
ELSEVIER Catena 46 (2001) 159-176

CATENA

www.elsevier.comy'locate/ catena

A fast, simple and versatile algorithm to fill the
depressions of digital elevation models

OliVier!PlanChOn"" , Frederic Darboux ",',1
8 Institut de Recherche pour le Deueloppement - IRD, BP 1386, Dakar, Senegal

b Geosciences-i Rennes, Campus de Beaulieu, 35042 Rennes Cedex, France
C National Soil Erosion Research Laboratory, 1196 SOIL Building, Purdue University, West Lafayette,

IN 47907-1196, USA

Abstract

The usual numerical methods for removing the depressions of a Digital Elevation Model
(DEM) gradually fill the depressions and merge the embedded ones. These methods are complex
to implement and need large computation time, particularly when the DEM contains a high
proportion of random noise. A new method is presented here. It is innovative because, instead of
gradually filling the depressions, it first inundates the surface with a thick layer of water and then
removes the excess water. The algorithm is simple to understand and to implement, requiring only
a few tens of code lines. It is much faster than usual algorithms. Moreover, this method is
versatile: depressions can be replaced with a surface either strictly horizontal, or slightly sloping.
The first option is used for the calculation of depression storage capacity and the second one for
drainage network extraction. The method is fully detailed and a pseudo-code is provided. Its
practical computation time, evaluated on generated fractal surfaces, is asymptotically proportional
to N L2 where N is the number of grid points. The theoretical computation time is asymptotically
proportional to N 1.5 in all cases, with the exception of some exotic ones with no practical interest.
By contrast, existing methods have a computation time asymptotically proportional to N 2.

Applications are done for both generated and measured surfaces with 256 cells to 6.2 million cells.
© 2001 Elsevier Science RV. All rights reserved.

Keywords: Digital elevation model; Sod roughness; Topography; Depression-filling; Storage capacity; Drainage
network

1. Introduction

Soil surface roughness is now recognized as a key factor in erosion processes
(Favis-Mortlock, 1998; Helming et aI., 1998). It is involved in the study of most

, Corresponding author. Fax: +221-820-43-07.
E-mail addresses:Ohvier.Planchon(allrd.sn (0. Planchon), darbouxwecn.purdue.edu (F. Darboux).

1 Fax: +1-765-494-5948.

0341-8162/01/$ - see front matter © 2001 Elsevier Science BV. All rights reserved.
PH: S0341-8162(01)00 164-3

160 o. Planchon, F. Darboux/ Calena 46 (200]) 159-176

processes occurring during rain events, such as infiltration, runoff and crust formation.
Among aIl of the studied characteristics of soil surface morphology, depression storage
capacity (DSC) is the subject of specifie research (Huang and Bradford, 1990) and is
one of the most used surface properties to characterise microrelief.

Some attempts at direct measurement of DSC were perforrned by making the surface
impervious using bitumen (Langford and Turner, 1972), polyester resin (Gayle and
Skaggs, 1978) or a plastic film (Mwendera and Feyen, 1992). With the development of
automatic measurement methods of soil roughness, such as laser scanners (Huang et al.,
1988; Bertuzzi et al., 1990) and stereometrie processing (Bruneau and Gascuel-Odoux,
1990; Helming et al., 1992), nowadays, most DSCs are calculated from Digital
Elevation Models ("DEM", i.e. a regular grid of altitudes stored in a digital format).

To measure the DSC of a surface, depressions can be delineated manually on the
DEMs (Sneddon and Chapman, 1989; Bruneau and Gascuel-Odoux, 1990), but such a
method can only be used if depressions are few. In fact, most storage capacity
estimations are computed automatically by using algorithms dedicated to depression
delineation.

The algorithms usually referred for soil roughness data analysis are ail based on a
two-stage principle: (1) to identify local minima and (2) to fill them from the bottom to
the top by exploring the neighbourhood of each minima to find their outlets (Moore and
Larson, 1979; Ullah and Dickinson, 1979; Onstad, 1984). PracticaIly, these two stages
are composed of seven to eight steps. These algorithms are iterative and able to deal
with embedded depressions. They essentially differ by the number of neighbours in use
(four or eight) and the method of neighbourhood exploration. For practical purposes,
they are either directly implemented by authors (Hansen et al., 1999) or slightly
modified (Huang and Bradford, 1990).

Depression-fiiling methods are also routinely used in geomorphology to correct
DEMs covering surfaces typically greater than 100 km2

• At this scale, depressions are
usually considered as erroneous data and have to be removed before further processing.
Numerous methods were proposed (Marks et al., 1984; Jenson and Domingue, 1988;
Martz and de Jong, 1988). These authors did not demonstrate that their algorithms
converged to the solution for aIl cases and they did not evaluate the time-complexity of
the algorithm (see Section 2 for a definition). This was most probably because DEMs
were relatively small in the 1980s. Nowadays, DEMs typicaily coyer several square
meters with a millimeter resolution grid (Helming et al., 1998, Darboux et al., 2001),
leading to millions of cells. With such DEMs, the time-complexity of depression-fiiling
algorithms is becoming a more important issue.

Among ail of the numerical methods, the algorithm described by Jenson and
Domingue (1988) seems to be the one with the widest use (Zhang and Montgomery,
1994; Gyasi-Agyei et al., 1995; Tarboton, 1997). It is also the method implemented in
the weil-known geographic information system ARCjlNFO (ESRI, 1999). The algo­
rithm of Jenson and Domingue (1988) gradually fills depressions and so does not really
differ from the ones previously cited. These authors give a detailed description of their
method. This was not done by Moore and Larson (1979) and Ullah and Dickinson
(1979), especially for the sensitive stage where embedded depressions are merged
together.

