Geographic distribution and host plant ranges of East African noctuid stem borers

Bruno Pierre Le Rü⁽¹⁾, George Otieno Ong'amo⁽¹⁾, Pascal Moyal⁽²⁾, Eric Muchugu^{(3),*}, Leonard Ngala⁽¹⁾, Boaz Musyoka⁽¹⁾, Zainab Abdullah^{(4),*}, Teddy Matama-Kauma^{(5),*}, Vuai Yahya Lada^{(4),*}, Beatrice Pallangyo^{(6),*}, Charles O. Omwega^{(3),*}, Fritz Schulthess^{(3),*}, Paul-André Calatayud⁽¹⁾ & Jean-François Silvain⁽²⁾

⁽¹⁾ Unité de Recherche IRD 072, PO Box 30772, ICIPE, Nairobi, Kenya

⁽²⁾ Unité de Recherche IRD 072, CNRS, Laboratoire Evolution, Génomes et Spéciation, BP1, 91198 Gif - sur - Yvette cedex, France ⁽³⁾ ICIPE, PO Box 30772, Nairobi, Kenya

⁽⁴⁾ Ministry of Agriculture, Plant protection division, P.O. Box 1062, Zanzibar, Tanzania

⁽⁵⁾ National Agricultural Research Organisation (NARO), Namulonge Agricultural Res. Inst. P.O. Box 7084, Kampala, Uganda

(6) Biocontrol Programme, P.O. Box 30031, Kibaha, Tanzania

* DGIS funded Stem borer Biological Control NETwork for ESA (SBCNET)

Abstract. Surveys were carried out in Kenya, Tanzania, Uganda and Zanzibar to establish geographic distribution in the main vegetation mosaics and ecological (host plant range, feeding behaviour) characteristics of the East African noctuid stem borers. 49 wild plant species belonging to Poaceae, Cyperaceae and Typhaceae were found to harbour stem borers in the six vegetation mosaics surveyed. A total of 36 noctuid species belonging to nine genera were identified from 14,318 larvae collected, out of which 17 were new to science. The species diversity varied among vegetation mosaics and host plants. Most borer species appeared to be specialised feeders with 24 species being monophagous. Species belonging to the same types (named as the *Busseola* Thurau 1904 and the *Sesamia* Guenée 1852 types) or genus harboured common ecological characteristics such as pigmentation and feeding site. The *Sciomesa* Tams and Bowden 1953 genus was an exception as it had a mixture of these characters.

Résumé. Distribution géographique et spectre d'hôtes des foreurs de graminées d'Afrique de l'Est. Des enquêtes ont été conduites au Kenya, en Tanzanie, en Ouganda et à Zanzibar afin de connaître les caractéristiques écologiques des noctuelles foreuses africaines tels que le spectre d'hôtes, le mode de nutrition et les principales caractéristiques de développement. 49 espèces de plantes appartenant aux familles des Poaceae, Cyperaceae et Typhaceae ont été trouvées infestées par des foreurs dans les six phytochories rencontrées. Sur un total de 14318 chenilles récoltées, nous avons identifié 36 espèces de noctuelles appartenant à neuf genres. 17 espèces nouvelles ont été trouvées. La diversité spécifique varie d'une phytochorie à l'autre et d'une plante hôte à l'autre. La plupart des espèces de foreurs ont été trouvées dans les zones humides des phytochories et présentent un comportement alimentaire spécialisé : 24 espèces sont monophages, et la plupart des huit espèces oligophages montrent une préférence marquée pour une ou deux plantes.

Keywords: Stem borer, Poaceae, feeding behaviour, vegetation mosaic, Africa.

During the last 50 years, several surveys have been carried out in Kenya, Uganda and Tanzania to identify wild host plants of noctuid stem borers (Noctuidae) (Ingram 1958; Nye 1960; Seshu Reddy 1989; Randriamananoro 1996; Polaszek & Khan 1998). Ten noctuid species (two *Busseola* Thurau 1904, seven Sesamia Guenée1852, one Poeonoma Tams and Bowden 1953) were recovered from 34 wild host plants. It is expected that the list of host plants of these 10 species is by far not exhaustive because the surveys were short, carried out in a limited area and mostly on crops (Ingram 1958; Nye 1960; Seshu Reddy 1989; Polaszek & Khan 1998). The most damaging species in eastern Africa, *Busseola fusca* (Fuller 1901) and the less important species Sesamia calamistis Hampson 1910 were recovered from 25 and 28 host plants, respectively, and it was suggested that these species were polyphagous (Polaszek & Khan 1998).

E-mail: bleru@icipe.org, gongamo@icipe.org, pascal.moyal@legs.cnrs-gif.fr, emuchugu@icipe.org, bmusyoka@icipe.org, z.gurnab@hotmail.com, kauma56@yahoo.com, biocontrol@africaonline.co.tz, comwega@icipe.org, fschulthess@icipe.org, pcalatayud@icipe.org, silvain@legs.cnrs-gif.fr Accepté le 4 mai 2006

Noctuid stem borers characteristically feed inside the stems of grasses (Poaceae), sedges (Cyperaceae) and bulrush (Typhaceae). They are a very diverse group and over half of the 190 known tropical species are from Africa (Holloway 1998). 32 were reported from East Africa, among them eight Acrapex Hampson 1894, two Busseola, two Manga Bowden 1956, one Poecopa Bowden 1956, one Poeonoma, five Sciomesa Tams and Bowden 1953, and 13 Sesamia spp. However, only hosts of the 10 species mentioned in the previous paragraph are known. The remaining 22 species were obtained as adults from light traps. Their description was based on scanty materials (one to three specimens) and frequently only on one sex. (Fletcher 1961; Rougeot 1984). As a result, the boring behaviour could not be verified for some genera such as Acrapex, Sciomesa and Speia Tams and Bowden, 1953.

