfieldAtmos.
Environ. 41 8091–9

Topouzelis K, PapakonstantinouA andGaraba S P 2019Detection
offloating plastics from satellite and unmanned aerial
systems (plastic litter project 2018) Int. J. Appl. EarthObs.
Geoinf. 79 175–83

Trinanes J A,OlascoagaM J,Goni G J,MaximenkoNA,
GriffinDA andHafner J 2016Analysis offlightMH370
potential debris trajectories using ocean observations and
numericalmodel results J. Oper. Oceanogr. 9 126–38

Trowbridge JH and Lentz S J 2018The bottomboundary layer
Annu. Rev.Mar. Sci. 10 397–420

TschudiM, Fowler C,Maslanik J and Stroeve J 2010Tracking the
movement and changing surface characteristics of arctic sea
ice IEEE J. Sel. Top. Appl. EarthObs. Remote Sens. 3 536–40

TubauX, CanalsM, Lastras G, RayoX, Rivera J andAmblasD 2015
Marine litter on thefloor of deep submarine canyons of the
NorthwesternMediterranean Sea: the role of hydrodynamic
processes Prog. Oceanogr. 134 379–403

Umlauf L andBurchardH2003A generic length-scale equation for
geophysical turbulencemodels J.Mar. Res. 61 235–65

Ushio S andWakatsuchiM1993A laboratory study on supercooling
and frazil ice production processes inwinter coastal polynyas
J. Geophys. Res. Oceans 98 20321–8

Vallis GK 2006Atmospheric andOceanic FluidDynamics
(Cambridge: CambridgeUniversity Press)

VanCauwenberghe L, Vanreusel A,Mees J and JanssenCR 2013
Microplastic pollution in deep-sea sediments Environ. Pollut.
182 495–9

van den Bremer T andTaylor PH 2016 Lagrangian transport for
two-dimensional deep-water surface gravity wave groups
Proc. R. Soc.Math. Phys. Eng. Sci. 472 20160159

van den Bremer T S andBreivikØ2018 Stokes drift Phil. Trans. R.
Soc.Math. Phys. Eng. Sci. 376 20170104

van den Bremer T S,Whittaker C, Calvert R, RabyA andTaylor PH
2019 Experimental study of particle trajectories below deep-
water surface gravity wave groups J. FluidMech. 879 168–86

van derMheenM, Pattiaratchi C and van Sebille E 2019Role of
indian ocean dynamics on accumulation of BuoyantDebris
J. Geophys. Res. Oceans 124 2571–90

van der Zanden J 2016 Sand transport processes in the surf and
swash zones PhDThesisNetherlands: University of Twente
(https://doi.org/10.3990/1.9789036542456)

van der Zanden J, van der ADA,HurtherD, Cáceres I,
O’Donoghue T andRibberink J S 2017 Suspended sediment
transport around a large-scale laboratory breaker barCoast.
Eng. 125 51–69

vanGennipS J et al2019 In search for the sources of plasticmarine litter
that contaminates theEaster IslandEcoregionSci.Rep.91–13

vanRoekel L P, Fox‐Kemper B, Sullivan PP,Hamlington PE and
Haney S R 2012The form andorientation of Langmuir cells
formisalignedwinds andwaves J. Geophys. Res. Oceans 117
C05001

van Sebille E et al 2018 Lagrangian ocean analysis: fundamentals and
practicesOceanModel. 121 49–75

van Sebille E, Beal LMand JohnsWE2011Advective time scales of
Agulhas leakage to theNorth Atlantic in surface drifter
observations and the 3DOFESmodel J. Phys. Oceanogr. 41
1026–34

van Sebille E, EnglandMHandFroylandG2012aOrigin, dynamics
and evolution of ocean garbage patches fromobserved
surface drifters Environ. Res. Lett. 7 044040

van Sebille E, JohnsWE andBeal LM2012bDoes the vorticity flux
fromAgulhas rings control the zonal pathway ofNADW
across the SouthAtlantic? J. Geophys. Res. Oceans 117C05037

van Sebille E,Waterman S, Barthel A, Lumpkin R, Keating S R,
Fogwill C andTurney C SM2015a Pairwise surface drifter
separation in thewestern Pacific sector of the SouthernOcean
J. Geophys. Res. Oceans 120 6769–81

van Sebille E,Wilcox C, Lebreton LCM,MaximenkoNA,
Hardesty BD, van Franeker J A, EriksenM, Siegel D,
Galgani F and LawKL 2015bA global inventory of small
floating plastic debrisEnviron. Res. Lett. 10 124006

