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Risk to Human Health from
a Plethora of Simian
Immunodeficiency Viruses
in Primate Bushmeat
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To assess human exposure to Simian immunodeficiency virus (SIV) in west central Africa, we looked for
SIV infection in 788 monkeys that were hunted in the rainforests of Cameroon for bushmeat or kept as
pets. Serologic reactivity suggesting SIV infection was found in 13 of 16 primate species, including 4 not
previously known to harbor SIV. Overall, 131 sera (16.6%) reacted strongly and an additional 34 (4.3%)
reacted weakly with HIV antigens. Molecular analysis identified five new phylogenetic SIV lineages. These
data document for the first ime that a substantial proportion of wild monkeys in Cameroon are S|V infected
and that humans who hunt and handle bushmeat are exposed to a plethora of genetically highly divergent

viruses.

F irst recognized in the early 1980s, AIDS represents the
endstage of infection with one of two lentiviruses, termed
Human immunodeficiency virus type 1 (HIV-1) or type 2 (HIV-
2) (1,2). HIV-1 has spread to most parts of the world, while
HIV-2 has remained largely restricted to West Africa (3,4).
More than 40 million persons are estimated to have HIV infec-
tion or AIDS (4).

Both HIV-1 and HIV-2 are of zoonotic origin (5). The clos-
est simian relatives of HIV-1 and HIV-2 have been found in
the common chimpanzee (Pan troglodytes) and the sooty man-
gabey (Cercocebus atys), respectively (6-8), and phylogenetic
evidence indicates that lentiviruses from these species (SIVcpz
and SIVsm, respectively) have been transmitted to humans on
at least eight occasions (5,9). Serologic evidence of SIV infec-
tion has so far been documented in 26 primate species, and 20
of these viruses have been at least partially molecularly char-
acterized (5,10,11). Because humans come in frequent contact
with primates in many parts of subSaharan Africa, additional
zoonotic transfers of primate lentiviruses from species other
than chimpanzees and sooty mangabeys are possible. The risk
for acquiring SIV infection would be expected to be highest in
persons who hunt primates and prepare their meat for con-
sumption, as well as in persons who keep primates as pets.
However, this risk cannot be assessed since the prevalence,
diversity, and geographic distribution of SIV infections in wild
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primate populations are unknown. We report the first compre-
hensive survey of wild-caught primates in Cameroon, home to
diverse primate species that are extensively hunted for food
and trade (12). Much of the primate meat sold for consumption
derives from infected monkeys, and a comparable number of
pet monkeys also carry SIV. These data thus provide a first
approximation of the magnitude and variety of SIVs to which
humans are exposed through contact with nonhuman primates.

Materials and Methods

Collection of Primate Tissue and Blood Samples

Blood was obtained from 788 monkeys wild-caught in
Cameroon from January 1999 to April 2001. Species were
determined by visual inspection according to the Kingdon
Field Guide to African Mammals (13) and the taxonomy
described by Colin Groves (14). We sampled 573 animals as
bushmeat at markets in Yaounde (n=157), surrounding villages
(n=111), or logging concessions in southeastern Cameroon
(m=305), as well as 215 pet animals from these same areas
(Table 1). All primate samples were obtained with government
approval from the Cameroonian Ministry of Environment and
Forestry. Bushmeat samples were obtained through a strategy
specifically designed not to increase demand: women prepar-
ing and preserving the meat for subsequent sale and hunters
already involved in the trade were asked for permission to
sample blood and tissues from carcasses, which were then
returned.