To understand how this highly specialised phytophagous moth group has evolved is not an academic luxury for evolutionists and entomologists. It might be predictive as groups of taxa descending from a common ancestor are more likely to share common biological features (i.e. rapid population increase, short generation time), host plants, behavioural characteristics and common natural enemies (Holloway 1998). Current studies on how phytophagous insect-plant associations evolved combine studies of systematics with ecological and biogeographical data (Johnson 1990; Wahlberg 2001; Kergoat et al. 2004). Therefore, detailed knowledge on geographic distribution in the main vegetation mosaics, ecology (host plant ranges, feeding site) and interactions with other stem borers (i.e. guild diversity of the exploited host plants)), should contribute to future investigations on noctuid stem borer-plant evolutionary history.

The present work is an attempt to address the above principles in the study through extensive surveys in wild habitats surrounding cereal fields in Uganda, Kenya, Tanzania and Zanzibar, and to appraise the natural distribution of noctuid stem borers and associated host plant species in East Africa. It also provides some basic information necessary for future studies on the evolution of this moth group.

Materials and Methods

Selection of localities and description of the vegetation mosaics

Surveys were conducted in the major cereal growing areas in Kenya between January 2003 and April 2005, Uganda in April 2004 and March 2005, Tanzania in June 2004 and February 2005 and in Zanzibar in May 2004. A total of 158 localities distributed in the six main vegetation mosaics (described and numbered by White 1983) encountered in East Africa were visited. The vegetation mosaics included the GuineoCongolian mosaic [mosaic of lowland rain forest and secondary grassland (Mosaic no. 11)], the Zanzibar-Inhambane mosaic [East African coastal mosaic (No. 16)], the Afromontane mosaic [undifferentiated montane vegetation (No. 19)], the Zambezian woodland mosaic [drier Zambezian miombo woodland dominated by Brachystegia and Julbernardia (No. 26)], the Somalia-Masai mosaic [Somalia-Masaï Acacia-Commiphora deciduous bushland and thicket (No. 42)] and the East African mosaic [mosaic of East African evergreen bushland and secondary Acacia wooded grassland (No. 45)] (tab. 1, fig. 1). Localities within the mosaics were selected on the basis of accessibility and presence of potential host plants. Each locality was referenced with its geographic coordinates (latitude, longitude and altitude) using a GARMIN 12X portable Geographic Positioning System (GPS). The localities ranged between sea level to 2396 m above sea level (m.a.s.l.), 1°15' North and 08°32' South and, 29°43' and 39°32' East. The climatic conditions found in the mosaics were sourced from Africa AWhere-ACT Database (2002) and summarized in Table 1.

Collection and rearing of stem borer materials

In each locality, the plant habitats (i) in and around crops, (ii) in open patches along forest roads, (iii) on banks of streams or rivers and (iv) in swamps were checked for stem borer infestation. Because noctuid borer densities on wild hosts are exceedingly low (Nye 1960; Gounou & Schulthess 2004), a biased rather than a random sampling procedure was use to increase the chances of finding borers. In all habitats, plant species belonging to Poaceae, Cyperaceae and Typhaceae families were carefully inspected for stem borer infestation symptoms or damage [scarified leaves, dry leaves and shoots (dead hearts), frass, holes bored]. Number of visits per locality varied between one (some localities from Uganda, Tanzania and Zanzibar) and nine (some Kenyan localities), and time spent examining host plants in a locality varied from one to four hours with two or three people depending of the infestation levels. Infested plants were cut and dissected in the field. The kind and location of damage were recorded for all plants found infested. The species collected were then grouped into the S. calamistis type and the B. fusca type. In the S. calamistis type the neonates fed on the basal leaf sheaths for 2-3 days, after which they rapidly penetrated into the stem. In the B. fusca type, the first and second instar larvae fed on young leaves (whorl) of the main stem producing the typical "window" damage, or on the flower spikes (Ingram 1958, Nye 1960). The number of young larvae (1st, 2nd, 3rd instars), old larvae (4th, 5th and 6th instars), pupae and, the colour and adornment of the larvae were also recorded (WDS: white with dark thin stripes, B: buff, BLPB: buff with longitudinal wide pale bands, BP: pink, DG: dark grey, OPR: olive with purple rings). Recovered pupae were kept in plastic vials (15 x 7 cm) closed with perforated plastic lids until emergence. Recovered larvae were all reared until pupation on artificial diet (Onyango & Ochieng-Odero 1994) kept in glass vials (7.5 x 2.5 cm) closed with cotton wool or fresh maize stems (10 cm long) kept in plastic vials (16 x 10 cm) with perforated plastic lids. Pupae taken out of the medium/ maize stems were kept separately in plastic vials (16 x 10 cm) closed with perforated plastic lids until adult emergence.