Veenstra T S andChurnside JH 2012Airborne sensors for detecting
largemarine debris at seaMar. Pollut. Bull. 65 63–8

Waldschläger K and SchüttrumpfH 2019 Effects of particle
properties on the settling and rise velocities ofmicroplastics
in freshwater under laboratory conditions Environ. Sci.
Technol. 53 1958–66

WangD,Kukulka T, Reichl BG,Hara T, Ginis I and Sullivan PP
2018 Interaction of Langmuir turbulence and inertial
currents in the ocean surface boundary layer under tropical
cyclones J. Phys. Oceanogr. 48 1921–40

Warner J C, Armstrong B,HeR andZambon J B 2010Development
of a coupled ocean–atmosphere–wave–sediment transport
(COAWST)modeling systemOceanModel. 35
230–44

WebbA and Fox-Kemper B 2011Wave spectralmoments and
Stokes drift estimationOceanModel. 40 273–88

WebbA and Fox-Kemper B 2015 Impacts of wave spreading and
multidirectional waves on estimating Stokes driftOcean
Model. 96 49–64

Weber J E 1983Attenuatedwave-induced drift in a viscous rotating
ocean J. FluidMech. 137 115–29

WellerHG, TaborG, JasakH and FurebyC 1998A tensorial
approach to computational continuummechanics using
object-oriented techniquesComput. Phys. 12 620–31

Weller RA,Dean J P, Price J F, Francis EA,Marra J and
BoardmanDC1985Three-dimensional flow in the upper
ocean Science 227 1552–6

WichmannD,Delandmeter P and van Sebille E 2019 Influence of
near-surface currents on the global dispersal ofmarine
microplastic J. Geophys. Res. Oceans 124 6086–96

WieczorekAM,Morrison L, Croot P L, AllcockA L,
MacLoughlin E, SavardO, BrownlowH andDoyle TK2018
Frequency ofmicroplastics inmesopelagic fishes from the
Northwest Atlantic Front.Mar. Sci. 5 39

WilcoxC,Hardesty BD and LawKL 2019Abundance offloating
plastic particles is increasing in theWesternNorth Atlantic
Ocean Environ. Sci. Technol. 54 790–6

WilcoxC, van Sebille E andHardesty BD 2015Threat of plastic
pollution to seabirds is global, pervasive, and increasing Proc.
Natl Acad. Sci. 112 11899–904

WinantCD1974 Internal surges in coastal waters J. Geophys. Res. 79
4523–6

Wollenburg J E et al 2018 Ballasting by cryogenic gypsum enhances
carbon export in a Phaeocystis under-ice bloom Sci. Rep. 8
1–9

Woodall L C, Sanchez-Vidal A, CanalsM, PatersonGordon L J,
Rachel C, Victoria S, AntonioC, Rogers AlexD,
NarayanaswamyBhavani E andThompsonRichardC 2014
The deep sea is amajor sink formicroplastic debrisR. Soc.
Open Sci. 1 140317

WoodcockAH1993Winds subsurface pelagic Sargassum and
Langmuir circulations J. Exp.Mar. Biol. Ecol. 170 117–25

YangH, LohmannG,WeiW,DimaM, IonitaM and Liu J 2016
Intensification and poleward shift of subtropical western
boundary currents in awarming climate J. Geophys. Res.
Oceans 121 4928–45

Yoon J-H, Kawano S and Igawa S 2010Modeling ofmarine litter
drift and beaching in the Japan SeaMar. Pollut. Bull. 60
448–63