For the bushmeat animals, blood was collected by cardiac
puncture, and lymph node and spleen tissucs were collected
whenever possible. The owners indicated that most of the
animals had died 12 to 72 hours before sampling. For pet
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Table 1. Wild-born primates surveyed, by species, age, and status, Cameroon

Genus Species Common name Pel animals Primate bushmeat Total
Juveniles/ Juveniles/
Adults Infants Adults infants
Cercocebus agilis Agile mangabey 4 15 30 3 52
torquatus Red-capped mangabey 1 - - 1 2
Lophocebus albigena Grey-checked 3 3 12 3 2t
mangabey
Cercopithecus cephus Mustached guenon 3 26 217 56 302
mona Mona monkey - 7 1 1 9
neglectus De Brazza’s monkey 2 6 21 5 34
nictitans Greater spot-noged 8 36 110 12 166
monkey
pogonias Crested mona 1 5 57 10 73
preussi Preuss’s monkey - 1 - - 1
Chlorocebus tantalus ‘Tantalus monkey 7 11 - - 18
Miopithecus ogouensis Gabon talapoin 5 6 8 - 19
Erytrocebus patas Patas monkey 5 14 - - 19
Colobus guereza Mantled guereza - 2 24 - 26
Mandrillus levicophaeus Drill - 2 - ~ 2
sphinx Mandrill 5 15 - 2 22
Papio anubis Olive baboon 11 11 - - 22
Total 55 160 480 93 788

mornkeys, blood was drawn by peripheral venipuncture after
the animals were tranquilized with ketamine (10 mg/kg).
Plasma and cells were separated on site by Ficoll gradient cen-
trifugation. All samples, including peripheral blood mononu-
clear cells (PBMCs), plasma, whole blood, and other tissues,
were stored at —20°C.

Serologic Testing

Plasma samples were tested for HIV/SIV antibodies by the
INNO-LIA HIV Confirmation test (Innogenetics, Ghent, Bel-
gium), which includes HIV-1 and HIV-2 recombinant proteins
and synthetic peptides that are coated as discrete lines on a
nylon strip. Five HIV-1 antigens include synthetic peptides for
the exterior envelope glycoprotein (sgp120), as well as recom-
binant proteins for the transmembrane envelope glycoprotein
(gp41), integrase (p31), core (p24), and matrix (pl7) proteins.
HIV-1 group O envelope peptides are included in the HIV-1
sgpl20 band. The HIV-2 antigens include synthetic peptides
for sgp120, as well as recombinant gp36 protein. In addition to
these HIV antigens, each strip has control lines: one sample
addition line (3+) containing anti-human immunoglobulin (Ig)
and two test performance lines (1+ and +/-) containing human
IgG. All assays were performed according to manufacturer’s
instructions, with alkaline phosphatase-labeled goat anti-
human IgG as the secondary antibody. We used the following
working definition for SIV seropositivity: plasma samples
were scored as INNO-LIA positive when they reacted with at

least one HIV antigen and had a band intensity equal to or
greater than the assay cutoff (+/-) lane; samples that reacted
less strongly but still visibly with two or more HIV antigens
were classified as indeterminant; and samples reacting with no
bands or only one band with less than +/- intensity were classi-
fied as negative.

Polymerase Chain Reaction (PCR)

DNA was isolated from whole blood or PBMCs by using
Qiagen DNA extraction kits (Qiagen, Courtaboeuf, France),
and PCR was done with the Expand High Fidelity PCR kit
(Roche Molecular Biochemicals, Mannheim, Germany). For
amplification of SIV sequences, previously described degener-
ate consensus pol primers DRI, Polis4, UNIPOL2, and PolOR
(15-17) were used in various combinations under previously
described PCR conditions (16). PCR products were sequenced
by cycle sequencing and dye terminator methods (ABI PRISM
Big Dye Terminator Cycle Sequencing Ready Reaction kit
with AmpliTaq FS DNA polymerase [PE Biosystems, War-
rington, England]) on an automated sequencer (ABI 373,
Stretch model; Applied Biosystems, Courtaboeuf, France)
either directly or after cloning into the pGEM-T vector
(Promega, Charbonnieres, France).