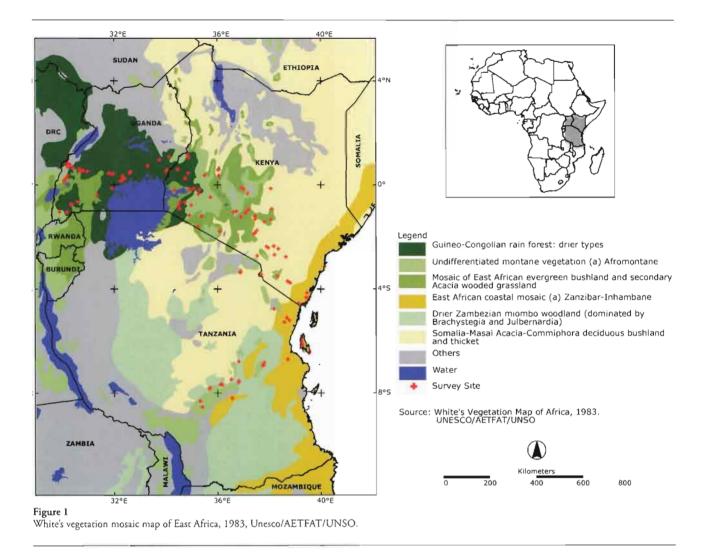


Table 1. Average climatic conditions of the different vegetation mosaics found in East Africa (from Africa AWhere-ACT darabase 2002).

Mosaic No Rainfall (mm)		Moisture index	Min temp (°C)	Max temp (°C)	Altitude (m.a.s.l.)		
11	961–1511 (1237)	0.64–1.05 (0.84)	12.05–17.04 (15.24)	26.10–29.40 (27.52)	699–2160		
16	900-1330 (1102)	0.60–0.90 (0.77)	20.48–22.02 (21.22)	29.00–31.15 (30.31)	20-2130		
19	669–1621 (1162)	0.46–1.26 (0.88)	06.46–18.42 (12.38)	18.89–29.28 (24.61)	851-2396		
26	501–1337 (746)	0.33-1.00 (0.49)	11.90–20.19 (16.72)	22.46–32.95 (28.93)	479–1460		
42	886–1304 (1081)	0.63–0.87 (0.74)	13.81–19.70 (17.32)	24.31–30.26 (27.50)	484–1754		
45	597–1242 (940)	0.34–1.00 (0.63)	10.09–18.96 (14.44)	23.11–31.83 (27.23)	781–1956		

Identification of moths and analysis of borer species diversity

Adult moths were identified to species level (Moyal, P.) and voucher specimens deposited in Museum National d'Histoire Naturelle (MNHN, Paris, France) and in ICIPE Museum (Nairobi, Kenya).

The identified borers were then grouped in their respective host plant and vegetation mosaic for analysis of species diversity. The data from each of the vegetation mosaics and from each host plants were then used to compute diversity indices described by Samways (1984) (tab. 2).

Species richness (S). This is based on presence, rather than relative abundance. This conceptually easy index is widely used both in ecology and biogeography.

Berger-Parker dominance index (d). This index uses the abundance of the dominant species relative to the abundance of all species together.

Fisher-Williams diversity index (α). This useful statistic is based on the log-series. It is particularly valuable if N>1000 because of its lack of sensitivity to the greatly fluctuating common species. It is a parametric index that describes the relationship between the number of species and the number of individuals in those species.

Rare species are defined as those recovered from only one locality.

Results

Vegetation mosaic

Results on noctuid stem borer species found in the 6 vegetation mosaics surveyed are summarized in Table 1. The total number of noctuid larvae collected ranged between 683 and 4094 in the dry and hot Zambezian woodland and cool afromontane mosaics, respectively. The highest species diversity (S = 22; $\alpha = 3.22$) was recorded in the wet and hot Guineo-Congolian mosaic. Proportions of the dominant species varied between 0.26 in the Somalia-Masai mosaic and 0.81 [(Berger-Parker indices (d)] in the Zambezian mosaic. *Manga nubifera* Hampson 1910 was dominant in both Somalia-Masaï (d = 0.26) and East African bushland (d = 0.27) mosaics, while *Manga*

Table 2. Stem borer species diversity in respective vegetation mosaics.

melanodonta Hampson 1910 and Busseola s.l. n. sp. 1 respectively dominated Guineo-Congolian (d = 0.33) and Afromontane (d = 0.30) mosaics. Sesamia n. sp. 5 dominated in Zanzibar-Inhambane (d = 0.51) and Zambezian miombo (d = 0.81) (tab. 1). Rare species were found in five vegetation mosaics, contributing 12 (33%) out of the total of 36 species collected (tab. 3). No rare species were found in the dry Zambezian woodland mosaic. The Afromontane mosaic alone harboured 42% of the rare species accounting for 28% of the total species recovered in this vegetation mosaic. In the other vegetation mosaics the proportion of rare species ranged between 6% (East African mosaic) and 37% (Zanzibar-Inhambane).