O. Planchon, F. Darbouxj Catena 46 (2001) 159-176 161

Jenson and Domingue (I988) asserted that their method is fast. Indeed, their
algorithm is perfect for a DEM representing a large topography with large cells, which
was the typical DEM their method was dedicated to. However, it is slow for DEMs with
a large random component, as encountered in studies of soil surface roughness. The
proportion of pit-cells is indeed much higher at this scale. Furthennore, pit-cells are
almost randomly scattered in DEMs representing soil surface, so that the number of
depressions is in O(N) (see definition in Section 2) for a given cell size.

To overcome this drawback, Jenson and Domingue (1988) recommended separately
treating the single-cel1 depressions. This speeds-up the algorithm by decreasing the
number of depressions remaining to fill, but this does not really change the time-com­
plexity of the algorithm because the number of two-cell depressions is still in O(N).
Like other filling methods, the one of Jenson and Domingue (1988) includes a key-stage
treating each depression sequentially. This stage consists of merging the embedded
depressions. To merge two depressions, the N cells of the DEM need to be scanned in
order to re-label the merged drained areas. This stage is the most costly part of the
whole procedure, and so, detennines the overall time-complexity of the algorithm.
Because the number of depressions is in O(N) and the number of cells to scan for each
depression is aIso in O(N), the overaIl time-complexity of their aIgorithm is in O(N 2

).

Such quadratic aIgorithms are said to be slow and unusable for large data sets
(Sedgewick, 1990). Moreover, the aIgorithm of Jenson and Domingue (1988) is complex
to implement: seven basic stages are required, sorne including complex subroutines.

Furthennore, no published algorithm used to fill depressions is both simple and fast,
and is also able to generate surfaces that are either tlat (for calculating DSC) or with a
detennined minimal slope (for removing unwanted depressions in order to build a
drainage network). The present article describes such a method. The proposed algorithm
involves oruy two stages. The first stage inundates all the DEM with a thick layer of
water. The second stage drains the excess water. Moran and Vézina (1993) suggested
such a method in general tenns, but it was neither detailed nor translated into an
algorithm.

After the definition of the surface properties, an in-depth analysis is made for two
multipurpose algorithms, which are the comerstones of the methods studied in this
article: scanning a grid and exploring a tree. Then, the new method is presented and two
implementations are proposed for draining the excess water. The first one is very simple
to implement and has a time-complexity in O(N 1

.
5
), better than aIl the published

methods that are in O(N 2
). The second one, fully optirnised, appears to be close to

O(N) for natural surfaces.

2. Definitions and notations

z
The following detïnitions and notations are used in the paper.

Spatial distribution of altitude for the initial surface,
i.e. the DEM to process.

162 o. Planchon, 1". Darboux/ Catena 46 (2001) 159-176

Wf Spatial distribution of altitude for the final surface.
This is the surface to find.

W Spatial distribution of altitude for a transient surface
converging to Wf.

N, nR, nC Numbers of grid cells, rows and columns of the DEM, respectively.
c, Il C ('center') is a cell; n ('neighbour') is one of its neighbours.
time-complexity The time-complexity of an algorithm is a function of N.

It represents how the computation cost increases with N.
The time-complexity is an intrinsic property of the algorithm
and does not depend on the details of implementation
(language, compiler, machine, etc.). This requires basing
the analysis on very large values of N.

OC/eN)) Let's consider a function g(N) to qualify (for example the
time-complexity), and another function j{N) qualifying g.
The function g(N) is said to be in O(j{N)) if there exist
two constants Co and No such that g(N) < CO /(N) for all
N> No (Sedgewick, 1990). This mathematical artefact states that,
from a certain size, g does not increase faster than f.

3. Basic algorithmic tool5

3.1. Dependence graph

Considering a transient surface W, two kinds of cells can be defined: the cells for
which the final altitude is already identified (known cells) and the cells for which the
final altitude remains to find (unknown cells). The solution to the problem, if it exists,
propagates progressively from known cells to unknown cells. Neighbouring cells are
linked through dependence links like "have to he calculated before". All these links are
part of a graph. We will refer to this graph using the following definitions.

• Spring cell: a cell that does not depend on any other cell. Its hnai solution is
known from the beginning.

· Sink cell: a cell with no other cell depending on it.
• Dependence graph of a cell: the graph linking a cell to its neighbours previously

calculated and needed for its own calculation, and so on, from cell to cell up to spring
cells. As a standard, the links are oriented from the first calculated cells to the last
calculated ones.

· Upward and downward: these qualifiers refer to an hypothetical tlow in the graph
that will go in the link direction, i.e. from the spring cells, known since the beginning of
the procedure, to the sink cells, the last ones to be calculated.

• Seed ceIl: a cell that is used to generate a dependence graph.
• Distance between an upward cell and a downward cell: distance of the longest

path linking the two cells when the graph is travelled following the links.

O. Planchon, F. Darboux / Calena 46 (2001) 159-176 163

. Depth of a dependence graph: for a given dependence graph, the largest distance
from a spring cell to a seed cell.

• Depth of a cell: depth of the dependence graph when this cell is used as a seed.

A dependence graph characterises the initial data and the order in which these data
are evaluated. It characterises the solving method too because an alteration in the
method can lead to a different way of propagating the solution through the mesh, and so,
to a different dependence graph.

In the following sections, the formalism of graph theory is avoided when possible.
Doing so, the demonstration will appear clearer even if less rigorous.