To test for DNA degradation, a 1,151-bp region of the glu-
cose-6—phosphate dehydrogenase (G6PD) gene was amplified
with the primers GPD-F1 5-CATTACCAGCTCCATGAC-
CAGGAC-3" and GPD-R1 5-GTGTTCCCAGGTGACCCTC-
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TGGC-3 in a single-round PCR reaction under the following
conditions: 94°C for 2 min, then 35 cycles at 94°C for 20 sec,
58°C for 30 sec, and 72 °C for 1 min (18).

Phylogenetic Analyses

Newly derived SIV nucleotide sequences were aligned
with reference sequences from the Los Alamos HIV/SIV
Sequence database by using CLUSTAL W (19) with minor
adjustments for protein sequences. A phylogenetic tree was
constructed by the neighbor-joining method (20), and the reli-
ability of branching orders was tested by the bootstrap
approach (21). Sequence distances were calculated by
Kimura’s two-parameter method (22). SIV lineages were
defined as clusters of SIV sequences from the same primate
species that grouped together with significant (>80%) boot-
strap values.

GenBank Accession Numbers

The new sequences have been deposited in GenBank under
the following accession numbers: SIVgsn-99CM-CN7I1
(AF478588), SIVgsn-99CM-CN7 (AF478589), SlVgsn-
99CM-CN166 (AF478590), SIVmon-99CM-CML1 (AF4785
91), SIVmus-01CM-S1239 (AF478592), SIVmus-01C M-
S1085 (AF478593), SIVtal-00CM-271 (AF478594), SIVtal-
00CM-266 (AF478595), SIVmnd2-99CM-54 (AF478596),
SIVmnd2-01CM-S109 (AF478597), SIVmnd2-00CM-S46 (A
F478598), SIVmnd2-00CM-S6 (AF478599), SIVdeb-01CM-
1083 (AF478600), SIVdeb-99CM-CN40 (AF478601), SIVdeb
-01CM-S1014 (AF478602), SIVdeb-99CM-CNES5 (AF47
8603), SIVdeb-01CM-1161 (AF478604), SIVdeb-99CM-
CNE1 (AF'478605), SIVcol-00CM-247 (AF478606), SIVcol-
00CM-243 (AF478607), and SIVcol-99CM-11 (AF478608).
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Results

Prevalence Estimates of SIV Infection in
Bushmeat and Pet Monkey Samples

Previous studies of SIV infection have relied almost exclu-
sively on surveys of captive monkeys or apes that were either
kept as pcts or housed at zoos, sanctuaries, or primate centcrs.
While this approach has led to the discovery of novel SIVs
(23-29), it has not provided information concerning SIV prev-
alence rates in the wild. Most pet monkeys are acquired at a
very young age, often when their parents are killed by hunters.
Two field studies of wild African green monkeys have shown
that seroprevalence rates correlated with sexual maturity, sug-
gesting transmission predominantly by sexual routes (30,31).
SIV infection rates of captive monkeys may thus not accu-
rately reflect SIV prevalence rates in the wild.

To ensure systematic sampling, we therefore collected
blood from 573 monkeys sold as bushmeat and 215 pet mon-
keys (Table 1). Most of the bushmeat animals were adults,
while most of the pets were still infants or juveniles at the time
of sampling. Most primates came from the southem part of the
country. All major SIV lineages known to date werc initially
discovered because their primate hosts had antibodies that
cross-reacted with HIV-1 or HI'V-2 antigens (23-29). Although
the cxtent of this cross-reactivity has not been defincd, we
used a similar approach to examine the primate blood samples
obtained in Cameroon. Since commercially available HIV
screening assays (€.g., enzyme-linked immunosorbent assay or
rapid tests) contain only a limited number of antigens, we used
an HIV confirmatory assay (INNO-LIA), comprising a recom-
binant and synthetic peptide-based line immunoassay (Figure
1). One hundred thirty-one (16.6%) of 788 plasma samples
reacted strongly with one or more HIV antigens, while an
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Figure 1. Detection of HIV-1/HIV-2 cross-reactive antibodies in sera from 11 primate species by using a line immunoassay (INNO-LIA HiV Confir-
mation, Innogenetics, Ghent, Belgium). Varying patterns of reactivity to HIV peptides and proteins (HIV-1 gp120, gp41, p31, p24, and p17; HIV-2
gp130, and gp36) are shown. Samples from which Simian immunodeficiency virus (SIV) sequences were subsequently amplified by polymerase
chain reaction are color-coded as in Figure 2. Plasma samples from HiV-1/HIV-2-negative and -positive persons are shown as controls on the left.
The 3+, 1+ and +/- bands at the top of all test strips control for sample addition (presence of plasma immunoglobulin) and test performance (bind-