Host-plants

Noctuid stem borers were recovered from 49 plant species belonging to three families: Poaceae (35), Cyperaceae (13) and Typhaceae (1) (tab. 4). Out of the 14,318 larvae collected, 92.2% were from Poaceae, 3.4% from Cyperaceae and 4.4% from Typhaceae. 63.5% of the larvae belonging to 22 noctuid species of seven genera were collected from three species of Poaceae, namely *Pennisetum purpureum* Schumacher, *Panicum maximum* Jacquin and *Setaria megaphylla* (Steudel) Th. Durand & Schinz. Borer species richness within the host-plants varied between one (22 host plants) and 11 (*P. purpureum*) with α value varying between 0.14 (*Cynodon aethiopicus* Clayton & Harlan) and 1.59 (*Cyperus latifolius* Poiret).

Noctuid species

The 14,318 noctuid larvae/pupae collected belonged to 36 species, out of which one belonged to the genus Acrapex, three Busseola, three Carelis Bowden 1956, two Manga, one Poeonoma, nine Sciomesa, twelve Sesamia, one Speia and four species related to Busseola, temporarily named as Busseola s.l. (tab. 3). Seventeen out of the 36 species collected are new to

	Descriptive values			Statisti	CS .	
Veg. Mosaic associations (N localities)	Individual abundance	Species richness (S) (Endemic species: N/%)	α	Berger-Parker (d)	Dominant species	
1 (43)	3046	22 (5/23)	3.22	0.33	Manga melanodonta	
6 (16)	1595	8 (3/37)	1.10	0.51	<i>Sesamia</i> n. sp. 5	
9 (20)	4094	18 (6/33)	2.45	0.30	Busseola s.l.n. sp.1	
6 (9)	683	6 (0/0)	1.09	0.81	Sesamia n. sp. 5	
2 (20)	3003	14 (1/7)	1.75	0.26	Manga nubifera	
15 (20)	1897	16 (1/6)	2.58	0.27	Manga nubifera	

Table 3. Noctuid stem borer species recorded from East Africa.* : new borer species, Ns: Borer species number, IA: Individual Abundance (Y : Young larvae, O : Old larvae, P : Pupae) , NL: Number of Localities, WDS:white with dark thin stripes, B: buff , BLPB: buff with longitudinal wide pale bands, BP: pink, DG: dark grey, OPR: olive with purple rings, FL: younginstars feed on leaves, BS: young instars bore straight into the stems.

Ns	Noctuid stem borer species IA (Y/O/P)		NL	Host plants (see tab. 4)	Vegetation mosaics	Mature larvae colour	Feeding behaviour	
	Acrapex							
1	A. syscia Fletcher	90 (8/82/0)	1	34	45	Р	BS	
	Busseola							
2	B. fusca Fuller	294 (104/185/5)	6	2, 26, 31, 33	11, 45	В	FL	
3	B. phaia group	1241 (689/537/15)	31	4, 7, 10, 15, 17, 18, 19, 25, 26, 29, 32, 33	11, 19, 42,45	BLPB	FL	
4	Busseola n. sp. 1*	185 (45/137/3)	6	19, 27	11, 19, 26	BLPB	FL	
	Busseola s.l.							
5	Busseola s.l. n. sp. 1*	1197 (674/498/25)	3	31	11, 19	WDS	FL	
6	Busseola s.l. n. sp. 2*	91 (48/43/0)	1	31	19	OPR	FL	
7	Busseola s.l. n. sp. 3*	447 (69/335/33)	7	4, 10, 18, 23, 27, 28	11, 19, 45	WDS	FL	
8	Busseola s.l. n. sp. 4*	40 (5/34/1)	1	31	19	?	?	
	Carelis							
9	Carelis n. sp. 1*	39 (0/39/0)	1	39	19	Р	BS	
10	Carelis n. sp. 2*	164 (15/149/0)	1	31	19	Р	BS	
11	Carelis n. sp. 3*	17 (0/15/2)	1	48	11	Р	BS	
	Manga							
12	M. <i>melanodonta</i> Hampson	1440 (949/491/0)	8	17, 18, 19, 24, 31, 32, 33	11, 42, 45	DG	BS	
13	M. nubifera Hampson	2043 (1463/580/0)	12	18, 19	11, 16, 26, 42, 45	DG	BS	
	Poeonoma							
14	P. serrata Hampson	995 (928/64/3)	11	25, 26	11, 19	DG	FL	
	Sciomesa							
15	Sc. argocyma Fletcher	11 (0/9/2)	1	38	19	Р	BS	
16	Sc. mesophaea Aurivillius	335 (24/302/9)	9	36, 37, 39, 41, 44, 49	11, 19, 42, 45	Р	FL	
17	Sc. nyei Fletcher	658 (538/119/1)	4	27	11, 19	WDS	BS	
18	Sc. piscator Fletcher	1179 (184/995/0)	27	3, 7, 9, 10, 12, 13, 23, 25, 26, 27, 29, 30, 36, 41, 43, 46, 47, 48	11, 19, 26, 42, 45	Р	BS	
19	Sc. venata Fletcher	34 (2/32/0)	1	36	11	Р	BS	
20	Sciomesa n. sp. 1*	58 (16/42/0)	2	31	19	WDS	BS	
21	Sciomesa n. sp. 2*	78 (47/31/0)			42, 45	Р	FL	
22	Sciomesa n. sp. 3* 2 (0/2/0)		1	17	42	Р	?	
23	Sciomesa n. sp. 4*	183 (128:55/0)	6	5	42, 45	WDS	BS	
	Sesamia							
24	S. calamistis Hampson	354 (197/145/12)	24	6, 12, 18, 21, 22, 26, 29, 30, 33, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46	11, 16, 19, 42, 45	Р	BS	
25	S. jansei Tams & Bowden	27 (0/25/2)	1	36	16	Р	BS	
26	S. nonagrioides Lefebvre	628 (183/445/0)	27	10, 11, 16, 20, 26, 29, 33, 36, 41, 42, 46, 49	11, 16, 19, 26, 42, 45	Р	BS	
27	S. oriaula Tams & Bowden	264 (102/156/6)	25	10, 18, 26, 29	11, 19, 45 ?	Р	BS	
28	S. pennisetiTams & Bowden	84 (17/66/1)	9	26	11	Р	BS	
29	S. poephaga Tams & Bowden	248 (194/54/0)	14	1, 8, 14, 18, 19, 26	11, 16, 26, 42, 45	Р	BS	
30	Sesamia n. sp. 1*	52 (38/14/0)	2	7, 10, 18	11	Р	BS	
31	Sesamia n. sp. 2*	80 (24/60/0)	1	36	11	Р	BS	
32	Sesamia n. sp. 3*	415 (294/121/0)	9	9, 10	11, 42, 45	Р	BS	
33	Sesamia n. sp. 4*	50 (16/34/0)	3	10	16	Р	BS	
34	Sesamia n. sp. 5*	1215 (1017/186/12)	12	26	16, 26, 42, 45	Р	BS	
35	Sesamia sp nr coniota	4 (0/4/0)	1	18	16	Р	BS	
	Speia							
36	Sp. vuteria Stoll	53 (6/40/7)	7	49	11, 19, 45	Р	FL	