3.2. Iterative scan tool

In order to calculate the cells of the dependence graph in the right order, the simplest
tool to implement is an iterative scan of the whole DEM. Jenson and Dorningue (1988)
made an intensive use of this technique but did not analyse it in detail. We provide in
this section the time-complexity analysis of the iterative scan. This leads us to propose
an optirnised scanning tool.

3.2.1. Time-complexity analysis
At least one cell must be calculated at each iteration; otherwise the method would not

converge to a solution. If this calculable cell is unique, it is the deepest (otherwise
another cell could be calculated before). By consequence, each pass decreases the depth
of the deepest uncalculated cell. This demonstrates: (a) that the iterative method
converges in ail cases if a solution exists and, (b) that the maximal number of iterations
that could be needed to reach the solution is the depth of the deepest cell in the
dependence graph. In sorne exotic cases Oike a conically shaped surface with a narrow
channel following a downward helix) this depth is in O(N). The time-complexity of this
worst-case is therefore in O(N2

). However, this worst-case never appears in practice
and can be negated. For usual cases, the depth of the dependence graphs is only
proportional to the perimeter of the DEM because the longest path in the graph behaves
approximately the same way as the longest slope line. This leads to a time-complexity in
O(N LS).

The usual way to scan a mesh is an embedded double loop starting at the upper left,
moving right, and then switching to the beginning of the next row. Assuming that a
linear segment of the graph follows a colurnn from the bottom to the top of the grid,
each iteration will solve a single cell within this segment. Such a case needs a number of
iterations equal to the number of cells in that segment. Conversely, a segment following
the same column, but oriented from the top to the bottom, would be solved in a single
pass.

Eight other scan directions can be identified. They start from one of the four corners
and scan the DEM following rows or columns. Alternating these eight possibilities could
drastically fasten the iterative methods: any linear segment in the dependence graph will
be solved after a maximum of eight iterations whatever its length. The number of
iterations will then depend more on the intrinsic complexity of the problem than on the
surface size. This is of great interest for large DEMs.

164 o. Planchon, F. Darboux/Catenll 46 (200J) 159-/76

3.2.2. Implementation
A scanning direction is defined with three pairs of values: the initial point (RD, CO),

the shift (dR, dC) between neighbour points and the shift (tR, fC) when the DEM border
is reached. To irnplernent the alternate scan direction method, a function narned
NexLCell(R,C, i) is called. This function alters the coordinates (R,C) considering the ith
scanning direction (Table 1). Section 1 Oines 1 to 7) defines the six constant arrays
containing the three characteristic couples of each scan direction. Section 2 is the active
part of the code. Lines 9 and 10 perform the shift to the neighbour point. If the new
coordinates are out of the DEM Oine Il), the code of lines 12 and 13 shifts the point to
the heginning of a new row or a new column. If these new coordinates are out of the
DEM Oine 14), this scan in the ith direction is achieved and False is returned.

The following conclusions can he drawn about the iterative technique:

• The iterative technique always converges if a solution exists.
• Assuming that each iteration is in O(N) in time, its tirne-complexity is in O(N 2

)

for the worst-case and in O(N1.5) for the usual ones.
· Alternating the scan direction after each iteration does not affect the worst-case

properties but rnake it rarer. With this refinernent, the iterative technique is
certainly close to O(N) for usual cases.

Table 1
Function Next_CellO
For the given ceIl (R,C) and the scan direction i, the function NexLCellO calculates the coordinates of the
next cel! to consider.

Section l-Definition of constants

1 Declare RO, CO, dR, dC, fR, fC As constant arrays of eight integers
2 RO=(0, nR-l, 0, nR-l, 0, nR-l,
3 CO = (0, nC -1, nC -1, 0, nC -1, 0,
4 dR = (0, 0, 1, - 1, 0, 0,
5 dC = (1, -1, 0, 0, -1, 1,
6 fR=(1, -1, -nR+l, nR-l, 1, -1,
7 fC=(-nC+l, nC-l, -1, 1, nC-l, -nC+l,

Section 2-Function implementation

8 Function NexLCell (R,C,;)
9 R=R+dR(i]

10 C = C+dC[i]
Il If R < 0 or C < 0 or R ~ nR or C ~ nC Then
12 R=R+iR[i]
13 C=C+fC[i]
14 If R < 0 or C < 0 or R ~ nR or C ~ nC Then
15 Return False
16 End If
17 End If
18 Relum True
19 End Function

0,
0,
1,
0,
- nR+ 1,
1,

nR-I)
nC-I)

-1)
0)
nR-1)
-1)

O. Planchon, F. Darboux/Catena 46 (2001) 159-176

3.3. Tree exploration tool

165

3.3.1. Time-complexity analysis
The tree exploration tool uses the dependence graph, beginning from one or several

seed ceUs and foUowing the dependence links from ceU to ceU. If the mies forbid
exploring the same ceU twice, the dependence graph becomes a tree that can be
inspected using usual recursive techniques for tree exploration (Sedgewick, 1990):
exploring a cell of the tree means visiting this ceU and then, exploring the graphs of its
neighbouring cells that have not already been visited. The procedure defined to perforrn
this exploration is caUed Explore. Table 2 shows, in pseudo-code, the template of this
procedure. !ts time-complexity is in D(N) because a ceU is explored oruy once and its
exploration induces a maximum of eight comparisons. A sequence of caUs to Explore
for the N ceUs is still in D(N): in the worst-case, the nurnber of external caUs is equal
to N. Because each internai caU is done after the calculation of a cell and only if this
ceU was not calculated previously, the total number of internai calls is also equal to N in
the worst-case. So, whatever the number of successive external caUs, a total of only N
internai caUs will be perfonned in the worst-case.