ing of secondary antibody).
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additional 34 samples (4.3%) reacled less strongly but visibly
with two or more HIV antigens (Figure 1; Table 2). Of 13 pri-
mate species that had HIV cross-reactive antibodies, the preva-
lencc of scroreactivity (positive plus indeterminant) ranged
from 5% to 40%. Prevalences were lower in pet animals than
in bushmeat primates, 11.6% versus 18.4%, respectively. Sera
from only three species failed to react completely (Cercopithe-
cus preussi, Mandrillus leucophaeus, Cercocebus torquatus),
but these three species accounted for only 5 of the 788 samples
tested.

The INNO-LIA profiles from members of the same as well
as different primate species varied extensively (Figure 1).
Some sera reacted only with HIV core and/or Pol proteins,
while others reacted with Gag and/or Pol and/or Env proteins
from either HIV-1 or HIV-2 or both. Other than classifying
sera as INNO-LIA reactive or nonrcactive, no banding pattern
or algorithm could be derived that would have been predictive
of infection of any given primate species.

Confirmation of SIV Infection by PCR
and Discovery of Novel SIV Lineages

A total of 342 samples, including INNO-LIA positive
(n=91), indeterminant (n=23), or negative (n=228) specimens
were subjected to PCR analysis (16,32), which yielded ampli-
fication products for 28 blood samples from seven primate
species: Cercopithecus mona, C. neglectus, C. nictitans, C.

cephus, Colobus guereza, Miopithecus ogouensis, and Man-
drillus sphinx (Table 3). All these amplification products were
of appropriate size. Moreover, subsequent sequence and phy-
logenctic analysis confirmed SIV infection (Iigurc 2). Most of
the newly derived sequences did not fall into any of the known
SIV groups. Viral sequences from C. mona (SIVmon), C.
neglectus (SIVdeb), C. nictitans (SIVgsn), C. cephus (SIV-
mus), and Miopithecus ogouensis (SIVtal) formced speeics-spe-
cific monophyletic clusters that were roughly equidistant from
each other as well as from all previously defined SIV lincagcs
in this region of the pol gene. Viruses from the remaining two
species (Colobus guereza and Mandrillus sphinx) grouped
with previously reported SIVcol and SIVmnd-2 strains,
respectively.

The single sequence of SIVmon was given lineage status
because of ils high degree of genctic diversily {rom the other
SIV strains. We maintained the lincage designation of SIVtal
previously assigned to a virus thought to be derived from a zoo
animal of the species M. talapoin (28) becausc that sequence
and the two newly derived talapoin viruses from M. ogouensis
cluster together in a phylogenetic tree derived from additional
pol nucleotide sequences (not shown). Thus, our new SIVtal
sequences confirm the existence of this lineage in the wild .