Table 4. Wild host plants of the different stem borer genus in East Africa. N: reference number, Ac.: *Acrapex*, Bu.: *Busseola*, Ca.: *Carelis*, Busl: *Busseola sensu lato*, Ma.: *Manga*, Po.: *Poeonoma*, Sc.: *Sciomesa*, Se.: *Sesamia*, Sp.: *Speia*, I: individual abundance, S(M): species richness (Number of monophagous species), NG: Number of Genera, α = Fisher-Williams diversity index

Host plants		Nu	Number of stem borer species in each genera								Statistics on collected stem borers			
N°	Species name	Ac	Bu	Ca	Busl	Ma	Ро	Sc	Se	Sp	I	S (M)	NG	α
	Poaceae									•				
1	Andropogon amethystinus Steud								1		3	1	1	0.5
2	Arundo donax L.		1								5	1	1	0.30
3	Cenchrus ciliaris L.							1			1	1	1	
4	Cymbopogon nardus (L.) Rendle		1		1						85	2	2	0.37
5	Cynodon aethiopicus Clayton & Harlan		1					1			183	1 (1)	1	0.14
6	Cynodon dactylon (L.) Pers.								1		13	1	1	0.2
7	Cynodon nlemfuensis Vanderyst		1					1	1		22	3	3	0.94
8	<i>Digitaria milanjiana</i> (Rendle) Stapf								1		29	1	1	0.20
9	<i>Echinochloa haploclada</i> (Stapf) Stapf							1			12	1	1	0.20
10	Echinochloa pyramidalis (Lam.) Hitchc. & Chase		1		1			1	4		653	7 (2)	4	1.10
11	Eriochloa fatmensis (Hochst. & Steud.)W.D. Clayton								2		251	2	1	0.30
12	Eriochloa meyerana (Nees) Pilg.							1	1		141	2	2	0.33
13	Euclaena mexicana Schrader							1			35	1	1	0.15
14	Hyparrhenia papillides (A. Rich.) Stapf		1								4	1	1	0.43
15	Hyperthelia dissoluta (Steud.) W.D. Clayton								1		3	1	1	0.53
16	Miscanthus violaceus (K. Schum.) Pilg.								2		10	2	1	0.75
17	Panicum deustum Thunb.		1			1		2			728	4 (2)	3	0.56
18	Panicum maximum Jacq.		1		1	2			3		3542	7 (3)	4	1.12
19	Panicum merkeri Mez		1						1		85	2	2	0.37
20	Panicum poaeoides Stapf								1		16	1	1	0.24
21	Panicum porphyrhizos Steud.								1		31	1	1	0.20
22	Paspalidium geminatum (Forssk.) Stapf								1		29	1	1	0.20
23	Pennisetum hohenackeri Steud.				1			1	-		178	2	2	0.32
24	Pennisetum cladestinum Chiov.				•	1		1			20	2	1	0.85
25	Pennisetum macrourum Trin.		1			-	1	1			75	3	3	0.38
26	Pennisetum purpureum Schumach.		3				1	1	6		3860	11 (3)	4	1.39
27	Pennisetum trachyphyllum Pilg.		5		1		•	2	Ŭ		808	3 (1)	2	0.40
28	Pennisetum unisetum (Nees) Benth.				1			-			30	1	1	0.20
29	Phragmites mauritianus Kunth.				•			1	3		48	4	2	1.26
30	Rottboellia cochinchinensis (Lour.) Clayton							1	1		-10	2	2	0.94
31	Setaria megaphylla (Steud.) T. Duran & Schinz		1	1	3	1		1	1		, 1769	7 (5)	3	0.93
32	Setaria plicatilis (Hochst.)Engl.		1	1	,	1		1			186	2	2	0.31
33	Sorghum arundinaceum (Desv.) Stapf		2			1			2		241	5	3	0.89
34	Sporobolus macranthelus Chiov.	1	1						2		2 4 1 90	1 (1)	2	0.16
35	Vossia cuspidata (Roxb.) Griff.	-	•						1		24	1	1	0.21
55	Cyperaceae								1		24	1		0.21
36	Cyperus articulatus L.							1	3		166	4 (3)	2	1.01
37	Cyperus atroviridis C.B. Clarke							2	1		46	3	2	0.98
38	Cyperus dereilema Steud			1				1	1		16	3 (1)	2	0.64
39	Cyperus dichroöstachyus A. Rich.			1				1	1		49	2 (1)	2	0.42
40	Cyperus distans L.			•				•	1		-1)	1	1	0.34
41	Cyperus dives Del.							2	2		118	4	2	0.80
42	Cyperus exaltatus Retz.							2	2		15	2	1	0.62
43	Cyperus exatitatus NCL. Cyperus involucratus Nottb.							1	2		9	2	2	0.82
44	Cyperus Intoinaranas Kotto. Cyperus Intifolius Poir.							1	1		4	2	2	
45	Cyperus actificitus Foir. Cyperus maculatus Boeck.							1	1		4 8	2	2	1.59
45 46	Cyperus maculatus Boeck. Cyperus rotundus L.							1	1 2					0.30
40 47	Cyperus rotunaus L. Schoenoplectus maritimus (L.)K. Lye							1	2		29	3	2	0.84
47 48	Scheria racemosa Poir			1				1			3	1	1	0.53
40				1							14	1(1)	1	0.25
	Typhaceae													