31

Environ. Res. Lett. 15 (2020) 023003 E van Sebille et al

https://doi.org/10.1029/177GM04
https://doi.org/10.1029/177GM04
https://doi.org/10.1029/177GM04
https://doi.org/10.1146/annurev.fluid.36.052203.071431
https://doi.org/10.1146/annurev.fluid.36.052203.071431
https://doi.org/10.1146/annurev.fluid.36.052203.071431
https://doi.org/10.1146/annurev.fluid.36.052203.071431
https://doi.org/10.1175/1520-0485(2003)033<2013:BCALCO>2.0.CO;2
https://doi.org/10.1175/1520-0485(2003)033<2013:BCALCO>2.0.CO;2
https://doi.org/10.1175/1520-0485(2003)033<2013:BCALCO>2.0.CO;2
https://polar.ncep.noaa.gov/mmab/papers/tn276/MMAB_276.pdf
https://polar.ncep.noaa.gov/mmab/papers/tn276/MMAB_276.pdf
https://polar.ncep.noaa.gov/mmab/papers/tn276/MMAB_276.pdf
https://doi.org/10.1016/j.atmosenv.2007.06.054
https://doi.org/10.1016/j.atmosenv.2007.06.054
https://doi.org/10.1016/j.atmosenv.2007.06.054
https://doi.org/10.1016/j.jag.2019.03.011
https://doi.org/10.1016/j.jag.2019.03.011
https://doi.org/10.1016/j.jag.2019.03.011
https://doi.org/10.1080/1755876X.2016.1248149
https://doi.org/10.1080/1755876X.2016.1248149
https://doi.org/10.1080/1755876X.2016.1248149
https://doi.org/10.1146/annurev-marine-121916-063351
https://doi.org/10.1146/annurev-marine-121916-063351
https://doi.org/10.1146/annurev-marine-121916-063351
https://doi.org/10.1109/JSTARS.2010.2048305
https://doi.org/10.1109/JSTARS.2010.2048305
https://doi.org/10.1109/JSTARS.2010.2048305
https://doi.org/10.1016/j.pocean.2015.03.013
https://doi.org/10.1016/j.pocean.2015.03.013
https://doi.org/10.1016/j.pocean.2015.03.013
https://doi.org/10.1357/002224003322005087
https://doi.org/10.1357/002224003322005087
https://doi.org/10.1357/002224003322005087
https://doi.org/10.1029/93JC01905
https://doi.org/10.1029/93JC01905
https://doi.org/10.1029/93JC01905
https://doi.org/10.1016/j.envpol.2013.08.013
https://doi.org/10.1016/j.envpol.2013.08.013
https://doi.org/10.1016/j.envpol.2013.08.013
https://doi.org/10.1098/rspa.2016.0159
https://doi.org/10.1098/rsta.2017.0104
https://doi.org/10.1017/jfm.2019.584
https://doi.org/10.1017/jfm.2019.584
https://doi.org/10.1017/jfm.2019.584
https://doi.org/10.1029/2018JC014806
https://doi.org/10.1029/2018JC014806
https://doi.org/10.1029/2018JC014806
https://doi.org/10.3990/1.9789036542456
https://doi.org/10.1016/j.coastaleng.2017.03.007
https://doi.org/10.1016/j.coastaleng.2017.03.007
https://doi.org/10.1016/j.coastaleng.2017.03.007
https://doi.org/10.1038/s41598-019-56012-x
https://doi.org/10.1038/s41598-019-56012-x
https://doi.org/10.1038/s41598-019-56012-x
https://doi.org/10.1029/2011JC007516
https://doi.org/10.1029/2011JC007516
https://doi.org/10.1016/j.ocemod.2017.11.008
https://doi.org/10.1016/j.ocemod.2017.11.008
https://doi.org/10.1016/j.ocemod.2017.11.008