SIV sequences were confirmed in 26 of 91 INNO-LIA-
positive samples, as well as in 1 of 23 indelerminate and 1 of
223 negative samples (Table 3). Because many blood samples

Table 2. HIV-1/HIV-2 cross-reactive antibodies® detected in primate species hunted in Cameroon

Pet animals Primate bushmeat Total
Genus Species Common name pos/tested  ind/tested pos/tested  indAested pos/tested ind/tested
Cercocebus agilis Agile mangabey 119 1/19 5/33 7/33 6/52 8/52
torquatus Red-capped mangabey 0/1 0/1 0/1 0/1 0/2 0/2
Lophocebus albigena Grey-checked mangabey 0/6 0/6 215 3/15 221 321
Cercopithecus cephus Mustached gucnon 1/29 3/29 48/273 9/273 49/302 12/302
mona Mona monkey 1/7 0/7 1/2 0/2 29 0/9
neglectus De Brazza’s monkey 1/8 0/8 9/26 1/26 10/34 1/34
nictitans Greater spot-nosed monkcy 6/44 0/44 22/122 3/122 28/166 3/166
pogonias Crested mona 0/6 0/6 967 4/67 9/73 473
preussi Preuss’s monkey 01 - - - 0/1 -
Chlorocebus tantalus Tantalus monkey 3/18 0/18 - - 3/18 0/18
Miopithecus ogouensis Gabon talapoin 211 1/11 2/8 0/8 419 1/19
Erythrocebus patas Patas monkey 1/19 0/19 - - 1719 0/19
Colobus guereza Mantled guercza 0/2 0/2 724 1/24 7/26 1/26
Mandrillus leucophaeus Drill 0/2 0/2 - - 02 0/2
sphinx Mandrill 7/20 0/20 1/2 172 8/22 1/22
Papio anubis Olive baboon 222 0/22 - - 222 0/22
Total 25/215 5/215 106/573 29/573 131/788 34/788
(%) 11.6 23 18.4 5.1 16.6 43

*Plasma samples were tested for antibodies cross-reactive with HIV-1 and HIV-2 antigens by using a recombinant-based line immunoassay (INNO-LIA HIV Confirmation, Innogenet-
ics, Ghent, Belgium). Positive (pos) and indeterminant (ind) INNO-LIA scoring criteria as described in Methods,
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Figure 2. identification of diverse Simian immunodeficiency virus (SIV)
lineages in primate bushmeat. A 650-bp pol/ fragment was amplified
from monkeys representing seven primate species, sequenced, and
subjected to phylogenetic tree analysis by the neighbor-joining method.
The positions of 21 SIV sequences from the present study (in color) are
shown in relation to HIV/SIV reference sequences from the Los Alamos
HIV/SIV Sequence Database (in black). The consensus length of the
final alignment used for tree construction was 555 bp. The new spe-
cies-specific SIV lineages are generally identified by a lower-case
three-letter code corresponding to the initial letters of the common spe-
cies name (e.g., SIVgsn for greater spot-nosed monkeys [Cercopithe-
cus nictitans], SIVmus for mustached guenons {C. cephus] and
SIVmon for mona monkeys [C. mona)). Lineages are defined as clus-
ters of viral sequences from the same primate species that group
together with significant (>80%) bootstrap values. We maintained the
lineage designation of SIVtal previously assigned to a virus thought to
be derived from a zoo animal of the species Miopithecus talapoin (28)
since that sequence, and the two newly derived talapoin viruses from
M. ogouensis, cluster together in a phylogenetic tree derived from addi-
tional po/ nucleotide sequences (not shown). Branch lengths are drawn
to scale (the bar indicates 10% divergence). The numbers at the nodes
indicate the percent bootstrap values supporting the cluster to the right
(only values >80% are shown).

were obtained under poorly controlled circumstances, espe-
cially from the bushmeat markets, we tested the possibility of
DNA degradation. Whole blood and PBMC DNA preparations
were subjected to single-round PCR with primers designed to
amplify introns 4 and 5 of the nuclear G6PD gene (1,100 bp).
Of the 65 L1A-positive samples that did not yield a virus-spe-
cific PCR product, 11 also failed to yield a G6PD amplifica-
tion product. Similarly, 4 of 17 INNO-LIA-indeterminate and
SIV PCR-negative samples, as well as 25 of 102 INNO-LIA-
negative samples, were also negative by G6PD amplification.
These results indicate that, in addition to using only a single
set of nested pol primer pairs, low PCR amplification rates
from LIA-positive and -indeterminant samples were also due
to DNA degradation, the presence of PCR inhibitors, or both.