science. Four species, Sciomesa mesophaea (Aurivillius) 1910, S. piscator Fletcher 1961, S. calamistis and S. nonagrioides (Lefebvre) 1827, were found on at least two host plant families and can therefore be considered to be polyphagous (cf Bernays & Chapman 1994). S. nonagrioides was found on all three host plant families. Seven species, including B. fusca, were oligophagous (feeding on a restricted number of plant species usually from one family or a subfamily (Bernays & Chapman 1994); and were found on two and seven host species within the same family. However, all seven species were more abundant on one or two host plants (i.e., about 85% of the specimens collected). A good example is M. melanodonta, of which 88.2 % were collected from P. maximum and 10 % from S. plicatilis (Hochstetter) Hackel, while the five other hosts together accounted for less than 2%. The host range status of the B. phaia Bowden 1956 group is not completed as identification is still in progress. The other 24 species are monophagous (feeding on a single species or genus of plants; Bernays & Chapman 1994).

The found stem borer larvae could be broadly divided into three types, based on colour and adornment: (a) B. fusca like species with dark ground colours sometimes adorned with longitudinal wide pale bands (Busseola, Manga and Poeonoma), (b) species with pale ground colours adorned with longitudinal thin dark stripes (Busseola s.l. and Sciomesa species related to S. nyei Fletcher 1961) and (c) Sesamia like species with pink ground colours (Acrapex, Carelis, Sciomesa not related to S. nyei, Sesamia and Speia), sometimes adorned with longitudinal wide pale bands [S. mesophaea, S vuteria (Stoll) 1783]. According to the feeding site, the Sesamia, Acrapex and Carelis species belong to the Sesamia feeding type while the Busseola, Busseola s.l., Manga, Poeonoma and Speia species belong to the Busseola feeding type. Both kinds of feeding behaviour were found in Sciomesa genera. A stem girdling behaviour was observed in S. piscator. Scarifying behaviour was facultative for both S. mesophaea and S. vuteria recovered from Typha domingensis Persoon.

Discussion

Vegetation mosaics

The results of the surveys indicated that noctuid stem borers are common in the six main vegetation mosaics of East Africa. However, borer species richness and abundance varies amongst the vegetation mosaics with the wet and hot guineo-congolian mosaic covering mainly the western area of East Africa (western Kenya and Uganda) being the richest. Similarly, Nye (1960) reported noctuid stem borer larvae mainly from the wetterparts of different vegetation mosaics. Nonetheless, in contrast to earlier surveys (Ingram 1958; Nye 1960; Seshu Reddy 1989), higher numbers of stem borer species were collected from non cultivated host plants. Each vegetation mosaic harboured dominant borer species accounting at least for 25% of the specimens collected per mosaic. We found rare species in the five vegetation mosaics. The strong influence exerted by rare species on the overall species assemblage has been underlined many times. However, their role and importance in structuring broad community patterns among regions is not well understood but they are thought to contribute significantly to diversity in the tropics (Price et al. 1995; Coddington et al. 1996; Novotny & Basset 2000). Not surprisingly the number of rare species was increasing with time and we can assume their contribution to the noctuid borer guild was underestimated in the course of this survey. As all the rare species found are monophagous, no doubt the proportion of specialist feeders was probably also underestimated.