3.3.2. Implementation
In sorne cases, the recursion depth of Explore is in D(N). This could lead to a stack

overflow. A simple way to prevent this is to limit the recursion depth. Using an exter­
nal stack would be a more sophisticated solution (see Sedgewick, 1990 for implemen­
tation). However, such a refinernent is useless in our case because the tree exploration

Table 2-
Algorithmic scheme of the recursive tree exploration method

Section I-Definition of constants and extemal variables

1
2

Declare depth As Integer = 0
Declare MAX_DEPTH As Constant = 2000

Section 2-Procedure implementation

3
4

5
6
7
8
9

10
11
12
13
14
15

Procedure Explore(c) / / c is the cell to explore
deplh = deplh + 1
If depth > MAX_DEPTH Then

Go to line 14
End If
For each neighbour n of c (in any arder)

If n exists and n was not previously visited
Visil n
Cali Explore(n)

End If
End For
depth = depth - 1

End Procedure

166 O. Planchon, F. Darboux / Calena 46 (2001) 159-176

procedure is not intrinsically necessary, but is only useful to accelerate the procedure.
"MAX_DEPTH" is a constant initialised to an acceptable value depending on the size
of the program's stack (Table 2, hne 1), A value of several thousands is most often
suitable. The recursion depth is stored in the external variable "depth" Oine 2). It is
incremented at the heginning of the procedure Oine 4) and decremented at its end Oine
14). Line 5 checks this value and triggers the end of the tree exploration if the maximal
depth is reached (line 6).

Lines 8 to 13 ensure the exploration of the neighbour cells. If the neighbour n exists
and was not previously visited Oine 9), it is visited Oine 10). Then, Explore is internally
called for n Oine 11). The details of line 10 depend of the specifie purpose of the tree
exploration Oabel assignment, modification of altitudes, etc.).

4. The new filling method

4.1. Considerations about surface properties

In order to evaluate the DSC, the surface of the depressions has to he Hat. In order to
ensure a correct extraction of the drainage network, a depression surface with a slight
slope is more practical. The proposed method is able to generate both kinds of surfaces.

A minimal positive difference of altitude 8 is defined for each of the eight directions
joining a cell to its neighbours. In practice, no more tIlan two values are needed, one for
direct directions and the other for diagonal directions. If the values of 8 are not equal to
zero, the proposed method will correct a DEM by removing depressions and avoiding
Bat surface development. That way, each cell will have a defined drainage direction and
will be connected to the boundary follow1ng a strictly decreas1ng path. If aIl 8-values are
set to zero, depression surfaces will he Bat in the final state. Such a value of 8 1S used to
calculate the DSC by subtracting Z to Wf.

Considering an initial surface Z, the final surface Wf is fully defined by the following
three properties:

(A) Wf ~ Z everywhere.
(B) For each cell c of Wf, there is a path that leads to the boundary and that has a

descent of 8 or more from one cell to the next (8 heing taken in accordance with the
local direction of the path). Such a path will he referred to as an 8-descending path.

(C) Wf is the lowest surface allowed by properties (A) and (B).
Stated that way, the depression-filling problem remains very general.

4.2. Description of the new filling method

The new method involves two basic stages. First, the surface W 1S initialised with
Infinite altitudes except for the boundaries (Table 3). Durirlg the second stage, altitudes
of the surface W are decreased iteratively, keeping properties (A) and (B) valid (Table
4). Step by step, the surface W will converge to the final surface Wf, meaning that

o. Planchon, Ji. Darboux/ Ca/l'na 46 (2001) 159-176

Table 3
Stage 1: Initialisation of the surface ta infinite altitudes

1 For each œil c of the DEM (in any arder)
2 Ir c is on the border Then
3 W(c)= Z(c)
4 @~

5 W(c) = a_hugcnumber
6 End If
7 End For

167

property (C) will become valid too. Applying two operations to all the neighbours of all
the cells ensures this convergence. Operation (1) treats cases where W(c) can he set
equal to Z(c) while keeping an 8-descending path to at least one neighbour. If
Operation (1) is applied, W(c) reaches its minimal value, so W(c) = Wf(c). In conse­
quence, the altitude of the cell c will not be modified anymore:

Z(c) ~ W(n) + 8(c, n) ==> W(c) = Z(c) (Operation 1)

Operation (2) deals with the opposite case. When Z(c) is lower than W(n), W(c) can
be decreased up to W(n) + 8(c,n):

W(c) > W(n) + 8 (c, n) > Z(c) ==> W(c) = W(Il) + 8 (C, Il) (Operation 2)

Line 8 controls if a new iteration between lines 1 and 7 is needed. This leads W to
converge to Wf, the final result. The dernonstration of this convergence is based on the
following reasoning.

The preservation of property (A) does not need to he dernonstrated because its
preservation is a direct consequence of Operations (1) and (2). So, the surface W can
never becorne lower than the surface Z.