Discussion

Zoonotic transfers of SIV to humans have been docu-
mented on no fewer than eight occasions (5,9), but no previous
study has cxamined to what extent African primates that are
frequently hunted or kept as pets are infected with SIV.
Although our serologic screening approach has limitations
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(1.e., an unknown extent of antigenic cross-reactivity between
HIV proteins and SIV antibodies), we were able to detect
cross-reactive antibodies suggesting SIV infection in 16.6% of
all tested animals, including members of four species not pre-
viously known to harbor SIV (C. agilis, Lophocebus albigena,
C. pogonias, and Papio anubis). PCR confirmation and molec-
ular identification of SIV infection were obtained in seven spe-
cies, and phylogenetic analyses showed the presence of highly
divergent viruses that grouped according to their species of
origin. Four of these SIV lineages from mona (C. mona), De
Brazza’s (C. neglectus), mustached (C. cephus), and greater
spot-nosed (C. nictitans) monkeys have not previously been
recognized. Finally, we confirmed the SIVtal infection of wild
talapoin monkeys (Miopithecus ogouensis). These data estab-
lish for the first time that a considerable proportion of wild-liv-
ing primates in Cameroon are infected with SIV, posing a
potential source of infection to those who come in contact with
them. Our findings bring to 30 the number of African nonhu-
man primate species known or strongly suspected to harbor
primate lentiviruses (5).

Our data likely still underestimate the prevalence and
diversity of naturally occurring SIV infections in Cameroon.
First, not all native primate species were tested, and many
were undersampled because they were either rare in the
regions of Cameroon where we sampled for this study or too
small to be regularly hunted. For example, the absence of reac-
tive sera from drills and red-capped mangabeys, two species

Table 3. Polymerase chain reaction (PCR) amplification of Simian
immunodeficiency virus (SIV) sequences

INNO-LIA INNO-LIA
pos® PCR imd PCR INNO-LIA neg
Genus Species pos/tested  pos/tested  PCR pos/lested
Cercocebus agilis 0/6 0/8 0/13
torquatus - - 0/1
Lophocebus alhigena 0/2 0/2 0/7
Cercopithecus cephus 2/25 0/7 0/56
mona 172 - 0/2
neglectus 8/9 - /4
nictitans 3/21 111 0/61
pogonias 0/9 0/3 0/34
Chlorocebus tantalus 0/1 - 0/2
Miopithecus ogouensis 23 0/10
Erythrocebus patas - - 0/7
Colobus guereza 6/6 0/1 1/16
Mandrillus sphinx 4/5 0/1 0/4
Papio anubis 0/2 - 0/11
Total 26/91 1/23 1/228

IDNA was extracted from a subsel of seropositive (pos), induterminant (ind) and nega-
tive (neg) blood samples and subjected to nested PCR amplification by using HIV/STV
consensus pol primer pairs. In each column, the number of PCR-positive samples per
total number of samples tested is indicated. The authenticity of ail amplification prod-
ucts was confirmed by sequence analysis.
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known to harbor SIV (15,23), must be due to the low number
of blood samples (5/788) analyzed. In addition, the INNO-LIA
test sensitivity is clearly not 100%, as one negative sample
contained SIV sequences as determined by PCR amplification.
Finally, our PCR approach, which utilizcd only a single set of
nested primers, likely amplified only a subset of viral
sequences. Thus, the truc prevalence of SIV infection in the
various primate species will require the development of SIV
lineage-specific assays with known sensitivities and
specificities.