https://doi.org/10.1175/2011JPO4602.1
https://doi.org/10.1175/2011JPO4602.1
https://doi.org/10.1175/2011JPO4602.1
https://doi.org/10.1175/2011JPO4602.1
https://doi.org/10.1088/1748-9326/7/4/044040
https://doi.org/10.1029/2011JC007684
https://doi.org/10.1002/2015JC010972
https://doi.org/10.1002/2015JC010972
https://doi.org/10.1002/2015JC010972
https://doi.org/10.1088/1748-9326/10/12/124006
https://doi.org/10.1016/j.marpolbul.2010.11.018
https://doi.org/10.1016/j.marpolbul.2010.11.018
https://doi.org/10.1016/j.marpolbul.2010.11.018
https://doi.org/10.1021/acs.est.8b06794
https://doi.org/10.1021/acs.est.8b06794
https://doi.org/10.1021/acs.est.8b06794
https://doi.org/10.1175/JPO-D-17-0258.1
https://doi.org/10.1175/JPO-D-17-0258.1
https://doi.org/10.1175/JPO-D-17-0258.1
https://doi.org/10.1016/j.ocemod.2010.07.010
https://doi.org/10.1016/j.ocemod.2010.07.010
https://doi.org/10.1016/j.ocemod.2010.07.010
https://doi.org/10.1016/j.ocemod.2010.07.010
https://doi.org/10.1016/j.ocemod.2011.08.007
https://doi.org/10.1016/j.ocemod.2011.08.007
https://doi.org/10.1016/j.ocemod.2011.08.007
https://doi.org/10.1016/j.ocemod.2014.12.007
https://doi.org/10.1016/j.ocemod.2014.12.007
https://doi.org/10.1016/j.ocemod.2014.12.007
https://doi.org/10.1017/S0022112083002311
https://doi.org/10.1017/S0022112083002311
https://doi.org/10.1017/S0022112083002311
https://doi.org/10.1063/1.168744
https://doi.org/10.1063/1.168744
https://doi.org/10.1063/1.168744
https://doi.org/10.1126/science.227.4694.1552
https://doi.org/10.1126/science.227.4694.1552
https://doi.org/10.1126/science.227.4694.1552
https://doi.org/10.1029/2019JC015328
https://doi.org/10.1029/2019JC015328
https://doi.org/10.1029/2019JC015328
https://doi.org/10.3389/fmars.2018.00039
https://doi.org/10.1021/acs.est.9b04812
https://doi.org/10.1021/acs.est.9b04812
https://doi.org/10.1021/acs.est.9b04812
https://doi.org/10.1073/pnas.1502108112
https://doi.org/10.1073/pnas.1502108112
https://doi.org/10.1073/pnas.1502108112
https://doi.org/10.1029/JC079i030p04523
https://doi.org/10.1029/JC079i030p04523
https://doi.org/10.1029/JC079i030p04523
https://doi.org/10.1029/JC079i030p04523
https://doi.org/10.1038/s41598-018-26016-0
https://doi.org/10.1038/s41598-018-26016-0
https://doi.org/10.1038/s41598-018-26016-0
https://doi.org/10.1038/s41598-018-26016-0
https://doi.org/10.1098/rsos.140317
https://doi.org/10.1016/0022-0981(93)90132-8
https://doi.org/10.1016/0022-0981(93)90132-8
https://doi.org/10.1016/0022-0981(93)90132-8
https://doi.org/10.1002/2015JC011513
https://doi.org/10.1002/2015JC011513
https://doi.org/10.1002/2015JC011513
https://doi.org/10.1016/j.marpolbul.2009.09.033
https://doi.org/10.1016/j.marpolbul.2009.09.033
https://doi.org/10.1016/j.marpolbul.2009.09.033
https://doi.org/10.1016/j.marpolbul.2009.09.033