The preservation of property (B) can be demonstrated by reCUlTence. Let us suppose
that the surface W has properties (A) and (B). We show that the algorithrn preserves
these properties when a cell c is compared with one of its neighbours Il (Table 4, lines 3

Table 4
Stage 2: Removal of exœss water

1
2
3
4
5
6
7

8
9

10

For each œil c of the DEM (in any arder)
For each neighbour Tl of c (in any arder)

Detennine B for the pair (c,n)
If possible, apply operation (1)
Else, try ta apply operation (2)

End For
End For
If W was modified during this scan, Then

Go ta line 1
End If

168 o. Planchon, F. Darboux / Catena 46 (2001) 159-176

to 5). In other words, if properties (A) and (H) exist before Operations (I) and (2), they
will persist. This demonstration includes the three following steps:

Step 1 demonstrates that if c is modified after comparison with n, the property (H) at
n is not affected: Operations (I) and (2) are executed only if W(c) > W(n) + E(c,n). In
such a case, there is no E-descending path from n to c. In consequence, the E-descend­
ing path from n to the boundary cannot include the cell c and a modification of the cell
c does not affect the property (H) at n. So, property (H) is preserved at cell n.

Step 2 demonstrates that property (H) at c is preserved by its own modification: After
a modification of c, whether W(e) ~ W(n) + E(c,n) (Operation (1» or W(e) = W(n) +
E(c,n) (Operation (2». In both cases, the path from c to n is E-descending and property
(H) is preserved at n (this was demonstrated in Step I). Conclusion: Operations (I) and
(2) preserve property (B) for c.

Step 3 demonstrates that a modification of c resulting from the comparison with n
does not affect the property (H) at any other neighbour i: if the path from i to c was
E-descending, it remains identical because the altitude of c is reduced by both
Operations (I) and (2). Because the modification of c preserves its own E-descending
path, the neighbour i will also keep the property (H). If the path from i to c was not
E-descending, the modification of c does not affect the E-descending of i (thanks to the
recurrence hypothesis, the E-descending path of i existed).

In conclusion, the modification of the cell cafter comparison with one of its
neighbour n does not affect the property (H) at cell c and at its neighbours. Hecause the
whole method is simply a succession of such modifications for all the cells and theirs
neighbours, it preserves the property (H).

We now have to demonstrate that the method converges to property (C): W is
minimum at the end of the procedure because the procedure stops when, for each cell c
with W(e) > Zee), the difference of altitudes between c and its neighbours is lower or
equal to E (c,n). If W(e) was further decreased, the difference of altitudes would
become smaller than the minimal difference allowed with all its neighbours and there
would not be an allowed path to the boundary. The cell c will appear as a depression
and property (H) would not be valid anymore. To recover property (H), W would need
to be decreased on the entire path leading to c, including the cell on the boundary. This
is not possible because, on the boundary, W is equal to Z from the beginning and cannot
be changed. We have therefore demonstrated that the method converges to property (C).

In conclusion, the method described at the beginning of this section converges in aIl
cases to the final smface defined by the properties (A) to (C). The time-complexity is in
V(N U

) in aIl usual cases.

4.3. Two implementations of stage 2

The first stage oruy needs to scan the DEM once to set the surface W to its initial
state. The second stage can be implemented several ways. Two of them are given in
pseudo-code.

4.3.1. Direct implementation of the new filling method
Table 5 gives the pseudo-code of the direct implementation of the new filling

method. As demonstrated in a previous section, its time-complexity is in VeNU). In

o. Planchon, F. Darbouxl Calma 46 (2001) 159-176

Table 5
Direct implementation of stage 2

something_done = False
2 For each cell c of the DEM (in any order) except its boundary
3 If W(e) > Z(e) Then
4 For each existing neighbour n of c (in any order)
5 If Z(e) ~ W(n)+ e((',n) Then Iloperation (1)
6 W(c) = Zee)
7 something_done = True
8 Go Lo line 16
9 End If

10 If W(c) > W(n)+ e(e,n) Then Iloperation (2)
Il W(e) = W(Il) + e(e,lI)
12 something_done = True
13 End If
14 End For
15 End If
16 End For
17 If sorœLhing_done = True Then
18 Go to hne 1
19 End If

169

consequence, this algorithm is very efficient for large DEMs as compared to other
methods that gradually fiH small depressions and are in O(N 2

). This algorithm is also
remarkable because of its conciseness, aH the pseudo-code being written in 19 lines.

Table 6
Implementation of Operation (I) with tree exploration

Section 1-Definition of constants and external variables

1
2

Declare MAX_DEPTH As Constant = 2000
Declare depth as integer = 0

Section 2-Procedure implementation

3
4
5
6
7
8
9

10
Il
12
13
14
15
16
17

Procedure Dry_upward_ceIl(c) Ile is a dried cell to explore
depLh = depLh + 1
If depth > MAX_DEPTH Then

Go to hne 16
End If
For each neighbour n of c (in any order)
If n exists And W(n) = u-huge_nurnber (see Table 3, hne 5) Then
If Zen) ~ W(c)+ e(c,n) Then Illf operation (I) is applicable
W(n) = Zen) Iloperation (I) (was "Visit n")
CalI Dry_upward_cell(n) lirecursive calI (was "Explore(n)")

EndU
End If

End For
depLh = depLh -1
End Procedure

170 o. Planchon, 1". Darboux/ Calena 46 (2001) 159-176

4.3.2. Implementation with improved iterations and tree exploration
During Operation (1), if a cell is dried, then aIl the paths strictly upward from the

initially dried cell could also be dried. In the direct implementation, this is done dming
the subsequent iterations. To avoid that, Operation (l) can be implemented with a tree
exploration each time it is applied. This enables the size of the longest dependence path
to be reduced. The pseudo-code of this tree exploration is figured out in Table 6. This is
an application of the general algorithm displayed in Table 2.