Host plants

Stem borers were recovered from 48 plant species of which 32 have never been recorded as hosts of noctuids, thus increasing the number of known hosts to 66. Most of these hosts belonged to Poaceae family, corroborating earlier reports by Ingram (1958), Nye (1960), Seshu Reddy (1989), and Polaszek & Khan (1998). This study revealed important variation in species richness (S) and diversity index among the host plants. The species diversity reported on some grass species e.g. Setaria megaphylla was underestimated because at least three noctuid species collected from it could not be reared to adult stage as all collected larvae died. Data on resource availability suggest strongly that if plants species are extremely abundant and reliable, insects are able to specialize on them and often do so (Bernays & Chapman 1992). It is worth noting that S. megaphylla is one of the most common Poaceae species in mid (between 1000 and 1500 m) and high altitude forested areas (≥1500 m). It contained one of the highest borer species diversities (seven) with 71% monophagous species, all of them localised in one or two neighbouring localities usually at altitudes above 1500 m. The current high diversity and monophagy found on S. megaphylla could be attributed to major climatic changes of the Pleistocene that took place between 3.3 to 2.45 Million years ago (Wagner 2002; DeMenocal 1995). These major events are considered responsible for the preservation of altitudinal forested areas which worked as refuge zones comparable with an

archipelago (White 1981). The role of these altitudinal forested areas on east Afromontane butterflies speciation and endemism has been well documented by De Jong and Congdon (1993).

Stem borers

The methodology adopted during this survey involved active searching for damage symptoms at irregular intervals in both time and space. Results therefore could not be used for rigorous comparison of stem borer diversity among the different vegetation mosaics, though the methodology allowed for rapid and efficient inventory of the noctuid stem borer guild in East Africa. Out of the 36 species collected, 17 are new to science. The number of known species of noctuids from East Africa is now 50 compare to 32 as reported earlier (Fletcher 1961; Laporte 1975). This study also provided numerous male and female specimens of species earlier described from very few specimens, sometimes from only one sex like Acrapex syscia Fletcher 1961, Sciomesa nyei, Sciomesa venata Fletcher 1961, Sciomesa piscator and Sesamia oriaula Tams & Bowden 1953. It is suggested that if the present study is extended to other poorly surveyed areas, the reported diversity of noctuid stem borers from East Africa would increase significantly. The current survey missed the montane biotopes above 2400m and could explain why only one Acrapex and 12 Sesamia species were recovered even though they are the most diverse noctuid stem borer genera in Africa (Fletcher 1961; Laporte 1975). Stem borer species collected could be categorised into monophagous, oligophagous and polyphagous groups. 63% of monophagous species were found in one vegetation mosaic only, while about 88 % of the oligophagous species were found in at least two vegetation mosaics. The four polyphagous species were present in at least five vegetation mosaics. Nonetheless, the distribution of many monophagous and oligophagous species could not be explained by the distribution of host plants. Busseola s.l. n. sp. 2 and Busseola s.l. n. sp. 4, that were only known from S. megaphylla, were collected from one locality though their host is widely distributed in Guineo-Congolian, afromontane and Zanzibar-Inhambane mosaics. Sesamia n. sp. 5 known only from Pennisetum purpureum was never recovered in the western part of the Rift Valley despite the wide distribution of the host plant in Kenya and Tanzania. Likewise, Poeonoma serrata Hampson 1910 which is widely distributed in Uganda and western Kenya and which was known from P. purpureum mainly was never found in the eastern part of the Rift Valley. The observed restricted distribution among stem borer

species may be associated with major climatic changes experienced in East Africa since 3.3 Million years ago, oscillating between hot/humid and cooler/drier periods. These climatic changes coupled with the rise and expansion of the East Africa Rift Valley from 2.9 to 1.6 Million years ago (Zeitoun, 2000, Pitra *et al.*, 2002), were responsible for oscillations in savannah biotype expansion (Wagner 2002; DeMenocal 1995) and of a mosaic of refuge zones.

This study describes mature larval colouration and feeding behaviour of 29 species and six genera for the first time. In addition, it confirms two types of feeding behaviour reported in previous studies (Ingram 1958; Nye 1960). It was found that species belonging to one genus adopt a similar feeding behaviour with a notable exception within the Sciomesa genus. All the stem borer larvae with dark ground colours or with dark stripes belong to the Busseola fusca feeding type and all the stem borer larvae with pink ground colours belong the Sesamia calamistis type. It is not coincidental that larvae living outside the plants develop more pigmented and adorned skin than those ones living inside. When living outside, the larvae are more vulnerable to natural enemies and thus develop camouflage patterns like hiding colour and adornments. Reports indicate that herbivorous species frequently use stripes to escape predators (Caillois 1963; Ortolani 1999).

Conclusion

This paper provides for the first time basic information on noctuid species diversity and biogeography within the six main vegetation mosaics found in East Africa. Even though boring of monocot stems is a very specialized feeding behaviour among noctuids (Holloway, 1998), the major life history traits reported in this study show important behavioural plasticity between genera. Species belonging to the same genus harbour common ecological characteristics like colour of the larvae and feeding behaviour. The *Sciomesa* genus is an exception with a mixture of these characters and further investigations on its systematic and phylogenetic classification might show that it constitutes several genera.

Acknowledgments. The authors are grateful to Simon Mathengue, University of Nairobi, Botany department, for the identification of all the host plants.

References

- Africa AWhere-ACT database 2002. Mud Springs Geographers, Inc. Temple, Texas.
- Bernays E.A., Chapman R.F. 1994. Host-plant selection by phytophagous insects. Chapman & Hall Inc., New York, 312 p.