Human infection with SIVcepz and SIVsm is thought to
have resulted from cutaneous or mucous membrane exposure
to infected blood during the hunting and butchering of chim-
panzees and sooty mangabeys for food (5). Bites from pet ani-
mals and possibly contact with fecal and urine samples may
have also been involved (5). Our study shows that many pri-
mate species in addition to chimpanzees and sooty mangabeys
are hunted and that 20% (or more) of these animals likely har-
bor SIV. Thus, if contact with infected blood or other secre-
tions is indeed the primary route of transmission, hunters and
food handlers may be at risk of infection with many more S[Vs
than just those from chimpanzees and sooty mangabeys.

Bushmeat hunting, to provide animal proteins for the fam-
ily and as a source of income, has been a longstanding com-
mon component of household economics in the Congo Basin
and, more generally, throughout subSaharan Africa (33-35).
However, the bushmeat trade has increased in the last decades.
Commercial logging, which represents an important economic
activity in Cameroon as well as many other west-central Afri-
can countries, has led to road constructions into remote forest
areas, human migration, and social and economic networks
supporting this industry (36). Hunters are now penetrating pre-
viously inaccessible forest areas, making use of newly devel-
oped infrastructure to capturc and transport bushmeat from
remote areas to major city markets (37). Moreover, villages
around logging concessions have grown from a few hundred to
several thousand inhabitants in just a few years (37). These
socioeconomic changes, combined with our estimates of SIV
prevalence and genetic complexity in wild primates, suggest
that the magnitude of human exposure to SIV has increased, as
have the social and environmental conditions that would be
expected to support the emergence of new zoonotic infections.

Whether any of the newly identified SIVs have the ability
to infect humans remains unknown since molecular evidence
is lacking for SIV cross-species transmissions from primates
other than chimpanzees and sooty mangabeys. However, such
infections may have been unrecognized by HIV-1/HIV-2
screening assays. A case in point is the recent identification of
a Cameroonian man who had an indeterminant HIV serology
but reacted strongly (and exclusively) with an SIVmnd V3
loop peptide (32). Although viral sequences were not con-
firmed in this man, the finding suggests that at least some nat-
urally occurring SIVs have thc potential to cross the species
into the human population. In fact, several recently reported

SIV isolates, including SIVlhoest, SIVsun, SIVrcm, and
SIVmnd2, replicate well in primary human lymphocytes in
vitro (23,26,27,32,38) as do SIVcpz (25) and SIVsm (24).
Thus, to determine whether additional zoonotic transmissions
of SIVs have already occurred, virus type- and/or lineagc-spe-
cific immunoassays and PCRs will have to be developed. Such
work should reccive high priority given the cxtent of human
exposure to different SIV lineages as a result of the expanding
bushmeat trade and the impact of two major human zoonoses
(HIV-1 and HIV-2). Recombination between newly introduced
SIVs and circulating HIVs poses still another human risk for
novel zoonoses.

In summary, the current I1IV-1 pandemic provides compel-
ling evidence for the rapidity, stealth, and clinical impact that
can be associated with even a single primate lentiviral
zoonotic transmission event. We document for the first time
that humans arc exposcd to a plethora of primate lentiviruscs
through hunting and handling of bushmeat in Cameroon, a
country at the center of HIV-1 groups M, N, and O endemicity
that is home to a diverse set of SIV-infected nonhuman pri-
mates. To what extent wild monkey populations in other parts
of Africa are also infccted with diverse SIVs is unknown. A
complete and accurate assessment of all SIV-infected nonhu-
man primate species is needed, as well as a determination of
the virus lineage(s) present in each species. Studies are also
needed to determine whethcr zoonotic transmissions of SIVs
from primates other than chimpanzees and mangabeys have
already occurred and what clinical outcomes were associated
with these infections. Results from these studies will yield crit-
ical insights into the circumstances and factors that govern
SIV cross-species transmission and thus allow determination
of human zoonotic risk for acquiring these viruses.
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