Young I R andRibal A 2019Multiplatform evaluation of global
trends inwind speed andwave height Science 364 548–52

Ypma S L, van Sebille E, Kiss A E and Spence P 2015The separation
of the East AustralianCurrent: a Lagrangian approach to
potential vorticity and upstream control J. Geophys. Res.
Oceans 121 758–74

Zambianchi E, Iermano I, Suaria G andAliani S 2014Marine litter
in theMediterranean Sea: an oceanographic perspective
Marine litter in theMediterranean andBlack Seas CIESM
WorkshopMonograph (Monaco: CIESMPublisher) pp 31–41

Zambianchi E, TraniM and Falco P 2017 Lagrangian transport of
marine litter in theMediterranean Sea Front. Environ. Sci. 5 5

Zettler ER,Mincer T J andAmaral-Zettler L A 2013 Life in the
‘plastisphere’: microbial communities on plasticMarine
DebrisEnviron. Sci. Technol. 47 7137–46

ZhangH2017Transport ofmicroplastics in coastal seas Estuar.
Coast. Shelf Sci. 199 74–86

Zhang J, Teixeira Â P,Guedes Soares C andYanX2017 Probabilistic
modelling of the drifting trajectory of an object under the
effect of wind and current formaritime search and rescue
Ocean Eng. 129 253–64

Zhao S,Ward J E, DanleyMandMincer T J 2018 Field-based
evidence formicroplastic inmarine aggregates andmussels:
implications for trophic transfer Environ. Sci. Technol. 52
11038–48

ZhongY andBraccoA 2013 Submesoscale impacts on horizontal
and vertical transport in theGulf ofMexico J. Geophys. Res.
Oceans 118 5651–68

Zhurbas V 2004Drifter-derivedmaps of lateral diffusivity in the
Pacific andAtlanticOceans in relation to surface circulation
patterns J. Geophys. Res. Oceans 109C05015

ZijlemaM, StellingG and Smit P 2011 SWASH: an operational
public domain code for simulatingwavefields and rapidly
variedflows in coastal watersCoast. Eng. 58 992–1012

32

Environ. Res. Lett. 15 (2020) 023003 E van Sebille et al

https://doi.org/10.1126/science.aav9527
https://doi.org/10.1126/science.aav9527
https://doi.org/10.1126/science.aav9527
https://doi.org/10.1002/2015JC011133
https://doi.org/10.1002/2015JC011133
https://doi.org/10.1002/2015JC011133
https://doi.org/10.3389/fenvs.2017.00005
https://doi.org/10.1021/es401288x
https://doi.org/10.1021/es401288x
https://doi.org/10.1021/es401288x
https://doi.org/10.1016/j.ecss.2017.09.032
https://doi.org/10.1016/j.ecss.2017.09.032
https://doi.org/10.1016/j.ecss.2017.09.032
https://doi.org/10.1016/j.oceaneng.2016.11.002
https://doi.org/10.1016/j.oceaneng.2016.11.002
https://doi.org/10.1016/j.oceaneng.2016.11.002
https://doi.org/10.1021/acs.est.8b03467
https://doi.org/10.1021/acs.est.8b03467
https://doi.org/10.1021/acs.est.8b03467
https://doi.org/10.1021/acs.est.8b03467
https://doi.org/10.1002/jgrc.20402
https://doi.org/10.1002/jgrc.20402
https://doi.org/10.1002/jgrc.20402
https://doi.org/10.1029/2003JC002241
https://doi.org/10.1016/j.coastaleng.2011.05.015
https://doi.org/10.1016/j.coastaleng.2011.05.015
https://doi.org/10.1016/j.coastaleng.2011.05.015

	1. Introduction
	2. Methods on literature and data gathering
	3. Defining floating marine debris
	4. The physical processes that govern transport of floating plastic debris
	4.1. Large-scale open ocean processes
	4.2. Mesoscale open ocean processes
	4.3. Submesoscale open ocean processes
	4.4. Open ocean Stokes drift
	4.5. Internal tides
	4.6. Transport due to direct wind force (windage)
	4.7. Langmuir circulation
	4.8. Vertical transport and mixing
	4.9. Ice formation, melting and drift
	4.10. River plumes and coastal fronts
	4.11. Coastal currents, surface waves and beaching
	4.12. Extreme events
	4.13. Transport by organisms

	5. How plastic particles sink from the ocean surface
	6. The tools to investigate transport processes
	6.1. In situ measurements
	6.2. Laboratory experiments
	6.3. Remote sensing
	6.4. Numerical simulations

	7. Conclusions and discussion
	Acknowledgments
	Data availability
	References