Table 7 gives the pseudo-code for stage 2 with the following modifications compared
with its direct implementation:

• Strictly upward paths from the border are first dried using tree exploration (lines 1
to 3)

• When a cell is dried, all the strictly upward paths are explored without waiting for
the next scans Oine 13). This reduces the depth of the dependence graph.

Table 7
Improved implementation of stage 2

Section l-Explore all ascending paths from the border

2
3

For each œll c on the border (in any order)
Call Dry_upward_cell(c)

End For

Section 2-Iteratively scan the DEM

4

5
6
7

8
9

10

Il
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28

For scans = 1 to 8
R = RO(scan); C = CO(scm1)
something_done = False
Do

If W(e) > Z(c) Then
For each existing neighbour n of c (in mIY order)

If Z(e) ~ W(n)+ B(c,n) Then / /operation (l)
W(e) = Z(c)
something_done = True
Call Dry_upward_œll(c)
Go to line 22

End If
If W(c) > W(n)+ B(c,n) Then / /operation (2)
W(c) = W(n)+ B(c,n)
something_done = True

End If
End For

End If
Loop While NexLCell(R, C, scan) = True
If something_done = False

Go to hne 28
End If

End For
Go to line 4

o. Planchon, F. Darboux / Catena 46 (200l) l59-l76 171

• The iterative method is improved in order to altemate scan directions and so to
reduce the depth of the dependence graph (tines 4, 5, 22, 26 and 27). Line 22
refers to the function NexLCell described in Table 1.

Even with these improvements, the time-complexity of this method remains in
O(N1. 5

) because this intrinsic property, defined for the worst-case, is not affected by
implementation details. Nevertheless, for the usual cases, this implementation is ex­
pected to be significantly faster than the direct method because it reduces the length of
dependence paths. It also remains remarkably easy to translate in any language with
recursive capability.

5. Applications

5.1. Generated surfaces

The proposed algorithms were tested on generated surfaces with similar statistical
properties. This enabled evaluating the efficiency of these algorithms depending on
surface size and spatial conelation. For each surface type, a population of 100 samples
were generated. Sizes ranged between 16 X 16 cells to 2048 X 2048 cells. Tests were
performed on a desktop PC (Intel Pentium III, 500 MHz). The algorithms were directly
implemented in C without further enhancement. In order to measure the efficiency of the
proposed algorithms, the three following variables were computed and averaged on each
population:

• The total number of scanned cells. It is equal to the number of iterations multiplied
by the number of cells in the considered grid.

• The total number of comparisons between a point and its neighbours. The
algorithms that minimise the number of comparisons required to find the final
surface are more efficient.

• The execution time. Contrary to the previous variables, this one depends on
compiler and computer specifications. The evolution of execution time with grid
cell size gives valuable complementary information about algorithm efficiency.

5.1.1. Gaussian white noise
Gaussian white noise surfaces are very rough and contain numerous small depres­

sions. They were generated using the algorithm "gasdev" of Press et al. (1992). Direct
implementation of the iterative method gives acceptable results (Fig. 1 and Table 8). The
number of scanned cells follows a power law with an exponent close to 1.5, in good
agreement with the theoretical analysis. The evolution of the number of comparisons
between a current cell and its neighbours follows a power law with an exponent
significantly lower than two. The same observation is made for the execution time. As
expected, the improved iterative procedure is more efficient than the direct implementa-

172 O. Planchon, F. Darboux! Catena 46 (200]) 159-176

. [} .White - Direct

.•.White - Improved
~ Fractal - Direct
........ Fractal· Improved

- 0- . White - Direct
- •.White - Improved
--fr- Fractal - Direct
........ Fractal - Improved

i.E+07

1.E+07

i.E+071.E+06

- il -White· Direct

-. -White -Improved

~ Fractal - Direct

........ Fractal - Improved

i.E+OS i.E+06

Number of cells

i.E+OS

1.E+OS 1.E+06

Humber of cells

a) i.E+i0

i.E+09
.!!
aiu i.E+OS
'C
CIl
c::
c::
~ i.E+07
III-0
~

i.E+06CIl
.c
E
::::1
Z i.E+OS

i.E+04
i.E+04

b) 1.E+ii

i.E+i0
III
c::
0
III i.E+09
.~

CIla.
E

i.E+OS0u-0
~

i.E+07QI
.c
E
::::1
Z i.E+06

i.E+OS
i.E+04

c) i.E+04

i.E+03

~ i.E+02
QI
E
;:l

i.E+Oic::
0
;:l

::::1
U

i.E+OOQI
)(
W

i.E-Oi

1.E-D2
i.E+04

Number of cells
Fig. 1. Evolution of (a) the number of scanned cells, (b) the number of comparisons and (c) the execution time
depending on DEM size, surface generation and implementation.

O. Planchon, F. Darboux/ Calena 46 (200]) 159-176

Table 8
Regression parameters for a power law y = a X x h

Conditions Scanned cells Cornparisons Execution time

Surface IrnplemenlaLion b R2 b R2 b R2

White noise direct 1.53 0.9999 1.57 0.9999 1.58 0.9992
irnproved 1.50 0.9998 1.57 0.9996 1.50 0.9998

Fractal direct 1.42 0.9995 1.47 0.9998 1.58 0.9972
irnproved 1.14 0.9997 1.27 0.9985 1.12 0.9996

173

tion. It allows decreasing the number of scanned cells, the number of comparisons and
the execution time.

5.1.2. Fractal suifaces
Surfaces with a fractal dimension equal to 2.2 are a good approximation of the

morphology of Earth surface at topographic scale (Voss, 1988). Such surfaces were
generated using the two-dimensional inverse Fourier method (Saupe, 1988; Press et al.,
1992). These suri"aces are spatially correlated and display large and embedded depres­
sions. In fact, they display many more depressions than natural topographic surfaces.
Therefore, they are an efficient test for depression-filling algorithms.