Caillois R. 1963. Le mimétisme animal. Hachette, 106 p.

- Coddington J.A., Young L.H., Coyle F.A. 1996. Estimating spider species richness in a southern Appalachian cove hard-wood forest. *Journal of Arachnology* 24: 111-128.
- De Jong R., Congdon T.C.E. 1993. The montane butterflies of the eastern afrotropics. p. 133-164 *in*: Lovett J.C., Wasser S.K. (eds.), *Biogeography and ecology of the rain forests of eastern Africa*. Cambridge University Press, Cambridge.
- De Menocal P.B. 1995. Plio-Pleistocene African climate. *Science* 270: 53-59.
- Fletcher D.S. 1961. Noctuidae. Ruwenzori Expedition 1952, 1: 177-323. British Museum (Natural History), London.
- Gounou S., Schulthess F. 2004. Sparial distribution of lepidopterous stemborers on indigenous host plants in West Africa and its implications for sampling schemes. *African Entomology* 12 (2): 171-178.
- Holloway J.D. 1998. Noctuidae, p.79-86 in: Polaszek A. (ed), African cereal stem borers : economic importance, taxonomy, natural enemies and control. CAB International, Wallingford.
- Ingram W.R. 1958. The lepidopterous stalk borers associated with graminae in Uganda. Bulletin of Entomological Research 49: 367-383.
- Johnson C.D. 1990. Coevolution of Bruchidae and their hosts: evidence, conjecture and conclusions, p. 181-188 in: Fuji K., Gatehouse A.M.R., Johnson C.D., Mitchel R., Yoshida Y. (eds.), Bruchids and Legumes: Economics, Ecology and Coevolution. Kluwer Academics Publishers, New York.
- Kergoat G.L., Delobel A., Silvain J.-F. 2004. Phylogeny and hostspecificity of European seed beetles (Coleoptera, Bruchidae), new insights from molecular and ecological data. *Molecular Phylogenetics* and Evolution 32: 855-865.
- Laporte B. 1975. Diagnoses de 17 nouvelles espèces de Noctuidae d'Ethiopie et du Kenya (Lépidoptères) (2^{ème} note). Bulletin mensuel de la Société Linnéenne de Lyon 44: 277-287.
- Novotny V., Basset Y. 2000. Rare species in communities of tropical insect herbivores: pondering the mystery of singletons. *Oikos* 89: 564-572.
- Nye I.W.R. 1960. The insect pests of graminaceous crops in East Africa. Colonial Research Studies 31: 1-48.

- Onyango F.O., Ochieng'-Odero J.P.R. 1994. Continuous rearing of the maize stem borer *Busseola fusca* on an artificial diet. *Entomologia experimentalis et Applicata* 73: 139-144.
- **Ortolani A. 1999.** Spots, stripes, tail tips and dark eyes: Predicting the function of carnivore colour patterns using the comparative method. *Biological Journal of the Linnean Society* **67**: 433-476.
- Pitra C., Hansen J.A., Lieckfeldt D., Arctander P. 2002. An exceptional case of historical outbreeding in African sable antelope populations. *Molecular Ecology* 11: 1197-1208.
- Polaszek A., Khan Z.R. 1998. Host plants, p.4-10 in: Polaszek A. (ed), African cereal stem borers: economic importance, taxonomy, natural enemies and control. CAB International, Wallingford.
- Price P.W., Diniz I.R., Morais H.C., Marques E.S.A. 1995. The abundance of insect herbivore species in the tropics, the high local richness of rare species. *Biotropica* 27: 468-478.
- Randriamananoro J.J. 1996. Behavioural and physiological responses of the cereal stalk borer Busseola fusca Fuller (Lepidoptera : Noctuidae) to selected cultivated and wild host plants. Ph. D. Dissertation, University of Actra, Ghana, 241 p.
- Rougeot P-C. 1984. Missions entomologiques en Ethiopie, 1976-1982. Mémoires du Muséum National d'Histoire Naturelle, nat, (n.s.) Annale de Zoologie 1-93.
- Samways M.J. 1984. A practical comparison of diversity indices on a series of small agricultural ant communities. *Phytophylactica* 16: 275-278.
- Seshu Reddy K.V. 1989. Sorghum stem borers in eastern Africa, p. 33-40 in : Proceedings of the International Workshop of sorghum stem borers, 17-20 November 1987, ICRISAT Centre India. Patancheru, India.
- Wagner T. 2002. Late Cretaceous to early Quaternary organic sedimentation in the eastern Equatorial Atlantic. *Palaeogeography, Palaeoclimatology, Palaeoecology* 179: 113-147.
- Walhberg N. 2001. The phylogenetics and biochemistry of host-plant specialization in Melitaeine butterflies (Lepidoptera: Nymphalidae). *Evolution* 55: 522-537.
- White F. 1981. The history of the afromontane archipelago and the scientific need for its conservation. *African Journal of Ecology* 19: 33-54.
- White F. 1983. The vegetation of Africa, a descriptive memoir to accompany the UNESCO / AETFAT / UNSO vegetation map of Africa. UNESCO, Natural Resources Research 20: 1-356.
- Zeitoun V. 2000. Adéquation entre changements environnementaux et spéciations humaines au Plio-Pléistocène. Comptes Rendus de l'Académie des Sciences 330: 161-166.