The direct implementation gives better results on these suri"aces than on the Gaussian
white noise surfaces, but the improved implementation is still the most efficient (Fig. 1
and Table 8). A large contrast is observed between direct and improved implementa­
tions. Because of the presence of a spatial correlation on such surfaces, the likelihood
for a dried cell to have several neighbour cells with higher altitudes is larger than in the
white noise case. This significantly increases the efficiency of the recursive procedure.
Thanks to the combination of the recursive procedure and the switch of scan directions,
the exponents are close to or lower than 1.2 for the three computed variables. This result
is in good agreement with the theoretical analysis, which predicted that the exponent for
natural surfaces should be lower than 1.5 and close to 1.

5.2. Measured surfaces

DEMs of soil surface were acquired using a laser scanner (Flanagan et al., 1995).
Roughness measurements were performed on a soil box of 2.5 X 2.5 m2

. Grid size
resolution was equal to 1 mm in both horizontal directions. A scan was performed on the
initial soil surface and then after each rainfall application. The depression storage
capacity decreases with the added rainfall amount. More details on the experimental
design are given in Darboux et al. (2000.

All the DEMs had a similar size, around 2500 X 2500 cells. Such large DEMs are a
good opportunity to test the efficiency of the two implementations of the new filling
method (Table 9). The number of scanned cells, the number of comparisons and the
execution time do not depend upon the depression storage capacity of the surface or the
number of depressions. Such a result was expected because the algorithm does not fill

174 o. Planchon, F. Darboux1 Catena 46 (200]) 159-176

Table 9
Algoritlun efficiency tests for a sequence of microtopographic Digital Elevation Models
Each DEM represents a surface area of 2.5 X2.5 m with al-mm resolution grid.

Before rain Aner 1st rain Aner 2nd rain Aner 3rd rain Aner 4th rain

Surface characteristics
Gener;ù slope (%) 5 5 5 5 5
Standard deviation (mm) 10.2 9.7 9.2 8.5 8.0
Semivariogram sill (mm2) 89 65 58 42 34
Semivariogram range (mm) 47 52 48 47 49
Depression storage capacity (nun) 1.61 0.85 0.45 0.13 0.07
Puddle surface area (m2/m2) 0.34 0.29 0.23 0.16 0.14
Numher or local minima 2.0 X 105 1.8 X 105 2.OX 105 2.2X 105 2.4 X 105

Number of fillect puddles 1.2 X 105 0.9X 105 1.3 X 105 1.8 X 105 2.OX 105

Algorithm re.l'ults
Number of scanned cells

Direct implementation 5.3 X 109 6.0X 109 6.4X 109 6.2X 109 5.4 X 109

lmproved implementation 9.7 X \07 7.9 X 107 1.2 X 108 9.8 X 107 7.9X107

Number of comparisons
Direct implementation 4.3 X 1010 5.1 X 1010 5.2X1010 4.9X 1010 3.6 X 1010

lmprovect implcmentation 6.2 X 108 4.7 X 108 5.3 X 108 3.6 X 108 2.9 X 108

Execution time (s)
Direct implementation 1589 1842 1927 1990 1432
lmprovect implementation 39.2 31.6 39.6 32.7 25.4

progressively the depressions. For al1 the surfaces and variables, the improved imple­
mentation is clearly the most efficient. While 1000 iterations (6 X 109 scanned cel1s)
were needed using the direct implementation, only 15 iterations (107 scanned cel1s) were
necessary to reach the final surface with the improved implementation. It leads to a
tremendous contrast in execution time: half an hour with the direct implementation and
only 30 s with the improved one.

6. Discussion and conclusions

Published algorithms for depression-filling have a time-complexity in O(N2) in the
worst-case and are close to this limit for DEMs containing a large amount of random
noise. Therefore, these numerical methods are not efficient when dealing with large
DEMs of soil roughness.

The method presented in this article is based on a radically different approach that
first adds a thick layer of water over all the DEM and then drains excess water. Two
algorithms were implemented. The first one needs a very short computer code and is in
O(N1.5) for all studied cases. The second algorithm is more sophisticated but still very
simple to implement. It is faster than the direct implementation, especially for surfaces
close to natural ones. For this later case, its time-complexity is in O(N1. 2

). That means
execution time is multiplied by tïve when the number of cells is multiplied by four. Such
moderate increase of the execution time has to be compared with the multiplication by

O. Planchon, F. Darboux/ Catena 46 (200]) 159-176 175

eight for the direct implementation in O(N1.5) and by 16 for algorithms in O(N 2
)

considering the same variation in cell numbers. In consequence, depressions of a DEM
with 2500 rows and columns can be filled in 30 s on a desktop Pc.

Moreover, the presented method is versatile. It can be used for both DSC caiculation,
which needs depression surfaces to be exactly t1at, and for drainage network computa­
tion, which needs to keep a small slope for each cell of the DEM. Such surfaces are a
basic need for hydrologie modelling at topographie scales even if there is no standard,
published and recognized method to calculate them.

References

Bertuzzi, P., Caussignac, J.M., Stengel, P., Morel, G., Lorendeau, J.Y., Pelloux, G., 1990. An automated,
noncontact laser profile meter for measuring soil rouglmess in situ. Soil Science 149 (3), 169-178.

Bruneau, P., Gascuel-Odoux, c., 1990. A morphological assessment of soil rnicrotopography using a digital
elevation model on one square melre plots. Catena 17, 315-325.

Darboux, F., Davy, P., Gascuel-Odoux, c., Huang, c., 2001. Evolution of soil surface roughness and flowpath
connectivity in overland flow experiments. In: Auzet, V., Poesen, J., Valentin, C. (Eds.), Soil Pattern as a
Key Factor of Water and/or Wind Erosion. Catena, pp. 125-139.

ESRI, 1999. Teclmical Documentation of ARC, version 8.0.1. Environmental Systems Research Institute,
Redlands, CA, USA

Favis-Mortlock, D., 1998. A self-org<mizing dynarnic systems approach to the simulation of rill initiation ,md
development on hillslopes. Computers & Geosciences 24 (4), 353-372.

Flanagan, D.C., Huang, C., Norton, L.D., Parker, S.c., 1995. Laser scanner for erosion plot measurements.
Transactions of the ASAE 38 (3), 703-710.

Gayle, G.A, Skaggs, R.W., 1978. Surface storage on bedded cullivated lands. Transactions of the ASAE 21
(l) 101-104, 109.

Gyasi-Agyei, Y., Willgoose, G., de Troch, F.P., 1995. Effects of vertical resolution and map scale of digital
elevation models on geomorphological parameters used in hydrology. Hydrological Processes 9, 363-382.

Hansen, B., Schj0nning, P., Sibbesen, E., 1999. Roughness indices for estimation of depression storage
capacity of tilled soil surfaces. Soil & Tillage Research 52, 103-111.

Helming, K, Jeschke, W., Storl, J., 1992. Surface reconstruction and change detection for agricullural
purposes by close range photograrnmetry. In: Fritz, L.W., Lucas, J.R. (Eds.), International Archives of
Photogrammetry and Remote Sensing. International Society for Photogranm1etry and Remote Sensing.
Cormnittœ of the XVII International Congress for PhotograllU11etry and Remote Sensing, Washington, DC,
USA, pp. 610-617.

Helming, K, Romkens, M.J.M., Prasad, S.N., 1998. Surface roughness related processes of runoff and soil
loss: a Hume study. Soil Science Society of America Journal 62, 243-250.

Huang, c., Bradford, J.M., 1990. Portable laser scanner for measuring soil surface roughness. Soil Science
Society of America Journal 54, 1402-1406.

Huang, c., White, 1., Thwaite, E.G., Bendeli, A, 1988. A noncontact laser system for measuring soil surface
topography. Soil Science Society of America Journal 52, 350-355.

Jenson, S.K, Dorningue, J.O., 1988. Extracting topographie structure from digital e1evation data for geo­
graphic information system analysis. Photogr3llU11etric Engineering and Remote Sensing 54 (Il), 1593­
1600.

L,mgford, K.J., Turner, AK, 1972. EJTects of rain and depression storage on overland Oow. Transactiuns uf
the Institution of Engineers, Australia 14 (2), 137-141.

Marks, D., Dozier, J., Frew, J., 1984. Automated basin delineation from digital elevation data. Geo-Processing
2, 299-311.

Martz, L.W., de Jong, E., 1988. CATCH: a fortran prograrn for measuring catchment area l'rom digital
elevation models. Computers & Geosciences 14 (5), 627-640.

176 o. Planchon, F. Darboux/Catena46 (200J) 159-176

Moon:, l.D., Larson, CL., 1979. Estimating micro-n:litf surfaœ storagt: [rom point data. Transactions of tht:
ASAE 22 (5), 1073-1077.

Moran, Cl., Vézina, G., 1993. Visualizing soil surfaces and crop residues. IEEE Computer Graphies and
Applications 13 (2), 40-47.

Mwendera, E.J., Feyen, l., 1992. Estimation of depression storage and Manning's resistance coefficient from
random roughness measurements. Geoderma 52, 235-250.

Onstad, c.A., 1984. Depressional storage on tilled soil surfaces. Transactions of the ASAE 27 (3), 729-732.
Press, W.H., Tt:ukolsky, S.A., Vetterling, W.T., Fl'.UlIlt:ry, B.P., 1992. Numerical Recipes in C: The Art of

Scientific Computing. Cambridge Univ. Press, New York, NY, USA.
Saupt:, D., 1988. Algorithms for random fracLals. In: Pt:itgt:n, H.-O., Saupt:, D. (Eds.), Tht: Scienœ of Fractal

Images, Springer, New York, NY, USA, Chap. 2, pp. 71-113, 126-136.
Sedgewick, R, 1990. Algorithms in C. Addison Wesley, Reading, MS, USA.
Sneddon, l., Chapman, T.G., 1989. Measurement ,md analysis of dt:prt:ssion storage on a hillslope. Hydrolugi­

cal Processes 3, 1-13.
Tarboton, D.G., 1997. A new method for the determination of flow directions and upslope areas in grid digital

e1evation mode1s. Water Rt:sourœs Research 33 (2), 309-319.
Ullah, W., Dickinson, W.T., 1979. Quantitative description of depression storage using a digital surface mode!.

lournal of Hydrology 42,63-75.
Voss, RF., 1988. FracL,ùs in natuœ: from characLt:rization to simulation. In: Peitgen, H.-O., Saupe, D. (Eds.),

The Science of Fractal Images. Springer, New York, NY, USA, pp. 21-70, Chap. 1.
Zhang, W., Montgomery, D.R, 1994. Digital elevation model grid size, landscape representation, and

hydrologie simulations. Water Resources Research 30 (4), 1019-1028.

